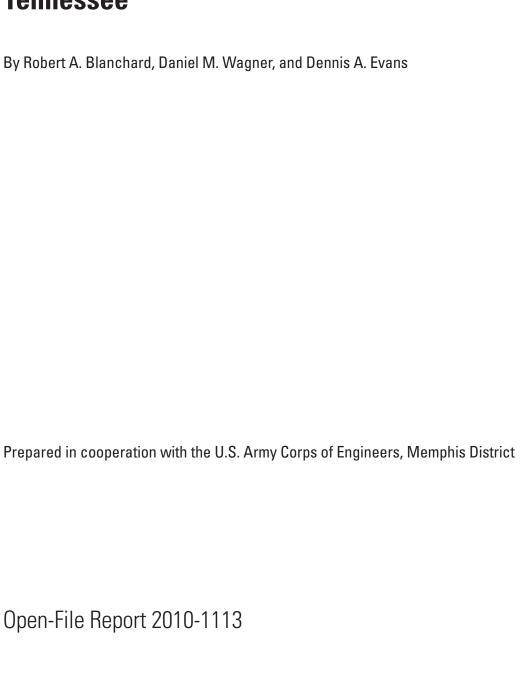


Prepared in cooperation with the U.S. Army Corps of Engineers, Memphis District


Bed-Sediment Sampling and Analysis for Physical and Chemical Properties of the Lower Mississippi River near Memphis, Tennessee

Open-File Report 2010-1113

Bed-Sediment Sampling and Analysis for Physical and Chemical Properties of the Lower Mississippi River near Memphis, Tennessee

U.S. Department of the Interior

KEN SALAZAR, Secretary

U.S. Geological Survey

Marcia K. McNutt, Director

U.S. Geological Survey, Reston, Virginia: 2010

This and other USGS information products are available at http://store.usgs.gov/ U.S. Geological Survey Box 25286, Denver Federal Center Denver, CO 80225

To learn about the USGS and its information products visit http://www.usgs.gov/ 1-888-ASK-USGS

Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report.

Suggested citation:

Blanchard, R.A., Wagner, D.M., and Evans, D.A., 2010, Bed-sediment sampling and analysis for physical and chemical properties of the lower Mississippi River near Memphis, Tennessee: U.S. Geological Survey Open-File Report 2010-1113, 22 p.

Contents

Abstrac	t	.1
Introduc	ction	.1
Descrip	tion of Study Area	.1
Purpose	e and Scope	.3
Sample	Collection and Preparation	.3
Bed-Sed	diment Analysis	.4
Phy	ysical	.4
Ch	emical	.4
Summar	ry1	3
Referen	ces Cited1	4
	ix 1. Photographs showing sampling equipment, sampling methods and procedures, and bed-sediment samples	6
Append	ix 2. Chain of custody forms used by U.S. Geological Survey laboratories and	
-	TestAmerica Laboratory, Inc2	!1
Figur	'es	
1.	Map showing location of study areas	.2
2.	Photograph showing Shipek grab sampler	
3.	Photograph showing boom and winch system mounted on the deck of the T.E. Anderson sampling boat	
	n.E., and of our our pring south	J
Table	es	
1.	Grain size analysis for bed-sediment samples collected on the Mississippi River	.5
2.	Analytical results for chemical constituents of bed-sediment samples collected on the Mississippi River, February 22-23, 2010	.6
3.	Consensus Based Probable Effect Concentration guidelines and associated bed- sediment concentrations from samples collected on the Mississippi River1	2

Conversion Factors and Datums

Multiply	Ву	To obtain
	Length	
millimeter (mm)	0.03937	inch (in.)
kilometer (km)	0.6214	mile (mi)
	Mass	
gram (g)	0.03527	ounch, avoirdupois (oz)
kilogram (kg)	2.205	pound, avoirdupois (lb)

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:

Concentrations of chemical constituents in water are given in milligrams per liter (mg/L) or micrograms per liter (µg/L).

[°]F=(1.8×°C)+32

Bed-Sediment Sampling and Analysis for Physical and Chemical Properties of the Lower Mississippi River near Memphis, Tennessee

By Robert A. Blanchard, Daniel M. Wagner, and Dennis A. Evans

Abstract

In February 2010, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, Memphis District, investigated the presence of inorganic elements and organic compounds in bed sediments of the lower Mississippi River. Selected sites were located in the navigation channel near river miles 737, 773, and 790 near Memphis, Tennessee. Bed-sediment samples were collected using a Shipek grab sampler mounted to a boom crane with a motorized winch. Samples then were processed and shipped to the U.S. Geological Survey Sediment Laboratory in Rolla, Missouri, the USGS National Water Quality Laboratory in Denver, Colorado, and to TestAmerica Laboratory, Inc. in West Sacramento, California. Samples were analyzed for grain size, inorganic elements (including mercury), and organic compounds. Chemical results were tabulated and listed with sediment-quality guidelines and presented with the physical property results. All of the bed material samples collected during this investigation yielded concentrations that were less than the Consensus-Based Probable Effect Concentration guidelines. The physical properties were tabulated and listed using a standard U.S. Geological Survey scale of sizes by class for sediment analysis. All of the samples collected during this investigation indicated a percent composition mostly comprised of sand, ranging from less than 0.125 millimeters to less than 2 millimeters.

Introduction

The U.S. Army Corps of Engineers (USACE) regularly dredges the navigation channel on the Mississippi River. Dredging performed by the USACE is covered by a nation-wide permit; however, to ensure that each State's water-quality standards are followed, the USACE must obtain permits from individual States that are affected by dredging activities.

The Tennessee Department of Environment and Conservation (TDEC) is the chief environmental and natural resource regulatory agency in Tennessee. The U.S. Environmental

Protection Agency (USEPA) has delegated the responsibility of regulating seven main sources of waste, including the dredged bed sediment from the Mississippi River, to the TDEC. The TDEC is concerned that disturbance of bed sediment in the Mississippi River during dredging may cause chemical constituents attached to the bed sediment to be released into the waters of the Mississippi River. To determine the type and concentration of chemical constituents attached to the bed sediment, the U.S. Geological Survey (USGS) collected bed-sediment samples on the Mississippi River near Memphis, Tennessee.

In February 2010, the USGS, in cooperation with the USACE, Memphis District, investigated the presence of inorganic elements and organic compounds in bed sediments of the lower Mississippi River. A total of three samples were collected, one from each site, and analyzed for grain size, inorganic elements (including mercury) and organic compounds. Chemical results were tabulated and listed with sediment-quality guidelines and presented with the physical property results.

Description of Study Area

The study area is located within a 53-mile reach of the lower Mississippi River between river miles 737 (near Memphis, Tennessee) and 790 (near Osceola, Arkansas). Three sampling sites were located in the navigation channel near river miles 737, 773, and 790 (fig. 1). The sampling sites were assigned the following station numbers and names in the USGS National Water Information System (NWIS) database: 351002090034301 MISSISSIPPI RIVER RM 737, 353302089540002 MISSISSIPPI RIVER RM 773, and 354359089541903 MISSISSIPPI RIVER RM 790. These sites are hereinafter referred to as MISS-RM737, MISS-RM773, and MISS-RM790. Station numbers were derived from latitude and longitude coordinates at the respective sampling sites.

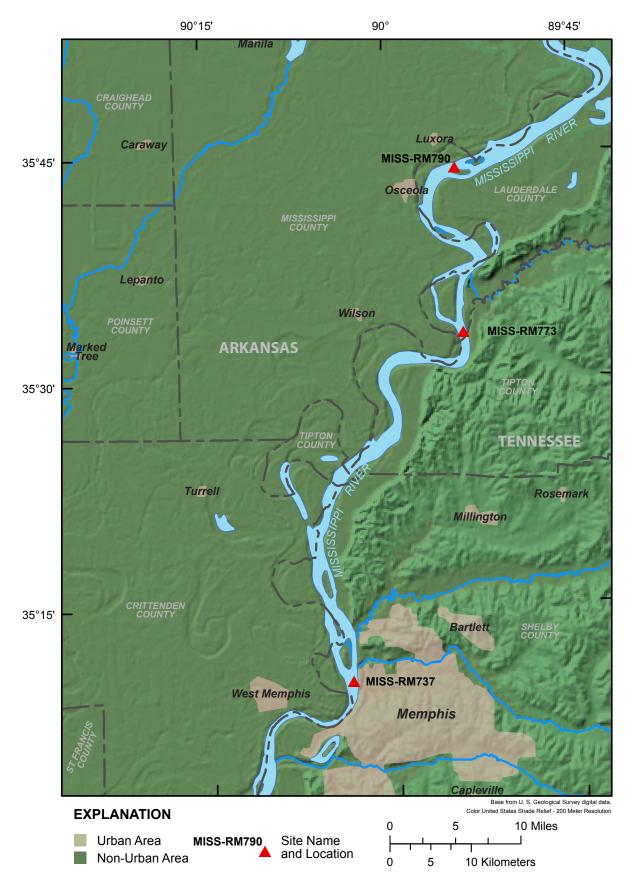


Figure 1. Location of study area.

Purpose and Scope

The purpose of this report is to present the analytical results of the physical and chemical properties of bed-sediment samples collected at MISS-RM737, MISS-RM773, and MISS-RM790. The physical properties were tabulated and listed with data collected in 1989 (Nordin and Queen, 1992) near the sampling locations for this study. Chemical properties were tabulated and listed with the sediment-quality guidelines set forth in the Consensus-Based Probable Effect Concentration (McDonald and others, 2000).

Sample Collection and Preparation

Bed-sediment samples were collected following methods described by Radtke (2005) using a Shipek grab sampler (fig. 2). The sampler was deployed with a boom and motorized winch and was lowered from a boat to the river bottom (fig. 3). Upon impact, the sampler automatically closes to capture the bed sediment (Radtke, 2005).

Figure 2. Shipek grab sampler (Photograph by Robert A. Blanchard, U.S. Geological Survey).

Figure 3. Boom and winch system mounted on the deck of the T.E. Anderson sampling boat (Photograph by Robert A. Blanchard, U.S. Geological Survey).

4 Bed-Sediment Sampling and Analysis for Physical and Chemical Properties of the Lower Mississippi River

At each site, one bed-sediment sample was collected, wet sieved (when necessary), subdivided into sample containers, and shipped to the appropriate analytical laboratory. Photographs of the sampling equipment used, methods and procedures for sample collection and the bed-sediment collected are included in appendix 1. Chain of custody procedures for samples submitted to USGS laboratories were followed according to protocol described by Murphy and others (1997). Chain of custody procedures for samples submitted to TestAmerica Laboratories, Inc., West Sacramento, California, was followed according to their protocol (TestAmerica, 2010). Copies of the chain of custody forms are included in appendix 2. Subsamples were analyzed for grain size at the USGS Sediment Laboratory, Rolla, Missouri; subsamples for inorganic elements (including mercury) and select organic compounds were analyzed at the USGS National Water Quality Laboratory, Denver, Colorado; subsamples for the organic compounds of dioxins and furans were analyzed by TestAmerica Laboratories, Inc. Inorganic samples were wet-sieved with a 2-millimeter (mm) nylon sieve. Mercury samples were prepared according to the methods described in Olson and DeWild (1999). Samples for organic compounds (including total carbon, pesticides, dioxins, and furans) were collected and prepared for analysis according to the methods described in Shelton and Capel (1994). Total carbon samples were processed according to the methods described in McGee and Demcheck (1995); samples were wet sieved using a 2-mm nylon sieve to remove detritus, debris and other larger particles prior to shipping.

Bed-Sediment Analysis

Physical

Grain size analysis was performed by the USGS Sediment Laboratory, Rolla, Missouri. Methods used for the determination of particle size are described by Guy (1969). Results for analysis of grain size from sites MISS-RM737, MISS-RM773, and MISS-RM790 are shown in table 1 along with grain size distribution results from Nordin and Queen (1992). The Nordin and Queen (1992) samples were collected in close proximity to the 2010 sample sites and were dry sieved. Using a standard U.S. Geological Survey scale of sizes by class for

sediment analysis, wherein $62.5~\mu m$ to 2 mm is considered very fine to very coarse sand and 2 mm to 8 mm is considered very fine to fine gravel (Guy, 1969), the physical properties of the samples collected during this investigation indicated a percent composition mostly comprised of sand, ranging from less than 0.125~mm to less than 2~mm (table 1).

Chemical

Analysis for 41 inorganic elements (including mercury) and 134 organic compounds were performed at the USGS National Water Quality Laboratory (NWQL), Denver, Colorado. Analytical methods used by the NWQL for the analysis of inorganic elements are described by Skougstad and others (1979). Methods used for the analysis of organic compounds and total carbon and total organic carbon are described by Foreman and others (1995), Furlong and others (1996), and Arbogast (1990). Analysis for 25 dioxins and furans were performed by TestAmerica Laboratory, Inc., and followed the methods described by the U.S. Environmental Protection Agency (1994). Results of the chemical analyses and associated method reporting limits (MRL) and units for the 200 analytes are shown in table 2. The MRL is defined as the smallest measured concentration of a substance that can be reliably measured by using a given analytical method. It is the "less-than" value reported when an analyte is not detected or is detected at a concentration less than the MRL. The MRL for a particular analyte in a sample may be increased because of matrix interference during analysis while the reported MRL for that analyte may actually be lower in other samples that lack the matrix interference.

Sample analytes and the sediment-quality guidelines that are set forth in the Consensus Based Probable Effect Concentration or PEC (MacDonald and others, 2000) are listed in table 3. The consensus-based guidelines were developed from published sediment-quality guidelines that have been derived from a variety of approaches. These guidelines consist of a probable effect concentration (PEC) above which adverse effects are expected to occur more often than not. The analytical results of this study indicated that all of the bed material samples yielded chemical concentrations that were less than the guidelines set forth in the Consensus-Based Probable Effect Concentration (table 3).

Table 1. Grain size analysis for bed-sediment samples collected on the Mississippi River.

[Included are gain size distribution results collected by Nordin and Queen (1992). The samples were collected in close proximity to the 2010 sample sites and were dry sieved. %, percent; MISS-RM, Mississippi River river mile; <, less than; mm, millimeter; µm, micrometer; NC, not collected]

Site name	Sampler type	Sample date	Bed sediment, dry sieved, sieve diameter % < 8 mm	Bed sediment, dry sieved, sieve diameter % < 4 mm	Bed sediment, dry sieved, sieve diameter % < 2 mm	sediment, fall diameter (deionized water), % < 2 mm	sediment, fall diameter (deionized water), % < 1 mm	sediment, fall diameter (deionized water), % < 0.5 mm	sediment, fall diameter (deionized water), % < 0.25 mm	sediment, fall diameter (deionized water), % < 0.125 mm	sediment, fall diameter (deionized water), % < 62.5 μm
	MISS-RM737 Shipek Grab	2/22/2010	NC	100	86	86	92	33	0	0	0.0
MISS-RM773 S	Shipek Grab	2/23/2010	NC	NC	NC	NC	100	66	55	1	0.0
• 1	MISS-RM790 Shipek Grab	2/23/2010	NC	NC	NC	100	66	46	7	0	0.0
			Bed sediment, dry sieved, sieve	Bed sediment, dry sieved, sieve	Bed sediment, dry sieved, sieve	Bed sediment, dry sieved, sieve	Bed sediment, dry sieved, sieve	Bed sediment, dry sieved, sieve	Bed sediment, dry sieved, sieve	Bed sediment, dry sieved, sieve	Bed sediment, dry sieved, sieve
	Sampler type	Sample date	diameter % < 16 mm	diameter % < 8 mm	diameter % < 4 mm	diameter % < 2 mm	diameter % < 1 mm	diameter % < 0.5 mm	diameter % < 0.25 mm	diameter % < 0.125 mm	diameter % < 62.5 μm
_	BM-54	16861/6	100	0.66	9.86	97.5	91.7	46.0	2.6	0.0	0.0
_	BM-54	16861/6	100	8.66	9.66	99.3	99.2	92.0	7.3	0.2	0.0
_	BM-54	16861/6	100	100	100	100	8.66	91.3	7.9	0.1	0.0

Samples collected between September 4-25, 1989.

6 Bed-Sediment Sampling and Analysis for Physical and Chemical Properties of the Lower Mississippi River

Table 2. Analytical results for chemical constituents of bed-sediment samples collected on the Mississippi River, February 22-23, 2010.

[MISS-RM, Mississippi River river mile; g/kg, grams per kilogram; µg/g, micrograms per gram; PAHs, polycyclic aromatic hydrocarbons; PCBs, polychlorinated biphenyls; µg/kg, micrograms per kilogram; pg/g, picograms per gram; pct, percent recovery; <, less than; NA, not applicable; ND, no detection]

				Site locatio	n
Chemical constituents	Units	Method reporting limit	MISS-RM737	MISS-RM773	MISS-RM790
Inorganic elements					
Aluminum	μg/g	25	1,410	1,560	1,510
Antimony	μg/g	0.3	< 0.3	< 0.3	< 0.3
Arsenic	μg/g	0.1	1.0	1.3	1.1
Barium	μg/g	0.2	13.4	15.5	13.4
Beryllium	μg/g	0.03	0.08	0.10	0.09
Bismuth	μg/g	0.2	< 0.2	< 0.2	< 0.2
Boron	μg/g	1.8	<1.8	<1.8	<1.8
Cadmium	μg/g	0.001	0.02	0.02	0.02
Calcium	μg/g	100	720	1,890	910
Cerium	μg/g	0.1	11.0	20.5	13.3
Cesium	μg/g	0.003	0.10	0.15	0.11
Chromium	μg/g	0.1	2.93	4.20	3.58
Cobalt	μg/g	0.1	3.13	2.03	2.29
Copper	μg/g	0.1	1.19	0.96	0.99
Gallium	μg/g	0.02	0.80	1.00	0.84
Iron	μg/g	2.1	3,330	4,590	3,370
Lanthanum	μg/g	0.05	5.73	9.50	6.78
Lead	μg/g	0.001	1.7	2.5	1.9
Lithium	μg/g	0.3	1.9	1.7	1.7
Magnesium	μg/g	6.0	470	690	500
Manganese	μg/g	0.3	81.8	69.8	70.2
Mercury	μg/g	0.0072	< 0.0072	< 0.0072	< 0.0072
Molybdenum	μg/g	0.001	0.04	0.07	0.04
Nickel	μg/g	0.001	7.8	5.0	6.1
Niobium	μg/g	0.2	< 0.2	< 0.2	< 0.2
Phosphorus	μg/g	5.0	80	200	100
Potassium	μg/g	20	200	200	200
Rubidium	μg/g	0.01	1.37	1.75	1.56
Scandium	μg/g	0.6	< 0.6	0.7	< 0.6
Selenium	μg/g	0.1	< 0.1	< 0.1	< 0.1
Silver	μg/g	3.0	<3.0	< 3.0	<3.0
Sodium	μg/g	500	< 500	< 500	< 500
Strontium	μg/g	0.80	5.96	12.60	7.80
Sulfate	μg/g	2.0	<2.0	< 2.0	<2.0

Table 2. Analytical results for chemical constituents of bed-sediment samples collected on the Mississippi River, February 22-23, 2010.—Continued

[MISS-RM, Mississippi River river mile; g/kg, grams per kilogram; μ g/g, micrograms per gram; PAHs, polycyclic aromatic hydrocarbons; PCBs, polychlorinated biphenyls; μ g/kg, micrograms per kilogram; pg/g, picograms per gram; pct, percent recovery; <, less than; NA, not applicable; ND, no detection]

				Site location	1
Chemical constituents	Units	Method reporting limit	MISS-RM737	MISS-RM773	MISS-RM790
Thallium	μg/g	0.1	< 0.1	< 0.1	< 0.1
Thorium	μg/g	0.10	1.38	1.54	1.39
Titanium	μg/g	40.0	<40.0	113	58.9
Uranium	μg/g	0.02	0.18	0.28	0.21
Vanadium	μg/g	0.10	3.74	11.60	5.08
Yttrium	μg/g	0.05	2.71	5.70	3.33
Zinc	μg/g	0.1	10.0	10.6	9.1
Organic carbon					
Carbon, Total	g/kg	0.1	0.3	0.3	0.4
Selected PAHs and total PCBs					
1,2-dimethylnaphthalene	μg/kg	50.0	< 50.0	< 50.0	< 50.0
1,6-dimethylnaphthalene	μg/kg	50.0	< 50.0	< 50.0	< 50.0
1-methyl-9H-fluorene	μg/kg	50.0	< 50.0	< 50.0	< 50.0
1-methylphenanthrene	μg/kg	50.0	< 50.0	< 50.0	< 50.0
l-methylpyrene	μg/kg	50.0	< 50.0	< 50.0	< 50.0
2,3,6-trimethylnaphthalene	μg/kg	50.0	< 50.0	< 50.0	< 50.0
2,6-dimethylnaphthalene	μg/kg	50.0	< 50.0	< 50.0	< 50.0
2-ethylnaphthalene	μg/kg	50.0	< 50.0	< 50.0	< 50.0
2-fluorobiphenyl	pct	NA	60.8	65.4	62.5
2-methylanthracene	μg/kg	50.0	< 50.0	< 50.0	< 50.0
4H-cyclopenta[def]phenanthrene	μg/kg	50.0	< 50.0	< 50.0	< 50.0
Acenaphthene	μg/kg	50.0	< 50.0	< 50.0	< 50.0
Acenaphthylene	μg/kg	50.0	< 50.0	< 50.0	< 50.0
Anthracene	μg/kg	50.0	< 50.0	< 50.0	< 50.0
Benz[a]anthracene	μg/kg	50.0	< 50.0	< 50.0	< 50.0
Benzo[a]pyrene	μg/kg	50.0	< 50.0	< 50.0	< 50.0
Benzo[b]fluoranthene	μg/kg	50.0	< 50.0	< 50.0	< 50.0
Benzo[ghi]perylene	μg/kg	50.0	< 50.0	< 50.0	< 50.0
Benzo[k]fluoranthene	μg/kg	50.0	< 50.0	< 50.0	< 50.0
Chrysene	μg/kg	50.0	< 50.0	< 50.0	< 50.0
Dibenz[a,h]anthracene	μg/kg	50.0	< 50.0	< 50.0	<50.0
Fluoranthene	μg/kg	50.0	< 50.0	< 50.0	< 50.0
Fluorene	μg/kg	50.0	< 50.0	< 50.0	< 50.0
Indeno[1,2,3-cd]pyrene	μg/kg	50.0	< 50.0	< 50.0	< 50.0
Isophorone	μg/kg	50.0	< 50.0	< 50.0	< 50.0

Table 2. Analytical results for chemical constituents of bed-sediment samples collected on the Mississippi River, February 22-23, 2010.—Continued

[MISS-RM, Mississippi River river mile; g/kg, grams per kilogram; µg/g, micrograms per gram; PAHs, polycyclic aromatic hydrocarbons; PCBs, polychlorinated biphenyls; µg/kg, micrograms per kilogram; pg/g, picograms per gram; pct, percent recovery; <, less than; NA, not applicable; ND, no detection]

				Site location	1
Chemical constituents	Units	Method reporting limit	MISS-RM737	MISS-RM773	MISS-RM790
Naphthalene	μg/kg	50.0	<50.0	<50.0	< 50.0
Nitrobenzene-d5	pct	NA	52.0	56.6	52.7
Nonachlorobiphyenyl	pct	0.1	92.7	91.4	79.2
P-cresol	μg/kg	50.0	< 50.0	< 50.0	< 50.0
Phenanthrene	μg/kg	50.0	< 50.0	< 50.0	< 50.0
Phenanthridine	μg/kg	50.0	< 50.0	< 50.0	< 50.0
Pyrene	μg/kg	50.0	< 50.0	< 50.0	< 50.0
Terphenyl-d14	pct	NA	122.0	118.5	122.8
Total PCBs	μg/kg	5.0	< 5.0	< 5.0	< 5.0
Pesticides					
1- napthol	μg/kg	1.5	<1.5	<1.5	<1.5
2,6-diethylaniline	μg/kg	1.5	<1.5	<1.5	<1.5
2-chloro-2,6-diethylacetanilid	μg/kg	1.5	<1.5	<1.5	<1.5
2-Chloro-4-isopropylamino-6-amino-s-triazine	μg/kg	1.5	<1.5	<1.5	<1.5
2-ethyl-6-methylaniline	μg/kg	1.5	<1.5	<1.5	<1.5
3,4-dichloroaniline	μg/kg	1.5	<1.5	<1.5	<1.5
3,5-dichloroaniline	μg/kg	1.5	<1.5	<1.5	<1.5
4-chloro-2-methylphenol	μg/kg	1.5	<1.5	<1.5	<1.5
Acetochlor	μg/kg	1.5	<1.5	<1.5	<1.5
Alachlor	μg/kg	1.5	<1.5	<1.5	<1.5
Alpha-Endosulfan	μg/kg	1.5	<1.5	<1.5	<1.5
Alpha-HCH-d6	pct	NA	23.6	61.0	58.3
Atrazine	μg/kg	1.5	<1.5	<1.5	<1.5
Azinphos-methyl	μg/kg	1.5	<1.5	<1.5	<1.5
Azinphos-methyl-oxon	μg/kg	1.5	<1.821	<1.5	<1.5
Benfluralin	μg/kg	1.5	<1.5	<1.5	<1.5
Carbaryl	μg/kg	1.5	<1.5	<1.5	<1.5
Carbofuran	μg/kg	1.5	<1.5	<1.5	<1.5
Carbophenothion	μg/kg	2.0	<2.0	<2.0	< 2.0
Chlorpyrifos	μg/kg	1.5	<1.5	<1.5	<1.5
Chlorpyrifos, oxygen analog	μg/kg	1.5	<7.461	<1.5	<1.5
cis-Permethrin	μg/kg	1.5	<1.5	<1.5	<1.5
cis-Propiconazole	μg/kg	1.5	<1.5	<1.5	<1.5
Cyanazine	μg/kg	1.5	<1.5	<1.5	<1.5

Table 2. Analytical results for chemical constituents of bed-sediment samples collected on the Mississippi River, February 22-23, 2010.—Continued

[MISS-RM, Mississippi River river mile; g/kg, grams per kilogram; µg/g, micrograms per gram; PAHs, polycyclic aromatic hydrocarbons; PCBs, polychlorinated biphenyls; µg/kg, micrograms per kilogram; pg/g, picograms per gram; pct, percent recovery; <, less than; NA, not applicable; ND, no detection]

				Site location	ı
Chemical constituents	Units	Method reporting limit	MISS-RM737	MISS-RM773	MISS-RM790
Cylfuthrin	μg/kg	1.5	<1.5	<1.5	<1.5
Cypermethrin	μg/kg	1.5	<1.5	<1.5	<1.5
Dacthal	μg/kg	1.5	<1.5	<1.5	<1.5
Desulfinylfipronil	μg/kg	1.5	<1.5	<1.5	<1.5
Desulfinylfipronil amide	μg/kg	1.5	<1.5	<1.5	<1.5
Diazinon	μg/kg	1.5	<1.5	<1.5	<1.5
Diazinon, oxygen analog	μg/kg	1.5	<1.5	<1.5	<1.5
Diazinon-d10	pct	NA	48.6	110.7	104.1
Dichlorvos	μg/kg	1.5	<1.5	<1.5	<1.5
Dicrotophos	μg/kg	1.5	ND	ND	ND
Dieldrin	μg/kg	1.5	<1.5	<1.5	<1.5
Dimethoate	μg/kg	1.5	<1.5	<1.5	<1.5
Disulfoton	μg/kg	1.5	<1.5	<1.5	<1.5
Disulfoton sulfone	μg/kg	1.5	<1.5	<1.5	<1.5
Endosulfan I	μg/kg	5.0	< 5.0	< 5.0	< 5.0
Endosulfan sulfate	μg/kg	1.5	<1.5	<1.5	<1.5
EPTC (Eptam)	μg/kg	1.5	<1.5	<1.5	<1.5
Ethion	μg/kg	1.5	<1.5	<1.5	<1.5
Ethion monoxon	μg/kg	1.5	<1.5	<1.5	<1.5
Ethoprophos	μg/kg	1.5	<1.5	<1.5	<1.5
Fenamiphos	μg/kg	1.5	<1.5	<1.5	<1.5
Fenamiphos sulfone	μg/kg	1.5	<1.5	<1.5	<1.5
Fenamiphos sulfoxide	μg/kg	1.5	ND	ND	ND
Fenthion	μg/kg	3.0	< 3.0	<3.0	<3.0
Fipronil	μg/kg	1.5	<1.5	<1.5	<1.5
Fipronil sulfide	μg/kg	1.5	<1.5	<1.5	<1.5
Fipronil sulfone	μg/kg	1.5	<1.5	<1.5	<1.5
Fonofos	μg/kg	1.5	<1.5	<1.5	<1.5
Hexazinone	μg/kg	1.5	<1.5	<1.5	<1.5
Iambda-Cyhalothrin	μg/kg	1.5	<1.5	<1.5	<1.5
Iprodione	μg/kg	1.5	<1.5	<1.5	<1.5
Isofenphos	μg/kg	1.5	<1.5	<1.5	<1.5
Malaoxon	μg/kg	1.5	<16.31	<1.5	<1.5
Malathion	μg/kg	1.5	<1.5	<1.5	<1.5

Table 2. Analytical results for chemical constituents of bed-sediment samples collected on the Mississippi River, February 22-23, 2010.—Continued

[MISS-RM, Mississippi River river mile; g/kg, grams per kilogram; μ g/g, micrograms per gram; PAHs, polycyclic aromatic hydrocarbons; PCBs, polychlorinated biphenyls; μ g/kg, micrograms per kilogram; pg/g, picograms per gram; pct, percent recovery; <, less than; NA, not applicable; ND, no detection]

				Site location	
Chemical constituents	Units	Method reporting limit	MISS-RM737	MISS-RM773	MISS-RM790
Metalaxyl	μg/kg	1.5	<4.851	<1.5	<1.5
Methidathion	μg/kg	1.5	<1.5	<1.5	<1.5
Methyl azinphos	μg/kg	5.0	< 5.0	< 5.0	< 5.0
Methyl parathion	μg/kg	5.0	< 5.0	< 5.0	< 5.0
Metolachlor	μg/kg	1.5	<1.5	<1.5	<1.5
Metribuzin	μg/kg	1.5	<1.5	<1.5	<1.5
Molinate	μg/kg	1.5	<1.5	<1.5	<1.5
Myclobutanil	μg/kg	1.5	<1.5	<1.5	<1.5
O-Ethyl-O-methyl-S-propylphosphorothioate	μg/kg	3.0	<3.0	<3.0	<3.0
Oxyfluorfen	μg/kg	1.5	<1.5	<1.5	<1.5
Paraoxon-methyl	μg/kg	1.5	<1.5	<1.5	<1.5
Parathion	μg/kg	2.0	<2.0	<2.0	<2.0
Parathion-methyl	μg/kg	1.5	<1.5	<1.5	<1.5
Pendimethalin	μg/kg	1.5	<1.5	<1.5	<1.5
Phorate	μg/kg	1.5	<1.5	<1.5	<1.5
Phorate oxon (Phorate oxygen analog)	μg/kg	1.5	<1.5	<1.5	<1.5
Phosmet	μg/kg	1.5	<1.5	<1.5	<1.5
Phosmet oxon	μg/kg	1.5	<1.5	<1.5	<1.5
Profenofos	μg/kg	2.0	<2.0	<2.0	<2.0
Prometon	μg/kg	1.5	<1.5	<1.5	<1.5
Prometryn	μg/kg	1.5	<1.5	<1.5	<1.5
Pronamide	μg/kg	5.0	< 5.0	< 5.0	< 5.0
Propanil	μg/kg	1.5	<1.5	<1.5	<1.5
Propargites	μg/kg	1.5	<1.5	<1.5	<1.5
Propetamphos	μg/kg	2.0	<2.0	<2.0	<2.0
Propyzamide	μg/kg	1.5	<1.5	<1.5	<1.5
Simazine	μg/kg	1.5	<1.5	<1.5	<1.5
Sulfone + Fenamiphos sulfoxide	μg/kg	1.5	ND	ND	ND
Sulfotepp	μg/kg	2.0	<2.0	<2.0	<2.0
Sulprofos	μg/kg	3.0	<3.0	<3.0	<3.0
Tebuconazole	μg/kg	1.5	<3.661	<1.5	<1.5
[ebuthiuron	μg/kg	1.5	<1.5	<1.5	<1.5
Tefluthrin	μg/kg	1.5	<1.5	<1.5	<1.5
Terbufos	μg/kg	1.5	<1.5	<1.5	<1.5

Table 2. Analytical results for chemical constituents of bed-sediment samples collected on the Mississippi River, February 22-23, 2010.—Continued

[MISS-RM, Mississippi River river mile; g/kg, grams per kilogram; μ g/g, micrograms per gram; PAHs, polycyclic aromatic hydrocarbons; PCBs, polychlorinated biphenyls; μ g/kg, micrograms per kilogram; pg/g, picograms per gram; pct, percent recovery; <, less than; NA, not applicable; ND, no detection]

				Site location	ı
Chemical constituents	Units	Method reporting limit	MISS-RM737	MISS-RM773	MISS-RM790
Terbufos oxygen analog sulfone	μg/kg	1.5	<1.5	<1.5	<1.5
Terbuthylazine	μg/kg	1.5	<1.5	<1.5	<1.5
Thiobencarb	μg/kg	1.5	< 2.941	<1.5	<1.5
Trans-permethrin	μg/kg	1.5	<1.5	<1.5	<1.5
Trans-propiconazole	μg/kg	1.5	<1.5	<1.5	<1.5
Tribufos	μg/kg	1.5	<1.5	<1.5	<1.5
Trifluralin	μg/kg	1.5	<1.5	<1.5	<1.5
<u>Dioxins/Furans</u>					
2,3,7,8-TCDD	pg/g	1.2	<1.2	<1.2	<1.2
Total TCDD	pg/g	1.2	<1.2	<1.2	<1.2
1,2,3,7,8-PeCDD	pg/g	6.0	< 6.0	< 6.0	< 6.0
Total PeCDD	pg/g	6.0	< 6.0	< 6.0	< 6.0
1,2,3,4,7,8-HxCDD	pg/g	6.0	< 6.0	< 6.0	< 6.0
1,2,3,6,7,8-HxCDD	pg/g	6.0	< 6.0	< 6.0	< 6.0
1,2,3,7,8,9-HxCDD	pg/g	6.0	< 6.0	< 6.0	<6.0
Total HxCDD	pg/g	6.0	< 6.0	< 6.0	< 6.0
1,2,3,4,6,7,8-HpCDD	pg/g	6.0	< 6.0	< 6.0	<6.0
Total HpCDD	pg/g	6.0	< 6.0	< 6.0	<6.0
OCDD	pg/g	12	<12	<12	<12
2,3,7,8-TCDF	pg/g	1.2	<1.2	<1.2	<1.2
Total TCDF	pg/g	1.2	<1.2	<1.2	<1.2
1,2,3,7,8-PeCDF	pg/g	6.0	< 6.0	<6.0	<6.0
2,3,4,7,8-PeCDF	pg/g	6.0	< 6.0	<6.0	<6.0
Total PeCDF	pg/g	6.0	< 6.0	<6.0	<6.0
1,2,3,4,7,8-HxCDF	pg/g	6.0	< 6.0	<6.0	<6.0
1,2,3,6,7,8-HxCDF	pg/g	6.0	< 6.0	<6.0	<6.0
2,3,4,6,7,8-HxCDF	pg/g	6.0	<6.0	<6.0	<6.0
1,2,3,7,8,9-HxCDF	pg/g	6.0	<6.0	<6.0	<6.0
Total HxCDF	pg/g	6.0	<6.0	<6.0	<6.0
1,2,3,4,6,7,8-HpCDF	pg/g	6.0	<6.0	<6.0	<6.0
1,2,3,4,7,8,9-HpCDF	pg/g	6.0	<6.0	<6.0	<6.0
Total HpCDF	pg/g	6.0	< 6.0	<6.0	<6.0
OCDF	pg/g	12	<12	<12	<12

Table 3. Consensus Based Probable Effect Concentration (PEC) guidelines (MacDonald and others, 2000) and associated bedsediment concentrations from samples collected on the Mississippi River.

 $[mg/kg\ DW,\ milligrams\ per\ kilogram\ dry\ weight;\ \mu g/kg\ DW,\ micrograms\ per\ kilogram\ dry\ weight;\ MISS-RM,\ Mississippi\ River\ river\ mile;<, less$

				Site location	
Checmial constituents	Consensus- based PEC (mg/kg DW)	Consensus- based PEC (µg/kg DW)	MISS-RM737	MISS-RM773	MISS-RM790
Trace element (concentrations in mg/l	kg DW)				
Arsenic	33		1.0	1.3	1.1
Cadmium	4.98		0.02	0.02	0.02
Chromium	111		2.93	4.2	3.58
Copper	149		1.19	0.96	0.99
Lead	128		1.7	2.5	1.9
Mercury	1.06		< 0.0072	< 0.0072	< 0.0072
Nickel	48.6		7.8	5.0	6.1
Zinc	459		10.0	10.6	9.1
Polycyclic aromatic hydrocarbons (PA	AH) (concentrations in	μg/kg DW)			
Anthracene		845	< 50.0	< 50.0	< 50.0
Fluorene		536	< 50.0	< 50.0	< 50.0
Naphthalene		561	< 50.0	< 50.0	< 50.0
Phenanthrene		1,170	< 50.0	< 50.0	< 50.0
Benz[a]anthracene		1,050	< 50.0	< 50.0	< 50.0
Benzo(a)pyrene		1,450	< 50.0	< 50.0	< 50.0
Chrysene		1,290	< 50.0	< 50.0	< 50.0
Fluoranthene		2,230	< 50.0	< 50.0	< 50.0
Pyrene		1,520	< 50.0	< 50.0	< 50.0
Total PAHs		22,800	<450	<450	<450
Polychlorinated biphenyls (PCB) (con	centrations in μg/kg D	OW)			
Total PCBs		676	< 5.0	< 5.0	< 5.0
Organochlorine pesticides (concentra	tions in μg/kg DW)				
Chlordane		17.6	<1.5	<1.5	<1.5
Dieldrin		61.8	<1.5	<1.5	<1.5
Sum DDD		28.0	<2.5	<2.5	<2.5
Sum DDE		31.3	<1.5	<1.5	<1.5
Sum DDT		62.9	<1.0	<1.0	<1.0
Total DDTs		572	< 5.0	< 5.0	< 5.0
Endrin		207	<1.0	<1.0	<1.0
Heptachlor Epoxide		16.0	<1.5	<1.5	<1.5
Lindane (gamma-BHC)		4.99	< 0.5	< 0.5	< 0.5

Summary

In February 2010, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, Memphis District, investigated the presence of inorganic elements and organic compounds in bed-sediment samples of the lower Mississippi River. Selected sites were located in the navigation channel near river miles 737, 773 and 790 near Memphis, Tennessee. Bed-sediment samples were collected using a Shipek grab sampler mounted to a boom crane with a motorized winch. Samples then were processed and shipped to the U.S. Geological Survey Sediment Laboratory in Rolla, Missouri, the USGS National Water Quality Laboratory in Denver, Colorado, and to TestAmerica Laboratory, Inc. in West Sacramento, California. Three samples were collected, one from each site, and analyzed for grain size, inorganic elements (including mercury) and organic compounds. Chemical results for the 200 analytes measured were tabulated and listed with sediment-quality guidelines and presented with the physical property results. All of the bed -sediment samples collected during this investigation yielded chemical concentrations that were less than the Consensus-Based Probable Effect Concentration guidelines (MacDonald and others, 2000). The physical properties were tabulated and listed using a standard U.S. Geological Survey scale of sizes by class for sediment analysis. All three of the bed-sediment samples collected during this investigation indicated a percent composition mostly comprised of sand, ranging from less than 0.125 mm to less than 2 mm.

References Cited

- Arbogast, B.F., 1990, Quality assurance manual for the Branch of Geochemistry, U.S. Geological Survey Open-File Report 90-668, 184 p.
- Foreman, W.T., Connor, B.F., Furlong, E.T., Vaught, D.G., and Merten, L.M., 1995, Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory---Determination of organochlorine pesticides and polychlorinated biphenyls in bottom sediment by dual capillary-column gas chromatography with electron-capture detection: U.S. Geological Survey Open-File Report 95-140, 78 p.
- Furlong, E.T., Vaught, D.G., Merten, L.M., Foreman, W.T., and Gates, P.M., 1996, Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory--- Determination of semivolatile organic compounds in bottom sediment by solvent extraction, gel permeation chromatographic fractionation, and capillary-column gas chromatography/mass spectrometry: U.S. Geological Survey Open-File Report 95-719, 67 p.
- Guy, H.P., 1969, Laboratory theory and methods for sediment analysis: U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, chap. C1, 58 p.
- MacDonald, D.D., Ingersoll, C.G, and Berger, T.A., 2000, Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems: Archives of Environmental Contamination and Toxicology, v. 39, p. 20-31.
- McGee, B.D., and Demcheck, D.K., 1995, Occurrence and estimation of trace elements in bottom material for selected streams in coastal Louisiana, 1991-92: Louisiana Department of Transportation and Development Water Resources Technical Report no. 57, 49 p.
- Murphy, C., Briggs, P., Adrain, B., Wilson, S., Hageman, P., and Theodorakos, P., 1997, Chain of custody----Recommendations for acceptance and analysis of evidentiary geochemical samples: U.S. Geological Survey Circular 1138, 26 p.
- Nordin, C.F., and Queen, B.S., 1992, Particle size distributions of bed sediments along the thalweg of the Mississippi River, Cairo, Illinois, to Head of Passes, September 1989, Appendix A, Tables 1, 3, and 4, U.S. Army Corps of Engineer Waterways Experiment Sta., Vicksburg, MS, Potamology Progr. (P-1) Rept. 7, 93 p.
- Olson, M.L., and DeWild, J.F., 1999, Low-level collection techniques and species-specific analytical methods for mercury in water, sediment, and biota: U.S. Geological Survey Water-Resources Investigations Report 99-4018b, 11 p.

- Radtke, D.B., Revised 2005, Bottom-material samples: U.S. Geological Survey Techniques of Water Resources Investigations, book 9, chap. A8, accessed February 15, 2010 at http://pubs.water.usgs.gov/twri9A8/
- Shelton, L.R., and Capel, P.D., 1994, Guidelines for collecting and processing samples of stream bed sediment for analysis of trace elements and organic contaminants for the National Water-Quality Assessment Program: U.S. Geological Survey Open-File Report 94-458, 20 p.
- Skougstad, M.W., Fishman, M.J., Friedman, L.C., Erdmann,
 D.E., and Duncan, S.S., 1979, Methods for determination of inorganic substances in water and fluvial sediments: U.S.
 Geological Survey Techniques of Water-Resources Investigations, book 5, chap. A1, 626 p.
- TestAmerica, Inc., 2010, TestAmerica Terms and Conditions of Sale (Short Form), 1p. accessed May 26, 2010, at http://www.testamericainc.com/downloads/TA_ShortFormTs&Cs.pdf
- U.S. Environmental Protection Agency, 1994, Method 8290: polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) by high-resolution gas chromatography/high-resolution mass spectrometry (HRGC/HRMS). Revision O. In: Test methods for evaluating solid waste, physical/chemical methods. EPA Doc. SW-846; 71 p.

Appendixes 1-2

Appendix 1. Photographs showing sampling equipment, sampling methods and procedures, and bed-sediment samples.

Testing the boom and winch system before departure on the Mississippi River (Photograph by Daniel M. Wagner, U.S. Geological Survey).

The T.E. Anderson sampling boat used for collection of bed sediment on the Mississippi River (Photograph by Robert A. Blanchard, U.S. Geological Survey).

Preparing chain of custody forms for sample collection (Photograph by Robert A. Blanchard, U.S. Geological Survey).

Preparing labels for sample bottles (Photograph by Robert A. Blanchard, U.S. Geological Survey).

Preparing the Shipek grab sampler for collection of bed sediment (Photograph by Robert A. Blanchard, U.S. Geological Survey).

Deployment of the Shipek grab sampler for collection of bed sediment (Photograph by Robert A. Blanchard, U.S. Geological Survey).



Retrieval of the Shipek grab sampler with bed-sediment sample (Photograph by Robert A. Blanchard, U.S. Geological Survey).

Preparing to collect bed-sediment sample from the Shipek grab sampler (Photograph by Daniel M. Wagner, U.S. Geological Survey).

Collection of bed-sediment sample from the Shipek grab sampler (Photograph by Daniel M. Wagner, U.S. Geological Survey).

Collection of bed-sediment sample using 2-millimeter nylon sieve (Photograph by Daniel M. Wagner, U.S. Geological Survey).

Packaging of bed-sediment sample (Photograph by Daniel M. Wagner, U.S. Geological Survey).

Bed-sediment sample collected at MISS-RM737 (Photograph by Daniel M. Wagner, U.S. Geological Survey).

Bed-sediment sample collected at MISS-RM773 (Photograph by Daniel M. Wagner, U.S. Geological Survey).

Bed-sediment sample collected at MISS-RM790 (Photograph by Daniel M. Wagner, U.S. Geological Survey).

Appendix 2. Chain of custody forms used by U.S. Geological Survey laboratories and TestAmerica Laboratory, Inc.

17000											γ									
		Project Manager	nager		(2		20	Date Date	Clia	Scrence for a changing world	3		Chain of Cus	Chain of Custody Number	
USGS ARKANDAS WER			7	200	0	1000	20	100					1	2/2	24/10	0				
401 Hordin Rd		Telephone Number (Area Code)/Fax Number	Number 22.8	Sec	Sode)/F	ax Nun	(So	0	00	360	1		Leb	Lab Number	ħ.			Page	of .	1
City He Rock State Zip Code	211	Site Contact	to &		27	Lab Contact	ıct		2-7			Ana	alysis e spac	(Attac	Analysis (Attach list if more space is needed)		1			
Project Name and Location (State)	- 152	Carrier/Waybill Number	ıybill Nur	nber						fr.		6	-				-	Soci	cial Instruc	ions/
Contract/Purchase Order/Ouote No.			Ma	Matrix		00	ontain	Containers & Preservatives		360	122	106	8 2 1 J	0004				Col	Conditions of Receipt	sceip
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	snoanby	Soil	Unpres.	#OSZH	HINOS	HOEN	HOEN	405	405	つて	77	- '						
m155-Rm 737 21	22/10	530			X			-		×	×	×	×							
miss-Rm 737 af	2/10 /	540			×					$\stackrel{\wedge}{\times}$	~	×		×				2),
21 2 - Rm 773	3/10.	100			×					×	×	><	×							
21,55- RM 773 2/2	3/10	110		~	×					X	×	X	× ×							
21 21 21 21 21	23/10 /	430		< <i>7</i>	×					×	><	X	×							
M155- RM 730 21	23/10/	0440	×		×					×	×	×	×							
							-													
		- H																		
	V														The state of					
Possible Hazard Identification Non-Hazard Flammable Skin tritant P	Poison B	Unknown	Sample Disposal Return To Client	Disposa m To Ci	ient		sposal E	Oisposal Bv Lab		Archive For	For	Normal	OW	Months	(A fee fonger	may be	asse	sed if sample	(A fee may be assessed if samples are retained fonger than 1 month)	
Required 14 Days 14 Days	Da	1 6	K	now	50	ac.F	Required	OC Requirements (Specify)	Ü											
By + 1 March of		Date 0	0	Time		1. Re	1. Received By	By										Date	Time	
2. Relinquished By		Date		Time		2. Re	2. Received By	Ву	and the same of th									Date	Time	
3. Relinquished By		Date		Time		3 Re	3 Received By	By										Date	Time	
Comments					-								101	-46						14

Client Client EVANS - U.SGS		тепретапие от песери			
EVANS - USG	Drinkir	Drinking Water? Yes □ No 🗵		THE LEADER IN ENVIRONMENTAL TESTING	
	Project	Project Manager	is Evens	Date 2/24/10	Chain of Custody Number
Hordin R.	Telepho	umber (Area Co	de)/Fax Number 36 44	Lab Number	Page of
City + He Rock State Zip Code	Sit	e Contact	Lab Contact	Analysis (Attach list if more space is needed)	
d Location (State)	5	Carrier/Waybill Number			Special Instructions/
Contract/Purchase Order/Quote No.		Matrix	Containers & Preservatives	06	Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date Time	suoeupA .be2 .lio2	Unpres.	c 8	
M1.55-RM 737 2/22	110 1530	×		×	
m155- RM 773	3/10 1/00	×	×	×	
miss-Rm 773 2/23	3/10 1110	×	×	×	
miss-Rm 990 2/23	3/10 1430	×	×	×	
miss- Rm 790 2/23/	3/10 1440	×	×	*	
Possible Hazard Identification Non-Hazard	n B Unknown	Sample Disposal Return To Client	Disposal By Lab	(A fee may be ass Months longer than 1 mon	
Turn Around Time Required 24 Hours 48 Hours 7 Days 14 Days X	Z 21 Days Other_	Je.	QC Requirements (Spe		
1. Relinquished By Klamy bane &	Date 2/24/10	10 1330	1. Received By		Date Time
2. Relinquished By	Date	Time	2. Received By		Date Time
3. Relinquished By	Date	Time	3. Received By		Date Time
Comments			Control of the Contro		

Publishing support provided by: Lafayette Publishing Service Center

For more information concerning the research described in the report:

U.S. Geological Survey Arkansas Water Science Center 401 Hardin Road Little Rock, AR 72211-3528 (501) 228-3600

http://ar.water.usgs.gov