Forearc geology from free-air gravity—
Implications for co-seismic slip during the 2010,
1985, and 1960 Chile earthquakes
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Greatest slip during historic great earthquakes
favors subduction zones with key geologic
factors:

v High sediment influx into the trench
(e.g., Ruff, 1989; Scholl et al., in prep.)

v’ Large basins within well-developed forearc terrace
(Wells et al., 2003; Song and Simons, 2003)

v Presence of accretionary prisms
(von Huene and Scholl, 1991)

Satellite free-air gravity provides a consistent
measure of several of these geologic factors.
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The 2010 rupture occurred within a
trench segment bounded by the
Juan Fernandez ridge and the
Valdivia fracture zone.

The northern limit of rupture
corresponds with the northern limits
of arc volcanism and a pronounced
onshore forearc basin.

The rupture filled the gap between
the 1960 and 1985 great
earthguakes.



Slip > 1 m during 1985
30| M8.0 earthquake
(Mendoza et al., 1994)

Greatest slip during the 2010 rupture
fits snugly between slip that occurred
In 1960 and 1985.

Although the magnitude of slip was
highly variable, the three earthquakes
together affected the entire region,
from the Juan Fernandez ridge to the
triple junction.

Slip > 2 m during 2010
M8.8 earthquake
(Hayes, 2010)

Slip > 5 m during 1960

M9.6 earthquake
(Barrientos and Ward,




Megathrust earthquakes favor trenches with high sediment influx

( Ruff, 1989; Scholl et al., in prep.)



The offset between the trench axis and gravity minimum is
affected by the amount of sediment in the trench
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Increase sharply south of
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where MCS data show an
Increase In sediment
thickness.




Greatest slip during the 1960, 1985, and 2010 earthquakes
occurred where thickest trench sediments are predicted
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Megathrust earthquakes are associcated with a well-developed
forearc terrace and large sedimentary basins

(Wells et al., 2003; Song and Simons, 2003)



Nankai Trough, Japan
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« Great earthquakes centered on forearc basins (Mogi, 1969; Ando, 1975)

« 1300 year history shows repeated rupture of similar source zones (Ando, 1975;

Sugiyama, 1994, Ishibashi and Satake, 1998).




Nankal Trough, SW Japan - Free-air Gravity
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Coseismic slip from geodetic and seismic inversions
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Why does slip correlate with gravity lows?

Basins could form if some of the interseismic subsidence Is not

fully recovered during earthquakes (some of the deformation is
permanent).

Upper-plate geology determines specific regions favorable for
basin formation.




For the 2010 earthquake, at least 8 finite-fault models have been
presented thus far, most showing 2 asperities. Asperities are
offshore in solutions that use onshsore data (e.g., INSAR).

From teleseismic From teleseismic From teleseismic From INSAR and
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-76° -74° -72° -76° -74 7 72 -76°

(USGS) (CalTech)

L L
| Gavin Hayes \ | Chen Ji | Anthony Sladen | Xiaopeng Tong

Valparaiso

Contours = slip at 200 cm intervals; star = epicenter



The following slides show

an interpretation of forearc
geology based on free-air

gravity anomalies.

We used horizontal
gradients (red dots),
gravity minima (green
dots), and individual
profiles to assist with the
Interpretation.

Two examples...




The gravitational expression of
the Chile margin is dominated
by trench and coast-range
anomalies.

Two strong trench-parallel
gradients lie between these
anomalies.

The inboard and outboard
gradients together define a
terrace-like feature that
extends the length of the
margin.
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The gravitational expression of
the Chile margin is dominated
by trench and coast-range
anomalies.

, Two strong trench-parallel
e == gradients lie between these
s : I anomalies.
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The 2010, 1985, and 1960
epicenters lie along the
inboard gradient.
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| Wé%ﬁ” The trench anomaly is

Y

Ef 2] interrupted by a pronounced
SISy gravity anomaly, which we call
the “Concepcion buttress.”

The gravity terrace passes
over the Concepcion buttress
and appears to be deflected by
it. The terrace is
superimposed on the inherited
basement of the Concepcion
buttress.




W mm The Concepcion buttress
‘/}]" 2=l reflects a Paleozoic plutonic

terrane exposed onshore. The
terrrane extends nearly to the
trench axis and may influence
subduction.
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, The terrace is punctuated by
| a5 | gravity lows, some of which
=== correspond with mapped
sedimentary basins.
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W‘ /?.%Rﬁ' z Th_e 1964, 1985, al’.ld. _2010
Ly vl Chile earthquakes initiated

"' =5 along the inboard margin of the
forearc terrace. Greatest slip,
however, occurred seaward
from initial rupture but still
within the terrace.
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Greatest co-seismic
slip during the 2010,
1985, and 1964
earthquakes occurred
beneath the basins 7 S
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Summary

% The 2010 Mw 8.8 earthquake fills a gap between the 1960 Mw 9.5 and
1985 Mw 8.0 earthquakes.

% The 1960 and 2010 earthquake ruptures coincide with a segment of the
S. Chile trench characterized by thick sediment fill.

= Finite fault slip models for the 2010 event have considerable variability,
but most show largest slip (>10 m) under the forearc terrace and its
basins.

< Satellite gravity reveals that all three earthquakes initiated beneath the
coastal gravity high and ruptured into adjacent basin-centered gravity
lows, where most of the slip occurred.

% The Concepcion gravity high, a Paleozoic plutonic terrane that extends
offshore at the Concepcion Peninsula, is a lower slip region that
separates the high slip patches in 1960 and 2010.



Mapped sedimentary basins coincide with high slip areas in 1960
and 2010.
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Cascadia Margin
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! Quaternary volcanic rocks

Tertiary volcanic rocks of

Washington
Cascades

| Other Tertiary volcanic rocks

| Basin sediments (Puget Sound,

{ Willamette Valley, Great Valley)
Cenozoic sedimentary and volcanic 14
rocks of Coast Ranges :

Pre-Cenozoic and Paleogene
rocks (includes some Neogene

D plutonic rocks)

Major volcano

% "\_ C

ov

-H

-y .
. ’
' ’
. _l,l‘- A
e\ C Piar® ol At
- - - . in
- ’ -,
_____ . o emat - Q
’ - » ,' -
st VL” P y% . - ‘,
2 ’ el el . .
P INL?"~wue D ’
) . (] (ot |
L} - - ~
. > o® . - * y
’ - ’ v [
s . @ l' . i 5
- . : '
. \Oregor
-2l 2 I A
- 2
=% - Califort _._I Nar T
\ Hornia,se : «
: ' Y AV
. ST L e
. ol N
S ¥ a™ .
200KM

40

Blakely et al., 1997




