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Appendix D. Methods for Assessing Carbon Stocks, Carbon Sequestration, and 
Greenhouse-Gas Fluxes of Terrestrial Ecosystems

but it also determines uncertainty estimates of the predicted 
variables. GEMS previously has been applied in this way to 
simulate carbon dynamics for large areas in Africa (Liu, Kaire, 
and others, 2004) and the United States (Liu, Loveland, and 
Kurtz, 2004; Tan and others, 2005; Liu and others, 2006).

The spreadsheet and biogeochemical modeling 
approaches that will be used to quantify biological carbon 
sequestration and greenhouse-gas (GHG) emissions for the 
national assessment are described in detail in the following 
sections. In addition, model uncertainty, model integration 
with other model systems, and ecosystem-services modeling 
are described.

D.1. Accounting and Modeling Simulations of 
Carbon Sequestration and Greenhouse-Gas 
Fluxes

D.1.1. GEMS Accounting Using the Spreadsheet 
Approach

Spreadsheet approaches use a computer spreadsheet tool 
to simulate carbon dynamics and GHG emissions. The primary 
advantages of the spreadsheet approach are ease in model 
development and model transparency. The disadvantages of 
the spreadsheet approach include nonspatial or coarse spatial 
resolution of simulations and the relatively small number of for-
mulas used in spreadsheet calculations. Nevertheless, although 
many processes have to be simplified or ignored, the spread-
sheet approach provides reference results that are useful to com-
pare with those from more process-based modeling systems.

In general, carbon accounting for almost all terrestrial 
sectors can be conducted using the spreadsheet approach. 
The 2006 Intergovernmental Panel on Climate Change 
(IPCC) Guidelines for National Greenhouse Gas Inventories 
(Intergovernmental Panel on Climate Change, 2006) pro-Intergovernmental Panel on Climate Change, 2006) pro-, 2006) pro-
vides equations and factors for building GHG spreadsheets. 
A spreadsheet approach will be implemented in parallel to 
GEMS to compare and verify GEMS outputs; this method is 
called “GEMS-spreadsheet.”

The GEMS-spreadsheet method requires the following 
input data at the ecoregion level (or any geographic region):

• Land-cover transition tables during two periods (for 
example, 2001–2010 and 2011–2050)

• Vegetation-age distribution by land-cover type
• Carbon density by age and land-cover type
• GHG fluxes by vegetation age and land-cover type
• The severity of disturbances or management activities 

on live biomass carbon, expressed as the fraction of 
biomass killed or harvested

Quantifying terrestrial carbon dynamics for large 
regions is a challenging task for scientists (Potter and others, 
1993; Intergovernmental Panel on Climate Change, 1997; 
Houghton and others, 1999; McGuire and others, 2002; Liu, 
Loveland, and Kurtz, 2004; Parton and others, 2005; Sierra 
and others, 2009). Generally, two approaches are used to 
quantify terrestrial carbon dynamics for large regions. The 
first of these is the spreadsheet or bookkeeping approach 
(Intergovernmental Panel on Climate Change, 1997; Houghton 
and others, 1999) that relies on a set of predefined carbon-
response curves (for example, tree-growth curves) and uses 
regression equations or look-up tables; however, most carbon-
response curves are created locally on the basis of limited 
categories of site conditions. They may be insufficient for 
capturing the effects of the spatial and temporal variability of 
land use, soils, and climate on carbon dynamics. The second 
approach depends on process-based biogeochemical models 
(Schimel and others, 1994; Melillo and others, 1995; McGuire 
and others, 2002; Chen and others, 2003; Potter and others, 
2005; Tan and others, 2005; Liu and others, 2006). Instead 
of predefining the carbon-response curves under typical 
conditions, as in the bookkeeping approach, this process-
based approach simulates carbon dynamics under specific 
and changing environmental and management conditions. 
Although it is capable of capturing detailed responses to 
changes in the driving variables, it usually requires more 
complicated input data and parameters.

Many site-scale process-based biogeochemical models 
were developed during the past 20 years (Parton and others, 
1987; Running and Coughlan, 1988; Li and others, 1992). They 
benefited from an improved understanding of biogeochemical 
processes resulting from controlled experiments and field 
observations. For regional studies, however, these models 
usually were directly applied to grid cells (for example, 0.5 × 
0.5 degrees longitude and latitude) that were larger than the 
site scale (Melillo and others, 1995; Pan and others, 1998; 
McGuire and others, 2001; Potter and others, 2005) without 
incorporating information on field-scale heterogeneities. This 
can result in significant biases in the estimations of important 
biogeochemical and biophysical processes (Avissar, 1992; 
Pierce and Running, 1995; Turner and others, 2000; Reiners 
and others, 2002). Therefore, deploying field-scale ecosystem 
models to generate regional carbon-sequestration estimates with 
measures of uncertainty is a challenge.

The General Ensemble Modeling System (GEMS) was 
designed to facilitate the application of classic site-scale 
models on a regional scale and to better integrate well-estab-
lished ecosystem biogeochemical models by using a Monte 
Carlo-based ensemble approach to incorporate the probable 
occurrence of parameter values in simulations. Consequently, 
GEMS not only drives biogeochemical models to simulate the 
spatial and temporal trends of carbon and nitrogen dynamics, 
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• Carbon transfer coefficients among different pools, 
including the atmospheric carbon dioxide (CO2) pool

• Carbon decomposition rates in various pools
The GEMS-spreadsheet method tracks the carbon stock 

of unchanged land units (that is, no land-cover transitions) in 
carbon pool p1 in a given region using the following account-
ing procedure:

 , (D1)

where n and m are the number of land-cover classes 
and age classes, respectively,

 At,i is the total unchanged area of land-
cover class i at time t,

 at,i,j, and ct,i,j,p1 
are, respectively, area fraction and 

carbon density of land-cover class i, 
at time t, and in age class j.

Carbon-density values will be derived from the U.S. 
Forest Service’s (USFS) Forest Inventory and Analysis (FIA) 
program data. Land-cover transitions and age distribution 
information will be from the “forecasting scenarios of land-
cover change” (FORE–SCE) model.

For those land units that experienced land-cover transi-
tions, the following procedures are used to track carbon flow 
among different pools:

 , (D2)

where At,i,j is the area changed from land-cover 
class i to j at time t;

 ct,i,p1 
is the average carbon density in pool p1, 

and
 αi,j,p1→p2

 is the fraction of carbon density in pool 
p1 that is transferred to p2 because of 
land-cover transition from i to j.

In the GEMS-spreadsheet method, carbon is transferred 
among the live and dead, aboveground and belowground bio-
mass pools and the wood-products pool (harvested materials). 
Carbon-transfer coefficients will be developed based on expert 
knowledge, remotely sensed data (for example, fire severity), 
and output from disturbances modeling.

The decomposition of carbon in a given pool (except the 
live biomass pool) is calculated as follows:

 , (D3)

where βp1→CO2 
is the decomposition rate of carbon in pool p1, 

defined as a fraction of the pool size.
In summary, the carbon stocks in live biomass, 

aboveground and belowground dead biomass, and wood prod-
ucts in a region at time t are calculated as follows:

 , (D4)

where k is the number of carbon pools.
The total regional nitrous-oxide (N2O) and methane 

(CH4) fluxes are calculated as follows using the GEMS-
spreadsheet method:

 , (D5)

where λt,i,j is the flux of N2O or CH4 per area on land-cover 
class i, at time t, and in age class j.

Region-specific GHG fluxes for different ecosystems under 
various management practices will be compiled from exten-
sive literature review and metadata analysis.

D.1.2. GEMS Biogeochemical Modeling
GEMS provides spatially explicit biogeochemical-model 

simulations for large areas. The overall GEMS input-data 

Figure D1. Diagram showing 
functionality and major types 
of input data for the General 
Ensemble Modeling System 
(GEMS). FIA, Forest Inventory 
and Analysis Program (U.S. 
Forest Service); USDA, U.S. 
Department of Agriculture; 
EDCM, Erosion-Deposition-
Carbon Model; BIOME–BGC, 
biome biogeochemical cycles; 
IPCC, Intergovernmental Panel 
on Climate Change; FORE–SCE, 
“forecasting scenarios of land-
cover change” model; CLUE, 
Conversion of Land Use and its 
Effects model.
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requirements and model functions are shown in figure D1, 
which indicates that GEMS, as an expandable framework, can 
process various land-use and disturbance data and link with 
existing models and tools. GEMS uses two approaches to 
interact with encapsulated biogeochemical models: agent and 
direct implementation.

D.1.2.1. Ensemble Models or Agent Implementation
A special model interface (that is, the agent) controls 

diverse plot- and regional-scale models in GEMS. This 
approach requires minimum or no modifications to the 
underlying biogeochemical models and can be useful for 
reusing models that are difficult to modify. Under the “agent 
implementation” mode, GEMS uses plot-scale ecosystem 
biogeochemical models to simulate carbon and nitrogen 
dynamics at the plot scale. It controls these site-scale mod-
els by automatically parameterizing them according to the 
biophysical conditions of any land parcel and deploying them 
across space without considering the interactions among land 
pixels. Plot- and regional-scale biogeochemical models, such 
as the Century model (Parton and others, 1987), the Erosion-
Deposition-Carbon Model (EDCM; Liu and others, 2003), and 
the Integrated Biosphere Simulator (IBIS; Foley and others, 
1996), can serve as encapsulated ecosystem biogeochemi-
cal models in GEMS (Tan and others, 2005; Liu and others, 
2006). Because GEMS is designed to encapsulate multiple 
models, and parameterize and execute these models using the 
same data, it provides an ideal platform to conduct “model 
ensemble” simulations to identify and address issues and 
uncertainty related to model structure and mathematical repre-
sentations of biophysical processes.

To ensure a nationally consistent approach for selecting 
biogeochemical models for the assessment, a modeling work- a modeling work-
shop will be held in summer of 2010, and national ecosystem 
modeling experts will be invited to help identify additional 

suitable models. Model selection will address the ability to 
consider the effects of land-use and land-cover change, major 
disturbances, and climate change on carbon sequestration and 
GHG emissions. Predefined criteria are listed in table D1; this 
list does not mean that a single biogeochemical model must 
meet all these criteria.

D.1.2.2. Direct Implementation
Biogeochemical models, such as EDCM and Century, are 

merged directly with GEMS to allow more efficient, spatially 
explicit simulations. Many regional model applications adopt 
a time-space simulation paradigm, which runs a simulation 
for an individual pixel from beginning to end in time before 
moving to the next pixel. In the direct implementation (for 
example, GEMS–EDCM), the space-time sequence paradigm 
will be used instead (thus, GEMS simulates the whole region 
for a given time step first, then moves to next time step). The 
space-time sequence paradigm provides easy ways to integrate 
with other modeling systems such as FORE–SCE (“forecast-
ing scenarios of land-cover change” model), USPED (Unit 
Stream Power-Based Erosion Deposition), and the disturbance 
models in a parallel computation fashion; lateral movements 
of carbon and nitrogen can be effectively quantified as well. 
Detailed descriptions of GEMS–EDCM, including its theoreti-
cal basis, general structure, simulation capability, and unique 
approach are provided in the following sections.

D.1.2.3. GEMS Data Flow and Linkages With Other 
Modeling Products

The overall GEMS flow chart of data and processes, 
including the spatial simulation unit setup, the Monte Carlo 
process, biogeochemical-model simulation, data assimilation, 
network Common Data Form (NetCDF) data processing and 
visualization, the post-simulation process, and uncertainty 

Table D1. Tentative selection criteria and checklist for biogeochemical models to be included in the General 
Ensemble Modeling System (GEMS).

[CO2, carbon dioxide]

Criteria Questionnaire checklist

Ecosystem processes Include ecosystem carbon, nitrogen, and water cycles?
Include ecophysiological processes (for example, photosynthesis)?
Consider major ecosystem disturbances (fire, logging)?
Consider major ecosystem management activities?

Ecosystem types and carbon pools Include all major natural forest/shrub/grassland systems?
Include agricultural ecosystems?
Include wetland ecosystems?
Include major vegetation and soil carbon/nitrogen pools?

Model structure and reuse Allow for parallel model simulation?
Well modularized and easy to be incorporated into GEMS?
Coded in familiar programming language (C/C++, Fortran)?

Scientific rigor Model is well accepted and published?
The team has some experience with the model?
Allow sensitivity testing on key driving variables (for example, climate, CO2)?
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assessment are shown in figure D2. The model also is capable 
of parallel simulations to estimate lateral carbon-nitrogen 
movements. These processes and data are described in detail 
in the following sections.

D.2. GEMS Modeling

D.2.1. Major Processes Affecting Carbon 
Sequestration and Greenhouse-Gas Fluxes in 
GEMS

The overall processes of land-atmosphere interactions 
(for example, vertical fluxes of carbon and nitrogen), lateral 
fluxes of carbon and nutrients, and the pertinent controlling 
mechanisms in GEMS are shown in figure D3. The simpli-
fied carbon cycle, which is the main biogeochemical cycle 
modeled with GEMS, includes gross primary productiv-
ity (GPP), net primary productivity (NPP), photosynthesis 
allocations (to leaf, root, stem), litter fall, mortality, debris 
accumulation, and decomposition of soil carbon. The carbon 
cycle is tightly coupled with nitrogen and water cycles. The 
water cycle includes algorithms to estimate rain interception, 
evaporation, transpiration, runoff, and soil water content. The 
water cycle is also linked with soil organic carbon decom-
position and plant growth through soil water availability. 
The nitrogen cycle is coupled with the carbon cycle through 
nitrogen availability that controls plant growth and soil 
carbon decomposition. External driving forces are climate 
variation and change, human land-management activities, 

and natural disturbances. These forces and their effects are 
discussed in subsections below in this appendix. CH4 and 
N2O emissions will be quantified using available equations 
within biogeochemical models. If unavailable, other empiri-
cally derived approaches will be adopted (for example, the 
model of Cao and others (1996)).

D.2.1.1. Ecosystem Production
Quantification of ecosystem production starts with 

vegetation photosynthesis, which will be modeled using three 
different approaches in GEMS to overcome the disadvantages 
of any single algorithm. The three approaches include a light-
use-efficiency approach (Yuan and others, 2007), a biochem-
ical-modeling approach (IBIS; Foley and others, 1996), and a 
scalar approach (Century; Parton and others, 1993). For exam-
ple, the algorithm for leaf photosynthesis in IBIS is a modified 
Farquhar-type model (Farquhar and others, 1980). The gross 
photosynthesis rate through light-limited, rubisco-limited, 
and triosephosphate-utilization-limited mechanisms (Foley 
and others, 1996, equations 2, 4, and 5) is partly determined 
by intercellular CO2 concentration within the leaf, which in 
turn determines the water conductance and CO2 concentration 
at the leaf surface (Foley and others, 1996, equations 13, 14, 
and 15). The gross photosynthesis rate also is modified by leaf 
nitrogen level, which is determined by the soil nitrogen pool 
(Liu and others, 2005, equations 1, 8, and 9). At the canopy 
level, IBIS allows the leaf area index (LAI) to change dynami-
cally depending on living leaf biomass.

The diagram of the carbon-nitrogen flow in IBIS 
is shown in figure D4. Foliar nitrogen concentration is 

Figure D2. Flow chart 
of the General Ensemble 
Modeling System (GEMS) for 
biogeochemical simulations. 
Abbreviations are found in 
“Abbreviations, Acronyms, and 
Chemical Symbols” in the front 
of this report.
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Terrestrial Ecosystem Carbon (InTEC) model (Chen and 
others, 2000), TRIPLEX (Peng and others, 2002), and IBIS 
(Foley and others, 1996). The soil nitrogen pools and fluxes in 
an agricultural system as simulated by Century and EDCM are 
shown in figure D5. All the nitrogen pools are tightly coupled 
with the carbon cycle.

Owing to its inheritance from its antecedent model 
(Century), EDCM is an advanced biogeochemical model 
that simulates the effects of various natural processes (for 
example, fires, hurricanes, atmospheric nitrogen deposition, 
atmospheric CO2 “fertilization,” climate change and variabil-
ity, and erosion and deposition) and management practices 
(for example, grain harvesting, timber harvesting, fertiliza-
tion, land-cover and land-use change, cultivation, fertiliza-
tion, manure addition) on carbon and nitrogen cycles at the 
ecosystem scale. EDCM can simulate the effect of soil ero-
sion and deposition on carbon and nitrogen dynamics. More 
than 100 output variables are provided by EDCM, including 
NPP, net ecosystem productivity (NEP), carbon and nitrogen 
stocks in aboveground and belowground biomass, soil carbon 
dynamics, and so on. Century has a one-soil-layer structure 
for carbon and nutrients (nitrogen, phosphorus, and sulfur). 
In contrast, EDCM adopts a multiple-soil-layer structure to 
account for the stratification of the soil profile and SOC in 
each soil layer. It dynamically tracks the evolution of the soil 
profile (up to 10 soil layers) and carbon storage as affected 
by soil erosion and deposition.

represented by the leaf carbon-to-nitrogen ratio (and is 
denoted as leaf carbon-to-nitrogen), which is dynamically 
adjusted by a carbon-to-nitrogen modifier (kcn), which is 
determined by soil mineral nitrogen content (NM). The envi-
ronmental conditions (radiation, water availability, tempera-
ture, and CO2 concentration), the LAI, and the maximum 
rubisco activity (Vm) as limited by available leaf nitrogen 
determine the canopy-level gross primary productivity 
(GPPc). After deducting maintenance respiration (using the 
factor Maint resp), GPPc gives canopy-level NPP (NPPc). At 
this point, NPPc represents the production of pure carbohy-
drate, rather than of new biomass carbon. A fraction of NPPc 
is consumed in growth respiration, with the remainder being 
converted to “stabilized” biomass (NPPb). The remaining 
biogeochemical processes, especially soil decomposition, are 
similar to those of the Century model.

D.2.1.2. Soil Organic Carbon Cycle
EDCM is an embedded ecosystem biogeochemical model 

in GEMS. It is based on the well-established ecosystem model 
Century (version IV) (Parton and others, 1993; Liu and others, 
2003). Both models use empirical maximum potential veg-
etation productivity, together with limitations from tempera-
ture, water, and nutrients, to calculate production of trees 
and crops. The established algorithms of soil organic carbon 
(SOC) dynamics in Century form the basis of several other 
biogeochemical models, such as the Carnegie-Ames-Stanford 
Approach (CASA; Potter and others, 1993), the Integrated 

Figure D3. Diagram of the interactions of the biogeochemical 
processes in the General Ensemble Modeling System (GEMS). 
Black arrows indicate mass flow and red arrows indicate control 
modifiers. CO2, carbon dioxide; GHG, greenhouse gas; C, carbon; 
N, nitrogen; GPP, gross primary productivity; NPP, net primary 
productivity.

Figure D4. Diagram of carbon-nitrogen cycles and nitrogen 
controls in the Integrated Biosphere Simulator (IBIS); used with 
permission from Liu and others (2005). Dark solid arrows represent 
nitrogen mass flow, and light arrows indicate nitrogen control 
processes. Abbreviations are found in “Abbreviations, Acronyms, 
and Chemical Symbols” in the front of this report.
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D.2.1.3. Effects of Disturbances
Natural and anthropogenic disturbances (for example, 

fires, hurricanes, tornadoes, and forest cutting) are accounted 
for in the land-use- and land-cover-change (LULCC) model. 
Ecosystem disturbances will be parameterized in the model 
separately because the biogeochemical consequences of these 
types of disturbances can be vastly different; however, the 
basic procedures are similar.

Historical fire perimeters and burn-severity maps are 
used in GEMS to indicate the timing, location, and severity 
level of burns. The extent and severity of a disturbance event 
are usually captured by remote sensing or field monitoring 
and also can be estimated by models, such as the First 
Order Fire Effects Model (FOFEM) by Reinhardt and oth-FOFEM) by Reinhardt and oth-
ers (1997) and the Landscape Successional (LANDSUM) 
model by Keane and others (2006). The effects of burns 
are expressed as biomass consumption loss and mortality 
loss (table D2). Based on the loss rates, GEMS reallocates 

biomass and soil carbon pools for each individual land pixel. 
Consumption loss is a direct carbon emission to atmosphere, 
whereas motility loss converts live biomass carbon to dead 
carbon pools. The disturbed ecosystem will start regrowth 
with a new soil nutrient pool and a new LAI calculated in 
the model. Calculation of other disturbance effects will 
follow a similar approach to that used for fire effects, but 
with different carbon transition coefficients among various 
pools. The regrowth processes following disturbances are 
calculated based on light and water availability, temperature, 
nutrient availability, and other factors. GEMS assumes tree 
planting will follow the clearcutting event if a plantation 
is prescribed in the land-cover map, otherwise natural 
vegetation recovery will occur.

For the national assessment, simulated future-fire-
disturbance maps will be produced along with (or embedded 
in) the future land-use and land-cover (LULC) maps. These 
disturbance maps (including simulated severity levels) will 

Figure D5. Diagram showing nitrogen cycling in a terrestrial ecosystem as simulated by the Century model and the Erosion-
Deposition-Carbon Model (EDCM). From Metherell and others (1993), used with permission. The nitrogen cycle is tightly coupled with 
the carbon cycle. C/N, carbon-to-nitrogen ratio. Abbreviations are found in “Abbreviations, Acronyms, and Chemical Symbols” in the 
front of this report.
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be linked with GEMS the same way as the LULCC maps are 
linked. Annual fluxes of disturbance-induced carbon loss and 
the legacy multiyear cumulative effects will be reported.

D.2.1.4. Effects of Management Activities
In addition to natural disturbances (for example, climate 

variation, geological disasters, wildfires), human management 
activities also play a critical role in annual ecosystem carbon 
fluxes and soil carbon budgets. For example, implementing 
conservation residue management can significantly mitigate 
carbon emissions from soils in comparison to conventional 
tillage management. The conceptual carbon-change scenarios 
based on explicit simulations of management effects and feed-
back are shown in figure D6.

Management activities considered in the current GEMS 
include (but are not limited to) the following:

• Land-use changes, including conversions between 
land-use classes and crop rotation

• Land-management practices, consisting of —
 ◦ Logging event
 ◦ Forest fertilization
 ◦ Fire-fuel management, including prescribed burns
 ◦ Grazing (specified into various intensity classes)

Figure D6. Conceptual model of soil organic carbon (SOC) 
dynamics under a paired treatment of conventional tillage (CT) 
and no-till (NT) after initialization of cultivation from natural status. 
A, SOC gain upon converting from CT to NT following CT for a 
period of (T1–T0). B, SOC loss caused by cropping with CT since 
T0. Difference (D) in SOC stock between NT and CT varies with 
time. SOC reaches a new equilibrium at T3 under CT and T4 under 
NT. The rates of SOC gain and SOC loss do not coincide but are a 
function of the initial SOC stock level and time scale.

Table D2. Fuel-consumption effects under different burn-severity levels, based on 
comparison of remotely sensed burn-severity and field observations.

[This table also is used in the fire-disturbance modeling tasks to calibrate fire-emission estimates. 
Source: Carl Key, U.S. Geological Survey, written commun., May 28, 2009]

Components
Consumption (percent) Mortality (percent)

Low Moderate High Low Moderate High

Forest floor and soil

Litter/fine fuel 15–60 61–90 91–100 – – –
Duff 5–30 31–70 71–100 – – –
Medium fuel 10–30 31–50 51–100 – – –
Heavy 5–15 16–40 41–100 – – –
Soil 5–20 21–50 51–100 – – –

Understory layer

Herb 16–60 61–85 86–100 – – –
Shrub-leaf-wood 10–40 41–80 81–100 – – –
Shrub-leaf-wood – – – 1–20 21–70 71–100

Premature trees

Leaf 1–20 21–70 71–100 – – –
Fine branch 1–20 21–70 71–100 – – –
Wood – – – 1–20 21–75 76–100

Mature trees

Leaf 1–20 21–70 71–100 – – –
Branch 1–20 21–70 71–100 – – –
Wood – – – 1–20 21–70 71–100
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 ◦ Tillage practices coupled with residue input
 ◦ Fertilization rate and manure application
 ◦ Irrigation

Key algorithms, such as irrigation, fertilization, and 
residue return, are embedded in GEMS. Data and parameter 
sets will be collected and compiled from existing databases 
and literature.

D.2.1.5. Effects of Erosion and Deposition
Soil erosion and deposition affect soil profile evolution, 

spatial redistribution of carbon and nutrients, and ecosystem 
carbon-nitrogen dynamics (Liu and others, 2003; Lal and 
others, 2004). Soil erosion and deposition will be simulated 
by using the USPED model (Mitas and Mitasova, 1998). The 
effects of soil erosion and deposition on soil carbon ero-
sion will be quantified; the processes to be modeled include 
soil-profile evolution, onsite ecosystem-carbon dynamics, and 
offsite transport of carbon and nitrogen onto the landscape and 
into wetland environments and aquatic systems.

USPED is a simple two-dimensional hydrological 
model that is comparable to the more broadly used Univer-
sal Soil Loss Equation (USLE) and Revised Universal Soil 
Loss Equation (RUSLE); however, unlike the USLE/RUSLE 
models that can predict only soil erosion, USPED also can 
simulate deposition on landscape and requires four major 
inputs only:

• Rainfall intensity, which is to be adjusted by the actual 
rainfall each year

• Soil erodibility factor (K factor), which is available 
in the U.S. General Soil Map (also called the State 
Soil Geographic (STATSGO2) database) and the Soil 
Survey Geographic (SSURGO) databases

• Field carbon factor, which is directly converted from 
land-cover type

• Digital elevation model (DEM) data
Most of the input requirements are the same as those of USLE/
RUSLE.

USPED is suitable for GEMS because of its appropriate 
time step, level of complexity, capability of simulating erosion 
and deposition, and robustness. For linking soil carbon with 
erosion and deposition, EDCM adopts a multiple-soil-layer 
structure to account for the stratification of the soil profile 
and SOC in each soil layer. It dynamically keeps track of the 
evolution of the soil profile (up to 10 soil layers) and carbon 
storage as affected by soil erosion and deposition.

In EDCM, each soil-carbon pool in the top layer will lose 
a certain amount of carbon, if erosion happens. The carbon 
eroded is calculated as the product of the fraction of the top 
soil layer experiencing erosion, the total amount of SOC in the 
top 20 centimeters of the layer, and an enrichment factor for 
the eroded SOC to account for the uneven vertical distribution 
of SOC in the top layer. EDCM can dynamically update the 
soil layers affected by erosion and deposition.

One approach for linking USPED with GEMS is shown 
in figure D7. Simulated erosion and deposition are grouped 
into discrete classes, which will be included in the GEMS 
spatial simulation unit (joint frequency distribution (JFD) 
cases; see later explanations), to represent the land and water 
surfaces of the study area. Losses of carbon and nitrogen dur-
ing lateral sediment transportation are accounted for using an 
oxidation factor.

D.2.1.6. Fate of Wood Products
Carbon in wood products, landfills, and other offsite 

storage can be significant in the accounting of terrestrial 
carbon-sequestration capacity (Skog and Nicholson, 1998). 
Currently (2010), GEMS does not track the fate of carbon 
in wood products. Because GEMS is linked directly to the 
data-management system for the purposes of reporting and 
dissemination of assessment results, a spreadsheet summa-
rizing sequestration and GHG fluxes across ecosystems and 
carbon pools will be created. Most of the carbon pools will be 
simulated at a pixel level. For wood products, average values 
will be provided. The U.S. Environmental Protection Agency 
(EPA) and the USFS will be consulted about the proper way 
to estimate forest-product carbon and potential collaboration 
opportunities. Existing factors and equations about harvested-
wood-product carbon pools (Smith and others, 2006; Skog, 
2008) will be adopted and modified to link with GEMS to 
track the fate of harvested wood.

D.2.1.7. Methane and Nitrous-Oxide Fluxes

The emission of CH4 at wetland sites will be simulated 
in terms of soil biogeochemical processes, including CH4 
production by methanogenic bacteria under anaerobic condi-
tions, oxidation by methanotrophic bacteria under aerobic 

Figure D7. Diagram linking the erosion-deposition model 
(USPED; Unit Stream Power-Based Erosion Deposition) with the 
terrestrial biogeochemical model (EDCM; Erosion-Deposition-
Carbon Model) in GEMS (General Ensemble Modeling System). 
A JFD (joint frequency distribution) case indicates one or more 
pixels with the same site condition. DEM, digital elevation model.
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conditions, and transport to the atmosphere (Conrad, 1989). 
The principal controls of these processes are soil moisture, 
water table position, soil temperature, availability and quality 
of suitable substrates, and pathways of CH4 transport to the 
atmosphere. A wide range of models have been developed to 
simulate the plot-scale processes of CH4 generation, con-
sumption, and transport (Li and others, 1992; Cao and others, 
1996; Potter, 1997; Walter and others, 2001; Zhuang and 
others, 2006). A simple compartmental (zero-dimensional) 
model was developed by Cao and others (1996) to simulate 
wetland carbon dynamics for large areas. Another model 
by Potter (1997) simulated CH4 production rates from a 
microbial production ratio of CO2 and CH4, which changed 
as a function of the water-table depth. Slightly more com-
plex one-dimensional models (Walter and others, 2001; 
Zhuang and others, 2006) also are available to tailor more 
detailed process descriptions. Some of these models have a 
detailed representation of plot-scale vertical soil processes. 
The deployment of these models for large areas, however, 
has been challenging because of the difficulties in defining 
parameters for these models and in simulating some of the 
critical driving variables, such as water-table position in 
individual wetlands for large areas.

The GEMS modeling team has applied the denitrifi-
cation-decomposition (DNDC) model to simulate CH4 and 
N2O fluxes in the Prairie Pothole Region. A process-based 
model for CH4 that is similar to the Cao and others (1996) and 
DNDC approaches has been implemented in GEMS that will 
balance the needs of considering the plot-scale processes and 
the feasibility of deploying the plot-scale model for large areas 
to address spatial heterogeneity. Estimates of CH4 production 
by the model depend on the substrate availability (soil carbon 
and vegetation root carbon) and soil condition (soil tempera-
ture, redox), whereas CH4 oxidation is calculated based on the 
soil redox condition or water table.

In a zero-dimensional modeling approach, the CH4 
emission from wetlands to the atmosphere is calculated as the 
difference between the CH4 production and oxidation:

 , (D6)

where MERt is the emission mass of CH4 per unit surface 
area of a wetland at time t,

 MPRt is the production mass of CH4 per unit surface 
area of a wetland at time t, and

 MORt is the oxidation mass of CH4 per unit surface 
area of a wetland at time t.

MPRt and MORt are estimated on the basis of such controlling 
factors as decomposed organic carbon, water-table position, 
soil temperature, and primary production of existing plants. 
These controlling factors are parameterized by applying or 
synthesizing techniques described in Cao and others (1996), 
Potter (1997), Walter and others (2001), and Zhuang and oth-
ers (2006). A reasonably accurate prediction of the water-table 
position, in particular, is a challenging aspect. Further details 
are given below in section D.3.2 as part of a discussion on 
modeling lateral fluxes in and out of wetland systems.

Various models exist for simulating N2O emissions (for 
example, Li and others, 1992; Liu and others, 1999; Parton 
and others, 2001; Hénault and others, 2005). Procedures for 
estimating N2O emissions from ecosystems were developed 
in the prototype of the GEMS–EDCM method and applied 
to simulate and project N2O emissions in the Atlantic zone of 
Costa Rica (Liu and others, 1999; Reiners and others, 2002). 
Nitrification and denitrification processes are the primary 
processes that lead to the emission of N2O from soils. Atmo-
spheric and terrestrial (for example, fertilizer, litter) deposi-
tions of nitrogen, plant uptake, mineralization, and leaching 
can act as the major controls. The existing GEMS algorithms 
for N2O flux simulations will be used to compare simulation 
results with observations (for example, GRACEnet) and to 
improve the model when necessary. A zero-dimensional model 
is also applicable for estimating N2O emissions from wetlands:

 , (D7)

where NOEt is the N2O emission mass per unit surface 
area of a wetland at time t,

 NOEdenit,t is the production mass by denitrification per 
unit surface area of a wetland at time t, 
and

 NOEnit,t is the production mass by nitrification per 
unit surface area of a wetland at time t.

NOEdenit,t and NOEnit,t are quantified by applying or synthesiz-
ing techniques described in Li and others (1992), Liu and others 
(1999), Parton and others (2001), and Hénault and others (2005).

Subject to the availability of observation data, empiri-
cal regression models also can be developed for emissions of 
CO2, CH4, and N2O from wetlands with different land-cover 
types, as well as hydrologic and meteorological regimes. 
Much of the variations of CO2 and CH4 may be explained by 
considering wetland soil temperature and water-table eleva-
tion as predictor variables. Variations of N2O flux also could 
be captured by regressing with soil temperature and water-
filled pore space as the predictor variables; however, such 
regression models likely are highly site-specific and require 
large datasets given their purely statistical nature. Because 
such datasets rarely exist in current literature, deployment 
of such models in large spatial, as well as temporal, scales 
can hardly be justified as reliable given the uncertainty of 
estimated regression coefficients.

The IPCC tier 1 approach (Intergovernmental Panel on 
Climate Change, 2006) is a simple way of obtaining crude 
estimations of CO2, CH4, and N2O emissions from wet-
lands. The approach is based on some aggregate measures 
of emissions of specific GHG per unit of time and wetland 
area. Although IPCC (2006) provided global estimates of 
these emission factors based on existing literature, regional 
estimates for the wetlands in the United States also may be 
obtained from a comprehensive literature survey. Emission 
estimates obtained through the tier 1 approach would comple-
ment the evaluations of results of the simple biogeochemical 
models described previously.
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D.2.2. GEMS Spatial Simulation Unit
The spatial heterogeneities of the biophysical vari-

ables (such as land cover, soil texture, and DEM) often are 
represented on thematic maps and stored in georeferenced 
geographic information system (GIS) databases. The simula-
tion unit in GEMS is a cluster of land pixels sharing a unique 
combination of values of environmental driving variables. 
Combining multiple input raster layers (maps) on a cell-
by-cell basis in a GIS, a JFD table can be created to list all 
unique combinations of the values of the overlay variables 
and their associated frequencies (areas or number of pixels). 
Each unique combination forms a GEMS simulation unit. 
The geographic locations of all the JFD cases are uniquely 
determined by the JFD map, thereby providing the spatial 
framework to visualize and analyze the spatial and temporal 
patterns of biogeochemical properties and processes.

Two examples of the JFD map are shown in figure D8. 
The first example (fig. D8A) overlays the soil and land-cover 
maps; the resulting JFD map shows the unique combinations 
of soil and land-cover conditions. An important feature of 
this JFD approach is the elimination of the need to perform 
model simulations pixel by pixel. One pixel represents all 
the pixels of a JFD case. The second example (fig. D8B) 
shows the land pixel sampling at certain spatial intervals 
(for example, 5 kilometers) on a stack of relatively higher 
resolution (for example, 30- to 250-m) maps. This sampling 
approach is used when there are too many land pixels and 
map layers. It also creates a JFD table where each JFD case 
contains one land pixel only.

D.2.3. Using Ensemble Simulations to Reconcile 
Nonlinearity and Heterogeneity

Studies indicate that averaging across the spatial and 
temporal heterogeneity of the input data could have significant 
effects on the carbon simulations (Avissar, 1992; Pierce and 
Running, 1995; Turner and others, 1996; Kimball and others, 
1999). This indicates that incorporating ecosystem heterogene-
ity is necessary to accurately upscale carbon dynamics from 
site to regional scales. The direct approach of incorporating 
variance and covariance of input variables in the simulation 
process can be expressed as the following:

 , (D8)

where E is the operator of expectation,
 p is the nonlinear model,
 X is a vector of model variables,
 n is the number of strata or total JFD, and
 F is the frequency of cells or the total area of strata 

i as defined by the vector of Xi.
Any difference between the model scale and the spa-

tial resolution of the data may introduce biases caused by 
model nonlinearity. An ensemble approach can assimilate the 
fine-scale heterogeneities in the databases to reduce potential 
biases. The mean value of a variable (for example, carbon 
stock and flux) of simulation unit i in equation D8 can be esti-
mated by using multiple stochastic model simulations:

 , (D9)

where m is the number of stochastic fine-scale model runs 
for simulation unit i, and

Figure D8. Diagram showing 
approaches to produce a joint-
frequency distribution (JFD) 
map. A, Overlaying multiple 
map layers to create unique 
JFD cases from all land pixels. 
B, Spatial sampling at certain 
intervals.
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 Xij is the vector of model input values at the fine scale generated using a Monte Carlo 
approach within the space defined by Xi.

As a result, input values for each stochastic model run are sampled from their corresponding 
potential value domains (Xi) that usually are described by their statistical information, such as 
moments and distribution types. The variance of the model simulations on regional scale can be 
quantified as follows:

 , (D10)

where the variance and covariance of the model simulations on unit i can be expressed as 
follows:

  and (D11)

 . (D12)

Other descriptive statistics, such as skewness, also can be calculated from the ensemble 
simulations. These moments characterize not only the spatial and temporal trends and patterns 
of simulated variables, but also their uncertainties in space and time.

Solving equation D10 will require excessive computational effort if the number of strata 
n is quite large; however, if p(Xi) and p(Xj) are independent among a great number of strata, 
computations will be dramatically reduced because covariance defined in equation D12 will 
be zero. Hence, actual applications should sufficiently identify the independence among strata. 
For example, suppose p(Xi) and p(Xj) represent soil organic carbon within strata i and strata 
j, respectively, and their random properties result from the randomness of soil texture and 
precipitation. If there is no lateral flow between strata i and strata j, then p(Xi) and p(Xj) can be 
regarded as independent.

D.2.4. Automated Model Parameterization (Monte Carlo Downscaling)
Models developed for site-scale applications need linkages with georeferenced data to be 

deployed across a region. Most information in spatial databases is aggregated to the map-unit 
level as the mean or median values, making the direct injection of georeferenced data into the 
modeling processes problematic and potentially biased (Pierce and Running, 1995; Kimball and 
others, 1999; Reiners and others, 2002). Consequently, an automated model parameterization 
process usually is needed to incorporate field-scale spatial heterogeneities of state and 
driving variables into simulations. A Monte Carlo approach is built into GEMS to downscale 
aggregated information from map-unit level to field scale. Examples of data variables to be 
downscaled for parameterization include soil property, tree age, crop rotation, and forest 
cutting. The following describes the automated stochastic soil and forest-age initializations.

Soil polygons on the STATSGO2 and SSURGO maps are represented by map units; each 
has a unique map-unit identifier (ID), size, and location. Each map unit contains from 1 to 20 
soil components, representing distinct soils types. Each soil component has a soil attributes table; 
however, the locations of the soil components within a map unit are not known. In GEMS, for any 
specific stochastic simulation, a soil component was randomly picked from all components within 
a soil map unit according to the probability defined by the areal fractions of the components. Once 
the component was determined, soil characteristics were retrieved from the corresponding soil 
component and layer attribute databases. For the variables with increased (Vhigh) and decreased 
(Vlow) values, the following equation was used to assign a value (V) to minimize potential biases 
from model nonlinearity (Pierce and Running, 1995; Reiners and others, 2002):

  (D13)

where p is a random value that follows standard normal distribution N(0,1).
The above equation assumes that the possible values of the soil characteristics follow a normal 
distribution with 95 percent of the values varying between Vhigh and Vlow.
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The Monte Carlo approach also is used to downscale 
regional initial forest age. The currently available forest-age 
data come from State- or county-level forest-inventory statis-
tics. The forest-age class distribution (area weight) is a feature 
on the regional scale. To assign a forest age for a specific 
location, a cumulative probability curve must be created on 
the basis of the forest-age class distribution (fig. D9). The next 
step is to generate a random p value between 0 and 1. The p 
value will point to a specific level on the cumulative prob-
ability curve and match it to a corresponding age class. GEMS 
then uses a look-up table to retrieve initial forest biomass 
based on the age (Liu, Liu, and others, 2008).

D.2.5. Data Assimilation
Data assimilation techniques can be activated to constrain 

GEMS simulations with various observations at different spatial 
and temporal scales. Different data-assimilation techniques are 
implemented in GEMS to leverage the advantages and disadvan-
tages of each method. For example, the Markov Chain Monte 
Carlo (MCMC) method is computation intensive and, therefore, 
difficult to apply to a region where the number of simulation units 
is large. It can be effective and ideal, however, to derive repre-
sentative values and their uncertainties of model parameters from 
limited point observations, such as flux-tower measurements.

Other data assimilation techniques used by GEMS 
include model inversion using PEST (EPA’s model-indepen-
dent parameter estimation application; http://www.epa.gov/
ceampubl/tools/pest/) (Liu, Anderson, and others, 2008), 
Ensemble Kalman Filter (EnKF) (Evensen, 1994, 2003), 
and Smoothed Ensemble Kalman Filter (SEnKF) (Chen and 
others, 2006, 2008). Model inversion with the PEST package 
is based on optimal theory and thus requires that the model 
have a smooth response to model parameters. Both EnKF 
and SEnKF are based on statistical Bayesian theory and joint 
technology of Monte Carlo sampling with a Kalman filter. 

EnKF has many successful applications in weather forecast-
ing and hydrology through incorporating various data into the 
model simulation process to improve estimation of model state 
variables. The GEMS team has used some of the approaches 
to derive model parameter information from plot measure-
ments of carbon and nitrogen stocks (Liu, Anderson, and oth-
ers, 2008) and from eddy-covariance flux-tower observations 
(Chen and others, 2008). A combination of data-assimilation 
techniques will be used to ensure that model simulations agree 
well with observations from different sources and scales.

Plot-scale.—FLUXNET (the flux network) and FIA data 
(plot-scale repetitive measurements of biomass stocks and veg-
etation dynamics) will be used to derive information on model-
parameter values and their uncertainty. The derived model-
parameter information at the plot scale will then be extrapolated 
to regional and national scales (Liu and others, 2008).

Regional to national scales.—EnKF, SEnKF, or other 
data-assimilation techniques will be used to assimilate remotely 
sensed and ground-based observations. For example, Zhao 
and others (2010) successfully assimilated the gross primary 
productivity (GPP) data of the Moderate Resolution Imaging 
Spectroradiometer (MODIS) products to support regional model 
simulations of carbon sequestration in a southeastern region

The SEnKF (Chen and others, 2006, 2008) will be used 
at the plot and regional scales. By combining EnKF with 
a kernel smoothing technique, SEnKF has the following 
characteristics:

• Simultaneously estimates the model states and param-
eters through concatenating unknown parameters and 
state variables into a joint state vector

• Mitigates dramatic, sudden changes of parameter val-
ues in the parameter-sampling and parameter-evolution 
process, and controls the narrowing of the parameter 
variance

• Recursively assimilates data into the model, and thus 
detects the possible time variations of parameters

• Properly addresses various sources of uncertainty stem-
ming from input, output, and parameter uncertainties

In GEMS, the SEnKF procedure becomes regular Monte Carlo 
analysis at the time steps when no observation data are avail-
able for assimilation.

The SEnKF method was tested by assimilating observed 
fluxes of CO2 and environmental driving-factor data from an 
AmeriFlux forest station (located near Howland, Me.) into a 
model for partitioning eddy-covariance fluxes (Chen and oth-
ers, 2008). Analysis demonstrated that model parameters, such 
as light-use efficiency, respiration coefficients, and the mini-
mum and optimum temperatures for photosynthetic activity, 
are greatly constrained by eddy-covariance flux data at daily to 
seasonal time scales.

The SEnKF stabilizes parameter values quickly regard-
less of the initial values of the parameters. Predictions 
made by SEnKF with data assimilation matched observa-
tions substantially better than predictions made without data 

Figure D9. Monte Carlo downscaling of State- and county-level 
forest-age data to pixel level. From Liu, Liu, and others (2008), used 
with permission.
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ecosystem carbon-nitrogen dynamics. LULCC maps generated 
by the model will be used to produce spatial simulation units 
either by the JFD approach or a land pixel sampling approach. 
For an individual plot, an LULCC file, called the “event 
schedule file,” will be created. This file specifies the type and 
timing of any LULCC events, as well as the type and timing of 
management practices, such as cultivation and fertilization.

The LULCC information from the land-change model 
and other information (for example, the USDA Natural 
Resources Inventory (NRI) database) will be assimilated using 
the following procedures:

• Events such as forest clearcutting, deforestation, urban-
ization, and reforestation will be directly incorporated. A 
biomass removal or restoration algorithm will be applied 
to land pixels with these land-use-change events.

• Although annual clearcutting events will be provided 
by the land-change model, selective cutting events (for 
example, group-selection harvesting and fuel treatment) 
are not available. The selective cutting activities can be 
scheduled based on selective cutting rates derived from 
other sources, such as FIA databases, the new vegetation 
change tracker (VCT) product derived from LANDFIRE 
(Huang and others, 2009), and forest fuel-treatment data. 
GEMS can aggregate the total selective cutting area to 
an equivalent amount of clearcutting area and randomly 
assign the derived clearcutting to the forest landscape. 

assimilation (fig. D10). Additionally, this approach also is 
efficient in finding the optimum parameters (fig. D11).

D.2.6. Input and Output Processor and NetCDF 
Interface

A GIS program (JFD Builder) was developed for 
generating a JFD table from primary input data layers. 
A NetCDF program (called NCWin) for processing and 
visualizing NetCDF data also was developed. All mapped 
data (for example, climate, soil, vegetation cover, disturbance 
events) are saved in NetCDF format in GEMS. The NCWin 
graphical user interface (GUI) provides the capability to con-
vert and visualize input and output maps as well as temporal 
data trends (fig. D12).

D.3. Integrating With Other Models

D.3.1. Linkages With Land-Use- and Land-Cover-
Change Data and Projections

For the national assessment, GEMS will be directly 
coupled with the land-use-change model FORE–SCE (appendix 
B of this report) to account for the effects of past land-cover 
and land-use changes and simulated future land-use changes on 

Figure D10. Graphs showing an example of Smoothed Ensemble Kalman Filter (SEnKF) data assimilation on state variables. The 
“GEMS” curve represents the GEMS model without data assimilation. The “Data Assimilation” curve represents the GEMS model with 
data assimilation. Field observations (red squares) are from the online data archive of American Flux Network (AmeriFlux) sites.

Figure D11. Graphs showing the results of parameter estimation for the plant-production submodel 
using the Smoothed Ensemble Kalman Filter (SEnKF) in the biogeochemical General Ensemble 
Modeling System (GEMS). The graphs show seasonal variations of the potential plant-production 
rate in croplands (left) and in forests (right). The seasonal variations imply that the structure of the 
plant-production model might not be adequate to represent the seasonality of crop growth.
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GEMS also will calculate specific thinning effects on 
biomass and soil carbon change when related publica-
tions and field data are synthesized.

• Mapping crop species distribution and rotations for large 
areas is still a primary challenge for national land-cover 
database development. Crops are aggregated into broad 
categories (for example, row crops, and other agricul-
tural land). It is necessary to downscale aggregated 
classes into specific crops for biogeochemical modeling 
because different crops have different biological char-
acteristics and management practices, likely resulting 
in different effects on carbon dynamics in vegetation 
and soils. Disaggregation of the agricultural land data is 
done stochastically in GEMS based on crop composi-
tion statistics at a district or county level. For example, 
in the U.S. Carbon Trends Project (Liu, Loveland, 
and Kurtz, 2004; Tan and others, 2005; Liu and oth-
ers, 2006), schedules of cropping practices, including 
shares of various crops and rotation probabilities, were 
derived from the NRI database developed by the USDA 
Natural Resources Conservation Service. The NRI 
database is a statistically based sample of land-use and 
natural-resource conditions and trends on non-Federal 
lands in the United States. The inventory, covering about 
800,000 sample points across the country, is done once 
every 5 years. Management practices, such as cultiva-
tion and fertilization, are incorporated into the LULCC 
sequences generated for the site according to crop or 
forest types and geographic region.

D.3.2. Linkages With Aquatic and Wetland 
Systems

The carbon and nitrogen fluxes within the aquatic ecosys-
tems of wetlands, lakes, rivers, and streams, as well as their 
lateral interactions with the terrestrial ecosystems and verti-
cal exchanges with the atmosphere, will be quantified within 
the integrated framework of GEMS through an encapsulated 

aquatic biogeochemical model. A general framework for the 
aquatic model, which is primarily developed at the site scale, 
is presented in figure D13.

The primary methodology related to aquatic and wetland 
systems is described in section D.2.1.7 and appendix E of 
this report. This subsection focuses on the geospatial aspects 
and heterogeneity of wetland conditions and processes for 
large areas. Wetlands are important systems that likely play 
a pivotal role in the sequestration or release of GHG gases. 
Physical processes such as the hydrology of flooding (which 
often is intermittent) and associated soil saturation can be 
considered as some of the common, principal drivers of 
wetland biogeochemistry. A functional wetland ecosystem 
can be conceptualized by interactions among the four major 
components of water, nutrients, habitat (plants and soils), and 
animals. A schematic diagram of these functional components 
and interactions is shown in figure D14.

Given the wide variety of coastal and inland wetlands and 
the wide range of biophysical and climate conditions across 
the country, it is very difficult to simulate the hydrologi-
cal dynamics (for example, water table position) for indi-
vidual wetlands for large areas using a purely process-based 
approach. The major challenges for testing and implement-
ing these models include the limited availability of reliable 
datasets and proper parameterizations of important driving 
forces and boundary conditions. To address this challenge, a 
hybrid modeling approach, combining the process modeling 
and empirical modeling, is being developed to simulate water 
storage and water-table dynamics in wetlands. Model simula-
tions will be used to derive relatively robust representations of 
water storage and water-table dynamics for different types of 
wetlands, such as permanent to semi-permanent and ephem-
eral to transitional. A frame-based state-transition approach 
will then be used along with prior knowledge to describe 
hydrological regimes for different wetlands under various 
meteorological conditions across the country.

The wetland approach (described in section D.2.1.7 of 
this report, as well as the river-stream-lake-impoundment 

Figure D12. Screen capture 
showing an example of the 
NCWin map and data trends 
graphical user interface.
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methodology in appendix E of this report, will ingest the upland-
erosion and organic-carbon data from GEMS as inputs of lateral 
fluxes from the terrestrial systems. Statistical analyses and 
findings of the aquatic team can contribute to the calibration, 
validation, and improvements of the wetland models for realisti-
cally simulating the greenhouse-gas fluxes to the atmosphere and 
evaluating the carbon sequestration of wetland ecosystems.

D.3.3. Feedback Among the Models
Model integration is a critical step in the project because 

there are time- and space-dependent feedbacks among the 
different modeling components. For example, FORE–SCE 
requires information about the site fertility or the SOC level 
from GEMS to optimize the allocations of crops in space and 
time. On the other hand, land-disturbance information will 
affect the land-use behaviors, such as timber harvesting. With-
out stepwise coupling between FORE–SCE and the distur-
bances model, timber harvesting activities might still be pre-
scribed in areas where biomass has been completely consumed 
by fire in the disturbances model. Carbon or biomass stock 
(fuel load) will strongly affect the probability of fire occur-
rence and the severity of fires, which requires the coupling 
between the disturbances model and GEMS, with the latter 
providing carbon-stock information. Model integration will be 
accomplished on a parallel-processing computer system.

D.4. Relations With Evaluation of Ecosystem 
Services

Mitigation opportunities that are considered as manage-
ment scenarios are evaluated with a spreadsheet approach. 
These opportunities will be modeled using GEMS. Examples 
of GEMS data products supporting mitigation opportunities 
(including ecosystem-services evaluation) are carbon stocks, 
CH4, N2O fluxes, soil erosion, NPP, wood harvests, surface 

Figure D13. Diagram showing 
a simplified conceptualization 
of carbon (C) and nitrogen 
(N) fluxes, as well as their 
controls and driving forces, 
for an encapsulated aquatic 
biogeochemical model in 
GEMS. Solid arrows indicate 
mass flow and dashed arrows 
indicate controls or driving 
forces. Abbreviations are found 
in “Abbreviations, Acronyms, 
and Chemical Symbols” in the 
front of this report.

Figure D14. Diagram of conceptual wetland ecosystems and 
interactions among the functional groups. (Modified from Fitz and 
Hughes (2008), used with permission.)
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runoff, and crop yields. In addition, linkages to ecosystem-
service evaluation methods (section 3.3.6) will be built based 
on GEMS output.

The Energy Independence and Security Act of 2007 
(EISA) (U.S. Congress, 2007) requires that “short- and 
long-term mitigation or adaptation strategies” be developed 
as an outcome of the assessment. In chapter 1 of this report, 
this was interpreted as a requirement to develop relevant 
data products and information packages that can be used 
conveniently by land managers and other stakeholders to 
develop specific strategies; however, what is “good” from 
the perspective of one user may be “bad” to another. Land-
use change and climate change affect a myriad of ecosystem 
services simultaneously; some identified specific ecosystem 
services may be misleading because the overall effect on the 
ecosystem is not evaluated. Hence, a broader perspective 
and context is needed to evaluate and understand concur-
rent effects on multiple ecosystem services. To solve this 
problem, a platform will be established to project changes 
in ecosystem services to support adaptive land-management 
practices. This provides a spatially explicit platform that can 
accommodate a diversity of land uses and climate change for 
simultaneous evaluations to better understand biophysical 
response and tradeoff analyses, highlighting relative effec-
tiveness and efficiency of management activities.

A distributed geospatial model-sharing platform 
(fig. D15) will be used to model ecosystem services and pro-
vide decision support. This platform is necessary to facilitate 
sharing and integrating geospatial disciplinary models. A 
platform based on Java Platform Enterprise Edition (J2EE) 
and open-source geospatial libraries (Feng and others, 2009) is 
in development. Shared models on the platform are accessible 
to applications through the Internet using the Open Geospatial 

Consortium (OGC) Web Processing Service (WPS) standard 
(fig. D16).

Assessment results related to the evaluation of ecosys-
tem services, such as soil erosion and deposition, biomass 
production, CO2 emission, and GHG flux, will be evaluated 
and distributed using the model-sharing platform (fig. D15). 
For a specific region and specific interest, however, numer-
ous submodels can be added to reflect the relative effective-
ness and efficiency of management activities. For example, 
water quantity and water quality, which are important indices 
of ecosystem services, are increasingly affected by natural 
and anthropogenic activities. The widely used Soil and Water 
Assessment Tool (SWAT) can be used to estimate the land-
phase processes (for example, surface runoff, soil erosion, 
nonpoint-source nutrient loss, groundwater recharge, and 
baseflow) and water-phase processes (for example, water 
routing, sediment transport, and nutrient transport and its 
fate in the aquatic systems). GEMS will link with SWAT to 
assess the climate-change effects on water availability, and 
sediment and nutrient transport for the landscape. A pilot 
platform, named EcoServ (ecosystems services model), was 
developed in the Prairie Pothole region (PPR) to simulate the 
diversity of ecosystem services simultaneously at landscape 
scale.

D.5. Estimating Uncertainties

Uncertainty estimates can be in the form of estimated 
percent errors, standard deviations, confidence intervals, or 
any other relevant coefficient (Larocque and others, in press). 
For the assessment, an overall approach to assessing uncer-
tainties is presented in appendix G of this report. Here, a brief 

Figure D15. Diagram showing the system structure of the Geospatial Model Sharing Platform. From Feng and others (2009), used with 
permission. Abbreviations are found in the Abbreviations, Acronyms, and Chemical Symbols listing in the front of this report.
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discussion is presented about how uncertainties related to 
GEMS data, parameters, and model structure will be handled.

Following the IPCC (2006) guidance, uncertainty analy-
sis mainly focuses on random errors. Model bias removal will 
be based on model calibration with in situ data.

The factors to be considered in the uncertainty evaluation 
should have an uncertainty range, either expressed as a prob-
ability distribution function (PDF) curve or a probability look-
up table. Typical PDFs described by IPCC (2006) are shown in 
figure D17. In GEMS, uncertainty factors may include forest 
age, crop species, soil type, canopy density, logging location, 
burn severity, and agricultural management.

If a model parameter has a PDF, it can be evaluated using 
error propagation. When a parameter PDF is not available, it is 
possible to derive the PDF using a data-assimilation technique. 
Some parameters may be obtained from expert judgment, 
which also has uncertainties.

The IPCC error propagation equation(s) will be used to 
aggregate the uncertainty from different vegetation types (such 
as forest or crop) to the JFD level, and aggregate uncertainty 
from the JFD level to a region:

 , (D14)

where x  is area weight, and
 U  is uncertainty.

Beyond error propagation, another effective approach to 
quantify modeling uncertainty is model comparison. Because 
GEMS can encapsulate multiple models, and parameterize 
and drive these models with the same data, it provides an ideal 
environment or platform to identify and address issues and 
uncertainty related to model structure and mathematical rep-
resentations of biophysical processes. GEMS eventually will 
include 5 to 10 BGC models in the national assessment.

D.6. Biogeochemical Deliverables

Major GEMS deliverables generated from various 
models or approaches are listed in table D3. Most of the 
outputs can be summarized in tables and displayed in map 
series.

Figure D16. Conceptual flow 
diagram illustrating access to 
the shared geospatial model. 
From Feng and others (2009), 
used with permission.

Figure D17. Typical probability distribution (density) function 
(PDF) curves. From Intergovernmental Panel on Climate Change 
(2006, p. 3.25), used with permission.
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Table D3. Preliminary methods or models to be used to assess parameters of carbon stocks, carbon sequestration, and greenhouse-
gas fluxes by ecosystems defined for the assessment.

[The methods or models listed have been tested and prototyped, but additional models may be added depending on unique ecosystem conditions or technical 
needs encountered in the assessment. Input data requirements for each ecosystem are also listed. An explanation of abbreviations and acronyms is found in 
“Abbreviations, Acronyms, and Chemical Symbols” in the front of this report]

Methods Deliverables Technical processes Target ecosystems Data needs or sources

Spreadsheet Cs, Csr, CO2, 
N2O, CH4

Algorithms based on storage-
age growth curves

Forest
Urban forestry
Scrub/shrub and grassland
Cropland
Wetland

Growth curve from FIA, crop 
production from NRCIS, 
NWI, local and IPCC 
standard GHG emission 
factors, GRACEnet data.

EDCM Cs, Csr, CO2, 
N2O, CH4,

Carbon and nitro-
gen leaching, 
erosion, and 
deposition

Maximum potential productiv-
ity, monthly time step, spatial 
sampling, and ensemble 
simulation

Parameterizations based on Cao 
and others (1996), Liu and 
others (1999), Parton and oth-
ers (2001) 

Forest
Urban forestry
Scrub/shrub and grassland
Cropland
Wetland

LULCC, current climate, 
IPCC GCM projections, 
USDA census data, 
disturbance (fire, drought, 
and so on), hydrological 
model inputs (soil erosion, 
deposition), management 
data (grazing intensity, 
fertilizer application), 
SSURGO soil data, GRA-
CEnet data.

Century Cs, Csr, CO2, 
N2O, CH4,

Carbon and nitro-
gen leaching

Maximum potential productiv-
ity, monthly time step, spatial 
sampling, and ensemble 
simulation

Forest
Urban forestry
Scrub/shrub and grassland
Cropland

LULCC, topography (DEM), 
current climate, IPCC 
GCM projections, USDA 
census data, disturbance 
(fire, drought), hydro-
logical model inputs (soil 
erosion, deposition), 
GRACEnet data.

IBIS Cs, Csr, CO2,
Carbon and nitro-

gen leaching

Farquhar-type leaf-level model, 
hourly time step, use of sub-
pixel information

Forest
Urban forestry
Scrub/shrub and grassland
Cropland

LULCC, topography (DEM), 
current climate, IPCC 
GCM projections, USDA 
census data, disturbance 
(fire, drought), hydro-
logical model inputs (soil 
erosion, deposition).

USPED Ced
Empirical two-dimensional 

algorithm
Forest
Scrub/shrub and grassland
Cropland

Link with EDCM,
SSURGO K factor, SRT 

DEM data, LULCC, 
precipitation from climate 
data (current and future 
projections).

Zero-dimensional model CH4, CO2
N2O,

Process-based, simple frame-
work, compatible in large-
scales

Parameterizations using Cao and 
others (1996), Li and others 
(1992), Potter (1997), Walter 
and others (2001), Zhuang 
and others (2006), and Hé-
nault and others (2005)

Wetlands Link with EDCM,
NWI, SSURGO, NCDC, 

NLCD, regional wetland 
database, GRACEnet data.
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