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Features Common to 

these M  8 Earthquakes

*Incoming plate is Mesozoic 

in age and hence thermally 

mature and thick. High stress.

*Where focal mechanisms are 

known and/or swath maps are 

available, rupture planes 

cross-cut seafloor spreading 

fabric at high angles (> 30°).

*Well-located great 

earthquakes occur where 

outer-rise gravity anomalies 

are positive and large.

*Dip angles on rupture planes 

are high compared to 

megathrust earthquakes.

*Combined with the large 

ocean depths in the epicentral 

areas, such events should 

produce bigger tsunamis for a 

given Mo than megathrust 

EQ’s of similar moment. 
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Reported Hypocenters of the 
2 March 1933 Sanriku-oki 

Earthquake

Modern teleseismic hypocenter and OT

: 39.23°N; : 144.61°E 

h: < 30 km  No depth phases reported.   

OT: 17h 30m 56.71 s

1. JMA (1957)

2. JMA (2004)

3. Honda & Takehama (1933)

4. Matuzawa (1935)

5. Gutenberg (1956)

6. Kanamori (1971)

7. Utsu (2000)

8. Engdahl (EHB: 2004, unpub.)

9. Eric Bergman (2004, unpub.)

Bathymetry by JHD (Nishizawa, 2009)



EHB
JMA2

UTSU

KAN

Bergman

M8.4+ Sanriku-oki Earthquake of 2 March 1933 
*Mw 8.4+ largest outer-rise/outer trench slope earthquake in the instrumental record

*Maximum JMA seismic intensity = 5 

*3,064 deaths (est.) on Sanriku coast, mostly by the tsunami
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JMA: One-month aftershocks of the 1933 Sanriku Earthquake

MS

A Mystery - The Large Width 

of Aftershock  Zone:

“Aftershocks” east of the Japan 

Trench represent the effects of 

stress transfer to the 

megathrust boundary and to 

bending deformation of the 

slab. 



Moment, Mo

1028 dyn-cm 

(Mw)

Rupture 

Length 

L, km

Rupture 

width 

W, km

Dip 

Angle

°

Slip, u 

average, 

m

Reference

4.3 (8.4) 185 100 45 3.3 m Kanamori (1971) 100 s sw’s

9.5 (8.7) 220 35 45 17.1 m Okal (1992) Mo , >> 100 s sw’s

L&W: This Work

8 (8.6)  280  50 45 11 m Kanamori (2009) from very long 

period PAS record, unpublished

Modern Source Models

•Normal faulting mechanism ( = 347°;  = 46°;  =247°; Kanamori, 1971)

•Maximum depth of rupture (new result): 

25 km below seafloor, 31 km in depth. Gives W = 35 km

• = 7.2 X 1011 dyn/cm2 shallow upper-mantle rigidity (Kanamori, 1971)
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North-South Changes in OR/OTS Fault Scarp Morphology with 

Trench Obliquity to Magnetic Anomalies and MOR Abyssal Hills

1933

Northern JT:

Scarps ~// 

trench that 

cross-cut 

MOR fabric 

at high 

angles

Southern JT: 

Zig-zag 

scarps with 

segments 

trench // that 

cross-cut 

MOR fabric 

and 

segments // 

MOR fabric

Hokkaido/Kuriles:

Scarps ~// MOR 

Fabric

3

°
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Seismicity of Japan 

ERI 2009

Seismicity: 2003.1-2008.6
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Double seismic zone near-trench seismicity based on sP-P depth-phase delays 

Upper zone: Normal faulting; Lower zone: Reverse faulting 

Gamage, Umino, Hasegawa, and Kirby (GJI, 2009)
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1933 MS 

Epicenter

Japan Trench Gravity 
1933 Source Sanriku-oki region of 

the N. Japan Trench has an 

exceptionally large outer-rise 

gravity anomaly and bathymetric 

relief, among the highest on Earth

GravityBathymetry

Levitt and Sandwell (JGR 1995) flexure 

model: Estimates of bending resistance

for the northern Japan Trench:

Mo = 25 X 1016 N; he = 60 km; hm = 70 km

WGS94

mGal

N

S

1933



Longitude °E

Depth,  

m

Three Depth Profiles of the Japan Trench in the 1933 Source Region

1933

M8.6-8.7

Point of 

maximum 

curvature, 

K

Maximum fault throws:

~500 m maximum cumulative relief for both 

landward and trenchward facing  scarps 

developed over about ~100 km of trench-

normal distance and over a time interval of 

about 1.25 Ma
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Comparison of Slip Rates for Normal Faulting 

with Average Megathrust (MT) Slip Rates
•Megathrust average slip rate (PA:OK): 80 mm/a or 80 km/Ma

•Normal faulting OR/OTS:
*Total cumulative slip on scarps nearest trench: 

scarps, S  500 m 

*Time interval for normal faulting over the outer trench slope of 
100 km width: 

T = 100 km/80 km/Ma = 1,250,000 years = 1.25 Ma

Average slip rate = 0.5 km/1.25 Ma = 0.4 km/Ma = 0.4 mm/a
or 0.005 of the megathrust slip rate => very slow average slip 
rate [But the MT boundary has a very different structure and 
faulting behavior]

If most of the slip on these scarps occurs by great OR/OTS 
earthquakes with average slip, s  10 m, then a rough average 
regional return time would be:
T = 104 mm/(0.4 mm/year)/(20 scarps) = 1250 years (a  
minimum interval, since it neglects the slip contributions of 
smaller earthquakes and possible fault creep or afterslip).



Thomas A. Jaggar (1871-1953) 

Founder of the Hawaiian Volcano 

Observatory and Pioneer in Volcano 

Seismology and Volcano Science

1916

The 2 March 1933 seismogram written on the E-W Component of the Bosch-Omori seismograph then at HVO

A Bosch-Omori seismograph like that in the Whitney Vault at HVO in 1933



Other Islands

Oahu Honolulu: 0.3 m

Kukuiula Kauai: 1.2 m

Nawilowili Kauai: 1.2 m

Pakala Kauai:  1.2 m

Lahina, Maui 0.6 m

Midway Is.   ?

West Coast N. America (Tide 

Gage Measurements)

San Francisco (Presido): 0.25 m

Santa Monica:  0.25 m

Smaller waves at Santa Barbara, 

Los Angeles, Long Beach, La Jolla, 

and San Diego 

Tsunami Runups from M8.4 Sanriku Japan EQ of 2 March 1933 

in Hawai’i and the NE Pacific and Tsunami Forecast by HVO Staff
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& HVO



• Okal (1992) seismic moment, Mo = 9.5 X 1028 dyn-cm, MW = 8.7

• Kirby (2009) Source Dimensions: Length = 220 km; Width = 35 km; Avg. slip = 17.1 m

Model truncated at 10 h

Tsunami Model of the 1933 EQ (Eric Geist)
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Maximum wave heights versus Observed Runups
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Conclusions: Four Contributing Factors
Event Year  

Region

Mesozoic 

Plate Age

Large OR 

Gravity 

Anomaly

Large 

Trench vs. 

MA angle

Long, 

straight 

fault scarps

1933 

Sanriku    

1977 

Sumbawa    ?
2006 

Kurile    ?

2009, 1917

Tonga    

1917 

Kermadec    ?



QuickTime™ and a
 decompressor

are needed to see this picture.
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Regions of high 

potential for 

future great off-

trench 

tsunamigenic 

earthquakes



A Fundamental Question:

Why do the gravity and bathymetric expressions 

of the outer rise vary so greatly for lithosphere of 

basically the same age and convergence rate?

*Effects of ocean island basalt (plume) magmatic 

activity?

*Effects of transforms and fracture zones?

*Other effects?



Thank you for coming!



This Dynamic Earth Map and Poster
URL: http://mineralsciences.si.edu/tdpmap/
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The 1933 

Sanriku-oki 

earthquake: An 

exceptionally 

well-determined 

epicenter
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Comparisons of MS and Aftershocks of 

M7.1 OR Earthquake of 14 Nov 2005

30 km

JMA AS’s

OBS Deployment 1

JMA MS (Land network)

OBS Deployment 2

Engdahl EHB

OBS Instrument

Hino et al. (G3, 2009)



Great OR/OTS Earthquake Sources
Date

Mw 

Site

Rupture L,

km, from
AS’s

Fault Model

Max rupture 

D, km below

seafloor

Average 

slip*, m
MOR (MA) 

Fabric ^ 

Trench 

Azimuth, 

°

OR 

Satellite 

Gravity 

Anomaly

Plate 

Age, 

Ma

2March 33

8.6Sanriku 

Japan

220, 280 30 km (based 

on AS depths + 

lack of MS sP 

depth phase)

17 m 39 - 58° High ~140

19 Aug 77

8.3 

Sumbawa, 

Indonesia

200 22 km (based 

on AS depth 

phases)

~12 m 45° High 150-160

13 Jan 07

8.1 Kuriles

200, 280 ~30 9.6 m 

modeled

40° Very High 80-125

29 Sept 09

8.1 Tonga

190, 250 15 ~10 m

modeled

52° High 80-125

Criteria: 1) Plate age > 80 Ma (Mesozoic); 2) Large outer-rise gravity anomaly; 3)

MA^Tr Az > 30°or < 5°; 4) ~Trench || fault scarps


