Earthquake source characterization for Tsunami warning

Barry Hirshorn and Stuart Weinstein

NOAA NWS Pacific Tsunami Warning, Ewa Beach, HI, US A.

EPICENTERS OF TSUNAMIGENIC EARTHQUAKES

EPICENTERS OF EARTHQUAKES THAT PRODUCED TSUNAMIS CAUSING DAMAGES OR CASUALTIES

Current Practice: Magnitude thresholds.

Mw less than 6.5 (Mw: Moment Magnitude)	Earthquake Message Only
Mw 6.5 to 7.5	Tsunami Information Bulletin
Mw 7.6 to 7.8	Regional Tsunami Warning
Mw > 7.8	Expanding Warning / Watch
Confirmed Teletsunami	Pacific-Wide Warning

In the NEAR FIELD:

LARGE Earthquakes (aka. Chile 2010)

Move inland if you feel a strong ground shaking and/or see the water recede from the shoreline.

TSUNAMI Earthquakes (aka. Java 2006)

Most people in the areas nailed by the Tsunami felt no eq. Also, many were in homes close the beach but didn't think to look at the water...

==> Local Tsunami Warnings within 5 minutes based on real time data from as dense a seismic network as practical.

In the FAR FIELD:

==> Tsunami Warnings issued within 10 to 15 minutes of EQ origin time.

Case I: A "Large" Earthquake, Chile Mw8.8 2/27/10:

06:34:16 EQ Origin Time.

- 06:36:54 Scientists PAGED: SOUTH AMERICA (PLCA, del = 5.2 degrees TRQA, del = 8.9 degrees)
- 06:44:01 FIRST MESSAGE: LAT: 36.1S LON: 72.6W DEPTH: 55 km. (11 stations) MWP 8.5 (4)
- 06:44:54 TSUNAMI WARNING FOR CHILE and PERU:

Estimated Arrival Time of TSUNAMI at GMT. ==> Talcahuno, Chile 07:29 Valpariso, Chile 07:39

07:19:00 First (Automatic) W-Phase solution (16 channels): Mww 8.62, BDC: STRIKE:356 / DIP:29 / SLIP ANGLE: 92 174 / 61 / 89

08:02:33 Mw(Mm) 8.7 (189 channels)

______km_____5000

Ó

Mwp from PLCA at 5.2 degrees epicentral distance

Mwp from TRQA at 8.9 degrees epicentral distance

Mw(Mm)

The Mantle Magnitude was developed by E.A. Okal and J. Talandier back in 1988. The Mantle Magnitude, abbreviated as Mm, is a variable period magnitude. An Mm is computed for each station at a suite of magnitudes which normally range from 51s to 273s.

at 420s, Mw(MM) = 8.7.

Theta = log(E/Mo)

Newman and Okal (1998) showed that for tsunami quakes, the value of Θ is usually about -6.0 or less. For a regular or non-slow earthquake, theory suggests that Theta is ~ -4.9.

Optimized Centroid, OT + 45 min

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Mw = 8.6 Lat 35.5 lon 73.0 h = 55km. 62 sec half duration (from time shift) Strike = 356, Dip = 29, Rake = 92 Strike = 174, Dip = 61, Rake = 89

USGS WPhase Moment Solution

10/02/27 6:34:17 OFFSHORE MAULE, CHILE Epicenter: -35.826 -72.668 MW 8.8

USGS/WPHASE CENTROID MOMENT TENSOR 10/02/27 06:34:17.00 Centroid: -35.826 -72.668 Depth **35** No. of sta: 28 Moment Tensor; Scale 10**24 Nm Mrr= 0.93 Mtt= 0.01 Mpp=-0.94 Mrt=-0.01 Mrp=-1.72 Mtp=-0.15 Principal axes: T Val= 1.96 Plg=59 Azm= 86 0.02 3 Ν 182 Ρ -1.97 30 274

Best Double Couple:Mo=2.0*10**22 NP1:Strike= 16 Dip=14 Slip= 104 NP2: 181 75 86

----#### -----########### -----################ -----################## ---- P -----####### T #######-------############ -----########----###----

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

07:44:03 TSUNAMI WARNING SUPPLEMENT:

LAT: 36.1S LON: 72.6W DEPTH: 55 km. (11 stations) MWP 8.6 (4)

==>	OBSERVATION O	F TSUNAMI at	GMT.	AMPL(0-pk)	Period
	Talcahuno, Chile	(DESTROYED)	6:53	2.3 METERS	20 MIN.

07:44:03 TSUNAMI WARNING SUPPLEMENT:

LAT: 36.1S LON: 72.6W DEPTH: 55 km. (11 stations) MWP 8.6 (4)

==> OBSERVATION OF TSUNAMI at		GMT.	AMPL(0-pk)	Period
Valpariso,	Chile	7:08	1.3 METERS	20 MIN.

TIME (UTC) Next XMT 00:41 corr prs

07:44:03 TSUNAMI WARNING SUPPLEMENT:

LAT: 36.1S LON: 72.6W DEPTH: 55 km. (11 stations) MWP 8.6 (4)

==> OBSERVATION OF TSUNAMI at		GMT.	AMPL(0-pk)	Period	
Corral,	Chile	7:39	1.5 METERS	16 MIN.	

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

July 17, 2006, Java First tsunami arrival, 56 min

15:19 Earthquake

~15:30 BMG announces that there is no danger of a tsunami (M6.8)

15: 36 Pacific Tsunami Warning Center issues local watch for Indonesia and Australia (M7.2)

15:46 JMA issued tsunami watch for Indian Ocean (same as PTWC message)

~16:15 Tsunami hit Pangandaran

From Jim Mori (Via Hiroo Kanamori)

Case II: A "Tsunami" Earthquake (Kanamori, 1972), Java Mw7.7 7/17/06:

- 08:19z EQ Origin Time.
- 08:26z Scientists PAGED: SOUTH AMERICA (KKM, del = degrees COCO, del = degrees)
- 08:31z PTWC Issues an Observatory Message: LAT 9.3S LONG 107.3E MWP 7.3 (6 STATIONS)
- 08:36z TSUNAMI WATCH FOR INDONESIA and AUSTRALIA: LAT: 9.3S LON: 107.3W MWP 7.2

Estimated Arrival Time of TSUNAMI at GMT.

- ==> Christmas Island, Australia 08:36z Cilacap, Indonesia 09:00z
- 08:??z Theta (logE/logMo) = -6.0 (using what Mw? Mwp?)
- 08:??z Mw(Mm) ??
- 09:15z Tsunami hits Pangandaran

PGPLOT Window 1

SEC

SEC

Theta = Log(E/Mo)

Newman and Okal (1998) showed that for tsunami quakes, the value of Θ is usually about -6.0 or less. For a regular or non-slow earthquake, theory suggests that Theta is ~ -4.9.

"Normal" (Sumatra, 2007. Mw 7.1)

Rupture duration > 20 seconds

"slow" (Java, 2006. Mw 7.7)

Rupture duration > 100 seconds

Kanamori and Rivera, 2008.

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

Southern Jawa Earthquake $(M_w = 7.7)$

EPICENTERS OF EARTHQUAKES THAT PRODUCED TSUNAMIS CAUSING DAMAGES OR CASUALTIES

ISSUE TIME OF PTWC BULLETINS FOR HAWAII EVENTS

Harvard CMT.

2006/10/15 17:7:54.2 GMT

Fault plane: strike=87dip=42slip=-151Fault plane: strike=334dip=71slip=-52

Lat= 19.85 Lon=-155.81 19.8 -155.9 PTWC Location at OT plus 31 seconds.

Depth= 33.7 30.0

at OT plus 31 seconds.

Warning timeline after upgrade

Issues/Challanges

- *Complex Earthquakes:* (eg. Peu 2001, smaller event followed about 70 sec later by larger event...)
- Multiple Earthquakes: (most recent example was Sunday, July 18, 2010
 2 events about 30 min apart, Mw6.9 followed by Mw7.3.
 Lucky this time....because the second was the larger of the 2.
- Local Earthquakes: More can be done than "if you feel the ground shaking....."
 - ==> Implement Local/Regional warning systems:
 - Data quality,
 - Network density
 - Network distribution.

||||

1

The End