

Water-Chemistry Data for Selected Springs, Geysers, and Streams in Yellowstone National Park, Wyoming, 2006–2008

Open-File Report 2010–1192

Water-Chemistry Data for Selected Springs, Geysers, and Streams in Yellowstone National Park, Wyoming, 2006–2008

Open-File Report 2010–1192

U.S. Department of the Interior KEN SALAZAR, Secretary

U.S. Geological Survey Marcia K. McNutt, Director

U.S. Geological Survey, Reston, Virginia 2010

For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS

For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS

Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report.

Suggested citation:

Ball, J.W., McCleskey, R.B., and Nordstrom, D.K., 2010, Water-chemistry data for selected springs, geysers, and streams in Yellowstone National Park, Wyoming, 2006–2008: U.S. Geological Survey Open-File Report 2010–1192, 109 p.

Contents

Abstract		1
Introduct	ion	2
Purpose	and Scope	2
Methods	of Sample Collection, Preservation, and Analysis	5
Sampl	e Locations	5
	e Collection and Preservation	
	and Laboratory Measurements	
	Measurements	
	Measurements	
	ide Determinations	
	Cation and Trace Metal Determinations	
	Anion Determinations	
	nt and Dissolved Organic Carbon Determinations	
	Isotope Determinations	
,	Determinations	
	ed pH Measurements	
	hemistry Data	
	ow Drainage Chemical Profiles	
	/ Assurance and Quality Control	
	edgments	
	ces Cited	
Appendix	x—Photographs	. იე
Eigur o		
Figure	3	
1.	Location of sampling areas in Yellowstone National Park, Wyoming	4
2.	Sampling locations for hot springs, geysers, and surface waters at Norris Geyser Basin and	
	West Nymph Creek thermal area, Yellowstone National Park, Wyoming	8
3–13.	Sampling locations with sample code numbers for hot springs and two surface-water samples,	
	Yellowstone National Park, Wyoming	
	One Hundred Spring Plain, Norris Geyser Basin	
	4. Back Basin, Norris Geyser Basin	
	5. Ragged Hills, Geyser Basin	
	6. West Nymph Creek Thermal Area	
	7. Crater Hills area	
	8. Geyser Springs Group	
	9. Ojo Caliente Spring, Lower Geyser Basin	
	10. Porcupine Hills area	
	11. Rabbit Creek area	
	12. Mud Volcano area	
4.4	13. Washburn Hot Springs	
14.	P	
4.5	colorimetric methods	. 29
15.	Comparison of results of sulfide determinations using the ion-selective electrode method and	00
46	best values from the methylene – blue colorimetric method	
16.	Flow chart illustrating the process for refining the acidity pH value	. აა

	1/.	Flow chart showing the pH selection process	35
	18–20.	Difference between field and laboratory pH as a function of:	
		18. Field pH	. 36
		19. Sample temperature, for samples with pH less than 4.5	
		20. Partial pressure of CO ₂	. 37
	21.	Difference between speciated charge imbalance at 22°C and speciated charge imbalance at field temperature in relation to field temperature	. 37
	22.	Sample temperature and pH (A), specific conductance and concentration of calcium (B), concentrations of sulfate and chloride (C), and concentrations of fluoride and aluminum (D) as a function of drainage distance for Succession Spring and its overflow drainage channel taken in 2006.	
	23.	Concentrations of mercury and arsenic(total) (A), concentrations of iron (total), iron (II), and iron (III) (B), concentrations of sodium and ammonium (C), and delta deuterium and delta 18O (D) as a function of drainage distance for Succession Spring and its overflow drainage channel taken in 2006	. 42
	24.	of sulfate and chloride (C), and concentrations of lithium and boron (D) as a function of	
	25.	drainage distance for Ojo Caliente Spring and its overflow drainage channel taken in 2008 Concentrations of sodium and potassium (A), concentrations of nitrate and dissolved oxygen (B), and concentration of arsenic (total) (C) as a function of drainage distance for Ojo Caliente Spring and its overflow drainage channel taken in 2008	
	26.	Sample temperature and pH (Å), specific conductance and concentration of calcium (B), concentrations of sulfate and chloride (C), and concentrations of fluoride and aluminum (D) as a function of drainage distance for an unnamed thermal feature and its overflow drainage	
	27.	channel in the upper Rabbit Creek area taken in 2006	. 45
	28.	• • • • • • • • • • • • • • • • • • • •	
	29.	Concentrations of boron and lithium (A), concentrations of sodium and bicarbonate (B), concentrations of mercury and arsenic(total) (C), and delta deuterium and delta 18O (D) as a function of drainage distance for an unnamed thermal feature and its overflow drainage channel in the lower Rabbit Creek area taken in 2006	. 48
	30.		
	31.		
-	Tables		
		Detailed sample site descriptions, locations, map, photograph, and chemical data table reference	6
		Container preparation and stabilization methods for filtered samples	
		L - L - L	

3.	. Analytical techniques, detection limits, typical precision, equipment used, and analytical								
	met	hod references	23						
4.	San	nple pH measured in the field and laboratory and calculated from acidity titration and							
	spe	ciated charge imbalance, for samples with pH less than 4	38						
5–13.	•	ults of water analyses for:							
	5.	Norris-Mammoth corridor and the West Nymph Creek thermal area, 2006–2008	49						
	6.	Norris Geyser Basin, 2006–2008	50						
		Gibbon Canyon and Geyser Springs Group, 2006–2008							
		Crater Hills area, 2006–2008							
	9.	Ojo Caliente Spring and its drainage channel, Lower Geyser Basin, 2006–2008	63						
		Porcupine Hills area, 2006–2008							
		Midway Geyser Basin and the Rabbit Creek area, 2006–2008							
	12.	Mud Volcano area, 2006–2008	69						
	13.	Washburn Hot Springs, 2006–2008	70						
14	. Ме	easurement of concentrations of dissolved constituents in standard reference water							
	saı	mples	74						
		'							

Conversion Factors

SI to Inch/Pound

Multiply	Ву	To obtain
	Length	
nanometer (nm)	0.00000003937	inch (in.)
micrometer (µm)	0.00003937	inch (in.)
millimeter (mm)	0.03937	inch (in.)
centimeter (cm)	0.3937	inch (in.)
meter (m)	3.281	foot (ft)
kilometer (km)	0.6214	mile (mi)
kilometer (km)	0.5400	mile, nautical (nmi)
meter (m)	1.094	yard (yd)
	Volume	
microliter (µL)	0.0000338	ounce, fluid (fl. oz)
milliliter (mL)	0.0338	ounce, fluid (fl. oz)
liter (L)	33.82	ounce, fluid (fl. oz)
liter (L)	2.113	pint (pt)
liter (L)	1.057	quart (qt)
liter (L)	0.2642	gallon (gal)
	Mass	
nanogram (ng)	0.0000000003527	ounce, avoirdupois (oz)
microgram (µg)	0.00000003527	ounce, avoirdupois (oz)
milligram (mg)	0.00003527	ounce, avoirdupois (oz)
gram (g)	0.03527	ounce, avoirdupois (oz)
kilogram (kg)	2.205	pound avoirdupois (lb)
	Density	
kilogram per cubic meter (kg/m³)	0.06242	pound per cubic foot (lb/ft ³)
gram per cubic centimeter (g/cm³)	62.4220	pound per cubic foot (lb/ft ³)

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows: $^{\circ}F=(1.8\times^{\circ}C)+32$

Horizontal coordinate information is referenced to the North American Datum of 1927 (NAD 27)

Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as follows: $^{\circ}C=(^{\circ}F-32)/1.8$

Water-Chemistry Data for Selected Springs, Geysers, and Streams in Yellowstone National Park, Wyoming, 2006–2008

By James W. Ball, R. Blaine McCleskey, and D. Kirk Nordstrom

Abstract

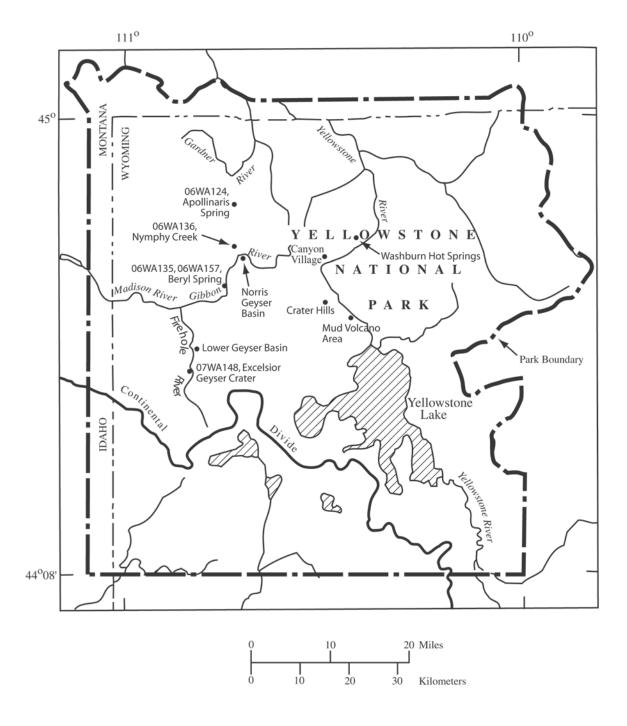
Water analyses are reported for 104 samples collected from numerous thermal and non-thermal features in Yellowstone National Park (YNP) during 2006–2008. Water samples were collected and analyzed for major and trace constituents from 10 areas of YNP including Apollinaris Spring and Nymphy Creek along the Norris-Mammoth corridor, Beryl Spring in Gibbon Canyon, Norris Geyser Basin, Lower Geyser Basin, Crater Hills, the Geyser Springs Group, Nez Perce Creek, Rabbit Creek, the Mud Volcano area, and Washburn Hot Springs. These water samples were collected and analyzed as part of research investigations in YNP on arsenic, antimony, iron, nitrogen, and sulfur redox species in hot springs and overflow drainages, and the occurrence and distribution of dissolved mercury. Most samples were analyzed for major cations and anions, trace metals, redox species of antimony, arsenic, iron, nitrogen, and sulfur, and isotopes of hydrogen and oxygen. Analyses were performed at the sampling site, in an onsite mobile laboratory vehicle, or later in a U.S. Geological Survey laboratory, depending on stability of the constituent and whether it could be preserved effectively.

Water samples were filtered and preserved on-site. Water temperature, specific conductance, pH, emf (electromotive force or electrical potential), and dissolved hydrogen sulfide were measured on-site at the time of sampling. Dissolved hydrogen sulfide was measured a few to several hours after sample collection by ion-specific electrode on samples preserved on-site. Acidity was determined by titration, usually within a few days of sample collection. Alkalinity was determined by titration within 1 to 2 weeks of sample collection. Concentrations of thiosulfate and polythionate were determined as soon as possible (generally a few to several hours after sample collection) by ion chromatography in an on-site mobile laboratory vehicle. Total dissolved iron and ferrous iron concentrations often were measured on/site in the mobile laboratory vehicle.

Concentrations of dissolved aluminum, arsenic, boron, barium, beryllium, calcium, cadmium, cobalt, chromium, copper, iron, potassium, lithium, magnesium, manganese, molybdenum, sodium, nickel, lead, selenium, silica, strontium, vanadium, and zinc were determined by inductively coupled plasma—optical emission spectrometry. Trace concentrations of dissolved antimony, cadmium, cobalt, chromium, copper, lead, and selenium were determined by Zeeman-corrected graphite-furnace atomic-absorption spectrometry. Dissolved concentrations of total arsenic, arsenite, total antimony, and antimonite were determined by hydride generation atomic-absorption spectrometry using a flow-injection analysis system. Dissolved concentrations of total mercury and methylmercury were determined by cold-vapor atomic fluorescence spectrometry. Concentrations of dissolved chloride, fluoride, nitrate, bromide, and sulfate were determined by ion chromatography. For many samples, concentrations of dissolved fluoride also

were determined by ion-specific electrode. Concentrations of dissolved ferrous and total iron were determined by the FerroZine colorimetric method. Concentrations of dissolved ammonium were determined by ion chromatography, with reanalysis by colorimetry when separation of sodium and ammonia peaks was poor. Dissolved organic carbon concentrations were determined by the wet persulfate oxidation method. Hydrogen and oxygen isotope ratios were determined using the hydrogen and CO₂ equilibration techniques, respectively.

Introduction


Investigations into the water chemistry of hot springs, geysers, streams, and rivers in Yellowstone National Park (YNP) have been conducted by the U.S. Geological Survey (USGS) and other earth-science organizations and academic institutions dating back to 1888. A list of publications that report results of these investigations is presented in table 1 of Ball and others (2006). Waters at YNP have pH values ranging from about 1 to 10, temperatures from ambient to about 95 degrees Celsius (°C; 93°C is boiling at YNP's altitude; some pools are superheated), and high concentrations of silica, arsenic, boron, fluoride, hydrogen sulfide, lithium, sulfate, and alkalinity relative to most natural waters. Numerous redox reactions and mineral-precipitation reactions occur. In addition to being valuable natural resources and tourist attractions, active geothermal areas such as those in YNP provide insight into formation of mineral deposits, microbiological processes in extreme environments, and water-rock interactions.

Purpose and Scope

The purpose of this report is to: (1) provide water-chemistry data from numerous sample sites in YNP for 2006–2008; (2) describe methods used to collect and analyze the samples; (3) describe quality-assurance and quality-control procedures; and (4) supplement interpretive reports. The samples were collected during four field trips to YNP: May and September 2006, September 2007, and September 2008. The primary purpose of the field trips was to study and interpret the geochemical processes (including mineral precipitation) affecting redox species of antimony, arsenic, iron, nitrogen, and sulfur in mineral springs and geothermal waters and their drainages. The evolution and chemical composition of several newly developed hydrothermal features of the Ragged Hills area of Norris Geyser Basin and the occurrence and distribution of total dissolved mercury and methylmercury in geothermal waters also was studied during these field trips. Several papers have been published on earlier phases of this project and of other collaborative research efforts (Xu and Schoonen, 1995; Xu and others, 1996; 1998; 2000; McCleskey and others, 2004; Ball and others, 1998a, b; 2001; 2002; 2006; Nordstrom and others, 2005; King and others, 2006; Planer-Friedrich and others, 2007; Boyd and others, 2009; Nordstrom and others, 2009; Sherman and others, 2009).

During 2006–2008, 104 water samples were collected from YNP (fig. 1). Five individual samples were collected from Apollinaris Spring and Nymphy Creek along the Norris-Mammoth corridor, Beryl Spring near Gibbon Canyon, and Excelsior Geyser Crater at Midway Geyser Basin. The remaining 99 samples were collected from eight areas of YNP: Norris Geyser Basin, Crater Hills, the Geyser Springs Group, Lower Geyser Basin, Porcupine Hills, Rabbit Creek, Mud Volcano, and Washburn Hot Springs. Thirty-five analyses are reported for samples collected for May–June 2006, 20 analyses are reported for September 2006, 21 analyses are reported for September 2008. Constituents determined include dissolved concentrations of calcium (Ca), magnesium (Mg), strontium (Sr), barium (Ba), sodium (Na), potassium (K), lithium (Li), sulfate (SO₄), thiosulfate (S₂O₃), polythionate (S_nO₆), hydrogen sulfide (H₂S), alkalinity (as HCO₃), acidity, fluoride (F), chloride

(Cl), bromide (Br), nitrate (NO₃), ammonium (NH₄), silica (SiO₂), boron (B), aluminum (Al), total iron (Fe(T)), ferrous iron (Fe(II)), manganese (Mn), copper (Cu), zinc (Zn), cadmium (Cd), chromium (Cr), cobalt (Co), total mercury (Hg(T)), methylmercury (CH₃Hg), nickel (Ni), lead (Pb), beryllium (Be), vanadium (V), molybdenum (Mo), total antimony (Sb(T)), antimonite (Sb(III)), selenium (Se), total arsenic (As(T)), arsenite (As(III)), dissolved organic carbon (DOC), and isotopes of hydrogen (δ D) and oxygen (δ ¹⁸O).

Base from Stauffer and others (1980)

Figure 1. Location of sampling areas in Yellowstone National Park, Wyoming.

Methods of Sample Collection, Preservation, and Analysis

Sample Locations

Because many geothermal features can be within meters of each other, it is critical that sample sites be accurately located and described. To this end, we have made every effort to include detailed maps (figs. 2–12), written descriptions and accurate latitude and longitude measurements (table 1), and photographs (Appendix) of all the sample sites for which analytical results are reported.

The locations of sampling areas in YNP, and for Apollinaris and Beryl Springs, Excelsior Geyser Crater, and Nymphy Creek, are shown on figure 1. Sample locations for the remaining eight areas sampled are shown on the following maps: Norris Geyser Basin (figs. 2–5), West Nymph Creek Thermal Area (fig. 6), Crater Hills (fig. 7), the Geyser Springs Group (fig. 8), Lower Geyser Basin (fig. 9), the Porcupine Hills area (fig. 10), the Rabbit Creek thermal area (fig. 11), the Mud Volcano area (fig. 12) and Washburn Hot Springs (fig. 13). Official names are taken from either the Geographic Names Information System (GNIS; http://geonames.usgs.gov/) or Whittlesey (1988). Several features that did not have official names were assigned names by the authors for project purposes. Features named by the authors are in quotations in tables 1 and 5–14.

For terminology in this report, "source" samples were collected at the origin of the spring, and overflow "drainage channel" samples were collected at various distances downstream from the source. Series of transect samples were collected in the overflow drainage channels from Ojo Caliente Spring, "Succession Spring" in the Ragged Hills area of Norris Geyser Basin, and drainage channels from two unnamed hot springs in the Rabbit Creek area. Latitudes and longitudes were acquired using a portable global positioning system (GPS; Garmin III+ or Garmin Rino 530) with latitudes and longitudes referenced to the NAD27 datum (North American Datum of 1927), compatible with USGS topographic maps.

Sample Collection and Preservation

Samples were collected from streams, tributaries, and overflow drainage channels as close to the center of flow as possible and in areas that appeared to be well mixed. For springs and geysers, samples were collected as close to the discharge source as possible. Extreme care was taken to safely collect water samples from the geothermal sites, to protect fragile hot-spring mineral formations, and to minimize changes in temperature, pH, and water chemistry during sampling. Samples were collected from the middle of large pools and geysers by positioning the sample tubing intake using an insulated stainless-steel container as a flotation device attached to the end of an extendable aluminum pole. At more easily accessible sites, the tubing intake was positioned in the source or channel by hand. A Teflon block attached to the end of the sampling tubing was used as a weight to keep the sample tubing in place (McCleskey and others, 2004).

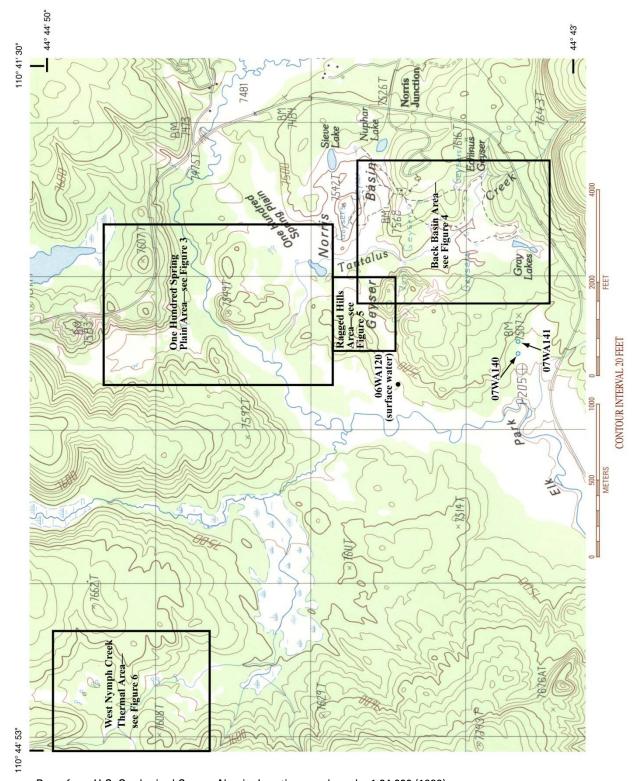
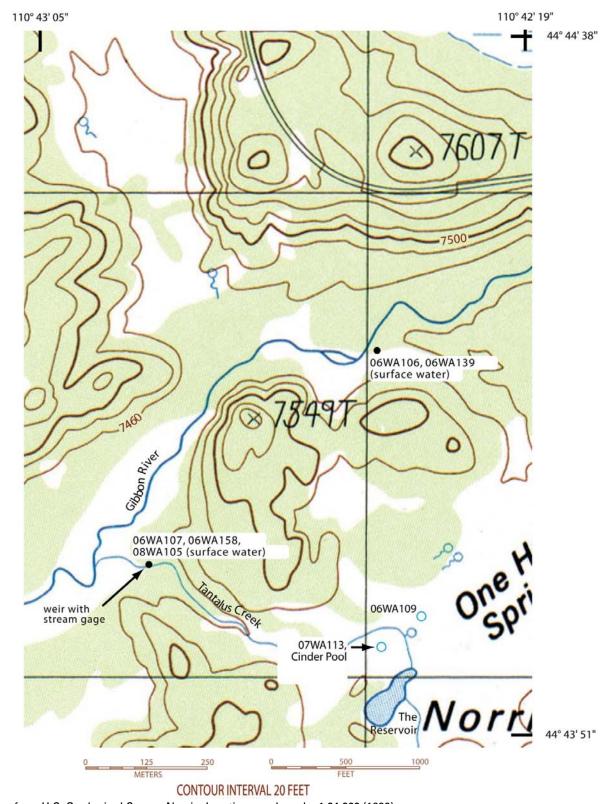

Samples were collected and filtered on/site by either or both of two techniques. The first technique consisted of pumping the water directly from the source with a battery-operated peristaltic pump fitted with medical-grade silicone tubing through a pre-cleaned 142-millimeter (mm) diameter all-plastic filter holder (Kennedy and others, 1976) containing a 0.1-micrometer (μ m) pore size mixed-cellulose-ester filter membrane. The second technique consisted of filling a 60-milliliter (mL) syringe by suctioning from the source, rinsing three times, and immediately forcing the water through a 25-mm disposable filter having a mixed-cellulose-ester membrane with a pore size of 0.2 or 0.45 μ m.

Table 1. Detailed sample site descriptions, locations, map, photograph, and chemical data table reference. [--, not measured or not photographed; cm, centimeters; m, meters]

	Sample			Chemical		
	code	North	West	data	Map	Photograph
Name and Site Description	number	Latitude	Longitude	(table)	(figure)	(appendix)
Norris-Mammoth Corridor	06WA124	44° 50' 34.0"	110° 43' 57.8"	5	1	24
Apollinaris Spring Nymphy Creek	06WA124	44° 45' 12.5"	110° 43′ 37.8° 110° 43′ 33.5″	5	1	35
West Nymph Creek Thermal Area	00WA130	44 43 12.3	110 45 55.5	3		33
Uppermost pool, West Nymph Creek Thermal Area	08WA118	44° 44' 44.4"	110° 44' 40.4"	5	6	80
Sunken circular pool, West Nymph Creek T hermal Area	08WA119	44° 44' 34.6"	110° 44' 40.5"	5	6	81
Norris Geyser Basin (One Hundred Spring Plain area)						
Cinder Pool	07WA113	44° 43' 57.2"	110° 42' 35.6"	6	3	61
Realgar Creek at mouth	06WA106	44° 44' 16.8"	110° 42' 32.7"	6	3	1
Realgar Creek at mouth	06WA139	44° 44' 16.8"	110° 42' 32.7"	6	3	36
Tantalus Creek at weir	06WA107	44° 44' 2.7"	110° 42' 54.6"	6	3	2
Tantalus Creek at weir	06WA158	44° 44' 2.7"	110° 42' 54.6"	6	3	39
Tantalus Creek at weir	08WA105	44° 44' 2.7" 44° 43' 59.1"	110° 42' 54.6"	6 6	3	73 4
Unnamed hot spring northeast of Cinder Pool Norris Geyser Basin (Back Basin area)	06WA109	44 45 39.1	110° 42' 29.3"	0	3	4
Cistern Spring	06WA123	44° 43' 23.4"	110° 42' 14.8"	6	4	23
Cistern Spring	06WA159	44° 43' 23.4"	110° 42' 14.8"	6	4	40
Cistern Spring	07WA116	44° 43' 23.4"	110° 42' 14.8"	6	4	64
Cistern Spring	08WA127	44° 43' 23.4"	110° 42' 14.8"	6	4	89
Echinus Geyser	08WA126	44° 43' 20.0"	110° 42' 4.8"	6	4	88
Perpetual Spouter	06WA132	44° 43′ 35.7″	110° 42' 32.7"	6	4	31
Perpetual Spouter	07WA144	44° 43' 35.7"	110° 42' 32.7"	6	4	69
Perpetual Spouter	08WA130	44° 43' 35.7"	110° 42' 32.7"	6	4	92
Porkchop Geyser	07WA143	44° 43' 20.0"	110° 42' 26.6"	6	4	68
Porkchop Geyser	08WA129	44° 43' 20.0" 44° 43' 20.2"	110° 42' 26.6" 110° 42' 24.5"	6	4 4	91
Second Erupter Second Erupter	06WA122 07WA142	44° 43' 20.2" 44° 43' 20.2"	110° 42′ 24.5″ 110° 42′ 24.5″	6 6	4	22 67
Second Erupter Second Erupter	08WA128	44° 43' 20.2"	110° 42′ 24.2″	6	4	90
Tantalus Creek - Back Basin Drainage	06WA134	44° 43' 35.4"	110° 42' 29.9"	6	4	33
Unnamed acid spring next To Perpetual Spouter	06WA133	44° 43' 35.5"	110° 42' 33.1"	6	4	32
Unnamed acid spring next To Perpetual Spouter	07WA145	44° 43' 35.5"	110° 42' 33.1"	6	4	70
Unnamed hot spring, north end of Elk Park	07WA140	44° 43' 11.7"	110° 42' 56.7"	6	2	65
Unnamed hot spring, north end of Elk Park near 07WA140	07WA141	44° 43' 11.7"	110° 42' 53.4"	6	2	66
Norris Geyser Basin (Ragged Hills area)						
Appendage side spring to "Lifeboat Spring"	08WA124	44° 43' 39.8"	110° 42' 49.8"	6	5	86
Circular clay hot spring 2 meters from 08WA121	08WA123	44° 43' 44.3"	110° 42' 41.5"	6	5	85
Crystal Spring - eastern side	06WA112	44° 43' 43.6"	110° 42' 40.1"	6	5 5	6
Crystal Spring - eastern side Crystal Spring - western side	07WA147 06WA111	44° 43' 43.6" 44° 43' 43.7"	110° 42' 40.1" 110° 42' 40.2"	6 6	5	71 6
Crystal Spring - western side	07WA146	44° 43' 43.7"	110° 42′ 40.2″ 110° 42′ 40.2″	6	5	71
Crystal Spring - western side	08WA120	44° 43' 43.7"	110° 42' 40.2"	6	5	82
The Gap northeast outflow	06WA121	44° 43' 45.2"	110° 42' 40.5"	6	5	21
The Gap southwest outflow	06WA120	44° 43' 37.0"	110° 43' 6.0"	6	2	20
Hot Spring next to "Orpiment Puddle 2"	07WA107	44° 43' 44.3"	110°42'41.6"	6	5	55
"Kaolin Spring"	07WA106	44° 43' 41.8"	110° 42' 44.7"	6	5	54
"Kaolin Spring"	08WA131	44° 43' 41.8"	110° 42' 44.7"	6	5	93
"Lifeboat Spring"	06WA118	44° 43′ 39.5″	110° 42' 48.2"	6	5	18
"Lifeboat Spring"	07WA115	44° 43' 39.5"	110° 42' 48.2"	6	5	63
"Lifeboat Spring"	08WA125	44° 43' 39.5"	110° 42' 48.2"	6	5	87
"Orpiment Puddle 3"	06WA110	44° 43' 44.4" 44° 43' 40.1"	110° 42' 41.6" 110° 42' 49.9"	6 6	5 5	5 19
"Persnickety Geyser" "Persnickety Geyser"	06WA119 07WA105	44° 43' 40.1"	110° 42′ 49.9″ 110° 42′ 49.9″	6	5	53
"Succession Spring"	06WA126	44° 43' 45.8"	110° 42' 41.9"	6	5	26
"Succession Spring" drainage channel	06WA127	44° 43' 45.8"	110° 42' 41.8"	6	5	27
"Succession Spring drainage channel	06WA128	44° 43' 46.0"	110° 42' 41.6"	6	5	28
"Succession Spring" drainage channel	06WA129	44° 43' 46.0"	110° 42' 41.5"	6	5	29
"Succession Spring" drainage channel	06WA130	44° 43' 46.1"	110° 42' 41.4"	6	5	29
"Succession Spring" mat	06WA131	44° 43' 46.2"	110° 42' 41.2"	6	5	30
"Titanic Spring"	06WA117	44° 43′ 39.4″	110° 42' 50.9"	6	5	17
"Titanic Spring"	07WA114	44° 43' 39.4"	110° 42' 50.9"	6	5	62
Unnamed pool near The Gap	08WA121	44° 43' 44.3"	110° 42' 41.5"	6	5	83
Unnamed pool near "Succession Spring"	06WA125	44° 43' 44.3"	110° 42' 44.5"	6	5	25


Table 1. Detailed sample site descriptions, locations, map, photograph, and chemical data table reference—Continued.

	Sample			Chemical		
	code	North	West	data	Map	Photograph
Name and Site Description	number	Latitude	Longitude	(table)	(figure)	(appendix)
Gibbon Canyon and Geyser Springs Group	TUTIOCI	Latitude	Longitude	(t u b i c)	(Tiguic)	(uppendi x)
Beryl Spring	06WA135	44° 40' 43.5"	110° 44' 44.7"	7	1	38
Beryl Spring	06WA157	44° 40' 43.5"	110° 44' 44.7"	7	1	38
Unnamed pool, Geyser Springs Group	07WA108	44° 41' 25.8"	110° 43' 43.6"	7	8	56
Unnamed pool, Geyser Springs Group	08WA122	44° 41' 25.8"	110° 43' 43.6"	7	8	84
Unnamed acid pool, Geyser Springs Group	08WA117	44° 41' 25.3"	110° 43' 42.2"	7	8	
Crater Hills area	00 W/1117	44 41 23.3	110 43 42.2	,	0	
Sulphur Spring	07WA111	44° 39' 16.7"	110° 28' 54.8"	8	7	59
Sulphur Spring	08WA115	44° 39' 16.7"	110° 28' 54.8"	8	7	78
Unnamed hot spring	07WA112	44° 39' 12.1"	110°28'36.7"	8	7	60
Unnamed acid pool near Sulphur Spring	08WA116	44° 39' 15.3"	110° 28′ 59.0″	8	7	79
Lower Geyser Basin	00 11110	11 37 13.3	110 20 37.0	0	,	1,2
Ojo Caliente Spring at discharge	06WA160	44° 33' 46.1"	110°50'16.9"	9	9	
Ojo Caliente Spring at pool exit	06WA161	44° 33' 46.5"	110° 50' 17.1"	9	9	
Ojo Caliente Spring 7.5 m from pool outflow	06WA162	44° 33' 46.4"	110° 50' 17.1"	9	9	
Ojo Caliente Spring 20.6 m from pool outflow	06WA163	44° 33' 46.1"	110° 50' 17.2"	9	9	
Ojo Caliente Spring source, 50 feet below surface	08WA112	44° 33' 46.1"	110° 50' 16.9"	9	9	76
Ojo Caliente Spring source, 30 feet below surface Ojo Caliente Spring midpoint of main pool	08WA112	44° 33' 46.3"	110° 50′ 17.0″	9	9	
Ojo Caliente Spring at pool exit	08WA111	44° 33' 46.5"	110° 50' 17.1"	9	9	
Ojo Caliente Spring 13.8 m downstream from pool exit	08WA111	44° 33' 46.3"	110° 50' 17.1"	9	9	
Ojo Caliente Spring 20.4 m downstream from pool exit	08WA110	44° 33' 46.1"	110° 50′ 17.2″ 110° 50′ 17.2″	9	9	
Ojo Caliente Spring 25.9 m downstream from pool exit	08WA109	44° 33' 46.0"	110° 50′ 17.2″ 110° 50′ 17.2″	9	9	
Porcupine Hills area	00 W A100	44 33 40.0	110 30 17.2	7	7	
Snort Geyser	06WA173	44° 34' 4.0"	110° 48' 18.4"	10	10	49, 50
Unnamed hot spring, Morning Mist Group	06WA173	44° 34' 26.0"	110° 48′ 18.4° 110° 48′ 26.0″	10	10	
Unnamed hot spring, Worling Wist Group Unnamed hot spring, Quagmire Group	06WA170	44° 34' 3.7"	110 48 26.0"	10	10	46 47
Unnamed hot spring, Quagmire Group Unnamed hot spring, Quagmire Group	06WA171	44° 34' 2.7"	110 48 20.0 110° 48' 25.0"	10	10	48
	06WA174	44° 34′ 1.7"	110 48 23.0 110° 48' 17.0"	10	10	51
Unnamed hot spring, Quagmire Group Unnamed hot spring, Quagmire Group	08WA174	44° 34' 3.7"	110 48 17.0 110° 48' 26.0"	10	10	94
Unnamed hot spring, Quagmire Group	08WA132	44° 34' 2.7"	110 48 20.0 110° 48' 25.0"	10	10	94 95
	08WA134	44° 34′ 1.7"	110 48 23.0 110° 48' 17.0"	10	10	95 96
Unnamed hot spring, Quagmire Group	06 W A134	44 34 1.7	110 46 17.0	10	10	90
Midway Geyser Basin and Rabbit Creek area	07337 4 1 40	449 211 24 21	1109 501 9 01	1.1	1	72
Excelsior Geyser Crater	07WA148	44° 31' 34.2"	110° 50' 8.9"	11	1	72
Unnamed hot spring	06WA113	44° 31' 9.8"	110° 48' 35.3"	11	11	7
Unnamed hot spring drainage channel	06WA114	44° 31' 9.0"	110° 48' 30.2"	11	11	8
Unnamed hot spring drainage channel	06WA114B	44° 31' 9.0"	110° 48' 30.7"	11	11	9
Unnamed hot spring drainage channel	06WA114C	44° 31' 9.0"	110° 48' 31.8"	11	11	10
Unnamed hot spring drainage channel	06WA114D	44° 31' 9.1"	110° 48' 33.5"	11	11	11
Unnamed hot spring	06WA115	44° 31' 1.5"	110° 48' 57.2"	11	11	12
Unnamed hot spring	06WA116	44° 31' 2.1"	110° 49' 19.1"	11	11	13
Unnamed hot spring drainage channel	06WA116B	44° 31' 2.1"	110° 49' 20.3"	11	11	14
Unnamed hot spring drainage channel	06WA116C	44° 31' 2.1"	110° 49' 21.3"	11	11	15
Unnamed hot spring drainage channel	06WA116D	44° 31' 1.8"	110° 49' 22.9"	11	11	16
Mud Volcano area						
Sulphur Caldron	06WA164		110° 25' 55.9"	12	12	41
Sulphur Caldron			110° 25' 55.9"	12	12	58
Sulphur Caldron	08WA114	44° 37' 41.5"	110° 25' 55.9"	12	12	77
Turbulent Pool	06WA165	44° 37' 42.4"	110° 25' 57.3"	12	12	42
Turbulent Pool	07WA109	44° 37' 42.4"	110° 25' 57.3"	12	12	57
Washburn Hot Springs						
Inkpot Spring #1	06WA166	44° 45' 52.8"	110° 25' 48.9"	13	13	43
Inkpot Spring #3	06WA167	44° 45' 53.2"	110° 25' 48.1"	13	13	43
Unnamed thermal feature 160 feet elevation above inkpots	06WA169	44° 46' 0.5"	110° 45' 45.1"	13	13	44
Upper large hot pool, Inkpot Spring area	06WA168	44° 45' 53.9"	110° 25' 46.2"	13	13	45

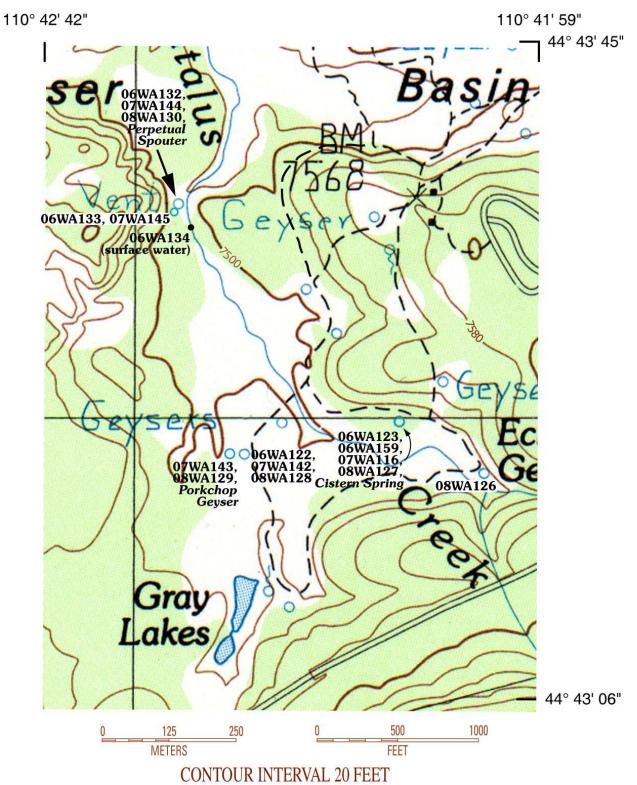

Base from U.S. Geological Survey Norris Junction quadrangle, 1:24,000 (1986)

Figure 2. Sampling locations for hot springs, geysers, and surface waters at Norris Geyser Basin and West Nymph Creek thermal area, Yellowstone National Park, Wyoming.

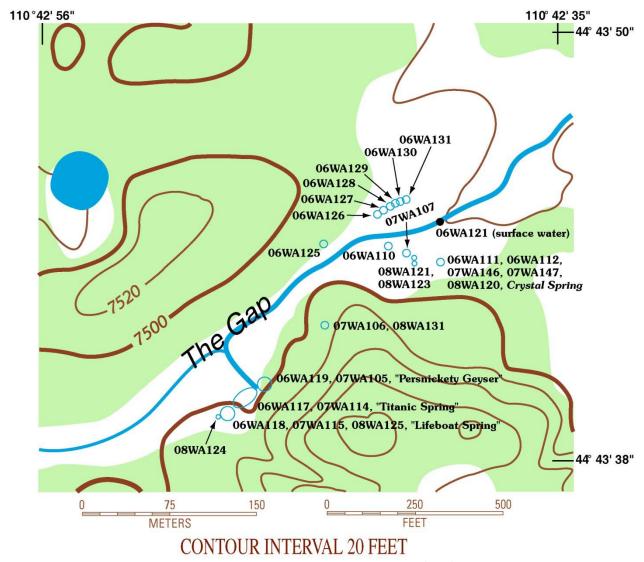

Base from U.S. Geological Survey Norris Junction quadrangle, 1:24,000 (1986)

Figure 3. Sampling locations with sample code numbers for hot springs and two surface-water samples in the One Hundred Spring Plain area of Norris Geyser Basin, Yellowstone National Park, Wyoming (see figure 2).

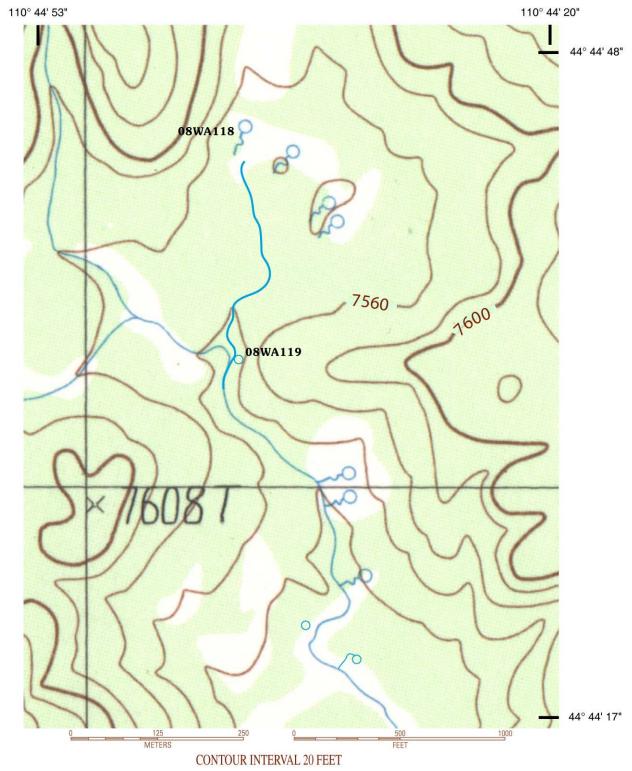

Base from U.S. Geological Survey Norris Junction quadrangle, 1:24,000 (1986)

Figure 4. Sampling locations with sample code numbers for thermal features and one surface-water sample in the Back Basin area of Norris Geyser Basin, Yellowstone National Park, Wyoming (see figure 2).

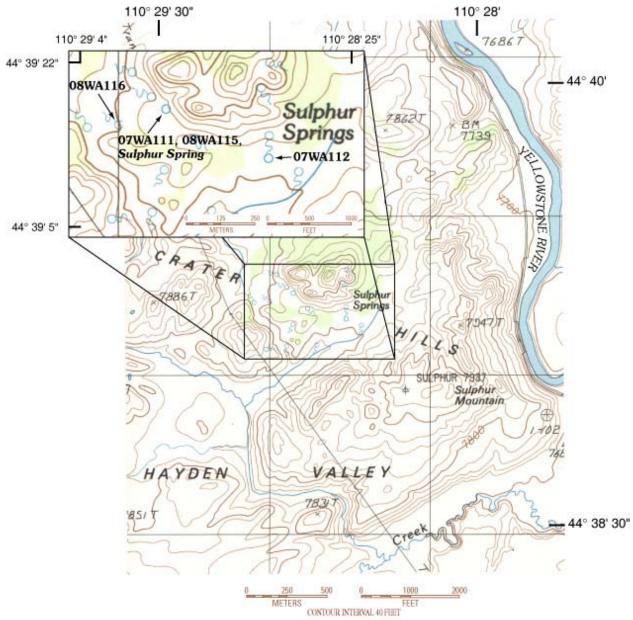

Sketch based on U.S. Geological Survey Norris Junction quadrangle, 1:24,000 (1986)

Figure 5. Sampling locations with sample code numbers for thermal features and one surface-water sample in the Ragged Hills area of Norris Geyser Basin, Yellowstone National Park, Wyoming (see figure 2).

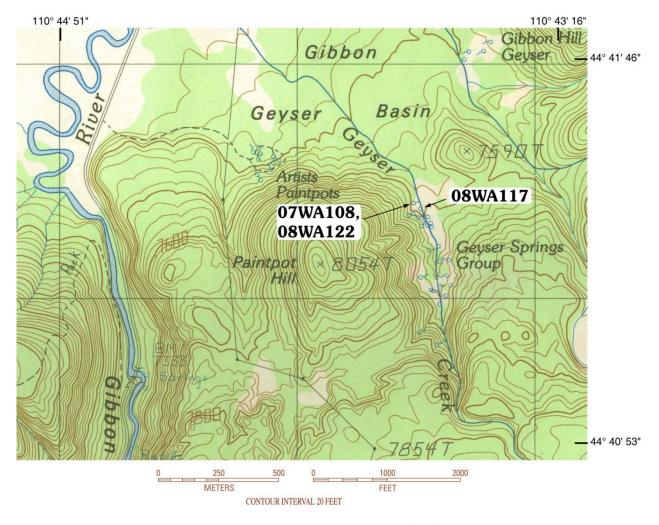

Base from U.S. Geological Survey Norris Junction quadrangle, 1:24,000 (1986)

Figure 6. Sampling locations with sample code numbers for thermal features in the West Nymph Creek Thermal Area near Norris Geyser Basin, Yellowstone National Park, Wyoming (see figure 2).

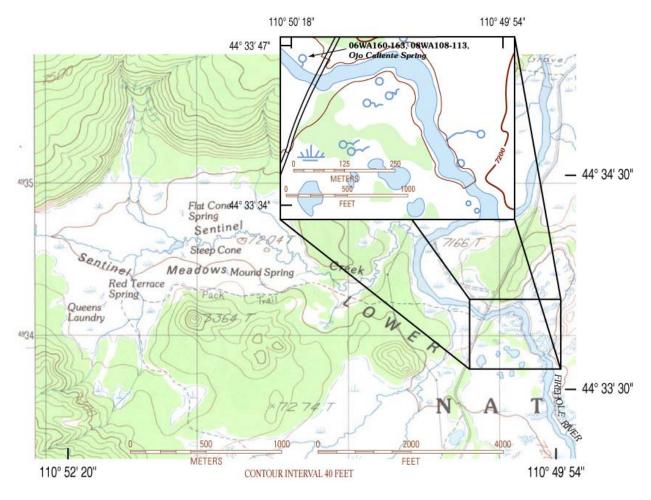

Base from U.S. Geological Survey Canyon Village quadrangle, 1:24,000 (1986)

Figure 7. Sampling locations with sample code numbers for thermal features at the Crater Hills area, Yellowstone National Park, Wyoming.

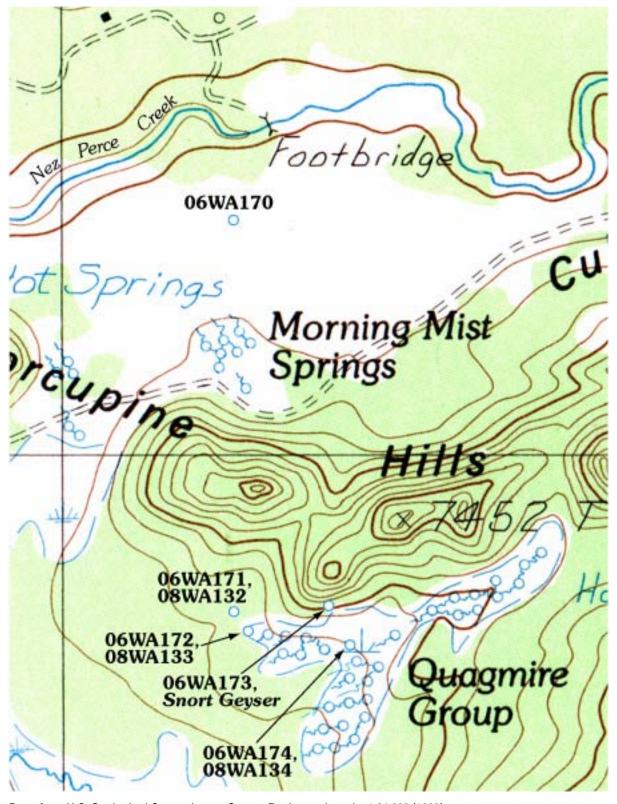

Base from U.S. Geological Survey Norris Junction quadrangle, 1:24,000 (1986)

Figure 8. Sampling location with sample code number for thermal features in the Geyser Springs Group, Yellowstone National Park, Wyoming.

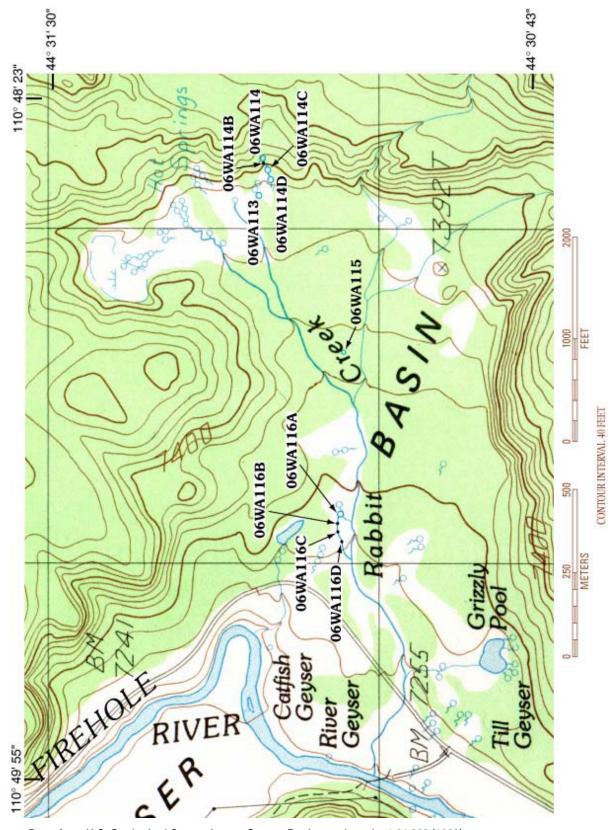

Base from U.S. Geological Survey Lower Geyser Basin quadrangle, 1:24,000 (1986)

Figure 9. Sampling location with sample code numbers for Ojo Caliente Spring in Lower Geyser Basin, Yellowstone National Park, Wyoming.

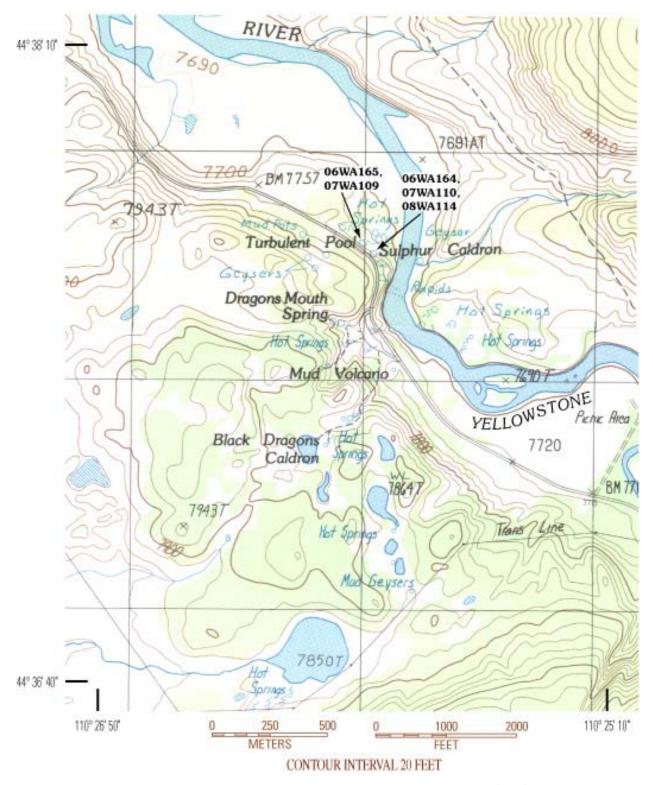

Base from U.S. Geological Survey Lower Geyser Basin quadrangle, 1:24,000 (1986)

Figure 10. Sampling locations with sample code numbers for thermal features in the Porcupine Hills area, Yellowstone National Park, Wyoming.

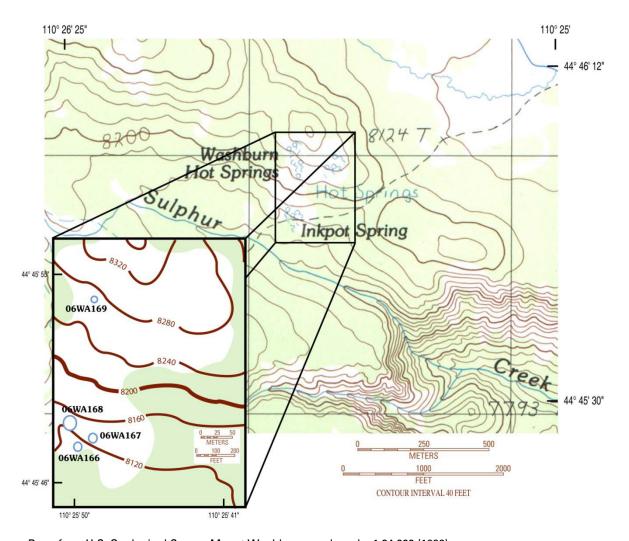

Base from U.S. Geological Survey Lower Geyser Basin quadrangle, 1:24,000 (1986)

Figure 11. Sampling locations with sample code numbers for the Rabbit Creek area, Yellowstone National Park, Wyoming.

Base from U.S. Geological Survey Lake and Canyon Village quadrangles, 1:24,000 (1986)

Figure 12. Sampling locations with sample code numbers for thermal features in the Mud Volcano area, Yellowstone National Park, Wyoming.

Base from U.S. Geological Survey Mount Washburn quadrangle, 1:24,000 (1986)

Figure 13. Sampling locations with sample code numbers for thermal features at Washburn Hot Springs, Yellowstone National Park, Wyoming.

As many as 11 sample bottles were filled at each site. Sequential aliquots were filtered into separate containers for the determination of inorganic constituents, redox species, stable hydrogen and oxygen isotopes of water, and dissolved organic carbon (DOC). Container preparation, storage, and stabilization methods for filtered samples are summarized in table 2. Samples for the determination of major cations and trace metals (Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Sb, Se, SiO₂, Sr, V, and Zn), major anions (Br, Cl, F, NO₃, and SO₄), alkalinity, acidity, density, NH₄, DOC, and water isotopes (δ D and δ ¹⁸O) were filtered and then stabilizing reagents, if needed, were added. Stabilizing reagents for intermediate sulfur species were put into the sample bottles before the samples were collected; therefore, these bottles were not prerinsed. The remaining sample bottles were pre-rinsed with filtered water prior to sample collection. With the exception of the cation, water isotope, and silica dilution samples, all sample aliquots were chilled as soon as practical after sample collection.

To prevent over-estimation of S_2O_3 and polythionate concentrations, S(-II) oxidation was minimized by precipitating S(-II) with zinc chloride. This technique caused zinc sulfide (ZnS) species to precipitate. The ZnS in the samples was further stabilized by adding NaOH. Polythionate was converted to thiocyanate (SCN) by adding potassium cyanide (KCN) to that sample split (Moses and others, 1984). For the analysis of dissolved SiO_2 in thermal waters, 1 mL of sample was diluted on/site to 25 mL with deionized water to minimize precipitation of SiO_2 as the sample cooled. Samples for the determination of DOC were filtered through a 142-mm diameter all-plastic plate filter containing a 0.1- μ m mixed-cellulose-ester filter membrane and collected in a glass bottle that had been baked at 600°C. At least 1 liter (L) of sample water was passed through the all-plastic plate-filter assembly before a DOC sample was collected. Samples for δD and $\delta^{18}O$ (water isotopes) determinations were filtered when the water filtered easily; otherwise water-isotope samples were not filtered.

Field and Laboratory Measurements

Analytical methods, typical precision, detection limits, equipment used, pertinent references, and comments are described briefly in table 3. Detection limits were equal to 3 times the standard deviation (s) of several dozen measurements of the constituent in a blank solution analyzed as a sample. Relative standard deviation for each analytical method is determined from the measurement of an analyte concentration at least 10 times the detection limit. Techniques, general conditions, and variants from standard procedures are discussed in the following sections.

All reagents were equal to the reagent-grade standards of the American Chemical Society or more pure. Double-distilled or de-ionized water and re-distilled or trace-metal-grade acids were used in all preparations. Samples were diluted as necessary to bring the analyte concentration within the optimal range of the method. Each sample was analyzed at least twice for each dilution and for all constituents.

Table 2. Container preparation and stabilization methods for filtered samples.

[°C, degrees Celsius; HCO_3 , bicarbonate; HCl, hydrochloric acid; HNO_3 , nitric acid; $1:9\ H_2SO_4$, one part sulfuric acid plus nine parts water; KCN, potassium cyanide; $K_2Cr_2O_7$, potassium dichromate; M, molar; mL, milliliter; N, normal; NaOH, sodium hydroxide; (S-II), sulfide; v/v, volume per volume; w/v, weight per volume; $ZnCl_2$, zinc chloride; %, percent]

Constituent(s) to be determined	Storage container and preparation	Stabilization treatment in addition to refrigeration
Major cations and trace metals (Al, B, Ba, Be, Ca, Cd, Co, Cr, Cu, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Sb(T), Sb(III), Se, SiO ₂ , Sr, V, and Zn)	Polyethylene bottles, soaked in 5% HCl and rinsed 3 times with deionized water	1% (v/v) concentrated redistilled HNO ₃ added; samples were not chilled
Total mercury (Hg(T))	Borosilicate glass bottles, soaked with 5% HNO ₃ and rinsed 3 times with deionized water	1 % (v/v) concentrated redistilled HNO ₃ / 1 % (w/v) K ₂ Cr ₂ O ₇ added
Methylmercury (CH ₃ Hg)	Amber borosilicate glass bottles, soaked with 5% HNO ₃ and rinsed 3 times with deionized water	5 mL 6 M redistilled HCl added
Iron, arsenic, and antimony redox species (Fe(T), Fe(II), As(T), As(III), Sb(T), and Sb(III))	Opaque polyethylene bottles, soaked in 5% HCl and rinsed 3 times with deionized water	1% (v/v) redistilled 6 M HCl added
Major anions (Br, Cl, F, and SO ₄), alkalinity as HCO ₃ , acidity, density, and nitrate (NO ₃)	Polyethylene bottles filled with distilled water and allowed to stand for 24 hours, then rinsed 3 times with deionized water	None
Ammonium (NH ₄)	Same as major cations and trace metals	1% (v/v) 1:9 H ₂ SO ₄ added
Silica (SiO ₂)	Same as major anions, alkalinity, and density	1 mL diluted to 25 mL with distilled water on/site; samples were not chilled
Thiosulfate (S_2O_3) and polythionate (S_nO_6)	30-mL polyethylene bottle	1.7% (v/v) 0.6 M ZnCl ₂ plus 1% (v/v) 1 M NaOH added; 1.7% (v/v) 1 M KCN also added to S _n O ₆ bottle
Dissolved organic carbon (DOC)	Amber glass bottle baked at 600°C	None
Water Isotopes (δD and $\delta^{18}O$)	60-mL glass bottle	None (unfiltered sample collected when filtration was not possible); samples were not chilled
Sulfide	30-mL polyethylene bottle	15-mL sulfide anti-oxidant buffer followed by 15-mL sample

Field Measurements

Measurements of temperature, pH, Eh, specific conductance, dissolved oxygen (DO), and H₂S were performed on/site. Measurements of Eh and pH were made on unfiltered sample water pumped from the source through an acrylic plastic flow-through cell, which minimized sample contact with air. The flow-through cell contained a combination redox electrode, a combination pH electrode, a thermistor, and test tubes containing buffer solutions for calibration of the pH electrode. All components were thermally equilibrated with the sample water before obtaining measurements. Where possible, specific conductance and sampling tube intake temperature were measured by immersing the combined specific conductance/temperature probe directly into the source as close to the sampling point as possible. Otherwise, the probe was immersed in the flow-through cell. Because sample temperatures usually were greater than the upper limit (45°C) of the DO probe, DO was determined using the azide modification of the Winkler titration (American Public Health Association (APHA), 1971).

A mobile laboratory truck containing an ion chromatograph, ultraviolet-visible spectrophotometer, autotitrator, and reagent-grade water system was set up at the overnight lodging site so that unstable intermediate sulfur oxyanion species could be determined as soon as possible after sample collection. Iron redox species also were determined in the mobile laboratory from time to time to guide sampling strategies. The autotitrator was used each evening to perform alkalinity and acidity titrations before oxidation and hydrolysis reactions occurred, and to determine H_2S concentrations in samples preserved on/site.

pH Measurements

Because field measurement of pH in geothermal waters is challenging and accurate pH measurements are critical for interpreting analytical results (Ball and others, 2006), special care was taken when measuring this parameter. At each site, the flow-through cell, temperature probe, electrode, and calibration buffers were equilibrated to sample temperature prior to calibration and measurement. The system was calibrated using at least two bracketing standard buffers (chosen from among 1.68, 4.01, 7.00, or 10.00) corrected to their values at the sample temperature. After calibration, the pH electrode was placed in the sample water in the flow-through cell and monitored until no change in temperature (\pm 0.1°C) or pH (\pm 0.01 standard unit) was detected for at least 30 seconds. Following sample measurement, the electrode was immersed in the standard buffer of pH closest to that of the sample and allowed to equilibrate. The entire calibration and measurement process was repeated as many times as necessary until the measured value for the buffer differed by no more than 0.05 standard units from its certified pH at the measured temperature.

Table 3. Analytical techniques, detection limits, typical precision, equipment used, and analytical method references.

[cm, centimeter; Cs, cesium; CVAFS, cold vapor atomic fluorescence spectrometry; °C, degrees Celsius; GFAAS, graphite furnace atomic absorption spectrometry; HCl, hydrochloric acid; HGAAS, hydride generation atomic absorption spectrometry; IC, ion chromatography; ICP-OES, inductively coupled plasma-optical emission spectrometry; ISE, ion-selective electrode; KCl, potassium chloride; KI, potassium iodide; M, molar; Mg(NO₃)₂, magnesium nitrate; μ g/L, micrograms per liter; mM, millimolar; mN, millinormal; MS, mass spectrometry; N, normal; NaHCO₃, sodium bicarbonate; Na₂CO₃, sodium carbonate; ng/L, nanograms per liter; nm, nanometer; Pd, palladium; RSD, relative standard deviation; SLAP, standard light antarctic precipitation; TISAB, total ionic strength adjustment buffer; TOC, total organic carbon; VSMOW, Vienna standard mean ocean water; \leq , less than or equal to; %, percent]

Constituent	Analytical Technique	Typical RSD ¹ , detection limit (mg/L)	Equipment Used	Comments or Reference(s)
Field Measureme	ents			
Temperature	Electronic sensor	Not applicable	Beckman 265 pH meter with Beckman temperature probe or Orion Research model 1230 multi-parameter meter with temperature sensor built into conductivity electrode	Temperatures were reported to the nearest 0.1 °C
рН	Potentiometry	0.02 pH units ²	Beckman 265 pH meter with Orion Ross combination electrode	Two- or three-buffer calibration at sample temperature using 1.68, 4.01, 7.00, and 10.00 pH buffers
Specific Conductance (SC)	Conductometry	0.5%	Orion Research model 1230 multi-parameter meter with conductivity electrode	Automatic temperature correction to 25°C, cell constant determined with 0.0100 N KCl
Eh	Potentiometry	10%	Orion Research model 96-78-00 combination redox electrode	Electrode checked using ZoBell's solution (ZoBell, 1946; Nordstrom, 1977)
Dissolved oxygen (DO)	Titration	1%	Burette and Erlenmeyer flask	Winkler Titration using manganous sulfate, alkaline iodide-azide, sulfamic acid, starch indicator, phenyl arsine oxide (APHA, 1971)
Hydrogen sulfide (H ₂ S)	Colorimetry /	≤20%, <i>0.002</i>	Hach model DR-2000 or DR-2800 ultraviolet - visible spectrometer and Hach method # 8131 reagents /	Methylene Blue Method based on APHA (1985)
Laboratory Meas	urements			
Calcium (Ca)	ICP-OES	2%, 0.04	Leeman Labs Direct Reading Echelle ³	Wavelength: 315.887 nm, view: radial
Magnesium (Mg)	ICP-OES	2%, 0.001	Leeman Labs Direct Reading Echelle ³	Wavelength: 280.270 nm, view: axial
Sodium (Na)	ICP-OES	2%, 0.1	Leeman Labs Direct Reading Echelle ³	Wavelength: 589.592 nm, view: radial

Table 3. Analytical techniques, detection limits, typical precision, equipment used, and analytical method references—Continued.

Constituent	Analytical Technique	Typical RSD ¹ , detection limit (mg/L)	Equipment Used	Comments or Reference(s)
Potassium (K)	ICP-OES	3%, 0.04	Leeman Labs Direct Reading Echelle ³	1,000 mg/L Cs ionization buffer, Wavelength: 766.490 nm, view: axial
Strontium (Sr)	ICP-OES	2%, 0.0007	Leeman Labs Direct Reading Echelle ³	Wavelength: 421.611 nm, view: axial
Barium (Ba)	ICP-OES	2%, 0.0008	Leeman Labs Direct Reading Echelle ³	Wavelength: 455.403 nm, view: axial
Lithium (Li)	ICP-OES	2%, 0.003	Leeman Labs Direct Reading Echelle ³	1,000 mg/L Cs ionization buffer, Wavelength: 670.784 nm, view: axial
Sulfate (SO ₄)	IC	3%, 1.0	Dionex model 100 or 600 ion chromatograph with AG22A guard and AS22A separator columns and Anion Self-Regenerating Suppressor-II	3.5 mM NaHCO ₃ + 1.0 mM Na ₂ CO ₃ eluent (Brinton and others, 1995)
Thiosulfate (S ₂ O ₃)	IC	3%, 0.1	Dionex model 100 ion chromatograph with two AG4A guard and an Anion Self-Regenerating Suppressor-II	0.028 M NaHCO ₃ + 0.022 M Na ₂ CO ₃ eluent (Moses and others, 1984)
Polythionate (S _n O ₆)	IC	3%, 0.3	Dionex model 100 ion chromatograph with two AG4A guard and an Anion Self-Regenerating Suppressor-II	0.028 M NaHCO ₃ + 0.022 M Na ₂ CO ₃ eluent (Moses and others, 1984)
Alkalinity (as HCO ₃)	Titration	2%, 1.0	Orion Research model 960/940 autotitrator, potentiometric detection, end-point determined by the first derivative technique	(Barringer and Johnsson, 1996; Fishman and Friedman, 1989)
Acidity (total/free H ⁺)	Titration	2%, 0.4 mM	Orion Research model 960/940 autotitrator, potentiometric detection	(Barringer and Johnsson, 1996; Fishman and Friedman, 1989)
Hydrogen sulfide (H ₂ S)	ISE	5%, 0.002	Orion Research model 960/940 autotitrator, Accumet model 13-620-551 Silver/Sulfide combination electrode	Sample mixed 1:1 on/site with Orion Research 941609 Sulfide Anti-Oxidant Buffer and analyzed within 24 hours of collection (APHA, 1998)
Fluoride (F)	ISE; IC	3%, 0.05; 3%, 0.15	Orion Research model 96-09 combination F electrode; Dionex model 100 or 600 ion chromatograph with AG22A guard and AS22A separator columns and Anion Self-Regenerating Suppressor-II	Sample mixed 1:1 with Orion Research 940911 TISAB III (Barnard and Nordstrom, 1980); 3.5 mM NaHCO ₃ + 1.0 mM Na ₂ CO ₃ eluent (Brinton and others, 1995)
Chloride (Cl)	IC	3%, 0.05	Dionex model 100 or 600 ion chromatograph with AG14A guard and AS14A separator columns and an Anion Self-Regenerating Suppressor-II	3.5 mM NaHCO ₃ + 1.0 mM Na ₂ CO ₃ eluent (Brinton and others, 1995)

Table 3. Analytical techniques, detection limits, typical precision, equipment used, and analytical method references—Continued.

Constituent	Analytical Technique	Typical RSD ¹ , detection limit (mg/L)	Equipment Used	Comments or Reference(s)
Bromide (Br)	IC	3%, 0.03	Dionex model 100 or 600 ion chromatograph with AG14A guard and AS14A separator columns and an Anion Self-Regenerating Suppressor-II	3.5 mM NaHCO ₃ + 1.0 mM Na ₂ CO ₃ eluent (Brinton and others, 1995)
Nitrate (NO ₃)	IC	3%, 0.1	Dionex model 100 or 600 ion chromatograph with AG22A guard and AS22A separator columns and Anion Self-Regenerating Suppressor-II	3.5 mM NaHCO ₃ + 1.0 mM Na ₂ CO ₃ eluent (Brinton and others, 1995)
Ammonium (NH ₄)	Colorimetry	3%, 0.05	Dionex model DX-300 ion chromatograph with CS12A IonPac column	22 mN H ₂ SO ₄ eluent (Smith and others, 2006)
Silica (SiO ₂)	ICP-OES	2%, 0.05	Leeman Labs Direct Reading Echelle ³	Sample diluted 25X in field, Wavelength: 251.611 nm, view: axial
Boron (B)	ICP-OES	2%, 0.01	Leeman Labs Direct Reading Echelle ³	Wavelength: 249.678 nm, view: axial
Aluminum (Al)	ICP-OES; GFAAS	2%, 0.06; 5%, 0.001	Leeman Labs Direct Reading Echelle ³ ; Perkin-Elmer model 4110ZL	Wavelength: 308.215 nm, view: axial; Wavelength: 309.3 nm, modifier: 15 μg Mg(NO ₃) ₂ , atomization temperature 2,300°C
Total dissolved iron (Fe(T))	Colorimetry	2%, 0.002	Hewlett-Packard model 8452A diode array spectrometer with 1– and 5–cm cells	FerroZine method (Stookey, 1970; To and others, 1999)
Ferrous iron (Fe(II))	Colorimetry	2%, 0.002	Hewlett-Packard model 8452A diode array spectrometer with 1– and 5–cm cells	FerroZine method (Stookey, 1970; To and others, 1999)
Manganese (Mn)	ICP-OES	3%, 0.001	Leeman Labs Direct Reading Echelle ³	Wavelength: 257.610 nm, view: axial
Copper (Cu)	ICP-OES; GFAAS	2%, 0.003; 3%, 0.0005	Leeman Labs Direct Reading Echelle ³ ; Perkin-Elmer model 4110ZL	Wavelength: 324.754 nm, view: axial; Wavelength: 324.8 nm, modifier: 5 μg Pd + 3 μg Mg(NO ₃) ₂ , atomization temperature: 2,000°C

Table 3. Analytical techniques, detection limits, typical precision, equipment used, and analytical method references—Continued.

Constituent	Analytical Technique	Typical RSD ¹ , detection limit (mg/L)	Equipment Used	Comments or Reference(s)
Zinc (Zn)	ICP-OES; GFAAS	2%, 0.004; 3%, 0.0005	Leeman Labs Direct Reading Echelle ³ ; Perkin-Elmer model 4110ZL	Wavelength: 213.856 nm, view: axial; Wavelength: 213.9 nm, modifier: 5 μg Mg(NO ₃) ₂ , atomization temperature 1,800°C
Cadmium (Cd)	ICP-OES; GFAAS	2%, 0.001; 5%, 0.0001	Leeman Labs Direct Reading Echelle ³ ; Perkin-Elmer model 4110ZL	Wavelength: 214.438 nm, view: axial; Wavelength: 228.8 nm, modifier: 50 μg PO ₄ + 3 μg Mg(NO ₃) ₂ , atomization temperature: 1,500°C
Chromium (Cr)	GFAAS	5%, 0.0005	Perkin-Elmer model 4110ZL	Wavelength: 357.9 nm, modifier: 15 μg Mg(NO ₃) ₂ , atomization temperature: 2,300°C
Cobalt (Co)	ICP-OES; GFAAS	2%, 0.004; 5%, 0.0007	Leeman Labs Direct Reading Echelle ³ ; Perkin-Elmer model 4110ZL	Wavelength: 228.616 nm, view: axial; Wavelength: 242.5 nm, modifier: 15 μg Mg(NO ₃) ₂ , atomization temperature: 2,400°C
Total dissolved mercury (Hg(T))	CVAFS	2%, 0.4 ng/L	PS Analytical, model Galahad, direct cold- vapor atomic fluorescence spectrometry	Taylor and others (1997), Roth and others (2001)
Methylmercury (CH ₃ Hg)	CVAFS	2%, 0.04 ng/L	Tekran Model 2500 CVAFS mercury detector	Distillation/ethylation/gas-phase separation method (Horvat and others, 1993; DeWild and others, 2002)
Nickel (Ni)	ICP-OES (2003); GFAAS (2004-2005)	2%, 0.002; 3%, 0.0005	Leeman Labs Direct Reading Echelle ³ ; Perkin-Elmer model 4110ZL	Wavelength: 231.604 nm, view: axial; Wavelength: 232.0 nm, atomization temperature: 2,300°C
Lead (Pb)	ICP-OES; GFAAS	5%, 0.008; 5%, 0.0008	Leeman Labs Direct Reading Echelle ³ ; Perkin-Elmer model 4110ZL	Wavelength: 220.353 nm, view: axial; Wavelength: 283.3 nm, modifier: 50 μg PO ₄ + 3 μg Mg(NO ₃) ₂ , atomization temperature: 1,600°C
Beryllium (Be)	ICP-OES	2%, 0.001	Leeman Labs Direct Reading Echelle ³	Wavelength: 313.042 nm, view: axial
Vanadium (V)	ICP-OES	3%, 0.005	Leeman Labs Direct Reading Echelle ³	Wavelength: 292.401 nm, view: axial
Molybdenum (Mo)	ICP-OES	3%, 0.007	Leeman Labs Direct Reading Echelle ³	Wavelength: 277.540 nm, view: axial

Table 3. Analytical techniques, detection limits, typical precision, equipment used, and analytical method references—Continued.

Constituent	Analytical Technique	Typical RSD ¹ , detection limit (mg/L)	Equipment Used	Comments or Reference(s)
Total dissolved antimony (Sb(T))	GFAAS	5%, 0.001	Perkin-Elmer model 4110ZL	Wavelength: 217.6 nm, modifier: 5 μg Pd + 3 μg Mg(NO ₃) ₂ , atomization temperature: 1,900°C
Antimonite (Sb(III))	HGAAS	3%, 0.0005	Perkin-Elmer AAnalyst 300 atomic absorption spectrometer with a FIAS-100 flow injection analysis system, quartz cell, and furnace	Wavelength: 217.6 nm
Selenium (Se)	ICP-OES; GFAAS	5%, 0.04; 5%, 0.001	Leeman Labs Direct Reading Echelle ³ ; Perkin-Elmer model 4110ZL	Wavelength: 196.026 nm, view: axial; Wavelength: 196.0 nm, modifier: 5 μg Pd + 3 μg Mg(NO ₃) ₂ , atomization temperature: 2,100°C
Total dissolved arsenic (As(T))	ICP-OES; HGAAS	5%, 0.04; 2%, 0.0001	Leeman Labs Direct Reading Echelle ³ ; Perkin-Elmer AAnalyst 300 atomic absorption spectrometer with a FIAS-100 flow injection analysis system, quartz cell, and furnace	Wavelength: 188.977 nm, view: axial; Prereduction of As(V) using KI + ascorbic acid + HCl (McCleskey and others, 2003)
Arsenite (As(III))	HGAAS	5%, 0.001	Perkin-Elmer AAnalyst 300 atomic absorption spectrometer with a FIAS-100 flow injection analysis system, quartz cell, and furnace	(McCleskey and others, 2003)
Deuterium (δD)	MS	1 per mil ²	V.G. Micromass model 602 mass spectrometer	Standardization against VSMOW ($\delta D = 0$ per mil) and SLAP ($\delta D = -428$ per mil) (Coplen and others, 1991)
Oxygen (δ ¹⁸ O)	MS	0.1 per mil ²	DuPont model 21-491 mass spectrometer	Standardization against VSMOW ($\delta^{18}O = 0$ per mil) and SLAP ($\delta^{18}O = -55.5$ per mil) (Epstein and Mayeda, 1953)
Dissolved organic carbon (DOC)	TOC	2%, 0.1	Oceanography International Model 700 TOC Analyzer	Wet oxidation method (Aiken, 1992)

¹relative standard deviation expressed in percent (100 x standard deviation ÷ mean)

²precision or range, rather than RSD

³dual view, sequential multi-element, inductively coupled plasma spectrometer. Hildebrand grid nebulizer and glass Scott spray chamber

Sulfide Determinations

Three alternative methods were used to measure sulfide. Two methods were done on/site using colorimetry and a third method was done off-site on a preserved sample. For the first method, sample water was transferred into a measuring cuvette, and then color reagents were added. For the second method, sample water was transferred into a measuring cuvette to which color reagents and, for diluted samples, de-ionized water, had been added previously. After waiting for color development, the sample absorbance and temperature of the solution were measured. Dissolved sulfide concentration was measured on/site using a battery-operated, portable ultraviolet-visible spectrophotometer and the methylene-blue method (Hach Company, 1992; equivalent to Standard Method 4500-S² D for wastewater; APHA, 1985). To minimize the inclusion of atmospheric air, samples for sulfide determination were collected directly from the outflow of a thoroughly equilibrated 142-mm plastic filter with a 0.1-um membrane filter. When dilutions were prepared, sample water was filtered continuously into an overflowing 25-mL polyethylene graduated cylinder from which aliquots were pipetted into de-ionized water in the measuring cuvette. For the third method, 15-mL Sulfide Anti-Oxidant Reagent (Sodium hydroxide-EDTA-ascorbic acid solution; Thermo-Orion #941609) was placed in a 30-mL polyethylene bottle followed by 15 mL of filtered sample water. Sulfide concentrations were determined within 24 hours by ion-specific electrode.

Thiosulfate, if present at concentrations exceeding 10 mg/L, can interfere with the colorimetric determination of sulfide by reacting with the color reagent and reducing or preventing color development (APHA, 1971). Although most S_2O_3 concentrations encountered in Yellowstone geothermal waters are less than this value, seven samples from four thermal features contained 12 to 42 mg/L S_2O_3 . Sulfide concentrations determined by colorimetry likely were underestimated in these cases.

Ball and others (2006) presented strong circumstantial evidence that suddenly reducing the pH of a hot sample before the introduction of color reagent creates a condition that favors rapid degassing of H₂S and consequent underestimation of sulfide concentration. When the Hach standard method was modified by mixing Hach reagents 1 and 2 in the cuvette before introducing the sample, the measured sulfide concentrations were marginally higher (fig. 14). Notwithstanding this increase in measured concentrations, the color reagent appears to degrade rapidly after mixing with reagent 1; therefore, the short but variable elapsed times between reagent mixing and sample addition may add an enormous imprecision component to the measurements. The added step of cooling the hot sample by diluting 2.5 to 25 times (data not shown) does not appear to fully mitigate this source of error.

Sulfide concentrations measured with the ion-selective electrode were consistently higher than those measured on/site by colorimetry (fig. 15). These results strongly suggest that (1) the sulfide in samples issuing from the subsurface at elevated temperature is unstable with respect to oxidation and H₂S degassing and must be handled with care and dispatch to obtain accurate concentration estimates, and (2) the methylene-blue colorimetric method, regardless of any modifications made in an attempt to improve its accuracy, is not suitable for use in waters having temperatures exceeding ambient. Our results to date indicate that stabilizing the sulfide in geothermal water by immediately combining the hot sample with an alkaline solution containing sulfide anti-oxidant buffer (SAOB) oxidation preventative offers the best option for obtaining accurate estimates of sulfide concentrations.

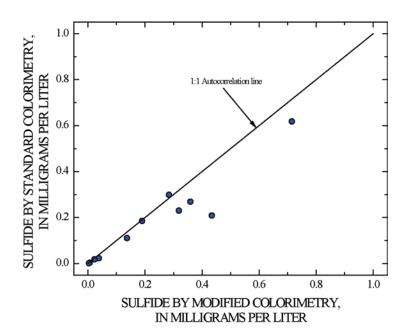


Figure 14. Comparison of results of sulfide determinations using standard and modified methylene–blue colorimetric methods.

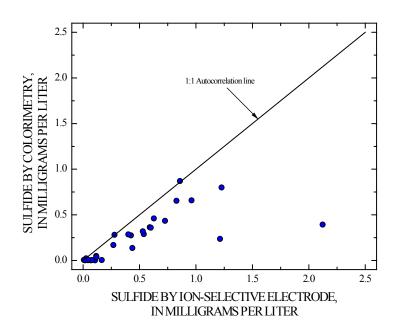


Figure 15. Comparison of results of sulfide determinations using the ion-selective electrode method and best values from the methylene–blue colorimetric method.

Major Cation and Trace Metal Determinations

Concentrations of major cations and trace metals were determined using inductively coupled plasma—optical emission spectrometry (ICP—OES) at the USGS laboratory in Boulder, Colorado. Major cations were determined using the radial plasma viewing orientation while the axial plasma viewing orientation was used for trace metals. A cesium chloride ionization buffer was added to the samples for ICP—OES measurement of Li and K concentrations. Wavelengths and plasma viewing orientations are specified in table 3.

Concentrations of Al, Sb, Cd, Cr, Co, Cu, Ni, Pb, Se, and Zn were measured using graphite-furnace atomic absorption spectrometry (GFAAS) with a transversely heated graphite atomizer (THGA) and Zeeman-effect background correction. Wavelengths, atomization temperatures, and matrix modifiers used are listed in table 3.

Hydride-generation atomic absorption spectrometry was used to measure total dissolved arsenic (As(T)), dissolved arsenite (As(III)), and total dissolved antimony (Sb(T)) concentrations in HCl-acidified samples. A flow-injection analysis system (FIAS) was used to generate arsine (McCleskey and others, 2003) or stibine. Total dissolved iron (Fe(T)) and ferrous iron (Fe(II)) concentrations were determined in samples preserved with HCl using a modification of the FerroZine colorimetric method (Stookey, 1970; Gibbs, 1976; To and others, 1999).

Samples were analyzed for total dissolved Hg at the USGS laboratory in Boulder, Colorado. Samples were analyzed for methylmercury (CH₃Hg) at the USGS Mercury Research Laboratory in Middleton, Wisconsin. Total dissolved Hg was determined by direct cold–vapor atomic fluorescence spectroscopy (CVAFS) following oxidation with chromate, reduction by SnCl₂, and purge and trap of the evolved zero-valent Hg onto gold-coated glass-bead columns (Taylor and others, 1997; Roth and others, 2001). The method detection limit was 0.4 nanograms per liter (ng/L).

Methylmercury concentrations were determined using the distillation/ethylation/gas-phase separation method of Olson and DeWild (1999) and detection by CVAFS (Horvat and others, 1993). The method detection limit was 0.04 ng/L. All samples were analyzed in duplicate and reanalyzed if the relative percent difference was greater than 10 percent. Analytical precision was about $\pm 0.02 \text{ ng/L}$ (DeWild and others, 2002).

Major Anion Determinations

Concentrations of Br, Cl, F, and SO₄ were determined at the USGS laboratory in Boulder, Colorado, by ion chromatography (IC) (Brinton and others, 1995). Fluoride concentrations were determined using an ion-selective electrode (ISE). Samples for F determination by ISE were mixed 1:1 with a total ionic strength adjustment buffer (TISAB III) (Barnard and Nordstrom, 1980). Alkalinity was determined in the mobile field laboratory or at the USGS laboratory in Boulder, Colorado, by automated titration using standardized H₂SO₄ (Barringer and Johnsson, 1996).

Nutrient and Dissolved Organic Carbon Determinations

Nutrient concentrations were determined at the USGS laboratory in Boulder, Colorado. Ammonium concentrations were determined by IC with 50 mN H₂SO₄ eluent. Nitrate was measured by IC with a 3.5 mM NaHCO₃ + 1.0 mM Na₂CO₃ eluent (Brinton and others, 1995).

Dissolved organic carbon concentrations were measured using the wet oxidation method (Aiken, 1992) with Oceanography International Model 700 TOC Analyzer. Potassium

biphthalate was used to calibrate the instrument, and sodium benzoate was used as a different organic carbon source to check the calibration. Analyses of inorganic carbon, HCO₃, alongside the samples provided a daily verification that the acid valve was functioning properly.

Water Isotope Determinations

Hydrogen and oxygen isotope ratios were determined at the USGS Reston Stable Isotope Laboratory in Reston, Virginia (http://isotopes.usgs.gov/). Hydrogen isotope ratios were determined using a hydrogen equilibration technique (Coplen and others, 1991; Revesz and Coplen, 2008). Oxygen isotope ratios were determined using the CO₂ equilibration technique of Epstein and Mayeda (1953), which has been automated by Revesz and Coplen (2008). The isotopic concentration is reported in "delta notation," which compares the isotope ratio of a sample to that of a reference standard. For the example of ¹⁸O/¹⁶O ratios, delta notation is:

$$\delta^{18}O\%_{0} = \frac{\binom{18}{16}O_{16}O_{\text{sample}} - \binom{18}{16}O_{\text{standard}}}{\binom{18}{16}O_{\text{standard}}} \times 1000$$
 (1)

where ‰ is per mil, which is equivalent to parts per thousand.

Oxygen and hydrogen isotopic results are reported relative to the standard VSMOW (Vienna Standard Mean Ocean Water) and normalized (Coplen, 1994) on scales such that the oxygen and hydrogen isotopic values of SLAP (Standard Light Antarctic Precipitation) are –55.5 per mil and –428 per mil, respectively.

Acidity Determinations

Total acidity was determined in the mobile field laboratory or at the USGS laboratory in Boulder, Colorado, by titrating samples having pH less than 4 to pH greater than 7 using an autotitrator and standardized sodium hydroxide (NaOH) solution. The NaOH titrant (0.01–0.05 M) was standardized daily by titrating a known quantity of potassium hydrogen phthalate (KHC₈H₄O₄). The titrator was programmed for 50- to 100-μL constant-volume additions or constant change in millivolts (mV), typically 10 mV per addition. Equivalence points were determined using a modified Gran's function (Gran, 1952; Barringer and Johnsson, 1996):

$$F_{acid} = (v_0 + v_{NaOH}) \times 10^{-pOH}$$
 (2)

where F_{acid} = the Gran function, v_0 = sample volume, v_{NaOH} = volume of NaOH titrant added, and pOH = 14 minus pH.

The principal components contributing to acidity were discussed by Ball and others (2006). Free H⁺ was derived from the total acidity by subtracting the hydrogen ions produced by

hydrolysis of SO₄, Fe, Al, As(V), and F, as calculated by PHREEQCi, a graphical-user-interface version (Charlton and others, 1997) of program PHREEQC (Parkhurst and Appelo, 1999) incorporating the WATEQ4F database, as follows:

$$Acidity_{SO_4} = HSO_4^-$$
(3)

$$Acidity_{Fe} = 3(Fe^{III}(tot)-Fe(OH)_{2}^{+})+2FeOH^{2+}+Fe(OH)_{2}^{+}+2Fe^{II}(tot)$$
(4)

$$Acidity_{Al} = 3 \left(Al(tot) - AlOH^{2+} - Al(OH)_{2}^{+} \right) + 2AlOH^{2+} + Al(OH)_{2}^{+}$$
(5)

$$Acidity_{As} = 2\left(As^{V}(tot) - H_2AsO_4^{-}\right) + H_2AsO_4^{-}$$
(6)

$$Acidity_F = HF^0$$
 (7)

Concentrations for the above equations are expressed in moles per kilogram of water. Sample pH from the acidity titration (acidity pH) was calculated by computing the product of the H⁺ activity coefficient (calculated by PHREEQCi) and the free H⁺ molality (eq. 8, calculated using a spreadsheet) and computing the negative common logarithm of the resulting activity. This pH value was refined by repeating the PHREEQCi calculation and varying the input pH until the pH calculated from the PHREEQCi speciation was equal to the input pH. A flow-chart illustrating the process for refining the acidity pH is shown in figure 16.

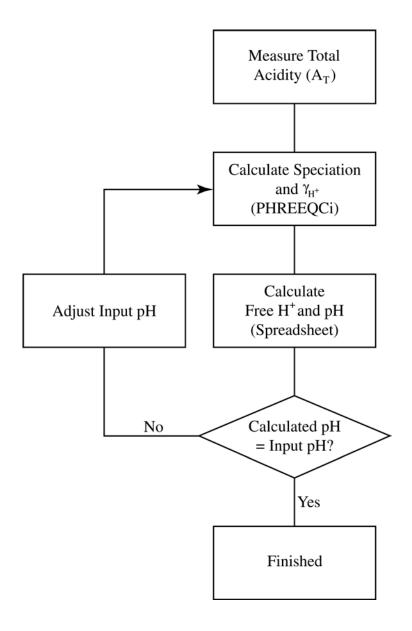


Figure 16. Flow chart illustrating the process for refining the acidity pH value.

Revised pH Measurements

Accurate measurement of pH is of primary importance for interpretation of aqueous chemical speciation. The free hydrogen ion (H⁺) is usually the major cation in samples with pH less than 2.5 in geothermal waters (Ball and others, 2002), is important in controlling geochemical reactions, and is critical in calculating the charge imbalance (C.I.) for waters with pH<3. For the subset of 47 samples with pH<4, pH values determined using four different techniques are shown in table 4: (1) pH measured in the field; (2) pH measured at the USGS laboratory in Boulder, Colorado; (3) acidity pH (calculated as discussed in the previous section); and (4) pH calculated by adjusting the concentration of H⁺ to yield a speciated C.I. of zero.

Comparison of pH values from the four sources allows evaluation of the measurements and estimation of more accurate pH values.

A flow chart showing the pH selection process is shown in figure 17. Field pH was considered to be the most accurate because pH measurements made in the laboratory may be biased from temperature changes and hydrolysis reactions, and the acidity pH calculation relies on measurements of SO₄, Fe, Al, As, and F, all of which are subject to analytical uncertainties. In this report, pH calculated by using the concentration of H⁺ to adjust the speciated C.I. to zero was used only as a reference because C.I. pH relies on measurements of many constituents.

Differences between field and laboratory pH values were calculated by subtracting the laboratory pH value from the field pH value. Difference values were found to be greatest for samples with initial pH values between 5 and 8 (fig. 18). Laboratory pH measurements typically are made at about 22°C which can be as much as 70°C less than the temperature at which the sample pH was measured in the field. Differences in pH values between field and laboratory measurements are a function of the changes in sample temperature and composition that occur between the time of collection and the time that laboratory pH values are determined. For samples with pH less than 4.5, differences are greatest at pH greater than 3.0 and higher sample temperatures (fig. 19). For samples with pH greater than 4.5, many of the samples that had pH reductions most likely were poorly buffered, whereas samples that had pH increases likely were initially supersaturated with respect to atmospheric CO₂. Thus, positive differences, indicating laboratory pH values that are less than field pH values, likely are the result of Fe oxidation and hydrolysis (Nordstrom and Alpers, 1999) or oxidation of reduced S species, whereas negative values result from degassing of CO₂ (Nordstrom and others, 1990; fig. 20).

Charge imbalance variations also were found to be strong functions of temperature and pH. When comparing C.I. for samples calculated using pH measured in the field to C.I. for the same samples calculated using pH measured in the laboratory, the C.I. difference is seen to be greatest for samples with the lowest pH values and high temperatures. Figure 21 shows the difference between C.I. calculated at 22°C and C.I. calculated at field temperature as a function of field temperature. This difference can be attributed to the hydrolysis of SO₄, which is a function of both temperature and pH (Nordstrom and others, 2009) and possibly to other aspects of speciation such as the temperature dependence of activity coefficients.

Field pH was selected for all samples with pH greater than 3.5. For samples having a pH less than 3.5, field pH was selected unless the sample had a speciated C.I. greater than 10 percent using field pH. For samples with pH less than 3.5 and speciated C.I. greater than 10 percent using field pH, laboratory pH was selected if the speciated C.I. was less than 10 percent. For samples with pH less than 3.5 and speciated C.I. greater than 10 percent using both field and laboratory pH, acidity pH was selected if the speciated C.I. was less than 10 percent. For samples with pH less than 3.5 and having field, laboratory, and acidity pH values that produced speciated C.I.s all greater than 10 percent, the pH that produced the lowest speciated C.I. was selected from among field, laboratory, and acidity pH.

Using the process described above and illustrated in figure 17 for the subset of 47 samples, field pH was selected for 33 samples, laboratory pH was selected for 13 samples, and acidity pH was selected for one sample. Values of the selected pH are found in the tables of chemical data (tables 6–14) along with the speciated C.I. calculated using the selected pH and field temperature.

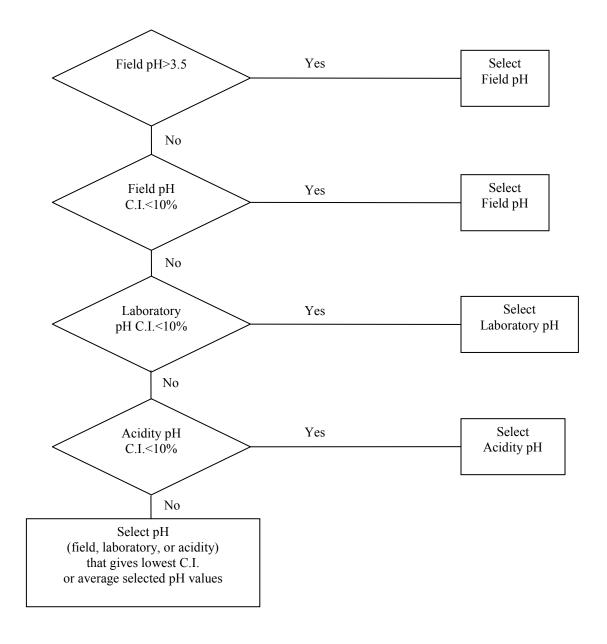


Figure 17. Flow chart showing the pH selection process. C.I., charge imbalance; >, greater than; <, less than.

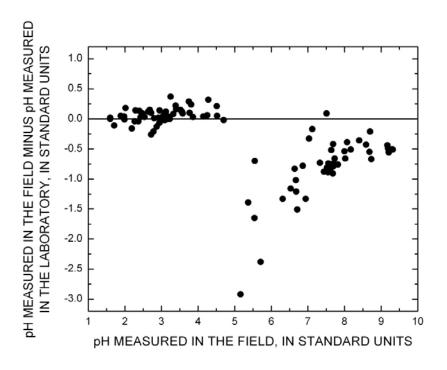


Figure 18. Difference between field and laboratory pH as a function of field pH.

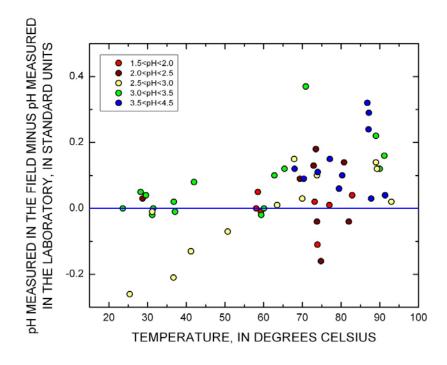


Figure 19. Difference between field and laboratory pH as a function of sample temperature, for samples with pH less than (<) 4.5.

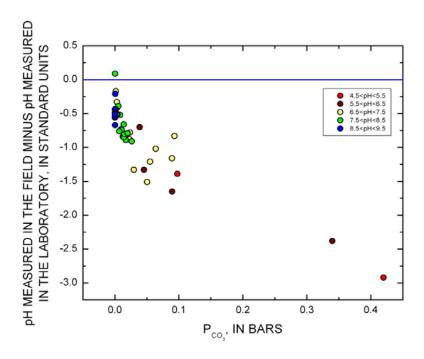


Figure 20. Difference between field and laboratory pH as a function of partial pressure of CO₂.

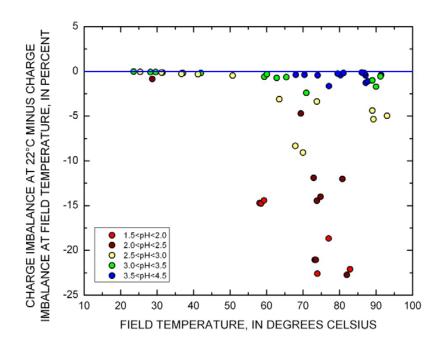


Figure 21. Difference between speciated charge imbalance at 22°C and speciated charge imbalance at field temperature in relation to field temperature.

Table 4. Sample pH measured in the field and laboratory and calculated from acidity titration and speciated charge imbalance, for samples with pH less than 4.

		pH,	in standard	units	
	Measur ed	Measur ed	Cal cul at ed	Cal cul at ed	
	In the	In the	from aci di ty	f r om char ge	
Sampl e	field	I abor at or y	titration	i mbal ance	Sel ect ed
06WA106, Gibbon River inflow from Realgar Spring area	2.99	3.00	2.95	2.78	2.99
06WA107, Tantalus Creek at weir	3.09	3.11	3.07	2.76	3.09
06WA109, Unnamed thermal feature near Cinder Pool	3.56	3.45	3.41	3.32	3.56
06WA110, 'Orpiment Puddle 3"	2.43	2.40	2.43	2.38	2.43
06WA111, Crystal Spring - western side	3.77	3.67	3.68	3.25	3.77
06WA117, "Titanic Spring"	3.56	3.44	3.42	3.06	3.56
06WA120, The Gap southwest outflow	3.08	3.06	3.06	3.24	3.08
06WA121, The Gap northeast outflow	3.32	3.24	3.21	2.78	3.32
06WA126, "Succession Spring"	3.12	3.00	2.97	2.88	3.12
06WA127, 'Succession Spring" overflow channel	3.02	3.04	3.01	2.83	3.02
06WA128, 'Succession Spring" overflow channel	2.94	3.01	2.98	2.79	2.94
06WA129, 'Succession Spring" overflow channel	2.87	3.00	2.98	2.75	2.87
06WA130, 'Succession Spring" overflow channel	2.78	2.99	2.96	2.77	2.78
06WA133, Unnamed acid spring near Perpetual Spouter	2.95	2.81	2.95	2.84	2.95
06WA134, Tantalus Creek at Back Basin exit	3.13	3.14	3.07	2.88	3.13
06WA139, Realgar Creek near mouth	3.05	3.00	2.99	2.70	3.05
06WA158, Tantalus Creek at weir	3.02	3.02	2.99	2.78	3.02
06WA164, Sulphur Caldron	2.02	1.84	2.06	1.99	2.02
06WA165, Turbulent Pool	1.89	1.84	1.88	1.82	1.84
06WA167, Washburn Inkpot #3	3.25	2.88	3.24	2.63	2.88
07WA105, "Persnickety Geyser"	3.39	3.17	3.28	3.15	3.39
07WA106, "Kaolin Spring"	2.37	2.41	2.41	2.41	2.37
07WA107, Hot spring next to "Orpiment Puddle 2"	3.12	3.00	3.08	3.02	3.12
07WA108, Unnamed thermal feature, Geyser Springs Group	2.19	2.35	2.45	2.44	2.35

Table 4. Sample pH m easured in the field and I aboratory and calculated from acidity titration and speciated charge imbalance, for samples with pH less than 4—Continued.

		pH,	in standard	units	
	Measur ed	Measur ed	Cal cul at ed	Cal cul at ed	
	In the	In the	from aci di ty	f r om char ge	
Sampl e	f i el d	I abor at or y	titration	i mbal ance	Sel ect ed
07WA109, Turbulent Pool	1.99	2.00	2.02	1.93	1.99
07WA110, Sulphur Caldron	1.71	1.82	1.77	1.63	1.71
07WA111, Sulphur Spring	3.86	3.83	3.31	2.83	3.86
07WA112, Unnamed thermal feature, Crater H ills area	2.27	2.31	2.36	2.14	2.36
07WA114, "Titanic Spring"	3.10	3.00	3.06	2.87	3.10
07WA115, "Lifeboat Spring"	2.48	2.39	2.50	2.47	2.48
07WA145, Unnamed acid spring near Perpetual Spouter	2.92	2.90	2.97	2.83	2.92
07WA146, Crystal Spring - western side	1.98	1.94	2.03	1.92	1.94
07WA147, Crystal Spring - eastern side	1.97	1.96	2.06	1.81	1.96
08WA105, Tantalus Creek at weir	3.06	3.06	3.06	2.45	3.06
08WA114, Sulphur Caldron	1.60	1.58	1.97	1.54	1.58
08WA115, Sulphur Spring	3.75	3.46	3.28	2.66	3.46
08WA116, Unnamed acid pool near Sulphur Spring	2.72	2.62	2.76	2.32	2.62
08WA117, Unnamed acid pool near "Bullseye Spring," Geyser Springs Group	2.68	2.53	2.90	2.18	2.53
08WA119, Deep circular pool	1.60	1.60	1.98	1.42	1.60
08WA120, Crystal Spring - western side	2.29	2.15	2.40	2.12	2.15
08WA121, Unnamed pool near The Gap	3.40	3.24	3.28	2.58	3.24
08WA122, Unnamed pool upslope from "Bullseye Spring," Geyser Springs Group	2.40	2.27	2.49	2.23	2.27
08WA123 40 cm diameter circular clay hot spring 2 meters from 08WA121	2.80	2.79	2.87	2.70	2.80
08WA124, Appendage side spring to "Lifeboat Spring"	2.64	2.52	2.74	2.38	2.52
08WA125 "Lifeboat Spring"	3.23	3.23	3.35	2.57	3.23
08WA126, Echinus Geyser	3.52	3.37	3.44	3.03	3.52
08WA131, "Kaolin Spring"	2.54	2.51	2.67	2.54	2.54

Water-Chemistry Data

Site data and water analyses for YNP thermal features, their overflow drainage channels, and surface waters sampled in 2006 to 2008 are presented in tables 1 and 5–13. To organize presentation of the results, samples are sorted first by basin, then alphabetically by spring, then by date of sample collection, and then by sampling site along the drainage channel, if present. Photographs of most of the sample sites are in the Appendix.

Overflow Drainage Chemical Profiles

Samples were collected from four overflow drainage channels to investigate changes in S, Fe, As, Sb, and N redox species and loss of solutes through volatilization or precipitation. Results are plotted on the same distance scales for each of the respective transects for comparison. For the 2006 Succession Spring transect sampling event, sample temperature, pH, specific conductance, and concentrations of Ca, SO₄, Cl, F, and Al are plotted as a function of distance from the discharge source (figs. 22 A, B, C, and D). Concentrations of Hg, As(total), Fe(total), Fe(II), Fe(III), Na, NH₄, and delta-deuterium and delta-oxygen-18 are plotted on figures 23 A, B, C, and D. Specific conductance, concentrations of SO₄, Cl, Al, and Fe(III), and δ D and δ ¹⁸O increased with distance, whereas temperature, pH, and concentrations of Hg, As(total), NH₄, and Fe(II) decreased with distance, and concentrations of Ca, F, Na, and Fe(total) were essentially unchanged.

For the 2008 Ojo Caliente transect sampling event, sample temperature, pH, field and laboratory specific conductance, and concentrations of SO₄, Cl, Li, and B are plotted as a function of distance from the discharge source on figures 24 A, B, C, and D. Concentrations of Na, K, NO₃, dissolved oxygen, and As(total), and delta-deuterium and delta-oxygen-18 are plotted as a function of distance from the discharge source on figures 25 A, B, and C. Sample pH, field and laboratory specific conductance, and concentrations of SO₄, Cl, Li, and B, Na, K, NO₃, dissolved oxygen and As(total), and delta-deuterium and delta-oxygen-18 increased with distance, whereas temperature decreased with distance and K concentration was essentially unchanged.

For the upper Rabbit Creek area transect sampling event (06WA114), sample temperature, pH, specific conductance, concentrations of Ca, SO₄, Cl, F, Al, are plotted as a function of distance from the discharge source on figures 26 A, B, C, and D. Concentrations of Na, Li, B, Sb(total), Hg, and As(total), and delta-deuterium and delta-oxygen-18 are plotted on figures 27 A, B, C, and D. Sample pH, specific conductance, concentrations of Ca, SO₄, Cl, F, Al, Na, Li, B, and As(total), and delta-deuterium and delta-oxygen-18 increased with distance, whereas temperature and concentrations of Sb(total) and Hg decreased with distance.

For the lower Rabbit Creek area transect sampling event (06WA116), sample temperature, pH, specific conductance, concentrations of Ca, SO₄, Cl, F, Al, are plotted as a function of distance from the discharge source on figures 28 A, B, C, and D. Concentrations of B, Li, Na, HCO₃, Hg, and As(total), and delta-deuterium and delta-oxygen-18 are plotted on figures 29 A, B, C, and D. Sample pH, specific conductance, concentrations of Ca, SO₄, Cl, F, Al, Na, B, Na, alkalinity, and As(total), and delta-deuterium and delta-oxygen-18 increased with distance, whereas temperature and concentration of Hg decreased with distance.

Mercury results, plotted on figures 23 A, 27 C, and 29 C, illustrate generally decreasing Hg(T) concentrations with distance. Mercury concentration in the Succession Spring transect decreased from 127 to 21 ng/L, and mercury concentration in the lower Rabbit Creek transect decreased from 175 to 70 ng/L.

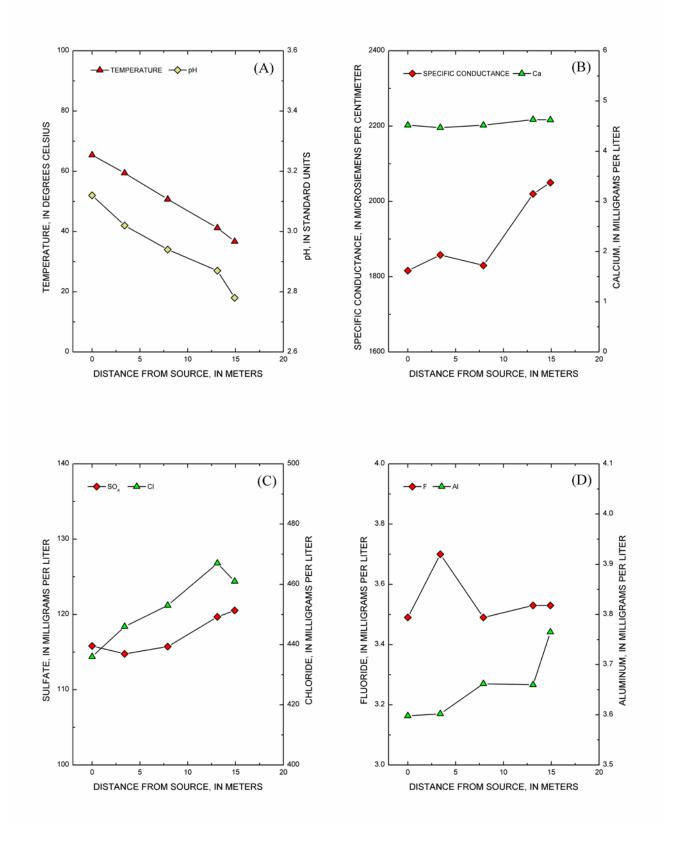


Figure 22. Sample temperature and pH (A), specific conductance and concentration of calcium (B), concentrations of sulfate and chloride (C), and concentrations of fluoride and aluminum (D) as a function of drainage distance for Succession Spring and its overflow drainage channel for samples collected in 2006.

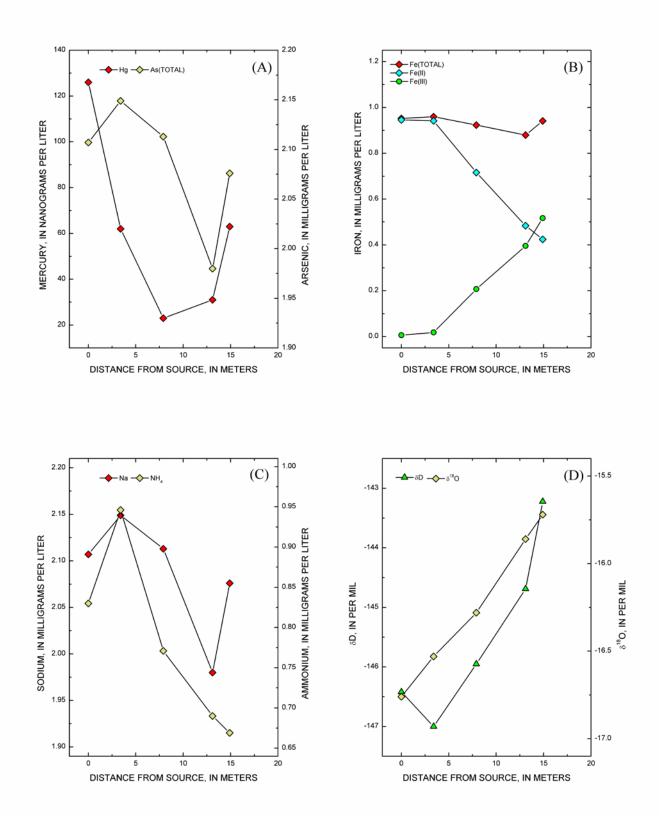


Figure 23. Concentrations of mercury and arsenic(total) (A), concentrations of iron (total), iron (II), and iron (III) (B), concentrations of sodium and ammonium (C), and delta deuterium and delta ¹⁸O (D) as a function of drainage distance for Succession Spring and its overflow drainage channel for samples collected in 2006.

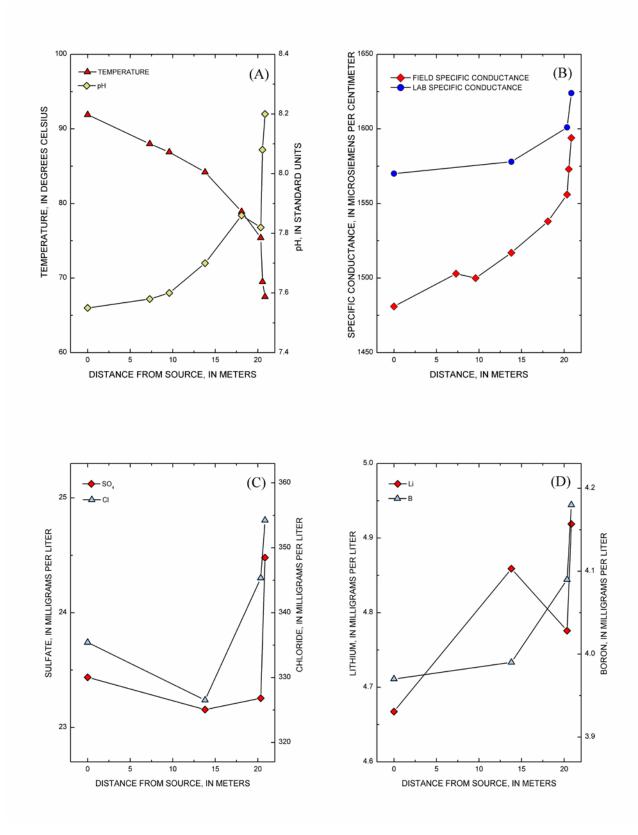


Figure 24. Sample temperature and pH (A), field and laboratory specific conductance (B), concentrations of sulfate and chloride (C), and concentrations of lithium and boron (D) as a function of drainage distance for Ojo Caliente Spring and its overflow drainage channel for samples collected in 2008.

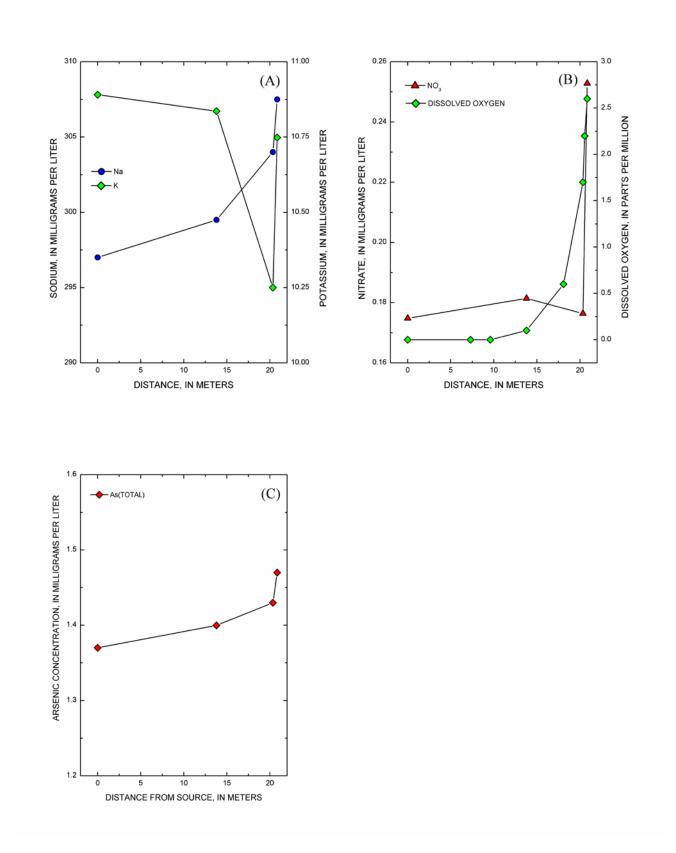


Figure 25. Concentrations of sodium and potassium (A), concentrations of nitrate and dissolved oxygen (B) and concentration of arsenic (total) (C) as a function of drainage distance for Ojo Caliente Spring and its overflow drainage channel for samples collected in 2008.

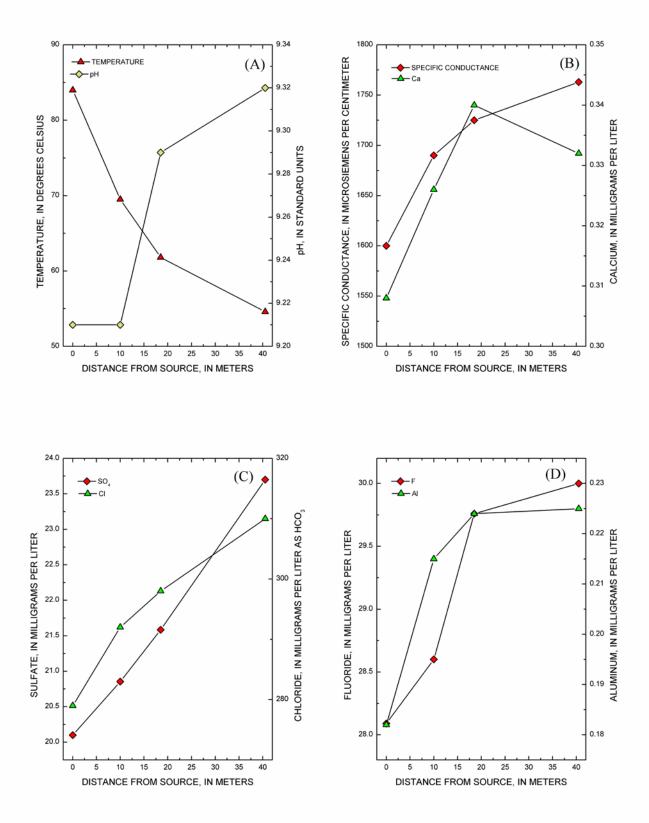


Figure 26. Sample temperature and pH (A), specific conductance and concentration of calcium (B), concentrations of sulfate and chloride (C) and concentrations of fluoride and aluminum (D) as a function of drainage distance for an unnamed thermal feature and its overflow drainage channel in the upper Rabbit Creek area for samples collected in 2006.

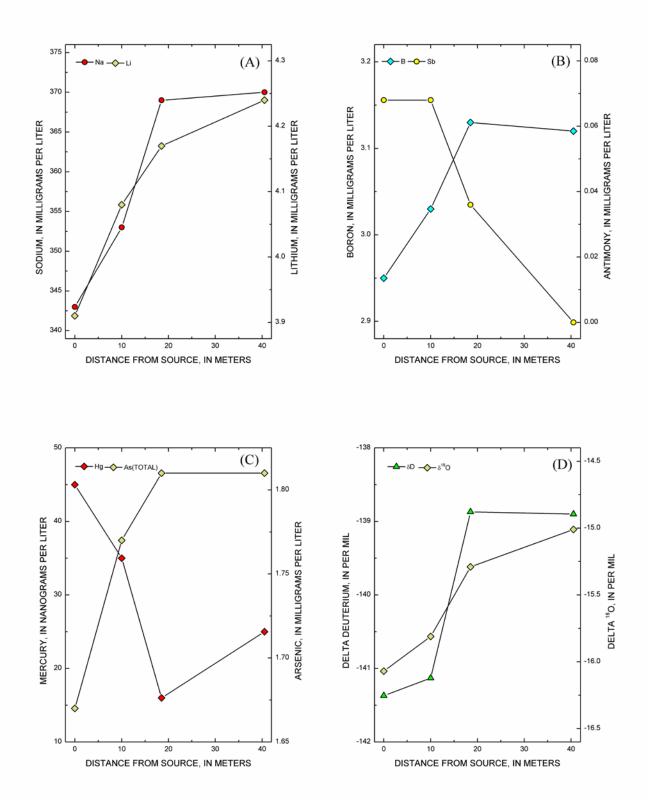


Figure 27. Concentrations of sodium and lithium (A), concentrations of boron and antimony (total) (B), concentrations of mercury and arsenic (total) (C), and delta deuterium and delta ¹⁸O (D) as a function of drainage distance for an unnamed thermal feature and its overflow drainage channel in the upper Rabbit Creek area for samples collected in 2006.

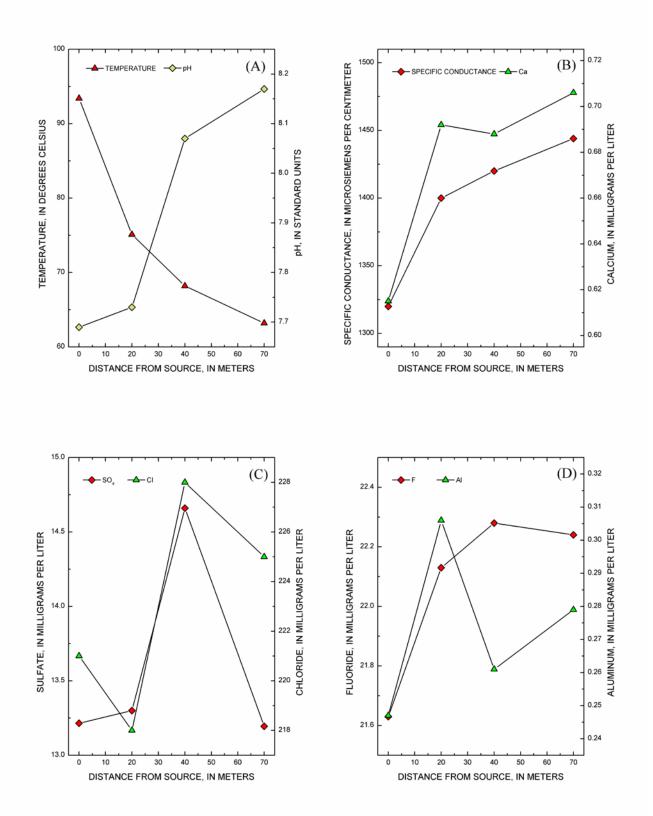


Figure 28. Sample temperature and pH (A), specific conductance, and concentration of calcium (B), concentrations of sulfate and chloride (C), and concentrations of fluoride and aluminum (D) as a function of drainage distance for an unnamed thermal feature and its overflow drainage channel in the lower Rabbit Creek area for samples collected in 2006.

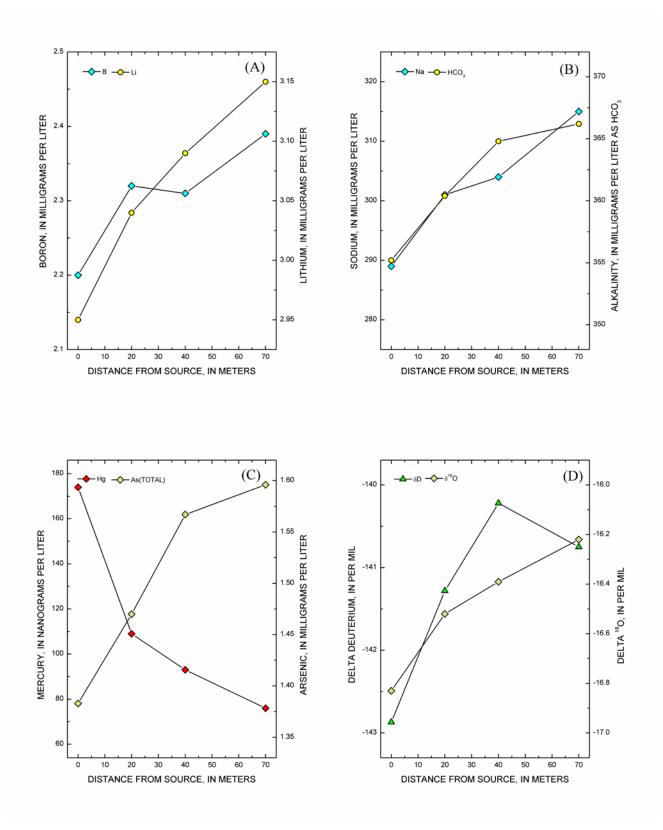


Figure 29. Concentrations of boron and lithium (A), concentrations of sodium and bicarbonate (B), concentrations of mercury and arsenic(total) (C), and delta deuterium and delta ¹⁸O (D) as a function of drainage distance for an unnamed thermal feature and its overflow drainage channel in the lower Rabbit Creek area for samples collected in 2006.

Table 5. Results of water analyses for Norris-Mammoth corridor and the West Nymph Creek thermal area, 2006–2008.

	Norris-Mamm	oth Corridor	West Nymph Creek Thermal Area Unnamed most upslope Unnamed sunke		
_				Unnamed sunke	
Location	Apollinaris Spring	Nymphy Creek	pool	circular pool	
Sample ID	06WA124	06WA136	08WA118	08WA119	
Collection Date / Time	5/16/06 12:20	9/12/06 10:00	9/22/08 16:00	9/22/08 17:20	
Γemperature, °C	10.5	15.5	61.8	58.1	
pH (field / laboratory)	5.16 / 8.08	6.86 / 7.64	5.71 / 8.09	1.60 / 1.60	
Specific conductance					
(field / laboratory), μS/cm	138 / 136	741 / 739	347 / 350	7650 / 11,830	
Eh, V	0.448	0.445	0.120	0.570	
Density, g/mL at 20°C	0.9983	0.9987	0.9985	1.0004	
Dissolved oxygen (DO), mg/L		7.0			
Constituent, mg/L ¹					
Calcium (Ca)	13.8	11.4	6.05	4.32	
Magnesium (Mg)	3.46	1.25	0.376	0.880	
Sodium (Na)	6.94	137	58.6	25.5	
Potassium (K)	3.06	13.2	4.67	32.2	
Strontium (Sr)	0.047	0.027	0.011	0.018	
Barium (Ba)	0.004	0.014	0.014	0.065	
ithium (Li)	0.021	0.649	0.303	0.048	
Sulfate (SO ₄)	5.15	64.3	46.0	2820	
Γhiosulfate (S_2O_3)				< 0.1	
Polythionate (S _n O ₆), mM				< 0.001	
Hydrogen sulfide (H ₂ S)					
Alkalinity (HCO ₃)	71.3	198	95.9		
Acidity (free / total), mM				34.2 / 42.4	
Fluoride (F)	4.39	5.18	6.28	0.370	
Chloride (Cl)	0.667	76.8	7.68	4.54	
Bromide (Br)	<0.03	0.23	<0.03	<0.03	
Nitrate (NO ₃)	0.37	0.12	0.09	0.19	
Ammonium (NH ₄)	<0.07	< 0.07	0.300	29.0	
Silica (SiO ₂)	54.5	115	96.8	202	
Boron (B)	0.013	1.15	0.227	0.556	
Aluminum (Al)	1.95	0.20	0.24	59.3	
` '	0.005	0.050	0.014	17.7	
ron total (Fe(T))					
Ferrous iron (Fe(II))	<0.002	0.050	0.014	17.0	
Manganese (Mn)	0.011	0.012	0.139	0.523	
Copper (Cu)	0.0042	<0.0005	<0.0005	<0.0005	
Zinc (Zn)	0.022	< 0.004	<0.004	0.129	
Cadmium (Cd)	0.0002	<0.0001	< 0.0001	0.0002	
Chromium (Cr)	0.0006	<0.0005	< 0.0005	0.0042	
Cobalt (Co)	<0.0007	<0.0007	< 0.0007	<0.0007	
Mercury total (Hg), ng/L	11.0	11.0	94.4	140	
Methylmercury (CH ₃ Hg), ng/L		0.21	0.15	0.05	
Nickel (Ni)	<0.0005	<0.0005	<0.0005	<0.0005	
Lead (Pb)	<0.0008	<0.0008	<0.0008	0.040	
Beryllium (Be)	0.004	<0.001	0.001	0.005	
/anadium (V)	<0.005	<0.005	<0.005	0.008	
Molybdenum (Mo)	< 0.007	<0.007	0.010	<0.007	
Antimony (Sb)	< 0.001	0.006	< 0.001	< 0.001	
Gelenium (Se)	< 0.001	< 0.001	< 0.001	< 0.001	
Arsenic (As)	0.0015	0.307	0.001	0.002	
Arsenite (As(III))	0.0011	0.006	0.001	0.002	
Dissolved organic carbon (DOC)	1.7	2.7	1.1	10.5	
SD, per mil	-139.03	-134.74	-139.64	-103.66	
S ¹⁸ O, per mil	-18.39	-16.46	-17.13	-4.06	
sum cations, meq/L	1.4	7.0	3.0	36.7	
sum anions, meq/L	1.4	7.0	3.0	34.5	
Charge imbalance, percent	4.7	1.0	0.8	6.1	

 $^{^{1}}$ Except for acidity (mM), mercury (ng/L), methylmercury (ng/L), and δD and $\delta^{18}O$ (per mil)

Table 6. Results of water analyses for Norris Geyser Basin, 2006–2008.

		One Hundred	J Spring r lann	
Location Sample ID	Cinder Pool 07WA113	Realgar Creek near mouth 06WA106	Realgar Creek near mouth 06WA139	Tantalus Creek at wei 06WA107
Collection Date / Time	9/12/07 13:00	5/13/06 11:30	9/12/06 15:00	5/13/06 13:15
Temperature, °C	86.8	31.2	28.2	31.2
pH (field / laboratory)	4.28 / 3.96	2.99 / 3.00	3.05 / 3.00	3.09 / 3.11
Specific conductance	4.20 / 3.90	2.99 / 3.00	3.03 / 3.00	3.09 / 3.11
(field / laboratory), μS/cm	2090 / 2260	2210 / 2260	2330 / 2340	1998 / 2040
Eh, V	-0.042	0.329	0.702	0.381
Density, g/mL at 20°C	0.9994	0.9992	0.9993	0.9991
Dissolved oxygen (DO), mg/L				7.5
Constituent. mg/L 1				7.5
Calcium (Ca)	5.22	4.49	4.58	3.59
Magnesium (Mg)	0.020	0.226	0.210	0.242
Sodium (Na)	409	292	310	263
Potassium (K)	41.4	44.9	50.1	44.7
Strontium (Sr)	0.015	0.028	0.025	0.014
Barium (Ba)	0.015	0.101	0.111	0.076
Lithium (Li)	3.96	2.28	2.72	2.87
Sulfate (SO ₄)	63.7	152	152	133
Thiosulfate (S_2O_3)	19.4	152	152	155
· - · · ·	< 0.001			
Polythionate (S _n O ₆), mM	2.12			
Hydrogen sulfide (H ₂ S)	2.12			
Alkalinity (HCO ₃)				
Acidity (free / total), mM		1.15 / 1.90 4.12	1.02 / 1.71	0.93 / 1.40
Fluoride (F)	6.83		4.31 499	3.75
Chloride (Cl)	633	456		426
Bromide (Br)	1.82	1.51	1.63	1.42
Nitrate (NO ₃)	< 0.05	0.11 2.18	< 0.05	0.09
Ammonium (NH ₄)	6.77	2.18	1.29	1.97
Silica (SiO ₂)	383 9.70		261	315
Boron (B)	0.95	6.96 3.99	8.06 3.59	6.17
Aluminum (Al)				2.47
Iron total (Fe(T))	0.012	1.20	1.10	1.07
Ferrous iron (Fe(II))	0.012	0.527	0.296	0.437
Manganese (Mn)	0.004	0.038	0.037	0.066
Copper (Cu)	<0.0005	<0.0005	0.0006	<0.0005
Zinc (Zn)	<0.004	800.0	0.009	0.008
Cadmium (Cd)	<0.0001	0.0003	<0.0001	<0.0001
Chromium (Cr)	<0.0005	0.0006 <0.0007	< 0.0005	0.0009
Cobalt (Co)	<0.0007		<0.0007	0.0007
Mercury total (Hg), ng/L	53.0		22.0	
Methylmercury (CH ₃ Hg), ng/L	0.04		0.05	
Nickel (Ni) Lead (Pb)	<0.0005 <0.0008	<0.0005 <0.0008	<0.0005 <0.0008	<0.0005 0.0008
Beryllium (Be) Vanadium (V)	<0.001 <0.005	0.002 <0.005	0.002 <0.005	0.002 <0.005
Molybdenum (Mo)	<0.005 0.108	<0.005 <0.007	<0.005 <0.007	<0.005 0.048
Antimony (Sb)	0.108	0.007	<0.007 0.041	0.048
Selenium (Se)				< 0.001
Arsenic (As)	<0.001 2.35	<0.001	< 0.001	
` '	2.35 1.09 ²	1.37	1.52	1.48
Arsenite (As(III))		0.061	0.035	0.032
Dissolved organic carbon (DOC)	0.8	0.9	0.8	1.4
δD, per mil	-125.31	-135.89	-131.64	-132.16
δ^{18} O, per mil	-10.69	-13.94	-13.27	-13.61
sum cations, meq/L	20.1	15.9	16.6	14.3
sum anions, meq/L	19.4	15.9	17.1	14.7
Charge imbalance, percent	3.7	0.2	-3.0	-2.7

 $^{^{1}}$ Except for acidity (mM), mercury (ng/L), methylmercury (ng/L), and δD and $\delta^{18}O$ (per mil)

² Likely formed arsenic - sulfide precipitate upon acidification; therefore, value may be biased low

Table 6. Results of water analyses for Norris Geyser Basin, 2006–2008—Continued.

		ne Hundred Spring Plai	Unnamed thermal feature northeast o
Location	Tantalus Creek at weir	Tantalus Creek at weir	Cinder Pool
Sample ID	06WA158	08WA105	06WA109
Collection Date / Time	9/14/06 18:30	9/17/08 15:30	5/13/06 15:50
Геmperature, °С	23.6	31.5	74.0
pH (field / laboratory)	3.02 / 3.02	3.06 / 3.06	3.56 / 3.45
Specific conductance			
(field / laboratory), μS/cm	2290 / 2300	2140 / 2150	1720 / 1880
Eh, V		0.670	0.142
Density, g/mL at 20°C	0.9993	0.9991	0.9991
Dissolved oxygen (DO), mg/L			
Constituent, mg/L ¹			
Calcium (Ca)	4.09	3.49	3.41
Magnesium (Mg)	0.231	0.204	0.223
Sodium (Na)	310	330	269
Potassium (K)	56.3	53.5	46.8
Strontium (Sr)	0.016	0.014	0.019
Barium (Ba)	0.083	0.079	0.164
Lithium (Li)	3.93	3.54	2.92
Sulfate (SO ₄)	155	152	91.2
Thiosulfate (S ₂ O ₃)			<0.1
Polythionate (S _n O ₆), mM			< 0.001
Hydrogen sulfide (H ₂ S)			0.30
Alkalinity (HCO ₃)			
Acidity (free / total), mM	1.07 / 1.61	0.83 / 1.39	0.40 / 0.81
Fluoride (F)	4.27	4.61	3.33
Chloride (Cl)	490	480	417
Bromide (Br)	2.03	2.07	1.45
Nitrate (NO ₃)	0.10	0.24	<0.05
Ammonium (NH ₄)	1.40	2.56	2.65
Silica (SiO ₂)	364	371	385
Boron (B)	7.63	7.06	6.16
Aluminum (Al)	2.47	2.24	1.57
Iron total (Fe(T))	1.27	0.944	1.48
Ferrous iron (Fe(II))	0.203	0.388	1.48
Manganese (Mn)	0.080	0.066	0.059
Copper (Cu)	0.0006	< 0.0005	<0.0005
Zinc (Zn)	0.018	0.008	0.017
Cadmium (Cd)	<0.001	< 0.0001	<0.0017
Chromium (Cr)	<0.0001	< 0.0005	<0.0001
Cobalt (Co)	0.0019	< 0.0007	0.0012
Mercury total (Hg), ng/L	17.0	35.3	0.0012
Methylmercury (CH ₃ Hg), ng/L	0.04	0.16	
Nickel (Ni)	< 0.0005	<0.0005	< 0.0005
Lead (Pb)	<0.0008	<0.0008	<0.0008
Beryllium (Be)	0.002	0.000	0.002
Vanadium (V)	< 0.002	< 0.002	< 0.002
Molybdenum (Mo)	0.048	0.047	<0.003
Antimony (Sb)	0.048	0.047	0.007
Selenium (Se)	0.000	<0.001	< 0.001
Arsenic (As)	1.85	<0.001 1.70	<0.001 1.39
• •			
Arsenite (As(III))	0.029	0.058	0.90
Dissolved organic carbon (DOC)	1.2	1.3	0.8
SD, per mil	-131.62	-132.49	-138.83
δ ¹⁸ O, per mil	-13.02	-13.03	-14.79
sum cations, meq/L sum anions, meq/L	16.9 17.0	17.7	14.1
		16.6	13.6

 $^{^{1}}$ Except for acidity (mM), mercury (ng/L), methylmercury (ng/L), and δD and $\delta ^{18}O$ (per mil) 2 Likely formed arsenic - sulfide precipitate upon acidification; therefore, value may be biased low

Table 6. Results of water analyses for Norris Geyser Basin, 2006–2008—Continued.

------Back Basin------Location Cistern Spring Cistern Spring Cistern Spring Cistern Spring **Echinus Geyser** Sample ID 06WA123 06WA159 07WA116 08WA127 08WA126 Collection Date / Time 9/24/08 9:30 5/16/06 12:20 9/15/06 11:20 9/13/07 13:35 9/24/08 10:15 Temperature, °C 85.7 84.5 81.1 79.5 77.1 pH (field / laboratory) 5.37 / 6.76 5.54 / 7.19 4.51 / 4.30 4.25 / 4.19 3.52 / 3.37 Specific conductance (field / laboratory), µS/cm 1792 / 1934 1995 / 2120 1660 / 1783 1136 / 1288 1643 / 1708 Eh V 0.057 -0.052 0.019 0.480 0.140 0.9993 0.9994 0.9991 0.9992 0.9989 Density, g/mL at 20°C Dissolved oxygen (DO), mg/L Constituent, mg/L 1 2.13 2.50 1.80 1.54 4.28 Calcium (Ca) Magnesium (Mg) 0.097 0.100 0.092 0.046 0.487 Sodium (Na) 335 353 318 280 176 Potassium (K) 38.4 48.1 45.5 63.6 33.6 Strontium (Sr) 0.008 0.010 0.006 0.006 0.007 Barium (Ba) 0.018 0.021 0.013 0.013 0.055 Lithium (Li) 3.52 4.46 3.08 3 38 0.874 Sulfate (SO₄) 69.3 57.7 98.3 69.7 282 Thiosulfate (S₂O₃) 12.1 22.2 13.8 < 0.1 Polythionate (S_nO₆), mM < 0.001 < 0.001 < 0.001 < 0.001 Hydrogen sulfide (H₂S) 0.32 0.63 0.53 0.73 0.10 Alkalinity (HCO₃) 12.7 9.1 Acidity (free / total), mM 0.46 / 0.96 5.76 Fluoride (F) 5.96 5.62 5.64 5.53 Chloride (Cl) 498 559 450 159 430 Bromide (Br) 2.00 1.83 1.19 1.44 0.45 Nitrate (NO₃) < 0.05 < 0.05 < 0.05 0.01 0.03 Ammonium (NH₄) 1.35 7.86 6.76 1.15 1.44 Silica (SiO₂) 649 609 412 432 297 Boron (B) 7.63 8.72 7.81 7.76 2.43 Aluminum (Al) 0.11 0.216 0.13 0.13 2.22 Iron total (Fe(T)) < 0.002 0.009 0.010 0.024 2.21 Ferrous iron (Fe(II)) < 0.002 0.009 0.010 0.024 2.15 0.048 0.059 0.037 0.255 Manganese (Mn) 0.039 < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 Copper (Cu) Zinc (Zn) < 0.004 < 0.004 0.005 < 0.004 0.015 Cadmium (Cd) < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.0001 Chromium (Cr) < 0.0005 0.0006 < 0.0005 < 0.0005 < 0.0005 Cobalt (Co) 0.0035 0.0050 < 0.0007 < 0.0007 < 0.0007 Mercury total (Hg), ng/L 132 19.0 42.0 340 36.5 Methylmercury (CH3Hg), ng/L 0.04 0.78 0.58 Nickel (Ni) < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 Lead (Pb) <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 Beryllium (Be) < 0.001 < 0.001 < 0.001 < 0.001 0.007 Vanadium (V) < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 Molybdenum (Mo) 0.096 0.125 0.071 0.103 < 0.007 Antimony (Sb) 0.084 0.085 0.060 0.061 < 0.001 Selenium (Se) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 Arsenic (As) 1.77 2.09 1.49 1.52 0.257 1.45^{2} 1.58^{2} 1.30^{2} 1.27^{2} 0.061 Arsenite (As(III)) Dissolved organic carbon (DOC) 1.2 0.6 0.9 0.7 1.1 -128.47 δD, per mil -128 57 -11794 -121.06 -140 67 δ^{18} O, per mil -12.04 -12.30 -8.08 -8.48 -16.48 sum cations, meq/L 16.4 17.8 15.7 14.2 9.7 sum anions, meq/L 15.9 17.5 14.4 14.4 10.0 Charge imbalance, percent 3.0 8.6 -3.8 -1.1

¹ Except for acidity (mM), mercury (ng/L), methylmercury (ng/L), and δD and $\delta^{18}O$ (per mil)

 $^{^{\}rm 2}$ Likely formed arsenic - sulfide precipitate upon acidification; therefore, value may be biased low

Table 6. Results of water analyses for Norris Geyser Basin, 2006–2008—Continued.

-----Back Basin------

Location	Perpetual Spouter	Perpetual Spouter	Perpetual Spouter	Porkchop Geyser	Porkchop Geyser
Sample ID	06WA132	07WA144	08WA130	07WA143	08WA129
Collection Date / Time	5/17/06 14:15	9/18/07 15:15	9/24/08 13:21	9/18/07 14:10	9/24/08 12:07
Temperature, °C	90.7	78.1	88.0	86.1	80.1
pH (field / laboratory)	7.12 / 7.29	7.03 / 7.36	7.51 / 7.42	4.52 / 4.47	8.40 / 8.76
Specific conductance	7.12 / 7.27	7100 / 7100	7.01 / 7.12	1102 / 1117	0.10 / 0.10
(field / laboratory), μS/cm	2450 / 2680	2440 / 2560	2350 / 2590	1925 / 2060	2210 / 2340
Eh, V	0.030	-0.102	0.060	-0.059	0.020
Density, g/mL at 20°C	0.9995	0.9994	0.9993	0.9992	0.9993
Dissolved oxygen (DO), mg/L					
Constituent, mg/L ¹					
Calcium (Ca)	9.49	9.80	8.41	4.37	3.35
Magnesium (Mg)	0.070	0.065	0.059	0.018	0.004
Sodium (Na)	463	478	429	348	394
Potassium (K)	42.9	45.1	46.1	53.0	77.7
Strontium (Sr)	0.034	0.030	0.031	0.012	0.012
Barium (Ba)	0.013	0.013	0.010	0.008	0.007
Lithium (Li)	5.26	5.52	5.09	4.55	5.18
Sulfate (SO ₄)	33.2	41.2	34.8	51.1	23.7
Thiosulfate (S ₂ O ₃)	<0.1	<0.1		42.1	0.3
Polythionate (S_nO_6), mM	< 0.001	<0.001		< 0.001	<0.001
Hydrogen sulfide (H ₂ S)	0.019	0.12	0.04	1.23	0.11
Alkalinity (HCO ₃)	12.9	18.6	15.2	<1	55.9
Acidity (free / total), mM					
Fluoride (F)	6.82	8.50	7.88	5.67	7.05
Chloride (Cl)	749	788	754	572	644
Bromide (Br)	2.73	2.67	2.48	1.86	2.19
Nitrate (NO ₃)	0.26	0.12	0.27	0.11	0.24
Ammonium (NH ₄)	0.718	1.47	0.620	11.3	1.58
Silica (SiO ₂)	362	304	302	378	567
Boron (B)	11.2	12.4	11.5	8.98	9.66
Aluminum (Al)	0.183	0.165	0.131	0.041	0.015
Iron total (Fe(T))	0.072	0.108	0.013	0.030	<0.002
Ferrous iron (Fe(II))	0.009	0.072	0.006	0.030	<0.002
Manganese (Mn)	0.037	0.040	0.034	0.033	0.003
Copper (Cu)	< 0.0005	< 0.0005	< 0.0005	<0.0005	<0.005
Zinc (Zn)	<0.004	<0.004	<0.004	0.0003	<0.004
Cadmium (Cd)	<0.004	< 0.0001	<0.0001	<0.0001	<0.0001
Chromium (Cr)	0.0039	<0.0001	<0.0001	<0.0001	<0.0001
Cobalt (Co)	0.0039	<0.0003	<0.0003	<0.0003	<0.0003
Mercury total (Hg), ng/L	22.0	120	23.2	3.4	48.5
Methylmercury (CH ₃ Hg), ng/L	22.0	0.04	23.2	0.06	40.5
Nickel (Ni)	<0.0005	< 0.0005	<0.0005	<0.005	<0.0005
Lead (Pb)	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003
Beryllium (Be)	<0.000	< 0.001	<0.001	<0.001	<0.001
Vanadium (V)	<0.001	<0.001	<0.001	<0.001	<0.001
Molybdenum (Mo)	0.071	0.005	0.005	0.164	0.214
				0.164	
Antimony (Sb)	0.125	0.112	0.161		0.147
Selenium (Se)	<0.001	< 0.001	<0.001	< 0.001	<0.001
Arsenic (As)	3.01	2.70	2.92	1.79	2.48
Arsenite (As(III))	1.28	2.26	1.98	1.76	2.02
Dissolved organic carbon (DOC)	0.7	0.3	0.9	0.5	1.0
δD, per mil	-139.42	-141.30	-140.54	-119.02	-143.14
δ^{18} O, per mil	-14.85	-14.83	-14.93	-7.09	-15.00
sum cations, meq/L	22.5	23.3	21.1	18.0	20.2
sum anions, meq/L	22.5	23.9	22.8	17.5	20.8
Charge imbalance, percent	0.1	-2.5	-7.7	3.0	-3.3

¹ Except for acidity (mM), mercury (ng/L), methylmercury (ng/L), and δD and $\delta^{18}O$ (per mil)

² Likely formed arsenic - sulfide precipitate upon acidification; therefore, value may be biased low

Table 6. Results of water analyses for Norris Geyser Basin, 2006–2008—Continued.

			Datk Dasiii		Unnamed hot spring
Location	"Second Erupter"	"Second Erupter"	"Second Erupter"	Tantalus Creek - Back Basin Drainage	near Perpetual Spouter
Sample ID	06WA122	07WA142	08WA128	06WA134	06WA133
Collection Date / Time	5/16/06 11:30	9/18/07 13:10	9/24/08 11:10	5/17/06 14:20	5/17/06 16:00
Temperature, °C	89.3	83.3	89.1	37.1	89.0
pH (field / laboratory)	8.02 / 8.68	6.31 / 7.64	8.00 / 8.54	3.13 / 3.14	2.95 / 2.81
Specific conductance	0.02 / 0.00	0.51 / 7.04	0.00 / 0.54	3.13 / 3.14	2.75 / 2.01
(field / laboratory), µS/cm	2230 / 2410	2420 / 2530	2170 / 2330	2040 / 2110	1380 / 1852
Eh, V	0.027	-0.130	0.010	0.659	0.432
Density, g/mL at 20°C	0.9995	0.9995	0.9995	0.9992	0.9990
Dissolved oxygen (DO), mg/L					
Constituent, mg/L ¹					
Calcium (Ca)	4.04	6.11	3.63	3.63	3.14
Magnesium (Mg)	0.013	0.041	0.008	0.245	0.357
	398	453	368	285	
Sodium (Na)					163
Potassium (K)	71.2	70.1	76.8	52.4	59.7
Strontium (Sr)	0.014	0.018	0.013	0.012	0.017
Barium (Ba)	0.008	0.014	0.007	0.057	0.111
Lithium (Li)	5.37	5.91	5.08	3.41	1.000
Sulfate (SO ₄)	21.0	61.4	23.6	126	214
Thiosulfate (S ₂ O ₃)	<0.1	14.4	<0.1		<0.1
Polythionate (S _n O ₆), mM	<0.001	<0.001	< 0.001		<0.001
Hydrogen sulfide (H ₂ S)	0.13	0.60	0.36		0.008
Alkalinity (HCO ₃)	55.5	39.8	54.2		
Acidity (free / total), mM				0.87 / 1.33	1.85 / 2.17
Fluoride (F)	6.66	7.49	7.02	4.16	0.746
Chloride (Cl)	647	764	631	454	234
Bromide (Br)	2.32	2.40	2.13	1.53	0.84
Nitrate (NO ₃)	< 0.05	0.08	0.33	< 0.05	0.15
Ammonium (NH ₄)	0.351	2.33	1.02	1.32	0.09
Silica (SiO ₂)	780	427	625	371	412
Boron (B)	9.75	11.8	9.57	7.05	3.92
Aluminum (Al)	0.011	0.015	0.014	2.06	0.57
Iron total (Fe(T))	< 0.002	< 0.002	< 0.002	0.875	5.51
Ferrous iron (Fe(II))	< 0.002	< 0.002	< 0.002	0.432	5.12
Manganese (Mn)	0.006	0.052	0.006	0.080	0.112
Copper (Cu)	< 0.0005	< 0.0005	0.0604	< 0.0005	< 0.0005
Zinc (Zn)	< 0.004	< 0.004	< 0.004	0.006	0.059
Cadmium (Cd)	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Chromium (Cr)	0.0008	< 0.0005	< 0.0005	0.0005	0.0006
Cobalt (Co)	0.0046	< 0.0007	< 0.0007	0.0028	0.0034
Mercury total (Hg), ng/L	174	512	38.7	41.0	36.0
Methylmercury (CH ₃ Hg), ng/L		0.06	0.04		
Nickel (Ni)	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Lead (Pb)	< 0.0008	< 0.0008	< 0.0008	< 0.0008	0.0015
Beryllium (Be)	< 0.001	< 0.001	< 0.001	0.002	0.004
Vanadium (V)	<0.005	<0.005	< 0.005	< 0.005	<0.005
Molybdenum (Mo)	0.215	0.222	0.221	0.079	<0.007
Antimony (Sb)	0.141	0.093	0.177	0.093	0.023
Selenium (Se)	<0.001	<0.001	<0.001	< 0.001	< 0.001
Arsenic (As)	2.67	2.68	2.43	1.82	0.943
Arsenite (As(III))	2.41	2.53	2.43	0.104	0.444
Dissolved organic carbon (DOC)	5.0	2.53 0.5	0.4	0.104 1.5	0.444
, ,					
δD, per mil	-142.98	-120.54	-143.55	-130.02	-136.35
δ^{18} O, per mil	-15.54	-9.47	-15.64	-12.98	-15.38
sum cations, meq/L	20.1	22.8	19.0	15.4	10.3
sum anions, meq/L	20.3	23.9	19.7	15.4	10.4
Charge imbalance, percent	-0.9	-4.7	-3.6	0.1	-0.3

Except for acidity (mM), mercury (ng/L), methylmercury (ng/L), and δD and $\delta^{18}O$ (per mil)

Likely formed arsenic - sulfide precipitate upon acidification; therefore, value may be biased low

Table 6. Results of water analyses for Norris Geyser Basin, 2006–2008—Continued.

		Back Basin		Ragged Hills		
		Unnamed hot spring,		Appendage side	Circular clay ho	
	near Perpetual	North end of Elk	North end of Elk	spring to "Lifeboat	spring 2m from	
Location	Spouter	Park	Park	Spring"	08WA121	
Sample ID	07WA145	07WA140	07WA141	08WA124	08WA123	
Collection Date / Time	9/18/07 15:55	9/18/07 9:50	9/18/07 10:40	9/23/08 15:40	9/23/08 15:09	
Γemperature, °C	93.0	68.3	91.4	89.3	63.5	
pH (field / laboratory)	2.92 / 2.90	7.69 / 8.11	4.14 / 4.10	2.64 / 2.52	2.80 / 2.79	
Specific conductance						
field / laboratory), μS/cm	1325 / 1776	2150 / 2170	2050 / 2190	2020 /	840 / 1150	
Eh, V	0.039	0.013	-0.070	0.460	0.170	
Density, g/mL at 20°C	0.9991	0.9993	0.9993		0.9986	
Dissolved oxygen (DO), mg/L						
Constituent, mg/L ¹						
Calcium (Ca)	3.58	5.99	6.78	3.03	0.872	
Magnesium (Mg)	0.360	0.051	0.109	0.174	0.059	
odium (Na)	176	436	410	263	60.0	
Potassium (K)	51.2	21.3	25.4	42.7	15.5	
Strontium (Sr)	0.016	0.014	0.016	0.010	0.004	
Barium (Ba)	0.113	0.009	0.035	0.069	0.081	
ithium (Li)	0.936	2.96	3.16	3.02	0.618	
Sulfate (SO ₄)	224	30.5	85.6	316	119	
'hiosulfate (S ₂ O ₃)	<0.1	<0.1	0.5			
Polythionate (S_nO_6) , mM	< 0.001	< 0.001	< 0.001			
lydrogen sulfide (H ₂ S)	0.03	0.007	0.44			
Alkalinity (HCO ₃)		92.8				
Acidity (free / total), mM	1.97 / 2.13			3.13 / 4.36	1.51 / 1.95	
Fluoride (F)	0.900	13.2	10.1	4.76	0.659	
Chloride (Cl)	254	613	619	442	110	
Bromide (Br)	0.86	2.07	1.99	1.27	0.32	
Vitrate (NO ₃)	0.12	0.11	0.10	0.24	<0.05	
Ammonium (NH ₄)	3.24	4.54	1.71		0.200	
Silica (SiO ₂)	426	304	303	238	211	
Boron (B)	4.00	9.25	9.38	5.71	1.54	
Aluminum (Al)	0.50	0.153	1.57	8.94	0.92	
ron total (Fe(T))	6.17	0.005	0.181	2.79	1.23	
Ferrous iron (Fe(II))	6.17	0.005	0.181	2.61	1.21	
Manganese (Mn)	0.118	0.044	0.269	0.023	0.014	
	0.0006			0.023		
Copper (Cu)		< 0.0005	<0.0005		<0.0005	
Zinc (Zn)	0.061	< 0.004	<0.004	0.042	0.006	
Cadmium (Cd)	<0.0001	<0.0001	<0.0001	0.0001	<0.0001	
Chromium (Cr)	<0.0005	<0.0005	0.0009	0.0014	<0.0005	
Cobalt (Co)	<0.0007	<0.0007	<0.0007	<0.0007	<0.0007	
Mercury total (Hg), ng/L	25.0	42.0	300		110	
Methylmercury (CH ₃ Hg), ng/L	0.06	0.10	0.22			
Vickel (Ni)	<0.0005	<0.0005	<0.0005	0.0009	<0.0005	
Lead (Pb)	0.0012	<0.0008	<0.0008	<0.0008	<0.0008	
Beryllium (Be)	0.004	< 0.001	0.001	< 0.001	< 0.001	
anadium (V)	< 0.005	< 0.005	<0.005	<0.005	< 0.005	
Molybdenum (Mo)	< 0.007	0.223	0.223	0.030	< 0.007	
Antimony (Sb)	0.034	0.082	0.075	0.142	0.018	
elenium (Se)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
rsenic (As)	0.949	1.76	1.86	1.75	5.54	
arsenite (As(III))	0.579	0.022	1.86	0.470	2.87	
Dissolved organic carbon (DOC)	0.5	0.6	0.5		0.7	
SD, per mil	-136.49	-141.73	-129.96	-132.11	-147.20	
S ¹⁸ O, per mil	-15.23	-14.49	-11.16	-10.25	-15.36	
sum cations, meq/L	11.0	20.4	19.4	16.4	5.0	
sum anions, meg/L	11.0	20.2	19.5	17.5	5.3	
Charge imbalance, percent	-0.2	1.1	-0.2	-6.4	-5.1	

 $^{^{1}}$ Except for acidity (mM), mercury (ng/L), methylmercury (ng/L), and δ D and δ ¹⁸O (per mil) 2 Likely formed arsenic - sulfide precipitate upon acidification; therefore, value may be biased low

Table 6. Results of water analyses for Norris Geyser Basin, 2006–2008—Continued.

	Ragged Hills				
	Crystal Spring,	Crystal Spring,	Crystal Spring,	Crystal Spring,	Crystal Spring
Location	eastern side	eastern side	western side	western side	western side
Sample ID	06WA112	07WA147	06WA111	07WA146	08WA120
Collection Date / Time	5/13/06 18:00	9/18/07 17:05	5/13/06 17:35	9/18/07 16:40	9/23/08 12:30
Геmperature, °С	80.6	77.0	80.3	82.9	80.8
oH (field / laboratory)	5.55 / 6.25	1.97 / 1.96	3.77 / 3.67	1.98 / 1.94	2.29 / 2.15
Specific conductance	5.55 / 5.25	/	,		
(field / laboratory), μS/cm	2320 / 2490	3660 / 6550	2360 / 2550	3380 / 6500	2630 / 4340
Eh, V	0.047	0.500	0.143	0.180	-0.140
Density, g/mL at 20°C	0.9994	0.9996	0.9994	0.9995	0.9994
Dissolved oxygen (DO), mg/L					
Constituent, mg/L					
Calcium (Ca)	6.25	2.54	6.08	2.15	4.41
Magnesium (Mg)	0.005	0.212	0.005	0.212	0.323
odium (Na)	448	98.4	429	84.9	215
Potassium (K)	31.4	13.4	30.5	12.3	23.0
strontium (Sr)	0.014	0.010	0.013	0.010	0.017
Barium (Ba)	0.007	0.058	0.009	0.054	0.045
Lithium (Li)	4.92	1.04	4.74	0.820	2.42
Sulfate (SO ₄)	30.1	1180	51.1	1270	691
Thiosulfate (S ₂ O ₃)	2.3	<0.1	1.6	<0.1	
Polythionate (S _n O ₆), mM	< 0.001	< 0.001	< 0.001	< 0.001	
Hydrogen sulfide (H ₂ S)	0.14	0.04	0.09	0.17	0.12
Alkalinity (HCO ₃)	6.1				
Acidity (free / total), mM		20.5 / 23.5	0.29 / 0.52	20.7 / 23.3	7.67 / 9.93
luoride (F)	6.22	1.17	5.68	1.15	2.55
Chloride (Cl)	688	138	674	103	287
Bromide (Br)	2.95	0.49	2.36	0.47	1.01
	< 0.05	0.09	<0.05	0.09	0.14
Nitrate (NO ₃)					
Ammonium (NH ₄)	1.19	14.8	1.39	14.6	14.8
silica (SiO ₂)	181	259	384	228	217
Boron (B)	10.2	2.37	9.78	1.90	4.56
Aluminum (Al)	0.24	25.7	0.67	22.8	14.2
ron total (Fe(T))	0.020	4.23	0.034	3.10	2.10
Ferrous iron (Fe(II))	0.019	2.01	0.034	2.94	2.03
Manganese (Mn)	0.004	0.040	0.004	0.037	0.046
Copper (Cu)	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Zinc (Zn)	< 0.004	0.012	< 0.004	0.015	0.021
Cadmium (Cd)	< 0.0001	< 0.0001	< 0.0001	< 0.0001	0.0005
Chromium (Cr)	< 0.0005	0.0032	< 0.0005	0.0042	0.0016
Cobalt (Co)	0.0023	< 0.0007	0.0020	< 0.0007	< 0.0007
Mercury total (Hg), ng/L	139	270	97.0	470	350
Methylmercury (CH ₃ Hg), ng/L		0.54		1.70	1.60
Vickel (Ni)	< 0.0005	<0.0005	< 0.0005	< 0.0005	< 0.0005
ead (Pb)	<0.0008	0.0069	<0.0008	0.0078	0.0044
Beryllium (Be)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Vanadium (V)	< 0.005	< 0.005	<0.005	< 0.005	< 0.005
Molybdenum (Mo)	0.209	0.127	0.203	0.072	0.045
Antimony (Sb)	0.180	0.127	0.141	0.107	0.045
,					
elenium (Se)	< 0.001	<0.001	<0.001	<0.001	< 0.001
Arsenic (As)	2.78	0.708	2.69	0.701	1.27
Arsenite (As(III))	2.39^{2}	0.074	2.46^{2}	0.498	0.597
Dissolved organic carbon (DOC)	0.4	2.9	0.6	3.8	9.8
SD, per mil	-135.49	-115.91	-131.68	-117.42	-119.35
S ¹⁸ O, per mil	-12.94	-6.30	-11.01	-7.61	-7.57
sum cations, meq/L	21.4	19.4	20.7	18.3	18.0
sum anions, meq/L	20.5	18.9	20.2	18.8	17.9
Charge imbalance, percent	4.4	2.6	2.4	-2.3	0.5

Except for acidity (mM), mercury (ng/L), methylmercury (ng/L), and δ D and δ ¹⁸O (per mil) ² Likely formed arsenic - sulfide precipitate upon acidification; therefore, value may be biased low

Table 6. Results of water analyses for Norris Geyser Basin, 2006–2008—Continued.

------Ragged Hills------The Gap northeast The Gap southwest Hot Spring next to Location outflow outflow "Orpiment Puddle 2" "Kaolin Spring" "Kaolin Spring" Sample ID 06WA121 06WA120 07WA107 07WA106 08WA131 Collection Date / Time 9/24/08 14:00 5/15/06 13:45 5/15/06 13:00 9/10/07 16:30 9/10/07 14:30 Temperature, °C 42.0 36.8 90.0 73.8 70.0 pH (field / laboratory) 3.32 / 3.24 3.08 / 3.06 3.12 / 3.00 2.37 / 2.41 2.54 / 2.51 Specific conductance (field / laboratory), µS/cm 2280 / 2350 1815 / 1880 1442 / 2430 690 / 1667 1228 / 1502 Eh V 0.635 0.694 0.124 0.093 0.500 0.9995 0.9991 0.9989 0.9988 0.9987 Density, g/mL at 20°C Dissolved oxygen (DO), mg/L 5.0 Constituent, mg/L 1 5.52 3.53 3.10 2.33 3.09 Calcium (Ca) Magnesium (Mg) 0.154 0.381 0.065 0.480 0.612 Sodium (Na) 341 254 195 37.6 43.5 Potassium (K) 283 42.5 22.6 10.9 16.9 Strontium (Sr) 0.017 0.015 0.014 0.008 0.013 Barium (Ba) 0.094 0.118 0.162 0.035 0.046 Lithium (Li) 413 2.09 2.32 0.325 0.378 Sulfate (SO₄) 105 115 98.0 398 278 Thiosulfate (S₂O₃) < 0.1 < 0.1 < 0.001 Polythionate (S_nO₆), mM ------< 0.001 Hydrogen sulfide (H₂S) ---0.04 0.54 0.001 ---Alkalinity (HCO3) Acidity (free / total), mM 0.71 / 1.08 1.01 / 1.51 1.13 / 1.66 6.40 / 7.65 3.06 / 4.28 0.550 0.480 Fluoride (F) 4.79 4.10 3.09 561 361 305 46.5 70.0 Chloride (Cl) Bromide (Br) 1.91 1.24 1.02 0.15 0.22 Nitrate (NO₃) < 0.05 0.08 0.06 < 0.05 0.24 Ammonium (NH₄) 1.04 0.930 < 0.07 0.850 1.10 Silica (SiO₂) 399 302 258 239 241 Boron (B) 7.78 5.49 4.52 0.761 1.04 Aluminum (Al) 1.59 2.52 2.92 9.30 7.09 Iron total (Fe(T)) 1.02 3.04 5.04 12.9 8.55 Ferrous iron (Fe(II)) 0.402 1.23 4.97 12.9 8.55 0.034 0.086 Manganese (Mn) 0.077 0.015 0.065 Copper (Cu) < 0.0005 < 0.0005 0.0074 0.0018 < 0.0005 Zinc (Zn) 0.012 0.016 0.010 0.048 0.031 Cadmium (Cd) < 0.0001 < 0.0001 0.0001 0.0002 < 0.0001 Chromium (Cr) < 0.0005 < 0.0005 < 0.0005 0.0011 0.0006 Cobalt (Co) 0.0029 0.0017 < 0.0007 < 0.0007 < 0.0007 Mercury total (Hg), ng/L 89.0 26.0 260 540 68.1 Methylmercury (CH3Hg), ng/L 0.19 0.40 2.60 Nickel (Ni) < 0.0005 < 0.0005 < 0.0005 0.0067 <0.0005 Lead (Pb) <0.0008 <0.0008 0.0018 <0.0008 <0.0008 Beryllium (Be) 0.002 0.002 < 0.001 0.002 0.002 Vanadium (V) < 0.005 < 0.005 < 0.005 0.006 < 0.005 Molybdenum (Mo) 0.101 < 0.007 < 0.007 < 0.007 < 0.007 Antimony (Sb) 0.1050.037 0.095 0.021 0.009 Selenium (Se) 0.001 < 0.001 < 0.001 < 0.001 < 0.001 Arsenic (As) 1.77 0.874 11.2 0.295 0.251 0.106 0.049 0.190^{2} 0.188^{2} Arsenite (As(III)) 11.2 Dissolved organic carbon (DOC) 8.0 0.9 1.5 2.8 2.4 -133 18 -138.80 -132.40 -125 11 -127 20 δD. per mil δ^{18} O, per mil -12.68 -14.82 -12.03 -7.92 -8.92 sum cations, meq/L 17.4 13.4 10.7 7.7 6.4 sum anions, meq/L 18.0 12.5 10.4 7.0 6.3 Charge imbalance, percent -3.4 9.5 6.8 3.1 2.6

¹ Except for acidity (mM), mercury (ng/L), methylmercury (ng/L), and δD and $\delta^{18}O$ (per mil)

 $^{^{\}rm 2}$ Likely formed arsenic - sulfide precipitate upon acidification; therefore, value may be biased low

Table 6. Results of water analyses for Norris Geyser Basin, 2006–2008—Continued.

------Ragged Hills------"Persnickety Location "Lifeboat Spring" "Lifeboat Spring" "Lifeboat Spring" "Orpiment Puddle 3" Geyser" Sample ID 06WA118 07WA115 08WA125 06WA110 06WA119 Collection Date / Time 5/15/06 12:10 5/15/06 12:00 9/13/07 11:30 9/23/08 16:05 5/13/06 17:00 Temperature, °C 70.4 69.4 60.1 28.7 87.1 pH (field / laboratory) 3.58 / 3.49 2.48 / 2.39 3.23 / 3.23 2.43 / 2.40 3.81 / 3.57 Specific conductance (field / laboratory), µS/cm 2170 / 2320 2550 / 3330 2170 / 2360 2060 / 2240 2230 / 2380 Eh V 0.124 0.620 0.273 ---0.9994 0.9995 0.9987 ---Density, g/mL at 20°C Dissolved oxygen (DO), mg/L Constituent, mg/L 1 5.41 4.19 5.27 1.25 5.54 Calcium (Ca) Magnesium (Mg) 0.116 0.264 0.125 0.143 0.133 Sodium (Na) 365 282 376 75.2 353 35.9 Potassium (K) 58.7 18.0 491 47.5 Strontium (Sr) 0.014 0.014 0.014 0.009 0.017 Barium (Ba) 0.054 0.128 0.047 0.077 0.057 Lithium (Li) 4 48 2.86 4.65 0.803 425 Sulfate (SO₄) 70.8 405 100.0 307 84.4 Thiosulfate (S₂O₃) 1.2 0.9 Polythionate (S_nO₆), mM 0.003 ---< 0.001 ___ ---Hydrogen sulfide (H₂S) 0.08 1.80 ---Alkalinity (HCO₃) Acidity (free / total), mM 5.81 / 6.98 0.40 / 0.90 4.85 / 5.72 Fluoride (F) 3.36 0.817 5.86 6.30 5.40 Chloride (Cl) 598 412 631 118 561 Bromide (Br) 1.99 1.09 3.17 0.38 1.80 Nitrate (NO₃) < 0.05 < 0.05 1.70 < 0.05 < 0.05 Ammonium (NH₄) 1.80 0.890 < 0.07 ---Silica (SiO₂) 464 369 452 318 436 Boron (B) 8.26 5.98 8.58 1.62 7.74 2.86 Aluminum (Al) 0.98 2.45 2.15 1.10 Iron total (Fe(T)) 0.719 37.1 1.24 16.7 0.882 Ferrous iron (Fe(II)) 0.363 37.1 0.940 16.7 0.698 0.054 0.020 0.031 Manganese (Mn) 0.023 0.026 < 0.0005 0.0007 0.0007 < 0.0005 0.0017 Copper (Cu) Zinc (Zn) 0.095 0.034 0.008 0.023 0.400 Cadmium (Cd) < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 Chromium (Cr) < 0.0005 < 0.0005 < 0.0005 0.0012 < 0.0005 Cobalt (Co) 0.0031 < 0.0007 < 0.0007 0.0013 0.0027 Mercury total (Hg), ng/L 94.0 19.8 223 Methylmercury (CH3Hg), ng/L 0.59 0.16 Nickel (Ni) 0.0007 < 0.0005 < 0.0005 < 0.0005 < 0.0005 Lead (Pb) <0.0008 0.0015 <0.0008 0.0011 0.0009 Beryllium (Be) 0.001 0.002 < 0.001 < 0.001 0.002 Vanadium (V) < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 Molybdenum (Mo) 0.131 0.265 0.130 < 0.007 0.123 Antimony (Sb) 0.057 0.062 0.1410.003 0.051 Selenium (Se) < 0.001 < 0.001 0.001 < 0.001 < 0.001 Arsenic (As) 1.32 14.6 1.40 1.75 1.65 0.087^{2} 1.95 0.026 0.746^{2} 1.03^{2} Arsenite (As(III)) Dissolved organic carbon (DOC) 1.6 1.2 2.3 ----12747 -136 98 -121 62 --δD. per mil δ^{18} O, per mil -10.97 -13.40 -11.34 sum cations, meq/L 18.3 18.8 19.7 17.7 8.6 sum anions, meq/L 18.4 18.1 19.9 8.8 17.6 Charge imbalance, percent -0.5 -2.4 0.4 3.6 -1.1

¹ Except for acidity (mM), mercury (ng/L), methylmercury (ng/L), and δD and $\delta^{18}O$ (per mil)

² Likely formed arsenic - sulfide precipitate upon acidification; therefore, value may be biased low

Table 6. Results of water analyses for Norris Geyser Basin, 2006–2008—Continued.

-----Ragged Hills-----"Succession Spring" "Persnickety "Succession Spring" "Succession Spring" Location Geyser" "Succession Spring" drainage channel drainage channel drainage channel Sample ID 07WA105 06WA126 06WA127 06WA128 06WA129 Collection Date / Time 9/10/07 12:30 5/17/06 10:47 5/17/06 11:20 5/17/06 0:00 5/17/06 12:35 Temperature, °C 89.0 65.4 59.4 50.7 41.2 pH (field / laboratory) 3.39 / 3.17 3.12 / 3.00 3.02 / 3.04 2.94 / 3.01 2.87 / 3.00 Specific conductance (field / laboratory), µS/cm 1938 / 2220 1816 / 2040 1830 / 2070 2020 / 2130 1858 / 2030 Eh V -0.017 0.9993 0.9989 0.9991 0.9990 0.9991 Density, g/mL at 20°C Dissolved oxygen (DO), mg/L Constituent, mg/L 1 6.04 4.52 4.47 4.52 4.63 Calcium (Ca) Magnesium (Mg) 0.171 0.282 0.281 0.282 0.291 Sodium (Na) 357 261 264 265 272 28.8 Potassium (K) 294 30.0 29.0 44.0 Strontium (Sr) 0.018 0.014 0.014 0.014 0.014 Barium (Ba) 0.063 0.105 0.103 0.104 0.106 Lithium (Li) 4 25 2.69 2.73 2.73 2.75 Sulfate (SO₄) 145 112 111 112 116 Thiosulfate (S₂O₃) < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 Polythionate (S_nO₆), mM Hydrogen sulfide (H₂S) 0.73 2.00 0.10 Alkalinity (HCO3) Acidity (free / total), mM 0.76 / 1.09 1.01 / 1.86 0.99 / 1.70 1.08 / 1.76 1.13 / 1.76 Fluoride (F) 2.72 2.74 2.83 2.84 5.09 520 415 425 431 445 Chloride (Cl) Bromide (Br) 1.82 1.45 1.56 1.54 1.57 Nitrate (NO₃) < 0.05 0.08 0.10 < 0.05 < 0.05 Ammonium (NH₄) 1.72 0.830 0.946 0.771 0.690 Silica (SiO₂) 430 280 377 243 245 Boron (B) 8.21 6.13 6.22 6.22 6.55 Aluminum (Al) 1.68 3.60 3.60 3.66 3.66 Iron total (Fe(T)) 2.95 0.952 0.960 0.923 0.880 Ferrous iron (Fe(II)) 2.95 0.946 0.942 0.716 0.484 0.042 Manganese (Mn) 0.041 0.040 0.041 0.041 Copper (Cu) < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 Zinc (Zn) 0.020 0.010 0.009 0.008 0.010 Cadmium (Cd) < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 Chromium (Cr) 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 Cobalt (Co) < 0.0007 8000.0 0.0007 0.0009 0.0015 Mercury total (Hg), ng/L 100 126 62.0 23.0 31.0 Methylmercury (CH3Hg), ng/L 0.49 Nickel (Ni) < 0.0005 < 0.0005 < 0.0005 < 0.0005 < 0.0005 Lead (Pb) <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 Beryllium (Be) 0.002 0.001 0.001 0.001 0.001 Vanadium (V) < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 Molybdenum (Mo) 0.056 < 0.007 < 0.007 < 0.007 < 0.007 Antimony (Sb) 0.039 < 0.001 < 0.001 < 0.001 < 0.001 Selenium (Se) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 Arsenic (As) 2.35 2.11 2.15 2.11 1.98 2.32 0.896^{2} 1.56^{2} 0.416^{2} 0.131 Arsenite (As(III)) Dissolved organic carbon (DOC) 1.4 0.6 0.5 0.6 0.6 -134 59 -147 00 -145 95 -144 69 δD. per mil -146.42 δ^{18} O, per mil -12.98 -16.76 -16.53 -16.28 -15.86 sum cations, meq/L 18.2 13.9 14.2 14.5 15.0 sum anions, meq/L 17.5 13.9 14.1 14.3 14.8 Charge imbalance, percent 0.2 0.9 4.1 1.2 1.6

¹ Except for acidity (mM), mercury (ng/L), methylmercury (ng/L), and δ D and δ ¹⁸O (per mil)

 $^{^{\}rm 2}$ Likely formed arsenic - sulfide precipitate upon acidification; therefore, value may be biased low

Table 6. Results of water analyses for Norris Geyser Basin, 2006–2008—Continued.

			Ragge	d Hills		
Logation	"Succession Spring" drainage channel	"Succession	"Titanic Spring"	"Titanic Spring"	Unnamed pool	Unnamed pool near "Succession Spring"
Location Sample ID	06WA130	Spring" Mat 06WA131	06WA117	07WA114	near the Gap 08WA121	06WA125
Collection Date / Time	5/17/06 12:45	5/17/06 0:00	5/15/06 11:40	9/13/07 11:00	9/23/08 14:20	5/17/06 9:35
Temperature, °C	36.7	25.4	68.0	62.8	91.2	84.0
pH (field / laboratory)	2.78 / 2.99	2.72 / 2.98	3.56 / 3.44	3.10 / 3.00	3.40 / 3.24	4.70 / 4.72
Specific conductance	2.70 / 2.99	2.72 / 2.90	3.30 / 3.44	3.10 / 3.00	3.40 / 3.24	4.70 / 4.72
(field / laboratory), µS/cm	2050 / 2150	2610 / 2780	2100 / 2250	2160 / 2310	1900 / 2170	2380 / 2560
Eh, V			0.321	0.151	0.190	0.242
Density, g/mL at 20°C	0.9990		0.9994	0.9993	0.9996	0.9994
Dissolved oxygen (DO), mg/L						1.1
Constituent, mg/L 1						
Calcium (Ca)	4.62	5.47	5.55	6.04	4.73	6.97
Magnesium (Mg)	0.297	0.284	0.147	0.195	0.068	0.021
Sodium (Na)	271	400	358	348	312	447
Potassium (K)	29.7	50.4	48.5	43.3	38.5	34.8
Strontium (Sr)	0.014	0.022	0.017	0.018	0.016	0.023
Barium (Ba)	0.101	0.087	0.058	0.073	0.141	0.070
Lithium (Li)	2.74	3.98	4.32	4.09	4.25	5.14
Sulfate (SO ₄)	117	135	89.5	176	78.9	27.2
Thiosulfate (S_2O_3)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Polythionate (S _n O ₆), mM	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001
Hydrogen sulfide (H ₂ S)				0.016	0.017	0.002
Alkalinity (HCO ₃)						<1
Acidity (free / total), mM	1.18 / 1.81		0.46 / 0.78	1.21 / 1.62	0.53/ 1.14	
Fluoride (F)	2.89	3.43	4.85	4.44	4.79	6.71
Chloride (Cl)	439	631	556	523	543	713
Bromide (Br)	1.54	1.89	1.86	1.44	1.80	2.49
Nitrate (NO ₃)	< 0.05	< 0.05	< 0.05	0.08	0.11	0.06
Ammonium (NH ₄)	0.669	0.716	1.10	2.29	2.20	0.746
Silica (SiO ₂)	246	280	513	432	265	400
Boron (B)	6.32	9.54	7.88	7.72	7.87	10.3
Aluminum (Al)	3.77	4.04	1.05	1.91	3.08	0.14
Iron total (Fe(T))	0.941	1.83	1.05	4.58	0.810	0.011
Ferrous iron (Fe(II))	0.424	1.81	0.607	4.16	0.810	0.009
Manganese (Mn)	0.042	0.039	0.034	0.046	0.017	0.004
Copper (Cu)	< 0.0005	< 0.0005	<0.0005	<0.0005	< 0.0005	<0.0005
Zinc (Zn)	0.009	0.113	0.014	0.027	<0.004	<0.004
Cadmium (Cd)	< 0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	< 0.0001
Chromium (Cr)	< 0.0005	0.0034	0.0005	<0.0005	0.0009	< 0.0005
Cobalt (Co)	0.0008	0.0032	0.0033	<0.0007	< 0.0007	0.0013
Mercury total (Hg), ng/L	63.0	71.0	30.0	38.0	100	41.0
Methylmercury (CH ₃ Hg), ng/L		1.61		0.10	0.39	
Nickel (Ni)	< 0.0005	< 0.0005	< 0.0005	<0.0005	<0.0005	< 0.0005
Lead (Pb)	<0.0008	0.0011	<0.0008	<0.0008	<0.0008	<0.0008
Beryllium (Be)	0.001	0.002	0.002	0.002	< 0.001	< 0.001
Vanadium (V)	<0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005
Molybdenum (Mo)	<0.007	< 0.007	0.112	0.054	0.008	0.200
Antimony (Sb)	<0.001	< 0.001	0.101	0.021	0.164	0.168
Selenium (Se)	< 0.001	< 0.001	< 0.001	<0.001	<0.001	< 0.001
Arsenic (As)	2.08	2.88	1.62	2.61	3.10	3.06
Arsenite (As(III))	0.076	0.521 ²	0.083	0.403	2.87	0.702
Dissolved organic carbon (DOC)	1.0	15.1	0.5	0.7	0.8	0.7
δD, per mil	-143.22	-128.86	-136.27	-129.61	-132.13	-141.89
δ^{18} O, per mil	-15.72	-12.36	-13.62	-12.23	-12.34	-14.54
sum cations, meg/L	15.3	22.0	18.1	18.3	16.2	21.5
sum anions, meq/L	14.6	20.4	17.6	18.2	16.9	21.1
Charge imbalance, percent	4.7	7.6	2.9	0.8	-4.3	2.0

 $^{^{1}}$ Except for acidity (mM), mercury (ng/L), methylmercury (ng/L), and δD and $\delta^{18}O$ (per mil) 2 Likely formed arsenic - sulfide precipitate upon acidification; therefore, value may be biased low

Table 7. Results of water analyses for Gibbon Canyon and Geyser Springs Group, 2006–2008.

	Gibbon	Canyon		Geyser Springs	
Location	Beryl Spring	Beryl Spring	"Bullseye Spring"	Unnamed pool upslope from "Bullseye Spring"	Unnamed acid pool near "Bullseye Spring"
Sample ID	06WA135	06WA157	07WA108	08WA122	08WA117
Collection Date / Time	5/17/06 19:45	9/14/06 16:45	9/10/07 17:10	9/20/08 12:00	9/20/08 12:45
Temperature, °C	90.7	91.2	74.8	72.9	67.9
pH (field / laboratory)	6.71 / 8.22	6.67 / 7.69	2.19 / 2.35	2.40 / 2.27	2.68 / 2.53
Specific conductance					
(field / laboratory), μS/cm	2040 / 2080	2040 / 2190	1868 / 2950	1940 / 3160	1479 / 2230
Eh, V	-0.030	-0.164	0.087		
Density, g/mL at 20°C	0.9993	0.9993	0.9990	0.9990	0.9992
Dissolved oxygen (DO), mg/L					
Constituent, mg/L ¹					
Calcium (Ca)	3.67	3.74	2.55	2.20	3.25
Magnesium (Mg)	0.012	0.008	0.125	0.151	0.426
Sodium (Na)	409	410	148	136	111
Potassium (K)	17.5	19.8	10.4	11.3	22.8
Strontium (Sr)	0.007	0.007	0.002	0.002	0.011
Barium (Ba)	0.001	0.001	0.001	<0.0008	0.028
Lithium (Li)	4.82	5.52	1.57	1.36	1.12
Sulfate (SO ₄)	62.2	67.8	714	552	673
Thiosulfate (S ₂ O ₃)	<0.1	0.2	<0.1	<0.1	
Polythionate (S _n O ₆), mM	< 0.001	0.001	< 0.001	< 0.001	
Hydrogen sulfide (H ₂ S)	0.39	0.42	0.07		
Alkalinity (HCO ₃)	97.0	111			
Acidity (free / total), mM			6.42 / 7.05	6.01 / 6.96	3.45 / 7.47
Fluoride (F)	17.1	18.4	3.51	2.78	0.589
Chloride (Cl)	523	537	130	115	30.2
Bromide (Br)	1.79	1.66	0.41	0.32	0.09
Nitrate (NO ₃)	0.18	< 0.05	<0.05	0.19	0.09
Ammonium (NH ₄)	0.697	0.08	4.25	4.01	
Silica (SiO ₂)	299	284	221	217	172
Boron (B)	7.14	7.41	1.87	1.55	0.499
Aluminum (Al)	0.16	0.19	5.00	5.05	38.0
Iron total (Fe(T))	<0.002	0.006	0.504	0.478	2.71
Ferrous iron (Fe(II))	<0.002	0.006	0.112	0.092	2.58
Manganese (Mn)	0.015	0.016	0.029	0.029	0.066
Copper (Cu)	<0.0005	0.0010	0.0007	< 0.0005	<0.0005
Zinc (Zn)	<0.004	< 0.004	0.016	0.011	0.135
Cadmium (Cd)	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Chromium (Cr)	<0.0001	< 0.0001	< 0.0001	< 0.0005	0.0029
Cobalt (Co)	<0.0007	< 0.0007	< 0.0007	< 0.0003	< 0.0027
Mercury total (Hg), ng/L	88.0	71.0	130	28.3	
Methylmercury (CH ₃ Hg), ng/L		0.06	0.06	0.13	
Nickel (Ni)	<0.0005	0.0017	< 0.0005	< 0.0005	0.0080
Lead (Pb)	<0.0008	<0.0008	< 0.0008	<0.0008	0.0080
Beryllium (Be)	0.000	0.000	0.001	0.001	0.003
Vanadium (V)	<0.001	<0.001	<0.005	< 0.001	< 0.005
Molybdenum (Mo)	0.131	0.136	0.014	0.005	<0.005
Antimony (Sb)	0.080	0.136	0.014	0.017	0.007
Selenium (Se)	< 0.001	0.095	<0.032	< 0.001	< 0.003
()	<0.001 2.90	2.79		<0.001 0.501	
Arsenic (As)	2.90 2.45 ²	2.79 2.49 ²	0.637		0.086
Arsenite (As(III))			0.099	0.033	0.062
Dissolved organic carbon (DOC)	0.8	0.8	0.8	0.6	
δD, per mil	-138.05	-137.33	-126.43	-128.22	
δ^{18} 0, per mil	-14.52	-14.57	-11.31	-11.95	
sum cations, meq/L	19.1	19.3	14.8	11.4	9.9
sum anions, meq/L	18.6	19.3	14.0	11.9	10.7
Charge imbalance, percent	2.9	-0.2	5.7	-4.1	-8.0

 $^{^1}$ Except for acidity (mM), mercury (ng/L), methylmercury (ng/L), and δD and $\delta^{18}O$ (per mil)

 $^{^{\}rm 2}$ Likely formed arsenic - sulfide precipitate upon acidification; therefore, value may be biased low

Table 8. Results of water analyses for the Crater Hills area, 2006–2008.

	Crater Hills							
	Unnamed acid po							
		611 6 1	Unnamed pool near	near Sulphur				
Location	Sulphur Spring	Sulphur Spring	Sulphur Spring	Spring				
Sample ID	07WA111	08WA115	07WA112	08WA116				
Collection Date / Time	9/11/07 15:15	9/19/08 13:30	9/11/07 16:30	9/19/08 15:00				
Γemperature, °C	87.8	87.2	82.0	73.8				
pH (field / laboratory) Specific conductance	3.86 / 3.83	3.75 / 3.46	2.27 / 2.31	2.72 / 2.62				
field / laboratory), μS/cm	3450 / 3800	3440 / 3750	1680 / 3240	3460 / 4300				
Eh, V	-0.029	0.110	0.179	0.210				
Density, g/mL at 20°C	1.0004	1.0003	0.9988	1.0002				
Dissolved oxygen (DO), mg/L								
Constituent, mg/L ¹								
Calcium (Ca)	6.18	5.63	0.630	9.41				
Magnesium (Mg)	0.343	0.300	0.231	6.53				
Sodium (Na)	625	576	1.41	500				
Potassium (K)	106	117	1.38	94.3				
Strontium (Sr)	0.100	0.105	0.021	0.129				
Barium (Ba)	0.071	0.076	0.060	0.056				
Lithium (Li)	6.25	5.67	0.002	4.91				
Sulfate (SO ₄)	454	425	787	650				
Γhiosulfate (S ₂ O ₃)	1.6	1.4	<0.1	0.2				
Polythionate (S _n O ₆), mM	< 0.001	< 0.001	< 0.001	< 0.001				
Hydrogen sulfide (H ₂ S)	1.21	1.03	0.16	0.73				
Alkalinity (HCO ₃)								
Acidity (free / total), mM	0.81 / 1.79	0.67 / 1.88	8.50 / 8.77	2.62 / 5.66				
fluoride (F)	38.1	37.3	0.039	18.7				
Chloride (Cl)	848	802	1.80	695				
Bromide (Br)	2.50	3.04	0.08	2.88				
Vitrate (NO ₃)	0.07	0.34	0.42	0.05				
Ammonium (NH ₄)	17.3	16.8	83.1	16.9				
Silica (SiO ₂)	694	743	127	452				
Boron (B)	25.2	23.5	0.174	19.8				
Aluminum (Al)	6.15	5.92	2.97	17.9				
ron total (Fe(T))	0.154	0.141	0.588	0.704				
Ferrous iron (Fe(II))	0.149	0.141	0.588	0.704				
Manganese (Mn)	0.234	0.226	0.010	0.634				
Copper (Cu)	< 0.0005	< 0.0005	0.0008	< 0.0005				
Zinc (Zn)	0.009	0.004	0.026	0.039				
Cadmium (Cd)	< 0.0001	< 0.0001	< 0.0001	< 0.0001				
Chromium (Cr)	0.0011	0.0007	0.0031	0.0020				
Cobalt (Co)	< 0.0007	< 0.0007	< 0.0007	< 0.0007				
Mercury total (Hg), ng/L	7.6	6.4	380	35.8				
Methylmercury (CH3Hg), ng/L	0.18	0.42	1.09	0.12				
Nickel (Ni)	< 0.0005	< 0.0005	0.0045	< 0.0005				
ead (Pb)	<0.0008	0.0050	0.0059	0.0080				
Beryllium (Be)	0.014	0.013	< 0.001	0.014				
anadium (V)	< 0.005	< 0.005	< 0.005	0.007				
Nolybdenum (Mo)	< 0.007	< 0.007	< 0.007	< 0.007				
Antimony (Sb)	0.150	0.090	0.001	0.002				
elenium (Se)	< 0.001	< 0.001	< 0.001	< 0.001				
Arsenic (As)	5.87	5.57	0.032	4.45				
Arsenite (As(III))	5.61 ²	4.87 ²	< 0.0005	3.86^{2}				
Dissolved organic carbon (DOC)	1.0	1.0	6.0	1.0				
SD, per mil	-124.94	-126.58	-109.32	-116.88				
S ¹⁸ O, per mil	-12.31	-12.38	-6.83	-8.04				
sum cations, meq/L	31.8	30.0	10.9	29.4				
sum anions, meq/L	33.6	31.7	11.3	30.7				
Charge imbalance, percent	-5.5	-5.3	-4.2	-4.4				

¹ Except for acidity (mM), mercury (ng/L), methylmercury (ng/L), and δD and $\delta^{18}O$ (per mil)

² Likely formed arsenic - sulfide precipitate upon acidification; therefore, value may be biased low

Table 9. Results of water analyses for Ojo Caliente Spring and its discharge channel, Lower Geyser Basin, 2006–2008.

Location Sample ID	Ojo Caliente Spring at discharge 06WA160	Ojo Caliente Spring at pool exit 06WA161	Ojo Caliente Spring 7.5 m downstream from pool exit 06WA162	Ojo Caliente Spring 20.6 m downstream from pool exit 06WA163	Ojo Caliente Spring at midpoint of pool 08WA113
Collection Date / Time	9/16/06 9:52	9/16/06 9:55	9/16/06 9:59	9/16/06 15:10	9/18/08 17:20
Temperature, °C	93.2	91.4	86.8	74.8	93.2
pH (field / laboratory) Specific conductance	7.44 / 8.32	7.52 / 8.33	7.61 / 8.46	/ 8.63	7.61 / 8.41
(field / laboratory), μS/cm	1470 / 1577	1495 / 1578	1530 / 1587	1590 / 1618	1470 / 1562
Eh, V	-0.125	0.0001	0.0002	0.0003	0.0000
Density, g/mL at 20°C Dissolved oxygen (DO), mg/L	0.9991	0.9991	0.9992	0.9992	0.9990
Constituent. mg/L ¹					
Calcium (Ca)	0.848	0.867	0.834	0.850	0.792
Magnesium (Mg)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Sodium (Na)	318	323	326	336	317
Potassium (K)	9.30	9.18	9.41	9.32	8.91
Strontium (Sr)	0.006	0.006	0.006	0.006	0.006
Barium (Ba)	<0.0008	<0.0008	<0.0008	<0.0008	< 0.0008
Lithium (Li)	3.52	3.58	3.61	3.72	3.41
Sulfate (SO ₄)	21.9	21.6	21.4	22.7	23.2
Thiosulfate (S ₂ O ₃)	0.2	0.1	0.2	0.2	0.4
Polythionate (S _n O ₆), mM	0.001	< 0.001	< 0.001	< 0.001	
Hydrogen sulfide (H ₂ S)	0.86	0.96	0.59	0.12	0.86
Alkalinity (HCO ₃)	231	232	235	239	228
Acidity (free / total), mM					
Fluoride (F)	30.7	34.5	34.5	31.4	35.2
Chloride (Cl)	310	318	319	324	320
Bromide (Br)	1.07	1.01	1.07	1.04	1.05
Nitrate (NO ₃)	< 0.05	<0.05	<0.05	<0.05	0.15
Ammonium (NH ₄)	< 0.07	<0.07	<0.07	<0.07	0.530
Silica (SiO ₂)	259	257	263	263	270
Boron (B)	4.07	4.13	4.09	4.20	3.96
Aluminum (Al)	0.25	0.26	0.25	0.26	0.26
Iron total (Fe(T))	0.003	0.007	0.008	0.002	0.004
Ferrous iron (Fe(II))	0.003	0.007	0.006	0.001	0.004
Manganese (Mn)	< 0.001	<0.001	<0.001	<0.001	< 0.001
Copper (Cu)	< 0.0005	< 0.0005	< 0.0005	< 0.0005	0.0006
Zinc (Zn)	< 0.004	<0.004	<0.004	<0.004	< 0.004
Cadmium (Cd)	<0.001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Chromium (Cr)	< 0.0005	< 0.0005	< 0.0001	< 0.0005	< 0.0005
Cobalt (Co)	<0.0007	<0.0007	0.0007	< 0.0007	< 0.0003
Mercury total (Hg), ng/L	200	60.0	51.0	31.0	31.6
Methylmercury (CH ₃ Hg), ng/L	0.04	0.04	0.04	0.04	
Nickel (Ni)	< 0.0005	< 0.0005	< 0.0005	< 0.0005	<0.0005
Lead (Pb)	<0.0003	<0.0008	<0.0003	<0.0008	<0.0003
Beryllium (Be)	0.001	0.000	0.000	0.000	< 0.000
Vanadium (V)	<0.005	<0.005	<0.001	<0.001	< 0.005
Molybdenum (Mo)	0.036	0.038	0.040	0.042	0.034
Antimony (Sb)	0.036	0.036	0.040	0.042	0.034
Selenium (Se)	<0.001	<0.001	<0.001	0.007	< 0.010
` '					
Arsenic (As)	1.30 1.02^{2}	1.43 1.10^{2}	1.50	1.57 1.31 ²	1.27 0.831^2
Arsenite (As(III))			1.242		
Dissolved organic carbon (DOC)	0.9	0.5	0.5	0.6	0.7
δD, per mil	-140.61	-140.82	-140.58	-139.61	-140.15
δ^{18} O, per mil sum cations, meg/L	-16.49 14.6	-16.52 14.8	-16.43 14.9	-16.18 15.3	-16.51 14.6
, ,,					
sum anions, meq/L Charge imbalance, percent	14.6 -0.3	15.0 -1.4	15.1 -0.9	15.0 1.6	15.1 -3.5

 $[\]frac{\text{Charge imbalance, percent}}{^{1}\text{Except for acidity (mM), mercury (ng/L), methylmercury (ng/L), and }\delta D \text{ and }\delta^{18}O \text{ (per mil)}}$

² Likely formed arsenic - sulfide precipitate upon acidification; therefore, value may be biased low

Table 9. Results of water analyses for Ojo Caliente Spring and its discharge channel, Lower Geyser Basin, 2006–2008—Continued.

	Ojo Caliente Spring source, 50 feet	Ojo Caliente Spring	Ojo Caliente Spring 13.8 m downstream		Ojo Caliente Spring 25.9 m downstream
Location	below surface	at pool exit	from pool exit	from pool exit	from pool exit
Sample ID	08WA112	08WA111	08WA110	08WA109	08WA108
Collection Date / Time	9/18/08 15:15	9/18/08 14:00	9/18/08 12:00	9/18/08 11:00	9/18/08 10:20
Temperature, °C		91.9	84.2	75.4	67.5
pH (field / laboratory)	7.60 / 8.44	7.55 / 8.44	7.70 / 8.44	7.82 / 8.58	8.17 / 8.68
Specific conductance (field / laboratory), µS/cm	1523 / 1552	1481 / 1570	1517 / 1578	1556 / 1601	1594 / 1624
Eh, V					0.110
Density, g/mL at 20°C	0.9990	0.9990	0.9991	0.9990	0.9990
Dissolved oxygen (DO), mg/L			0.1	1.7	2.6
Constituent, mg/L 1					
Calcium (Ca)	0.803	0.806	0.793	0.812	0.819
Magnesium (Mg)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Sodium (Na)	311	336	328	327	336
Potassium (K)	8.02	8.44	8.59	8.99	9.33
Strontium (Sr)	0.006	0.006	0.006	0.006	0.006
Barium (Ba)	<0.008	<0.0008	<0.008	<0.008	<0.0008
	3.42	3.43	3.48	3.55	3.54
Lithium (Li)	22.3				
Sulfate (SO ₄)		21.8	21.8	22.4	23.4
Thiosulfate (S ₂ O ₃)	0.4	0.5	0.7	0.8	0.4
Polythionate (S _n O ₆), mM					
Hydrogen sulfide (H ₂ S)	0.95	0.88	0.63	0.06	0.03
Alkalinity (HCO ₃)	226	229	230	233	236
Acidity (free / total), mM					
Fluoride (F)	35.1	35.4	35.8	36.5	37.0
Chloride (Cl)	322	322	326	330	339
Bromide (Br)	1.16	0.98	1.00	1.00	1.24
Nitrate (NO ₃)	0.17	0.17	0.18	0.18	0.25
Ammonium (NH ₄)	0.540	0.620	0.550	0.450	0.370
Silica (SiO ₂)	244	229	225	237	256
Boron (B)	3.88	3.97	3.99	4.09	4.18
Aluminum (Al)	0.27	0.28	0.26	0.27	0.27
Iron total (Fe(T))	<0.002	<0.002	0.005	<0.002	0.005
Ferrous iron (Fe(II))	<0.002	<0.002	0.005	<0.002	0.004
Manganese (Mn)	<0.001	<0.001	<0.001	<0.001	<0.001
Copper (Cu)	<0.0005	<0.0005	<0.0005	<0.0005	< 0.0005
Zinc (Zn)	<0.004	< 0.004	< 0.004	< 0.004	< 0.004
Cadmium (Cd)	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Chromium (Cr)	< 0.0005	< 0.0005	<0.0005	<0.0005	< 0.0005
Cobalt (Co)	< 0.0007	< 0.0007	< 0.0007	< 0.0007	< 0.0007
Mercury total (Hg), ng/L	30.0	33.4	35.6	27.0	20.2
Methylmercury (CH ₃ Hg), ng/L					
Nickel (Ni)	< 0.0005	<0.0005	< 0.0005	< 0.0005	< 0.0005
Lead (Pb)	<0.0008	<0.0008	<0.0008	<0.0008	< 0.0008
Beryllium (Be)	0.001	0.001	< 0.001	< 0.001	< 0.001
Vanadium (V)	<0.005	< 0.005	< 0.005	< 0.005	< 0.005
Molybdenum (Mo)	0.037	0.037	0.038	0.042	0.039
Antimony (Sb)	0.026	0.037	0.063	0.065	0.068
Selenium (Se)	<0.001	<0.001	<0.001	<0.003	< 0.001
Arsenic (As)	1.34	1.37	1.40	1.43	1.47
	0.566^2	0.866^{2}	1.40 1.15^2	1.43 1.04^2	0.307^2
Arsenite (As(III))					
Dissolved organic carbon (DOC)	0.7	0.6	0.6	0.5	1.2
δD, per mil	-141.01	-140.03	-138.72	-137.48	-137.47
δ^{18} 0, per mil	-16.47	-16.41	-16.28	-16.09	-15.89
sum cations, meq/L	14.3	15.3	15.0	15.0	15.4
sum anions, meq/L	15.1	15.1	15.3	15.5	15.9
Charge imbalance, percent	-5.4	1.5	-1.8	-3.1	-3.0

¹ Except for acidity (mM), mercury (ng/L), methylmercury (ng/L), and δ D and δ ¹⁸O (per mil) ² Likely formed arsenic - sulfide precipitate upon acidification; therefore, value may be biased low

Table 10. Results of water analyses for the Porcupine Hills area, 2006–2008.

		Unnamed hot spring,	Unnamed hot spring,	Unnamed hot spring,
Location	Snort Geyser	Morning Mist Group	Quagmire Group	Quagmire Group
Sample ID	06WA173	06WA170	06WA171	06WA172
Collection Date / Time	9/19/06 14:35	9/19/06 10:45	9/19/06 12:15	9/19/06 13:55
Temperature, °C	92.0	75.2	93.8	65.9
pH (field / laboratory)	8.73 / 9.40	9.17 / 9.61	7.64 / 8.16	6.68 / 7.89
Specific conductance				
(field / laboratory), μS/cm	1450 / 1542	1557 / 1588	1310 / 1398	1638 / 1565
Eh, V	-0.185	-0.086	-0.145	0.136
Density, g/mL at 20°C	0.9991	0.9991	0.9990	0.9991
Dissolved oxygen (DO), mg/L				
Constituent, mg/L ¹				
Calcium (Ca)	1.35	0.791	1.40	1.26
Magnesium (Mg)	< 0.001	< 0.001	< 0.001	< 0.001
Sodium (Na)	311	323	278	311
Potassium (K)	10.6	8.55	8.43	9.76
Strontium (Sr)	0.003	0.003	0.001	0.003
Barium (Ba)	<0.0008	0.001	<0.0008	0.001
Lithium (Li)	3.46	3.43	3.23	2.76
Sulfate (SO ₄)	17.9	19.3	19.3	55.0
Thiosulfate (S ₂ O ₃)	<0.1	0.3	<0.1	<0.1
Polythionate (S_nO_6) , mM	< 0.001	< 0.001	< 0.001	< 0.001
Hydrogen sulfide (H ₂ S)	0.83	0.03	0.28	
Alkalinity (HCO ₃)	170	252	133	144
Acidity (free / total), mM				
Fluoride (F)	30.8	31.0	29.0	28.6
Chloride (Cl)	335	302	310	330
Bromide (Br)	1.13	0.96	0.99	1.03
Nitrate (NO ₃)	< 0.05	< 0.05	< 0.05	< 0.05
Ammonium (NH ₄)	< 0.07	0.170	< 0.07	< 0.07
Silica (SiO ₂)	206	218	240	239
Boron (B)	4.46	4.10	4.07	4.43
Aluminum (Al)	0.12	0.12	0.15	0.13
Iron total (Fe(T))	0.006	0.011	0.007	0.005
Ferrous iron (Fe(II))	0.006	0.009	0.006	0.001
Manganese (Mn)	< 0.001	< 0.001	< 0.001	0.001
Copper (Cu)	< 0.0005	0.0020	< 0.0005	< 0.0005
Zinc (Zn)	< 0.004	< 0.004	< 0.004	0.007
Cadmium (Cd)	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Chromium (Cr)	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Cobalt (Co)	< 0.0007	< 0.0007	< 0.0007	< 0.0007
Mercury total (Hg), ng/L	100	73.0	118	47.0
Methylmercury (CH ₃ Hg), ng/L	0.04	0.04	0.04	0.04
Nickel (Ni)	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Lead (Pb)	<0.0008	<0.0008	<0.0008	<0.0008
Beryllium (Be)	< 0.001	< 0.001	< 0.001	< 0.001
Vanadium (V)	< 0.005	< 0.005	< 0.005	< 0.005
Molybdenum (Mo)	0.164	0.105	0.149	0.095
Antimony (Sb)	0.093	0.062	0.081	0.123
Selenium (Se)	< 0.001	0.001	< 0.001	0.002
Arsenic (As)	1.69	1.35	1.56	2.08
Arsenite (As(III))	1.35^{2}	0.402^{2}	1.34^{2}	0.069^2
Dissolved organic carbon (DOC)	0.6	0.8	0.6	8.0
δD , per mil	-141.17	-140.51	-139.67	-132.92
δ^{18} O, per mil	-16.52	-16.18	-16.21	-13.13
sum cations, meq/L	14.2	14.6	12.8	14.2
sum anions, meq/L	14.2	14.5	12.9	14.3
Charge imbalance, percent	0.4	0.4	-0.4	-0.7

 $^{^1}$ Except for acidity (mM), mercury (ng/L), methylmercury (ng/L), and δD and $\delta^{18}O$ (per mil)

 $^{^{\}rm 2}$ Likely formed arsenic - sulfide precipitate upon acidification; therefore, value may be biased low

Table 10. Results of water analyses for the Porcupine Hills area, 2006–2008—Continued.

Location	Unnamed hot spring, Quagmire Group	Unnamed hot spring, Quagmire Group	Unnamed hot spring, Quagmire Group	Quagmire Group
Sample ID	06WA174	08WA132	08WA133	08WA134
Collection Date / Time	9/19/06 15:20	9/24/08 16:15	9/24/08 17:08	9/24/08 18:00
Temperature, °C	84.8	92.9	65.6	92.3
pH (field / laboratory)	8.68 / 9.23	7.56 / 8.30	6.94 / 8.27	8.59 / 9.02
Specific conductance (field / laboratory), μS/cm	1400 / 1452	1303 / 1371	1500 / 1525	1340 / 1424
Eh, V	-0.124	0.000		-0.050
Density, g/mL at 20°C	0.9990	0.9989	0.9990	0.9989
Dissolved oxygen (DO), mg/L				
Constituent, mg/L ¹				
Calcium (Ca)	1.17	1.38	1.21	1.15
Magnesium (Mg)	< 0.001	0.001	0.001	0.002
Sodium (Na)	295	260	289	274
Potassium (K)	8.40	6.49	8.21	7.57
Strontium (Sr)	0.003	0.002	0.003	0.003
Barium (Ba)	< 0.0008	<0.0008	<0.0008	<0.0008
Lithium (Li)	2.38	3.13	2.70	2.37
Sulfate (SO ₄)	20.6	20.8	55.3	22.0
Γhiosulfate (S_2O_3)	0.2	0.6	<0.1	0.2
Polythionate (S_nO_6) , mM	< 0.001			
Hydrogen sulfide (H ₂ S)	0.27	0.44	0.001	0.50
Alkalinity (HCO ₃)	196	128	143	187
Acidity (free / total), mM				
Fluoride (F)	27.5	34.0	33.6	30.2
Chloride (Cl)	300	299	311	292
Bromide (Br)	0.95	1.04	1.02	0.90
Nitrate (NO ₃)	<0.05	0.21	0.24	0.23
Ammonium (NH ₄)	<0.07	0.140	0.190	0.170
Silica (SiO ₂)	190	212	231	212
Boron (B)	3.88	3.86	4.23	3.78
Aluminum (Al)	0.16	0.15	0.18	0.17
ron total (Fe(T))	0.009	<0.002	<0.002	<0.002
Ferrous iron (Fe(II))	0.006	<0.002	<0.002	< 0.002
Manganese (Mn)	< 0.001	0.002	0.002	< 0.002
Copper (Cu)	< 0.001	< 0.002	< 0.002	0.0001
Zinc (Zn)	< 0.0003	< 0.004	<0.004	< 0.004
	< 0.0001	< 0.0001	< 0.004	
Cadmium (Cd)				< 0.0001
Chromium (Cr)	< 0.0005	<0.0005	<0.0005	< 0.0005
Cobalt (Co)	< 0.0007	<0.0007	<0.0007	< 0.0007
Mercury total (Hg), ng/L	57.0	74.4	42.1	31.3
Methylmercury (CH ₃ Hg), ng/L	0.04			
Nickel (Ni)	<0.0005	<0.0005	<0.0005	< 0.0005
Lead (Pb)	<0.0008	<0.0008	<0.0008	< 0.0008
Beryllium (Be)	<0.001	<0.001	<0.001	<0.001
Vanadium (V)	<0.005	<0.005	<0.005	<0.005
Molybdenum (Mo)	0.173	0.147	0.092	0.167
Antimony (Sb)	0.085	0.098	0.121	0.096
Selenium (Se)	<0.001	<0.001	<0.001	< 0.001
Arsenic (As)	1.56	1.50	1.95	1.52
Arsenite (As(III))	1.35^{2}	1.28^{2}	0.094^{2}	1.16^{2}
Dissolved organic carbon (DOC)	0.7	1.1	0.8	1.3
SD, per mil	-140.49	-139.59	-132.54	-142.38
S ¹⁸ O, per mil	-16.14	-16.22	-13.01	-16.25
sum cations, meq/L	13.3	12.0	13.2	12.4
sum anions, meq/L	13.4	12.8	14.0	13.3
Charge imbalance, percent	-1.2	-6.4	-6.0	-7.0

¹ Except for acidity (mM), mercury (ng/L), methylmercury (ng/L), and δD and $\delta^{18}O$ (per mil) ² Likely formed arsenic - sulfide precipitate upon acidification; therefore, value may be biased low

Table 11. Results of water analyses for Midway Geyser Basin and the Rabbit Creek area, 2006–2008.

	-Midway Geyser Basin-		Rabbit Creek areaRabbit Creek			
		·	Unnamed hot	Unnamed hot	Unnamed hot	
		Unnamed hot	spring drainage	spring drainage	spring drainage	
ocation	Excelsior Geyser Crater	spring	channel	channel	channel	
ample ID	07WA148	06WA113	06WA114	06WA114B	06WA114C	
ollection Date / Time	9/19/07 10:30	5/14/06 11:15	5/14/06 13:00	5/14/06 13:00	5/14/06 13:00	
emperature, °C	88.7	85.8	84.0	69.5	61.8	
H (field / laboratory)	7.68 / 8.59	9.19 / 9.68	9.21 / 9.77	9.21 / 9.76	9.29 / 9.80	
pecific conductance						
ield / laboratory), μS/cm	1663 / 1691	1530 / 1601	1600 / 1677	1690 / 1690	1725 / 1788	
h, V	-0.165	0.068	0.046			
ensity, g/mL at 20°C	0.9993	0.9992	0.9991	0.9993	0.9992	
issolved oxygen (DO), mg/L						
onstituent, mg/L ¹						
alcium (Ca)	1.54	0.347	0.308	0.326	0.340	
agnesium (Mg)	0.007	0.001	0.001	< 0.001	< 0.001	
odium (Na)	374	323	343	353	369	
otassium (K)	12.3	10.5	10.3	10.7	11.1	
crontium (Sr)	0.006	0.002	0.002	0.002	0.002	
arium (Ba)	0.003	<0.0008	<0.0008	<0.0008	<0.0008	
thium (Li)	2.37	3.60	3.91	4.08	4.17	
ılfate (SO ₄)	15.0	21.6	19.5	20.2	21.0	
hiosulfate (S ₂ O ₃)	<0.1	0.7	0.8	0.8	<0.1	
olythionate (S_nO_6), mM	<0.001	< 0.001	< 0.001	< 0.001	< 0.001	
ydrogen sulfide (H ₂ S)	0.011	0.009	0.005	< 0.002		
lkalinity (HCO ₃)	503	339	349	363	377	
cidity (free / total), mM						
uoride (F)	26.0	26.2	27.0	28.6	29.8	
hloride (Cl)	258	260	266	278	284	
romide (Br)	0.84	1.98	1.06	1.12	1.13	
trate (NO ₃)	0.14	0.18	0.38	0.11	< 0.05	
nmonium (NH ₄)	< 0.07	0.317	0.415			
lica (SiO ₂)	288	319	300	263	264	
oron (B)	3.01	2.73	2.95	3.03	3.13	
uminum (Al)	0.27	0.18	0.18	0.22	0.22	
on total (Fe(T))	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	
errous iron (Fe(II))	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	
anganese (Mn)	0.011	< 0.001	< 0.001	< 0.001	< 0.001	
opper (Cu)	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	
nc (Zn)	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	
admium (Cd)	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	
hromium (Cr)	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	
obalt (Co)	< 0.0007	< 0.0007	< 0.0007	< 0.0007	< 0.0007	
ercury total (Hg), ng/L	48.0	45.0	45.0	35.0	16.0	
ethylmercury (CH ₃ Hg), ng/L	80.0					
ickel (Ni)	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	
ead (Pb)	< 0.0008	< 0.0008	< 0.0008	<0.0008	< 0.0008	
eryllium (Be)	0.003	< 0.001	< 0.001	< 0.001	< 0.001	
anadium (V)	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	
olybdenum (Mo)	0.031	0.030	0.029	0.030	0.019	
atimony (Sb)	0.067	0.082	0.086	0.000	0.000	
lenium (Se)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
rsenic (As)	1.87	1.54	1.67	1.77	1.81	
rsenite (As(III))	0.064	0.225^{2}	0.250^{2}	0.194^{2}	0.084^{2}	
issolved organic carbon (DOC)	1.2	1.3	1.3			
D, per mil	-141.12	-141.24	-141.37	-141.13	-138.87	
¹⁸ O, per mil	-16.37	-16.14	-16.07	-15.81	-15.29	
ım cations, meq/L	16.9	14.5	15.4	15.8	16.6	
ım anions, meq/L	17.1	14.5	14.7	15.3	15.8	
narge imbalance, percent	-1.4	0.4	4.3	3.1	4.6	

 $^{^{1}}$ Except for acidity (mM), mercury (ng/L), methylmercury (ng/L), and δD and $\delta^{18}O$ (per mil)

² Likely formed arsenic - sulfide precipitate upon acidification; therefore, value may be biased low

Table 11. Results of water analyses for Midway Geyser Basin and the Rabbit Creek area, 2006–2008—Continued.

Location Unamed to spring channel cha		
Location channel spring spring of Wahl16 Colwal 116 Colwal 117 Colwal 116 Colwal 117 Colwal 116 Colwal 116 Colwal 116 Colwal 116 Colwal 116 Colwal 117 Colwal 117 Colwal 117 Colwal 11		Unnamed hot
Sample ID		spring drainage
Collection Date / Time	channel	channel
Temperature, °C 54.6 54.3 93.4 75.1 plf (field / laboratory) 9.32 / 9.83 8.70 / 8.91 7.69 / 8.48 7.73 / 8.39 Specific conductance (field / laboratory), μ/cm 1763 / 1800 1197 / 1198 1320 / 1426 1400 / 1427 Eh, V 0.275 0.083 Density, g/m Lat 20°C 0.9992 0.9990 0.9990 0.9991 Dissolved oxygen (DO), mg/L 2.5 Calcium (Ca) 0.332 0.806 0.615 0.692 Magnesium (Mg) 0.001 0.048 0.044 0.058 Sodium (Na) 370 236 289 301 Potassium (K) 11.7 9.70 8.47 8.55 Strontium (Sr) 0.002 0.002 0.003 0.004 Barium (Ba) <0.002 0.002 0.003 0.000 Barium (Ba) <0.002 0.003 <0.0008 Sulfate (SO ₄) 0.1 4.0.1	06WA116C	06WA116D
pH (field / laboratory) Specific conductance (field / laboratory), µS/cm		5/14/06 18:20
Specific conductance (field / laboratory), μS/cm	68.2	63.2
(field J laboratory), µS/cm 1763 / 1800 1197 / 1198 1320 / 1426 1400 / 1427 Eh, V 0.9992 0.9990 0.9990 0.9991 Dissolved oxygen (DO), mg/L 2.5 Constituent, mg/L 2.5 Calcium (Ga) 0.332 0.806 0.615 0.692 Magnesium (Mg) <0.001	8.07 / 8.46	8.17 / 8.68
Eh, V 0.275 0.083 Density, g/mL at 20°C 0.9992 0.9990 0.9990 0.9991 0.9991 Dissolved oxygen (DO), mg/L 2.5 Constituent mg/L¹ Calcium (Ga) 0.332 0.806 0.615 0.692 Magnesium (Mg) 0.001 0.048 0.044 0.058 Sodium (Na) 370 236 289 301 Potassium (K) 11.7 9.70 8.47 8.55 Strontium (Sr) 0.002 0.002 0.003 0.004 Barrium (Ba) 0.0008 0.0008 0.0008 0.0008 Lithium (Li) 4.24 2.43 2.95 3.04 Sulfate (SO ₄) 23.0 16.4 12.8 12.9 Thiosulfate (SO ₂) 0.01 0.001 0.001 0.001 0.001 Hydrogen sulfide (H ₂ S) 0.002 0.007 0.001 Polythionate (S,O ₆), mM 0.001 0.001 0.001 0.001 Hydrogen sulfide (H ₂ S) 0.002 0.007 0.001 Rikalinity (HCO ₃) 378 252 355 3.60 Actidity (free / total), mM	4400 /4454	4444 /4460
Density, g/mL at 20°C 0.9992 0.9990 0.9990 0.9991 Dissolved oxygen (DO), mg/L 2.5 Constituent, mg/L² Calcium (Ca) 0.332 0.806 0.615 0.692 Magnesium (Mg) <0.001	1420 / 1454	1444 / 1468
Dissolved oxygen (DO), mg/L 2.5 Constituent, mg/L Calcitum (Ca) 0.332 0.806 0.615 0.692 Magnesium (Mg) <0.001		
Constituent mg/L¹ Calcium (Ca) 0.332 0.806 0.615 0.692 Calcium (Ca) 0.332 0.806 0.044 0.058 Sodium (Na) 370 236 289 301 Potassium (K) 11.7 9.70 8.47 8.55 Strontium (Sr) 0.002 0.002 0.003 0.004 Barium (Ba) <0.0008 <0.0008 <0.0008 <0.0008 <0.0008 Lithium (Li) 4.24 2.43 2.95 3.04 Sulfate (SO₄) 23.0 16.4 12.8 12.9 Thiosulfate (S,O₄) <0.1 <0.1 <0.1 0.9 0.7 Polythionate (S,O₄) <0.01 <0.01 <0.001 <0.001 <0.001 Hydrogen sulfide (H₂S) <0.002 0.007 Acidity (free / total), mM <0.002 0.007 Alkalinity (HCO₃) 378 252 355 360 Roride (F) 30.0 <	0.9990	0.9992
Calcium (Ca) 0.332 0.806 0.615 0.692 Magnesium (Mg) <0.001		
Magnesium (Mg) <0.001 0.048 0.044 0.058 Sodium (Na) 370 236 289 301 Potassium (K) 11.7 9.70 8.47 8.55 Strontium (Sr) 0.002 0.002 0.003 0.004 Barium (Ba) <0.0008		
Sodium (Na) 370 236 289 301 Potassium (K) 11.7 9.70 8.47 8.55 Strontium (Sr) 0.0002 0.002 0.003 0.004 Barium (Ba) <0.0008	0.688	0.706
Potassium (K) 11.7 9.70 8.47 8.55 Strontium (Sr) 0.002 0.002 0.003 0.004 Barrium (Ba) <0.0008 <0.0008 <0.0008 <0.0008 Lithium (Li) 4.24 2.43 2.95 3.04 Sulfate (SO ₄) 23.0 16.4 12.8 12.9 Thiosulfate (SO ₂) <0.1 <0.1 0.9 0.7 Polythionate (S ₂ O ₃), mM <0.001 <0.001 <0.001 <0.001 <0.001 Hydrogen sulfide (H ₂ S) <0.002 0.007 <0.002 Alkalinity (HCO ₃) 378 252 355 360 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <t< td=""><td>0.058</td><td>0.059</td></t<>	0.058	0.059
Strontium (Sr) 0.002 0.002 0.003 0.004 Barium (Ba) <0.0008	304	315
Barium (Ba) <0.0008 <0.0008 <0.0008 Lithium (Li) 4.24 2.43 2.95 3.04 Sulfate (SQ ₄) 23.0 16.4 12.8 12.9 Thiosulfate (SQ ₃) <0.1	8.55	8.89
Lithium (Li) 4.24 2.43 2.95 3.04 Sulfate (SO ₄) 23.0 16.4 12.8 12.9 Thiosulfate (SO ₂) 23.0 16.4 12.8 12.9 Thiosulfate (SO ₂) 0.01 0.01 0.01 0.00	0.004	0.004
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<0.0008	< 0.0008
Thiosulfate (S_2O_3) , mM $$ <0.01 <0.1 <0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	3.09	3.15
Polythionate (S ₀ O ₆), mM <0.001 <0.001 <0.001 Hydrogen sulfide (H ₂ S) <0.002	14.2	12.8
Hydrogen sulfide (H₂S)	<0.1	< 0.1
Alkalinity (HCO ₃) 378 252 355 360 Acidity (free / total), mM	< 0.001	< 0.001
Alkalinity (HCO ₃) 378 252 355 360 Acidity (free / total), mM		
Acidity (free / total), mM Fluoride (F) 30.0 21.5 21.0 22.1 Chloride (Cl) 295 188 210 208 Bromide (Br) 1.10 0.76 0.76 0.82 Nitrate (NO ₃) 1.60 0.84 0.11 0.09 Ammonium (NH ₄) 0.173 0.261 Silica (SiO ₂) 270 187 230 193 Boron (B) 3.12 2.02 2.20 2.32 Aluminum (Al) 0.23 0.096 0.25 0.31 Iron total (Fe(T)) <0.002 0.017 0.006 0.006 Ferrous iron (Fe(II)) <0.002 0.017 0.006 0.006 Copper (Cu) 0.0005 0.0005 0.0005 0.0006 Cadmium (Cd) 0.0001	365	366
Fluoride (F) 30.0 21.5 21.0 22.1 Chloride (Cl) 295 188 210 208 Bromide (Br) 1.10 0.76 0.76 0.82 Nitrate (NO ₃) 1.60 0.84 0.11 0.09 Ammonium (NH ₄) 0.173 0.261 Slica (SiO ₂) 270 187 230 193 Boron (B) 3.12 2.02 2.20 2.32 Aluminum (All) 0.23 0.096 0.25 0.31 Iron total (Fe(T)) <0.002 0.017 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.0005 0.000		
Chloride (Cl) 295 188 210 208 Bromide (Br) 1.10 0.76 0.76 0.82 Nitrate (NO ₃) 1.60 0.84 0.11 0.09 Ammonium (NH ₄) 0.173 0.261 Silica (SiO ₂) 270 187 230 193 Boron (B) 3.12 2.02 2.20 2.32 Aluminum (Al) 0.23 0.096 0.25 0.31 Iron total (Fe(T)) <0.002 0.017 0.006 0.006 Ferrous iron (Fe(II)) <0.002 <0.007 0.006 0.002 Manganese (Mn) <0.001 0.001 0.003 0.004 Copper (Cu) <0.005 0.0005 0.0006 <0.0005 Zinc (Zn) <0.0004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 Cadmium (Cd) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 Chromium (Cr) <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 Cobalt (Co) <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 Mercury total (Hg), ng/L 25.0 30.0 174 109 Methylmercury (CH ₃ Hg), ng/L Nickel (Ni) <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 Beryllium (Be) <0.001 <0.001 0.001 0.001 0.001 Vanadium (V) <0.005 <0.0005 <0.0005 <0.0005 Selenium (Se) <0.0005 <0.0005 <0.0005 Selenium (Se) <0.001 <0.001 0.001 0.001 Arsenic (As) 1.81 1.43 1.38 1.47 Arsenite (As) 1.81 1.43 1.43 1.44 Arsenite (As) 1.81 1.43 1.4287 1.41.28 B ¹⁰ O, per mil 1.15.01 1.16.77 1.16.83 1.16.52	22.3	22.2
Bromide (Br) 1.10 0.76 0.76 0.82 Nitrate (NO ₃) 1.60 0.84 0.11 0.09 Ammonium (NH ₄) 0.173 0.261 0.173 0.261 0.173 0.261 0 0.173 0.261 0 0.173 0.261 0 0.173 0.261 0 0 0.173 0.261 0 0 0 0 0 0 0 0.	217	214
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.78	0.75
Ammonium (NH ₄) 0.173 0.261 Silica (SiO ₂) 270 187 230 193 Boron (B) 3.12 2.02 2.20 2.32 Aluminum (AI) 0.23 0.096 0.25 0.31 Iron total (Fe(T)) <0.002	<0.05	<0.05
Silica (SiO2) 270 187 230 193 Boron (B) 3.12 2.02 2.20 2.32 Aluminum (Al) 0.23 0.096 0.25 0.31 Iron total (Fe(T)) <0.002		
Boron (B) 3.12 2.02 2.20 2.32 Aluminum (Al) 0.23 0.096 0.25 0.31 Iron total (Fe(T)) <0.002		
Aluminum (Al) 0.23 0.096 0.25 0.31 Iron total (Fe(T)) < 0.002 0.017 0.006 0.006 Ferrous iron (Fe(II)) < 0.002 < 0.002 < 0.002 < 0.002 Manganese (Mn) < 0.001 0.001 0.003 0.004 Copper (Cu) < 0.0005 < 0.0005 0.0006 < 0.0005 Zinc (Zn) < 0.004 < 0.004 < 0.004 < 0.004 Cadmium (Cd) < 0.0001 < 0.0001 < 0.0001 < 0.0001 Chromium (Cr) < 0.0005 < 0.0005 < 0.0005 < 0.0005 Cobalt (Co) < 0.0007 < 0.0007 < 0.0007 Mercury total (Hg), ng/L 25.0 30.0 174 109 Methylmercury (CH ₃ Hg), ng/L Nickel (Ni) < 0.0005 < 0.0005 < 0.0005 < 0.0005 Lead (Pb) < 0.0008 < 0.0008 < 0.0008 Beryllium (Be) < 0.001 < 0.001 0.001 Vanadium (V) < 0.005 < 0.005 < 0.005 Molybdenum (Mo) 0.009 0.020 0.010 0.013 Antimony (Sb) 0.000 0.068 0.071 0.000 Selenium (Se) < 0.001 < 0.001 < 0.001 Arsenic (As) 1.81 1.43 1.38 1.47 Arsenite (As(III)) 0.027² 0.018² 0.111 0.061 Dissolved organic carbon (DOC) 2.1 3.0 850, per mil -138.90 -142.30 -142.87 -141.28 8 ¹⁸ 0, per mil -15.01 -16.77 -16.83 -16.52 sum cations, meq/L 16.7 10.8 13.2 13.7	195	200
Iron total (Fe(T)) <0.002 0.017 0.006 0.006 Ferrous iron (Fe(II)) <0.002	2.31	2.39
Ferrous iron (Fe(II))	0.26	0.28
Manganese (Mn) <0.001 <0.001 0.003 0.004 Copper (Cu) <0.0005	0.006	0.007
Copper (Cu) <0.0005 <0.0005 0.0006 <0.0005 Zinc (Zn) <0.004	<0.002	<0.002
Zinc (Zn) <0.004 <0.004 <0.004 <0.004 Cadmium (Cd) <0.0001	0.004	0.003
Cadmium (Cd) <0.0001	< 0.0005	< 0.0005
Chromium (Cr) <0.0005 <0.0005 <0.0005 <0.0005 Cobalt (Co) <0.0007	< 0.004	< 0.004
Cobalt (Co) <0.0007 <0.0007 <0.0007 <0.0007 Mercury total (Hg), ng/L 25.0 30.0 174 109 Methylmercury (CH ₃ Hg), ng/L Nickel (Ni) <0.0005	< 0.0001	< 0.0001
Mercury total (Hg), ng/L 25.0 30.0 174 109 Methylmercury (CH₃Hg), ng/L Nickel (Ni) <0.0005	< 0.0005	< 0.0005
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0.0007	< 0.0007
Nickel (Ni) <0.0005 <0.0005 <0.0005 <0.0005 Lead (Pb) <0.0008	93.0	76.0
Lead (Pb) <0.0008 <0.0008 <0.0008 Beryllium (Be) <0.001		
Beryllium (Be) <0.001	< 0.0005	< 0.0005
Vanadium (V) <0.005	<0.0008	< 0.0008
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.001	0.001
Antimony (Sb) 0.000 0.068 0.071 0.000 Selenium (Se) $< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 $	< 0.005	< 0.005
Antimony (Sb) 0.000 0.068 0.071 0.000 Selenium (Se) $< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 $	0.023	0.010
Selenium (Se) <0.001 <0.001 <0.001 <0.001 Arsenic (As) 1.81 1.43 1.38 1.47 Arsenite (As(III)) 0.027^2 0.018^2 0.111 0.061 Dissolved organic carbon (DOC) 2.1 3.0 δD , per mil -138.90 -142.30 -142.87 -141.28 δ^{18} O, per mil -15.01 -16.77 -16.83 -16.52 sum cations, meq/L 16.7 10.8 13.2 13.7	0.000	0.000
Arsenic (As) 1.81 1.43 1.38 1.47 Arsenite (As(III)) 0.027 2 0.018 2 0.111 0.061 Dissolved organic carbon (DOC) 2.1 3.0 δD, per mil -138.90 -142.30 -142.87 -141.28 $δ^{19}$ 0, per mil -15.01 -16.77 -16.83 -16.52 sum cations, meq/L 16.7 10.8 13.2 13.7	< 0.001	< 0.001
Arsenite (As(III)) 0.027^2 0.018^2 0.111 0.061 Dissolved organic carbon (DOC) 2.1 3.0 δ D, per mil -138.90 -142.30 -142.87 -141.28 δ ¹⁸ 0, per mil -15.01 -16.77 -16.83 -16.52 sum cations, meq/L 16.7 10.8 13.2 13.7	1.57	1.60
Dissolved organic carbon (DOC) 2.1 3.0 $δD$, per mil -138.90 -142.30 -142.87 -141.28 $δ^{19}$ 0, per mil -15.01 -16.77 -16.83 -16.52 sum cations, meq/L 16.7 10.8 13.2 13.7	0.036	0.025
δD, per mil -138.90 -142.30 -142.87 -141.28 $δ$ ¹⁸ O, per mil -15.01 -16.77 -16.83 -16.52 sum cations, meq/L 16.7 10.8 13.2 13.7	0.030	0.023
δ^{18} O, per mil -15.01 -16.77 -16.83 -16.52 sum cations, meq/L 16.7 10.8 13.2 13.7	-140.22	-140.75
sum cations, meq/L 16.7 10.8 13.2 13.7		
	-16.39	-16.22
	13.8	14.3
sum anions, meq/L 16.3 10.9 13.1 13.1 Charge imbalance, percent 2.4 -0.5 0.5 4.3	13.5 2.5	13.4 6.7

¹ Except for acidity (mM), mercury (ng/L), methylmercury (ng/L), and δD and $\delta^{18}O$ (per mil) ² Likely formed arsenic - sulfide precipitate upon acidification; therefore, value may be biased low

Table 12. Results of water analyses for the Mud Volcano area, 2006–2008.

Location Sample ID	Sulphur Caldron 06WA164	Sulphur Caldron 07WA110	Sulphur Caldron 08WA114	Turbulent Pool 06WA165	Turbulent Pool 07WA109
Collection Date / Time	9/17/06 14:43	9/11/07 11:45	9/19/08 10:00	9/17/06 16:30	9/11/07 11:00
Temperature, °C	73.5	73.9	73.2	58.5	59.3
pH (field / laboratory)	2.02 / 1.84	1.71 / 1.82	1.60 / 1.58	1.89 / 1.84	1.99 / 2.00
Specific conductance	2.02 / 1.04	1.71 / 1.02	1.00 / 1.50	1.07 / 1.04	1.77 / 2.00
(field / laboratory), µS/cm	3950 / 7880	6480 / 12,410	6640 / 12,090	4360 / 7070	3660 / 5560
Eh, V	0.128	0.088		0.071	0.017
Density, g/mL at 20°C	1.0011	1.0014	1.0009	1.0000	0.9996
Dissolved oxygen (DO), mg/L					
Constituent. mg/L ¹					
Calcium (Ca)	26.5	39.3	36.8	11.6	13.1
Magnesium (Mg)	8.94	10.5	9.12	3.77	5.94
Sodium (Na)	21.0	34.6	29.4	15.5	18.8
Potassium (K)	19.0	26.0	29.2	13.9	11.6
Strontium (Sr)	0.113	0.174	0.182	0.114	0.139
	0.045	0.061	0.080	0.052	0.055
Barium (Ba)					
Lithium (Li)	0.024	0.025	0.030	0.007	0.012
Sulfate (SO ₄)	2580	3620	3490	1490	1370
Thiosulfate (S ₂ O ₃)	<0.1	<0.1		<0.1	<0.1
Polythionate (S _n O ₆), mM	<0.001	<0.001	< 0.001	< 0.001	<0.001
Hydrogen sulfide (H ₂ S)	0.016	0.019			0.04
Alkalinity (HCO ₃)					
Acidity (free / total), mM	43.5 / 46.0	44.5 / 60.0	35.3 / 45.6	29.1 / 30.0	17.8 / 23.3
Fluoride (F)	0.310	0.590	0.488	0.660	0.530
Chloride (Cl)	4.12	7.52	2.86	4.80	7.01
Bromide (Br)	< 0.03	< 0.03	0.03	< 0.03	< 0.03
Nitrate (NO ₃)	< 0.05	< 0.05	0.26	< 0.05	< 0.05
Ammonium (NH ₄)	59.0	62.7	86.6	15.2	14.2
Silica (SiO ₂)	412	332	291	243	249
Boron (B)	3.97	2.61	3.28	1.05	0.850
Aluminum (Al)	203	131	81.6	37.8	41.7
Iron total (Fe(T))	22.8	31.8	20.4	6.74	20.0
Ferrous iron (Fe(II))	22.6	31.4	19.5	6.71	20.0
Manganese (Mn)	0.411	0.579	0.604	0.304	0.376
Copper (Cu)	0.0013	0.0018	0.0005	0.0079	< 0.0005
Zinc (Zn)	0.205	0.303	0.174	0.069	0.097
Cadmium (Cd)	0.0005	0.0006	0.0003	0.0001	0.0002
Chromium (Cr)	0.089	0.079	0.045	0.014	0.028
Cobalt (Co)	0.0040	0.0085	0.0046	0.0020	0.0040
Mercury total (Hg), ng/L	127	210	65.0	80.0	39.0
Methylmercury (CH ₃ Hg), ng/L	0.78	10.3	9.30	5.04	5.82
Nickel (Ni)	0.043	0.050	0.028	0.0094	0.016
Lead (Pb)	0.0030	0.018	0.025	0.0058	0.0086
Beryllium (Be)	0.004	0.007	0.006	0.002	0.002
Vanadium (V)	0.044	0.045	0.039	0.011	0.029
Molybdenum (Mo)	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007
Antimony (Sb)	< 0.0005	0.006	< 0.007	< 0.0005	0.006
Selenium (Se)	0.005	0.000	<0.001	0.0003	< 0.001
Arsenic (As)	0.005	0.001	0.001	0.001	0.035
` '					
Arsenite (As(III))	0.002	0.004	0.0027	<0.001	0.001
Dissolved organic carbon (DOC)	7.7	5.8	5.8	4.0	6.1
δD, per mil	-108.43	-106.03	-108.69	-105.13	-102.14
δ^{18} 0, per mil	-8.77	-7.80	-8.37	-7.80	-7.55
sum cations, meq/L	27.5	38.1	43.3	19.3	16.9
sum anions, meq/L	27.5	40.8	39.9	19.5	18.1
Charge imbalance, percent	0.2	-7.0	8.2	-0.8	-7.0

 $^{^1}$ Except for acidity (mM), mercury (ng/L), methylmercury (ng/L), and δD and $\delta^{18}O$ (per mil)

Table 13. Results of water analyses for Washburn Hot Springs, 2006–2008.

_			Unnamed, 160 feet	
Location	Inkpot #1	Inkpot #3	elevation above inkpots	
Sample ID	06WA166	06WA167	06WA169	06WA168
Collection Date / Time	9/18/06 11:45	9/18/06 13:25	9/18/06 16:32	9/18/06 14:45
Temperature, °C	80.2	70.9	88.2	74.5
pH (field / laboratory)	6.53 / 7.69	3.25 / 2.88	7.33 / 8.06	6.64 / 7.47
Specific conductance	24.40 / 24.50	EEE0 / (E20	1220 / 1540	0.450 / 0540
(field / laboratory), μS/cm	3140 / 3470	5750 / 6730	1330 / 1540	3450 / 3710
Eh, V	-0.164	-0.037	-0.078	-0.146
Density, g/mL at 20°C	0.9997	1.0010	0.9988	0.9998
Dissolved oxygen (DO), mg/L Constituent, mg/L ¹				
Calcium (Ca)	24.0	53.4	2.76	28.7
Magnesium (Mg)	11.0	26.9	1.80	13.7
Sodium (Na)	34.2	37.8	3.45	29.6
Potassium (K)	13.5	14.4	3.09	12.4
Strontium (Sr)	0.146	0.225	0.029	0.167
Barium (Ba)	0.042	0.024	0.049	0.041
Lithium (Li)	0.011	0.045	< 0.001	0.005
Sulfate (SO ₄)	1360	2710	473	1330
Thiosulfate (S_2O_3)	2.1	<0.1	7.4	0.5
Polythionate (S_nO_6) , mM	0.002	< 0.001	<0.001	< 0.001
Hydrogen sulfide (H_2S)	0.11	0.40	0.003	0.006
Alkalinity (HCO ₃)	137	0.40	82.2	203
Acidity (free / total), mM		2.71 / 4.19		
Fluoride (F)	0.650	0.790	0.05	0.400
Chloride (Cl)	1.61	1.49	0.35	1.67
Bromide (Br)	<0.03	< 0.03	<0.03	<0.03
Nitrate (NO ₃)	0.09	0.06	<0.05	<0.05
Ammonium (NH ₄)	439	837	178	477
Silica (SiO ₂)	124	268	84.3	130
- -	8.67	11.7	2.95	6.40
Boron (B) Aluminum (Al)	0.053		0.26	
Iron total (Fe(T))	0.010	11.3 5.93	0.010	0.064 0.006
Ferrous iron (Fe(II))	0.010	5.93	0.010	0.006
Manganese (Mn)	0.173	0.773	0.042	0.241
Copper (Cu)	< 0.0005	<0.0005	0.0013	< 0.0005
Zinc (Zn)	<0.004	0.083	< 0.004	< 0.004
Cadmium (Cd)	< 0.0001	< 0.0001	<0.004	< 0.0001
Chromium (Cr)	0.0015	0.0083	0.0006	0.0020
Cobalt (Co)	< 0.0007	<0.0007	< 0.0007	< 0.0007
Mercury total (Hg), ng/L	447	26.0	494	75.0
Methylmercury (CH ₃ Hg), ng/L	0.09	0.04	0.09	0.04
Nickel (Ni)	< 0.0005	<0.0005	< 0.0005	< 0.0005
Lead (Pb)	<0.0008	<0.0008	<0.0008	<0.0008
Beryllium (Be)	< 0.001	0.006	< 0.001	< 0.001
Vanadium (V)	< 0.005	0.026	0.009	< 0.005
Molybdenum (Mo)	0.007	0.014	< 0.007	0.008
Antimony (Sb)	<0.0005	<0.0005	< 0.0005	< 0.0005
Selenium (Se)	0.001	< 0.001	<0.001	0.001
Arsenic (As)	0.0017	<0.0005	0.004	0.0007
Arsenite (As(III))	<0.0005	<0.0005	0.001	< 0.0005
Dissolved organic carbon (DOC)		5.4	2.3	7.0
δD, per mil	-110.40	-110.61	-119.65	-110.62
δ^{18} 0, per mil	-3.07	-3.76	-7.42	-2.39
sum cations, meq/L	24.7	47.5	7.2	26.7
sum anions, meq/L	27.9	46.9	10.8	28.1
Charge imbalance, percent	-12.1	1.4	-40.1	-4.9

 $^{^1}$ Except for acidity (mM), mercury (ng/L), methylmercury (ng/L), and δD and $\delta^{18}O$ (per mil)

Quality Assurance and Quality Control

Several techniques were used to assure the quality of the analytical data. These techniques included calculation of charge imbalance (C.I.), analysis of USGS standard reference water samples (SRWS), replicate determinations in the laboratory, spike recovery determinations, and determination by alternative analytical methods.

The charge-balance calculation is one of the first and simplest of quality-assurance/quality-control procedures to check the accuracy of a water analysis. It is based on the principle that an aqueous solution containing electrolytes, or charged ions, must be electrically neutral overall. The equivalent concentration of cations must equal that of anions:

$$\sum_{i} {}_{i} = 0 \quad \sum_{i} {}_{i}^{+} - \sum_{i} c_{i}^{-} \tag{9}$$

where c_i = the equivalent concentration (usually in milliequivalents per liter) for the ith ion, c_i^+ = the equivalent concentration for the ith cation, and c_i^- = the equivalent concentration for the ith anion. Before an accurate charge balance can be calculated for acid waters, equivalent hydrogenion concentrations must be calculated based on the pH measurement and thermodynamic speciation calculations (see the Revised pH Measurements section). The charge balance calculation is discussed in more detail by Ball and others (2006).

Major cations and anions were analyzed for 104 samples and the data were checked for C.I. using the geochemical code WATEQ4F (Ball and Nordstrom, 1991). WATEQ4F uses equation 10 to calculate C.I.:

$$C.I.(percent) = \frac{100 \times (sum\ cations - sum\ anions)}{(sum\ cations + sum\ anions)}$$
(10)

where sum cations and sum anions are in meg/L.

The C.I., sum cations (meq/L), and sum anions (meq/L) are reported in tables 5–13 for samples having major cation and anion determinations. A frequency plot of C.I. for all samples with complete analyses is shown in figure 30. The Gaussian fit C.I. mean is -0.9 percent with a standard deviation of 5.0 percent. Analyses having a C.I. less than ± 10 percent are considered reliable for speciation calculations (Nordstrom and Munoz, 1994). Two sample analyses out of 104 had a C.I. (-12.1 and -40.1 percent) greater than ± 10 percent.

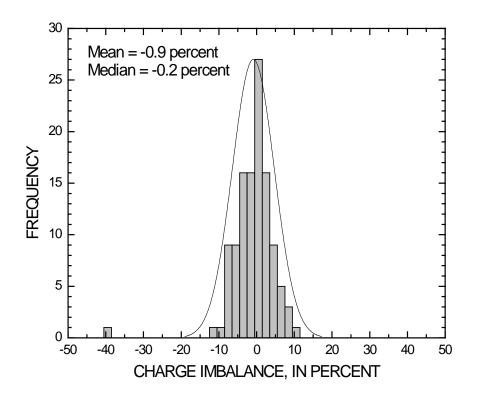


Figure 30. Frequency distribution of charge imbalance for samples having major cation and anion determinations.

U.S. Geological Survey SRWSs were analyzed as unknowns along with the samples to check for accuracy. Standard reference water samples AMW4, M150, M156, M158, M172, M182, T163, T179, T181, T183, T189, Hg7, and Hg22 were used to check the analytical methods for major and trace metals, anions, and Hg (Farrar, 2000; Connor and others, 2001). The SRWSs were analyzed several times during each analytical run. For each SRWS constituent, the analytical result, the most probable value (MPV), and the percent difference are presented in table 14. Additional information about the USGS SRWS program can be obtained at URL http://bqs.usgs.gov/srs.

Replicate determinations were performed for all methods and all constituents. Samples were diluted as necessary to bring the analyte concentration within the optimal range of the method and for each dilution at least two separate aliquots of each sample were analyzed. Replicate determinations minimize errors owing to dilution, contamination, and analytical imprecision. Reported concentrations are the means, excluding outliers, of the replicate determinations.

Concentrations of F, Al, Fe(T), Mn, Cu, Cd, Cr, Co, Ni, Pb, Sb(T), Se, and As(T) were determined by more than one method. Comparing analytical results from alternative methods can serve as an accuracy check, although in all cases one method was preferred over the other depending on sample matrix and proximity to the method detection limit. Concentrations of Al, As(T), Fe(T), Cd, Co, Cr, Cu, Ni, Pb, Sb(T), and Se were determined by ICP–OES as well as by the preferred HGAAS method for As(T) and Sb(T), FerroZine method for Fe(T), and GFAAS for

Al, Cd, Co, Cr, Cu, Pb, and Se. Concentrations of Al were measured by GFAAS only for samples that were below the ICP–OES detection limit and Cd, Co, Cr, Cu, Pb, and Se concentrations were near or below the ICP–OES detection limit for nearly all samples. Therefore, for these constituents comparison with the preferred method was of little value. The data reported in tables 5–13 were obtained using the preferred method unless there was insufficient sample volume to perform the determinations.

Comparison of analytical results from alternative methods for F, total dissolved As, and total dissolved Fe are shown in figures 31 A to C. The uncertainty line was calculated based on the method with the higher detection limit. At the method detection limit the uncertainty is ± 100 percent and decreases to ± 5 percent at 20 times the detection limit (quantitation limit).

Fluoride concentrations were determined by both IC and ISE (fig. 31A). Samples for F determination by ISE were mixed 1:1 with a total ionic strength adjustment buffer (TISAB III; Barnard and Nordstrom, 1980), which minimizes the effect of Al-F complexing on the analytical result. However, several of the samples that contained Al at concentrations greater than 5 mg/L yielded F concentrations by ISE that were substantially lower than those obtained by IC, suggesting that IC determinations for those samples were more accurate. For samples containing greater than 5 mg/L Al, the F concentrations determined by IC are reported.

Concentrations of As by HGAAS and Fe by FerroZine were determined on a subsample preserved with HCl, whereas As and Fe by ICP–OES were determined on a subsample preserved with HNO₃. Arsenic concentrations determined by ICP–OES were frequently higher than HGAAS. The difference in the As measurements most likely results from the difference in sample preservation. Samples containing high S²⁻ concentrations may form As-S precipitates when preserved with HCl (Planer-Friedrich and others, 2007). With only a few exceptions, Fe concentrations determined by FerroZine and by ICP–OES are in good agreement. The largest difference in Fe concentration was for a sample from Washburn Hot Springs (06WA135). Results for As and Fe are reported for the sample preserved with HCl because the redox species concentrations were obtained from this split. Considering the uncertainty of the measurements and that the analyses were performed on different splits, analytical results for total dissolved As and total dissolved Fe obtained by the alternative methods are in good agreement.

Table 14. Measurement of concentrations of dissolved constituents in standard reference water samples.

[CVAFS, cold vapor atomic fluorescence spectrometry; GFAAS, graphite furnace atomic absorption spectrometry; HGAAS, hydride generation atomic absorption spectrometry; IC, ion chromatography; ICP-OES, inductively coupled plasma-optical emission spectrometry; ISE, ion selective electrode; mg/L, milligrams per liter; n, number of analyses; ng/L, nanograms per liter; s, standard deviation; SRWS, standard reference water sample; USGS, U.S. Geological Survey; %RSD, percent relative standard deviation; <, less than; ---, no data]

	Analytical	USGS				Percent	Most Probable	Percent
Analyte	Method	SRWS	n	mg/L ^a	S	RSD	Value, mg/L	Difference
Calcium (Ca)	ICP-OES	T179	10	18.3	0.4	2	18.9±0.615	-3
Calcium (Ca)	ICP-OES	T181	14	13.2	0.8	6	13.4±0.556	-1
Calcium (Ca)	ICP-OES	T183	12	11.3	0.4	3	11.6±0.423	-2
Calcium (Ca)	ICP-OES	T189	16	29.7	1.2	4	30.6±1.11	-3
Magnesium (Mg)	ICP-OES	T179	7	4.55	0.12	3	4.59±0.185	-1
Magnesium (Mg)	ICP-OES	T181	9	3.07	0.27	9	3.05±0.115	1
Magnesium (Mg)	ICP-OES	T183	13	7.73	0.25	3	7.89±0.341	-2
Magnesium (Mg)	ICP-OES	T189	13	8.06	0.19	2	8.13±0.256	-1
Sodium (Na)	ICP-OES	T179	14	26.0	1.3	5	26.2±1.00	-1
Sodium (Na)	ICP-OES	T181	12	15.0	0.4	2	15.0±0.519	0
Sodium (Na)	ICP-OES	T183	16	12.8	0.6	5	12.7±0.530	1
Sodium (Na)	ICP-OES	T189	15	48.5	2.2	5	50.0±1.89	-3
Potassium (K)	ICP-OES	T179	15	1.43	0.12	8	1.40±0.148	2
Potassium (K)	ICP-OES	T181	13	1.40	0.05	4	1.52±0.090	-8
Potassium (K)	ICP-OES	T183	18	2.14	0.16	7	2.57±0.096	-17
Potassium (K)	ICP-OES	T189	20	3.63	0.21	6	3.84±0.193	-5
Strontium (Sr)	ICP-OES	T179	9	0.115	0.002	2	0.113±0.00404	2
Strontium (Sr)	ICP-OES	T181	9	0.083	0.003	4	0.0816±0.00319	2
Strontium (Sr)	ICP-OES	T183	13	0.084	0.002	3	0.0824±0.00248	2
Strontium (Sr)	ICP-OES	T189	15	0.188	0.004	2	0.187±0.00519	1
Barium (Ba)	ICP-OES	T179	6	0.036	0.001	3	0.036±0.0017	0
Barium (Ba)	ICP-OES	T181	6	0.025	0.001	4	0.0255±0.00126	0
Barium (Ba)	ICP-OES	T183	13	0.030	0.001	3	0.0299±0.0013	-1
Barium (Ba)	ICP-OES	T189	15	0.070	0.001	2	0.0715±0.00208	-2
Lithium (Li)	ICP-OES	T179	14	0.006	0.001	9	0.0065±0.000434	-1
Lithium (Li)	ICP-OES	T181	15	0.008	0.001	8	0.0084±0.00056	-6
Lithium (Li)	ICP-OES	T183	18	0.003	0.001	43	0.00333±0.000222	4
Lithium (Li)	ICP-OES	T189	19	0.005	0.000	7	0.00395±0.000289	17
Sulfate (SO ₄)	IC	M150	2	5.57	0.16	2.8	5.50±0.54	1
Sulfate (SO ₄)	IC	M156	8	42.2	0.4	0.9	43.0±1.78	-2
Sulfate (SO ₄)	IC	M172	6	12.2	0.4	3.0	12.2±0.604	0
Sulfate (SO ₄)	IC	M182	24	10.2	0.2	2.0	10.3±0.382	-1

Table 14. Measurement of concentrations of dissolved constituents in standard reference water samples—Continued.

	Analytical	USGS				Percent	Most Probable	Percent
Analyte	Method	SRWS	n	mg/L ^a	S	RSD	Value, mg/L	Difference
Alkalinity (HCO ₃)	Titration	M156	15	73.5	1.2	1.6	75.4±3.1	-3
Alkalinity (HCO ₃)	Titration	M158	1	75.6			77.6±3.1	-2
Alkalinity (HCO ₃)	Titration	M182	14	41.3	0.6	1.5	42.6±1.9	-3
Fluoride (F)	IC	M156	6	0.57	0.06	11.4	0.523±0.045	9
Fluoride (F)	IC	M172	4	0.37	0.04	11.4	0.381±0.027	-2
Fluoride (F)	IC	M182	16	0.18	0.01	3.9	0.160±0.022	11
Fluoride (F)	ISE	M172	3	0.373	0.008	2.3	0.381±0.027	-2
Fluoride (F)	ISE	M182	3	0.173	0.004	2.4	0.160±0.022	8
Chloride (Cl)	IC	M150	2	19.0	0.3	1.5	17.0±1.5	12
Chloride (Cl)	IC	M156	6	67.4	1.8	2.7	64.7±1.9	4
Chloride (Cl)	IC	M172	6	15.5	0.2	1.4	16.0±0.37	-3
Chloride (Cl)	IC	M182	23	21.2	0.6	2.6	21.3±0.482	0
cilioriae (cr)	10	MIOZ	23	21.2	0.0	2.0	21.3±0.402	0
Bromide (Br)	IC	AMW4	16	0.41	0.04	9.1	0.430±0.037	-6
Silica (SiO ₂)	ICP-OES	T179	14	14.9	0.5	3	14.9±0.604	0
Silica (SiO ₂)	ICP-OES	T181	14	13.0	0.4	3	13.1±0.519	-1
Silica (SiO ₂)	ICP-OES	T183	18	8.52	0.47	6	8.27±0.448	3
Silica (SiO ₂)	ICP-OES	T189	21	12.6	0.6	5	12.2±0.667	3
Paran (P)	ICP-OES	T179	11	0.026	0.003	12	0.020±0.00102	-8
Boron (B) Boron (B)	ICP-OES	T181	9	0.026	0.003	12 9	0.028±0.00182 0.021±0.00156	-o -11
Boron (B)	ICP-OES	T183	11	0.019	0.002	7	0.0606±0.00311	-11 -6
Boron (B)	ICP-OES	T189	11	0.037	0.004	17	0.021±0.00289	-10
БОГОП (Б)	ICP-UES	1109	11	0.019	0.003	1/	0.021±0.00269	-10
Aluminum (Al)	ICP-OES	T179	10	0.054	0.016	29	0.0517±0.00319	4
Aluminum (Al)	ICP-OES	T181	9	<0.08			0.0162±0.00119	
Aluminum (Al)	ICP-OES	T183	14	0.122	0.013	10	0.127±0.0089	-4
Aluminum (Al)	ICP-OES	T189	21	<0.08			0.0167±0.00114	
Aluminum (Al)	GFAAS	T179	4	0.052	0.002	3.1	0.517±0.00319	0.0
Aluminum (Al)	GFAAS	T181	4	0.015	0.000	3.3	0.162±0.00119	-8.7
Aluminum (Al)	GFAAS	T183	4	0.127	0.013	10	0.127±0.0089	0.0
Iron (Fe)	Colorimetric	T179	2	0.121	0.003	2.5	0.125±0.00815	-3
Iron (Fe)	Colorimetric		4	0.121	0.003	1.2	0.206±0.0155	0
Iron (Fe)	ICP-OES	T179	9	0.200	0.005	4	0.125±0.00815	-2
Iron (Fe)	ICP-OES	T181	9	0.122	0.003	8	0.119±0.0089	2
Iron (Fe)	ICP-OES	T183	13	0.121	0.009	4	0.206±0.0155	-4
Iron (Fe)	ICP-OES	T189	14	0.130	0.006	18	0.0325±0.00408	-2

Table 14. Measurement of concentrations of dissolved constituents in standard reference water samples—Continued.

	Analytical	USGS				Percent	Most Probable	Percent
Analyte	Method	SRWS	n	mg/L ^a	S	RSD	Value, mg/L	Difference
Manganese (Mn)	GFAAS	T181	7	0.0127	0.0003	2.2	0.0116±0.000593	9
Manganese (Mn)	GFAAS	T189	7	0.0069	0.0003	5.0	0.00655±0.000397	6
Manganese (Mn)	ICP-OES	T179	6	0.043	0.002	4	0.0442±0.00156	-2
Manganese (Mn)	ICP-OES	T181	6	0.011	0.001	10	0.0116±0.000593	-4
Manganese (Mn)	ICP-OES	T183	13	0.051	0.003	6	0.0492±0.00156	4
Manganese (Mn)	ICP-OES	T189	8	0.006	0.000	5	0.00655±0.000397	-13
Copper (Cu)	GFAAS	T179	9	0.0034	0.0003	9.8	0.00386±0.000345	-11
Copper (Cu)	GFAAS	T181	16	0.0081	0.0006	6.9	0.00779±0.000452	4
Copper (Cu)	GFAAS	T189	18	0.0027	0.0004	13.7	0.00294±0.000189	-7
Copper (Cu)	ICP-OES	T179	5	0.003	0.002	55	0.00386±0.000345	-14
Copper (Cu)	ICP-OES	T181	5	0.007	0.001	16	0.00779±0.000452	-10
Copper (Cu)	ICP-OES	T183	9	<0.003			0.00306±0.000156	
Copper (Cu)	ICP-OES	T189	11	0.003	0.001	32	0.00294±0.000189	-4
Zinc (Zn)	ICP-OES	T179	8	0.008	0.001	9	0.0085±0.000738	-11
Zinc (Zn)	ICP-OES	T181	9	0.009	0.001	10	0.0105±0.000741	-12
Zinc (Zn)	ICP-OES	T183	13	0.091	0.006	7	0.0864±0.00522	5
Zinc (Zn)	ICP-OES	T189	8	0.007	0.001	9	0.0078±0.000604	-9
Cadmium (Cd)	GFAAS	T179	17	0.0045	0.0001	2.7	0.0044±0.00017	1
Cadmium (Cd)	GFAAS	T183	17	0.0055	0.0001	2.9	0.0054±0.00029	2
Cadmium (Cd)	ICP-OES	T179	7	0.0033	0.0002	3	0.0034±0.00027 0.00442±0.00017	-1
Cadmium (Cd)	ICP-OES	T181	6	0.004	0.000	14	0.0016±0.000093	-6
Cadmium (Cd)	ICP-OES	T183	9	0.002	0.000	6	0.0010±0.000073 0.00535±0.000289	3
Cadmium (Cd)	ICP-OES	T189	12	0.000	0.000	14	0.00333±0.000289 0.00155±0.000067	4
Caumum (Cu)	ICF-UES	1109	12	0.002	0.000	14	0.00133±0.000007	4
Chromium (Cr)	GFAAS	T179	17	0.0046	0.0003	7.0	0.00422±0.000334	8
Chromium (Cr)	GFAAS	T179	19	0.0056	0.0005	8.3	0.00564±0.000222	0
Chromium (Cr)	ICP-OES	T179	7	0.004	0.001	27	0.00422±0.000334	-11
Chromium (Cr)	ICP-OES	T181	8	0.005	0.001	27	0.00564±0.000222	-10
Chromium (Cr)	ICP-OES	T183	9	< 0.002			0.00211±0.000208	
Chromium (Cr)	ICP-OES	T189	12	0.003	0.001	17	0.00325±0.000241	0
0.1.1.66.3	an: : a	m	4	0.001	0.000	0.5 =	0.00440 0.0000	
Cobalt (Co)	GFAAS	T179	17	0.0011		36.5	0.00110±0.000052	-1
Cobalt (Co)	GFAAS	T181	19	0.0053	0.0006	11.1	0.00550±0.000267	-4
Cobalt (Co)	ICP-OES	T179	7	< 0.007			0.0011±0.000052	
Cobalt (Co)	ICP-OES	T181	7	< 0.007			0.0055±0.000267	
Cobalt (Co)	ICP-OES	T183	9	< 0.007			0.00394±0.000222	
Cobalt (Co)	ICP-OES	T189	12	< 0.007			0.0023±0.000107	

Table 14. Measurement of concentrations of dissolved constituents in standard reference water samples—Continued.

	Analytical	USGS				Percent	Most Probable	Percent
Analyte	Method	SRWS	n	mg/L ^a	S	RSD	Value, mg/L	Difference
Nickel (Ni)	GFAAS	T163	16	0.0154	0.0010	6.5	0.0154±0.00126	0
Nickel (Ni)	GFAAS	T181	16	0.0045	0.0002	3.9	0.00472±0.000252	-6
Nickel (Ni)	GFAAS	T183	15	0.0011	0.0002	14.3	0.00124±0.000185	-10
Nickel (Ni)	ICP-OES	T179	5	< 0.002			0.00141±0.000445	
Nickel (Ni)	ICP-OES	T181	5	0.004	0.001	35	0.00472±0.000252	-24
Nickel (Ni)	ICP-OES	T183	13	< 0.002			0.00124±0.000185	
Nickel (Ni)	ICP-OES	T189	16	< 0.002			0.00073±0.000441	
. ,								
Lead (Pb)	GFAAS	T179	15	0.0017	0.0002	10.0	0.00186±0.000141	-8
Lead (Pb)	GFAAS	T183	16	0.0058	0.0002	4.0	0.00589±0.000304	-2
Lead (Pb)	ICP-OES	T179	8	<0.008			0.00186±0.000141	
Lead (Pb)	ICP-OES	T181	7	0.009	0.003	38	0.0094±0.000482	-8
Lead (Pb)	ICP-OES	T183	13	<0.008			0.00589±0.000304	
Lead (Pb)	ICP-OES	T189	16	<0.008			0.000117±0.000027	
Beryllium (Be)	ICP-OES	T179	6	0.004	0.000	2	0.00374±0.000185	-1
Beryllium (Be)	ICP-OES	T181	6	0.004	0.000	8	0.0046±0.000263	-6
Beryllium (Be)	ICP-OES	T183	13	0.0008	0.000	10	0.00082±0.000043	1
Beryllium (Be)	ICP-OES	T189	16	0.004	0.000	4	0.00369±0.000248	0
Vanadium (V)	ICP-OES	T179	6	0.002	0.001	42	0.00284±0.000282	-25
Vanadium (V)	ICP-OES	T181	8	< 0.005			0.00371±0.000156	
Vanadium (V)	ICP-OES	T183	9	< 0.005			0.00464±0.000222	
Vanadium (V)	ICP-OES	T189	12	< 0.005			0.00295±0.000326	
Molybdenum (Mo)	ICP-OES	T179	7	< 0.007			0.00218±0.000145	
Molybdenum (Mo)	ICP-OES	T181	4	< 0.007			0.00449±0.000345	
Molybdenum (Mo)	ICP-OES	T183	13	< 0.007			0.0021±0.000148	
Molybdenum (Mo)	ICP-OES	T189	14	< 0.007			0.0024±0.000133	
Antimony (Sb)	HGAAS	AMW4	1	0.0032			0.0277±0.00089	16
Antimony (Sb)	HGAAS	T163	5	0.0307	0.0018	5.9	0.0325±0.00189	-5
Antimony (Sb)	ICP-OES	T179	4	< 0.02			0.00366±0.000189	
Antimony (Sb)	ICP-OES	T181	6	< 0.02			0.00343±0.000141	
Antimony (Sb)	ICP-OES	T183	13	< 0.02			0.00481±0.000259	
Antimony (Sb)	ICP-OES	T189	16	< 0.02			0.00036±0.000028	
Selenium (Se)	GFAAS	T189	9	0.0026	0.0008	32.6	0.00313±0.000497	-18
Selenium (Se)	ICP-OES	T179	2	<0.03			0.0013±0.000267	
Selenium (Se)	ICP-OES	T181	7	<0.03			0.0013±0.000237	
Selenium (Se)	ICP-OES	T183	9	<0.03			0.0021±0.000245	
Selenium (Se)	ICP-OES	T189	12	<0.03			0.00313±0.000497	

Table 14. Measurement of concentrations of dissolved constituents in standard reference water samples—Continued.

	Analytical	USGS				Percent	Most Probable	Percent
Analyte	Method	SRWS	n	mg/L ^a	S	RSD	Value, mg/L	Difference
Arsenic (As)	ICP-OES	T179	11	< 0.02			0.0019±0.000189	
Arsenic (As)	ICP-OES	T181	9	< 0.02			0.0061±0.000319	
Arsenic (As)	ICP-OES	T183	17	< 0.02			0.0045±0.000289	
Arsenic (As)	ICP-OES	T189	21	< 0.02			0.00466±0.000315	
Mercury (Hg) ^a	CVAFS	Hg7	151	256	22		220±80	16
Mercury (Hg) ^a	CVAFS	Hg22	69	1165	51		1240±130	-6
^a Mercury concent	rations are ng							

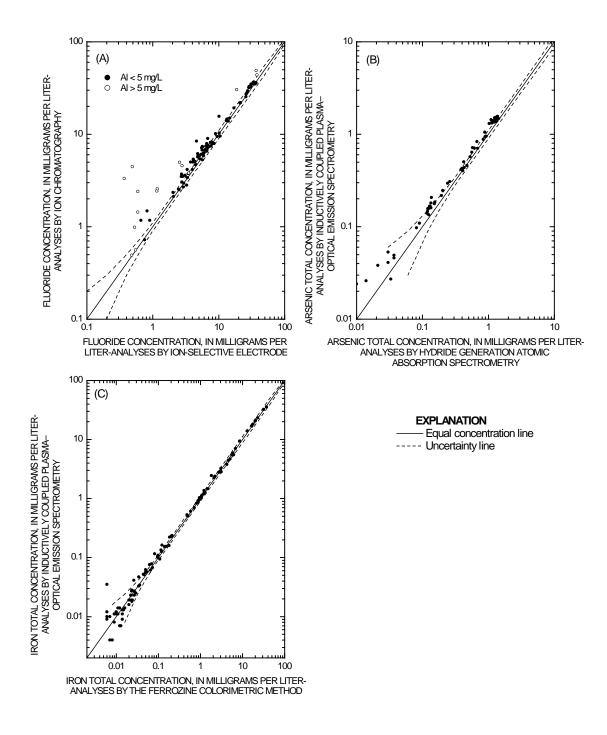


Figure 31. Fluoride (A), total dissolved arsenic (B), and total dissolved iron (C) concentrations determined by alternative methods.

Acknowledgments

We extend our appreciation to the staff of Yellowstone National Park for permission to collect water samples and for their assistance on numerous occasions. In particular, we extend our thanks to Hank Haesler and Christie Hendrix of the Yellowstone Center for Natural Resources. We are deeply grateful to all of the Ranger staff at Norris Geyser Basin for escorting us and educating us about the many thermal features of Norris. We are grateful to Maria Perreira, Maria Pilar, Randall Chiu, and Nuno Durães for valuable assistance with field sampling. We also thank Kate Campbell and Kenna Butler of the USGS for many helpful review comments.

References Cited

- Aiken, G.R., 1992, Chloride interference in the analysis of dissolved organic carbon by the wet oxidation method: Environmental Science and Technology, v. 26, p. 2435-2439.
- American Public Health Association (APHA), 1998, Method 4500-S²-G. Potentiometric method for sulfide, *in* Standard methods for the examination of water and wastewater (20th edition): Washington D.C., American Public Health Association, *http://standardmethods.org/*.
- American Public Health Association (APHA), 1985, Method 428C. Methylene blue method for sulfide, *in* Standard methods for the examination of water and wastewater (14th edition): American Public Health Association, p. 403-405.
- American Public Health Association (APHA), 1971, Method 218B. Dissolved oxygen azide modification, *in* Standard methods for the examination of water and wastewater (13th edition): American Public Health Association, p. 477-482.
- Ball, J.W., McCleskey, R.B., Nordstrom, D.K., and Holloway, J.M., 2006, Water-chemistry data for selected springs, geysers, and streams in Yellowstone National Park, Wyoming, 2003–2005: U.S. Geological Survey Open-File Report 2006-1339, 136 p.
- Ball, J.W., McCleskey, R.B., Nordstrom, D.K., Holloway, J.M., and Verplanck, P.L., 2002, Water-chemistry data for selected springs, geysers, and streams in Yellowstone National Park, Wyoming, 1999–2000: U.S. Geological Survey Open-File Report 02-382, 108 p.
- Ball, J.W., and Nordstrom, D.K., 1991, User's manual for WATEQ4F, with revised thermodynamic data base and test cases for calculating speciation of major, trace, and redox elements in natural waters: U.S. Geological Survey Open-File Report 91-183, 189 p.
- Ball, J.W., Nordstrom, D.K., Jenne, E.A., and Vivit, D.V., 1998a, Chemical analyses of hot springs, pools, geysers, and surface waters from Yellowstone National Park, Wyoming, and vicinity, 1974–1975: U.S. Geological Survey Open-File Report 98-182, 45 p.
- Ball, J.W., Nordstrom, D.K., Cunningham, K.M., Schoonen, M.A.A., Xu, Y., and DeMonge, J.M., 1998b, Water-chemistry and on/site sulfur-speciation data for selected springs in Yellowstone National Park, Wyoming, 1994–1995: U.S. Geological Survey Open-File Report 98-574, 35 p.
- Ball, J.W., Nordstrom, D.K., McCleskey, R.B., Schoonen, M.A.A., and Xu, Y., 2001, Water-chemistry and on/site sulfur-speciation data for selected springs in Yellowstone National Park, Wyoming, 1996-1998: U.S. Geological Survey Open-File Report 01-49, 42 p.
- Barnard, W.R., and Nordstrom, D.K., 1980, Fluoride in precipitation-I. Methodology with the fluoride-selective electrode: Atmospheric Environment, v. 16, p. 99-103.

- Barringer, J.L., and Johnsson, P.A., 1996, Theoretical considerations and a simple method for measuring alkalinity and acidity in low-pH waters by Gran titration: U.S. Geological Survey Water-Resources Investigations Report 89-4029, 36 p.
- Brinton, T.I., Antweiler, R.C., and Taylor, H.E., 1995, Method for the determination of dissolved chloride, nitrate, and sulfate in natural water using ion chromatography: U.S. Geological Survey Open-File Report 95-426A, 16 p.
- Boyd, E.S., King, S.A., Tomberlin, J.K., Nordstrom, D.K., Krabbenhoft, D.P., Barkay, T., and Geesey, G.G., 2009, Methylmercury enters an aquatic food web through acidophilic microbial mats in Yellowstone National Park, Wyoming: Environmental Microbiology, v. 11, p. 950-959.
- Charlton, S.R., Macklin, C.L., and Parkhurst, D.L., 1997, PHREEQCI--A graphical user interface for the geochemical computer program PHREEQC: U.S. Geological Survey Water-Resources Investigations Report 97-4222, 9p.
- Connor, B.F., Currier, J.P., and Woodworth, M.T., 2001, Results of the U.S. Geological Survey's analytical evaluation program for standard reference samples distributed in October 2000: U.S. Geological Survey Open-File Report 01-137, 116 p.
- Coplen, T.B., 1994, Reporting of stable hydrogen, carbon, and oxygen isotopic abundances: Pure and Applied Chemistry, v. 66, p. 273-276.
- Coplen, T.B., Wildman, J.D., and Chen, J., 1991, Improvements in the gaseous hydrogen-water equilibrium technique for hydrogen isotope ratio analysis: Analytical Chemistry, v. 63, p. 910-912.
- DeWild, J.F., Olsen, M.L., and Olund, S.D., 2002, Determination of methylmercury by aqueous phase ethylation, followed by gas chromatographic separation with cold vapor atomic fluorescence detection: U.S. Geological Survey Open-File Report 2001-445, 14 p.
- Epstein, S. and Mayeda, T., 1953, Variation of ¹⁸O content of water from natural sources: Geochimica et Cosmochimica Acta, v. 4, p. 213-224.
- Farrar, J.W., 2000, Results of the U.S. Geological Survey's analytical evaluation program for standard reference samples distributed in October 1999: U.S. Geological Survey Open-File Report 00-227, 143 p.
- Fishman, M.J., and Friedman, L.C., eds., 1989, Methods for determination of inorganic substances in water and fluvial sediments: Techniques of Water-Resources Investigations of the U.S. Geological Survey, book 5, chapter A1, p. 55-56.
- Gibbs, C.R., 1976, Characterization and application of FerroZine iron reagent as a ferrous iron indicator: Analytical Chemistry, v. 48, no. 8, p. 1197-1201.
- Gran, G., 1952, Determination of the equivalence point in potentiometric titrations. Part II: The Analyst, v. 77, p. 661-671.
- Hach Company, 1992, DR/2000 Spectrophotometer Procedures Manual: Loveland, Colo., Hach Company Publication 44879-00, p. 515-517.
- Horvat, M., Bloom, N.S., and Liang, L., 1993, Comparison of distillation with other current isolation methods for the determination of methylmercury compounds in low level environmental samples. Part 1. Sediments: Analytica Chimica Acta, v. 281, p. 135-152.

- Kennedy, V.C., Jenne, E.A., and Burchard, J.M., 1976, Back-flushing filters for field processing of water samples prior to trace-element analyses: U.S. Geological Survey Open-File Report 76-126, 12 p.
- King, S.A., Behnke, S., Slack, K., Krabbenhoft, D.P., Nordstrom, D.K., Burr, M.D., and Striegl, R.G., 2006, Mercury in water and biomass of microbial communities in hot springs of Yellowstone National Park, USA; Mercury; distribution, transport, and geochemical and microbial transformations from natural and anthropogenic sources: Applied Geochemistry, v. 21, no. 11, p. 1868-1879.
- McCleskey, R.B., Nordstrom, D.K., and Ball, J.W., 2003, Metal interferences and their removal prior to the determination of As(T) and As(III) in acid mine waters by hydride generation atomic absorption spectrometry: U.S. Geological Survey Water–Resources Investigations Report 03-4117, 14 p.
- McCleskey, R.B., Ball, J.W., Nordstrom, D.K., Holloway, J.M., and Taylor, H.E., 2004, Water-chemistry data for selected hot springs, geysers, and streams in Yellowstone National Park, Wyoming, 2001-2002: U.S. Geological Survey Open-File Report 2004-1316, 100 p.
- Moses, C.O., Nordstrom, D.K., and Mills, A.L., 1984, Sampling and analysing mixtures of sulphate sulphite, thiosulphate and polythionate: Talanta, v. 31, p. 331-339.
- Nordstrom, D.K., 1977, Thermochemical redox equilibria of ZoBell's solution: Geochimica et Cosmochimica Acta, v. 41, p. 1835-1841.
- Nordstrom, D.K., and Alpers, C.N., 1999, Geochemistry of acid mine waters, *in* Plumlee, G.S., and Logsdon, M.J., eds., The environmental geochemistry of mineral deposits: Littleton, Colo., Society of Economic Geologists, Reviews in Economic Geology, v. 6A, p. 133-160.
- Nordstrom, D.K., Ball, J.W., and McCleskey, R.B., 2005, Ground water to surface water: chemistry of thermal outflows in Yellowstone National Park, *in* Inskeep, W.P., and McDermott, T.R., eds., Geothermal biology and geochemistry in Yellowstone National Park: Bozeman, Montana State University Publications, p. 73-94.
- Nordstrom, D.K., McCleskey, R.B., and Ball, J.W., 2009, Sulfur geochemistry of hydrothermal waters in Yellowstone National Park, Wyoming, USA. IV. Acid-sulfate waters: Applied Geochemistry, v. 24, p. 191-207.
- Nordstrom, D.K., and Munoz, J.L., 1994, Geochemical Thermodynamics: Boston, Blackwell, 493 p.
- Nordstrom, D.K., Puigdomènech, I., and McNutt, R.H., 1990, Geochemical modeling of water-rock interactions at the Osamu Utsumi mine and Morro do Ferro analogue study sites, Poços de Caldas, Brazil: Swedish Nuclear Fuel and Waste Management Company (SKB) Technical Report 90-23, 33 p.
- Olson, M.L., and DeWild, J.F., 1999, Low-level collection techniques and species-specific analytical methods for mercury in water, sediment, and biota: U.S. Geological Survey Water-Resources Investigations Report 99-4018-B, p. 191-199.
- Parkhurst, D.L., and Appelo, C.A.J., 1999, User's guide to PHREEQC (version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Water-Resources Investigations Report 99-4259, 312 p.

- Planer-Friedrich, B., London, J., McCleskey, R.B., Nordstrom, D.K., and Wallschlaeger, D., 2007, Thioarsenates in geothermal waters of Yellowstone National Park; determination, preservation, and geochemical importance: Environmental Science and Technology, v. 41, no. 15, p. 5245-5251.
- Revesz, K., and Coplen, T.B., 2003a, Hydrogen isotope ratio analysis of water by gaseous hydrogen-water equilibration: Standard Operating Procedure (SOP) #1574, Techniques of the U.S. Geological Survey.
- Révész, Kinga, and Coplen, T. B., 2008, Determination of the $\delta(^{18}O/^{16}O)$ of Water: RSIL Lab Code 489, in Révész, Kinga, and Coplen, T.B., eds., Methods of the Reston Stable Isotope Laboratory: U.S. Geological Survey Techniques and Methods, book 10, chapt. C2, 28 p.
- Roth, D.A., Taylor, H.E., Domagalski, J., Dileanis, P., Peart, D.B., Antweiler, R.C., and Alpers, C.N., 2001, Distribution of inorganic mercury in Sacramento River water and sediments: Archives of Environmental Contamination and Toxicology, v. 40, p. 161-172.
- Sherman, L.S., Blum, J.D., Nordstrom, D.K., McCleskey, R.B., Barkay, T., and Vetriani, C., 2009, Mercury isotopic composition of hydrothermal systems in the Yellowstone Plateau volcanic field and Guaymas Basin sea-floor rift: Earth and Planetary Science Letters, v. 279, p. 86-96.
- Smith, R.L., Baumgartner, L.K., Miller, D.N., Repert, D.A. and Bohlke, J.K., 2006, Assessment of nitrification potential in ground water using short term, single-well injection experiments: Microbial Ecology, v. 51, p. 22-35.
- Stauffer, R.E., Jenne, E.A., and Ball, J.W., 1980. Chemical studies of selected trace elements in hot-spring drainages of Yellowstone National Park: U.S. Geological Survey Professional Paper 1044-F, 20 pp.
- Stookey, L.L., 1970, Ferrozine—a new spectrophotometric reagent for iron: Analytical Chemistry, v. 42, p. 779-781.
- Taylor, H.E., Berghoff, K., Andrews, E.D., Antweiler, R.C., Brinton, T.I., Miller, C., Peart, D.B., and Roth, D.A., 1997, Water quality of springs and seeps in Glen Canyon National Recreation Area: National Park Service Technical Report NPS/NRWRD/NRTR-97/128, 26 p.
- To, T.B., Nordstrom, D.K., Cunningham, K.M., Ball, J.W., and McCleskey, R.B., 1999, New method for the direct determination of dissolved Fe(III) concentration in acid mine waters: Environmental Science and Technology, v. 33, no. 5, p. 807-813.
- Xu, Y., and Schoonen, M.A.A., 1995. The stability of thiosulfate in the presence of pyrite in low-temperature aqueous solutions: Geochimica et Cosmochimica Acta, 59: 4605-4622.
- Xu, Y., Schoonen, M.A.A., Nordstrom, D.K., Cunningham, K.M., and Ball, J.W., 1998. Sulfur geochemistry of hydrothermal waters in Yellowstone National Park; I, The origin of thiosulfate in hot spring waters: Geochimica et Cosmochimica Acta, 62(23-24): 3729-3743.
- Xu, Y., Schoonen, M.A.A., Nordstrom, D.K., Cunningham, K.M., and Ball, J.W., 2000. Sulfur geochemistry of hydrothermal waters in Yellowstone National Park, Wyoming, USA; II, Formation and decomposition of thiosulfate and polythionate in Cinder Pool: Journal of Volcanology and Geothermal Research, v. 97, p. 407-423.
- Xu, Y., Schoonen, M.A.A., and Strongin, D.R., 1996. Thiosulfate oxidation: Catalysis of synthetic spalerited doped with transition metals: Geochimica et Cosmochimica Acta, 60: 4701-4710.

Whittlesey, L.H., 1988, Wonderland nomenclature: a history of the place names of Yellowstone National Park: Montana Historical Society Press, 867 p.

ZoBell, C.E., 1946, Studies on redox potential of marine sediments: 8. Other methods: Bulletin of the American Association of Petroleum Geologists, v. 30, p. 477-509.

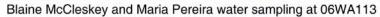
Appendix—Photographs

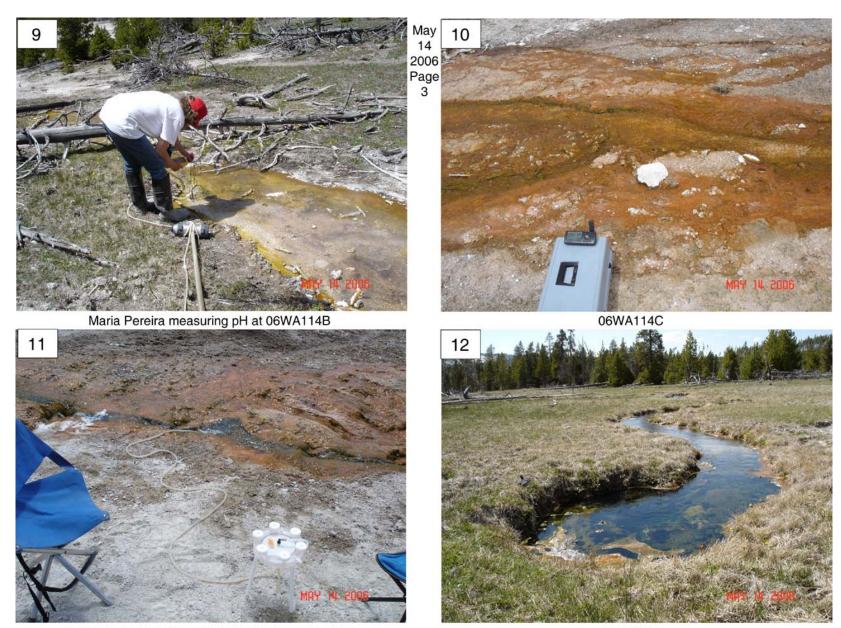
Kirk Nordstrom, Maria Pereira, and Blaine McCleskey setting up for water sampling at 06WA106

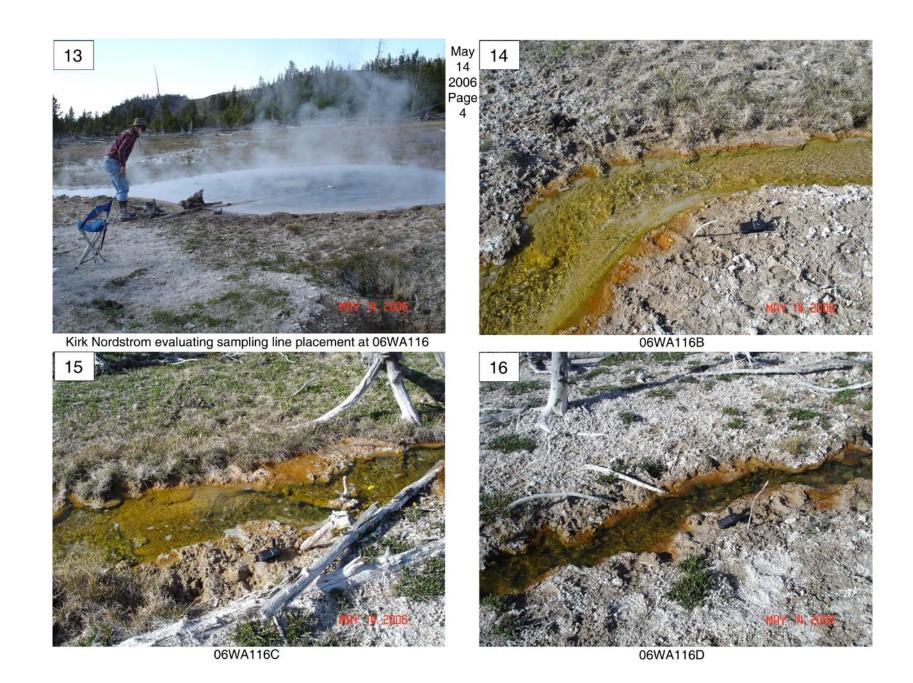
Maria Pereira and Kirk Nordstrom discussing sampling strategies at 06WA108, Cinder Pool

13

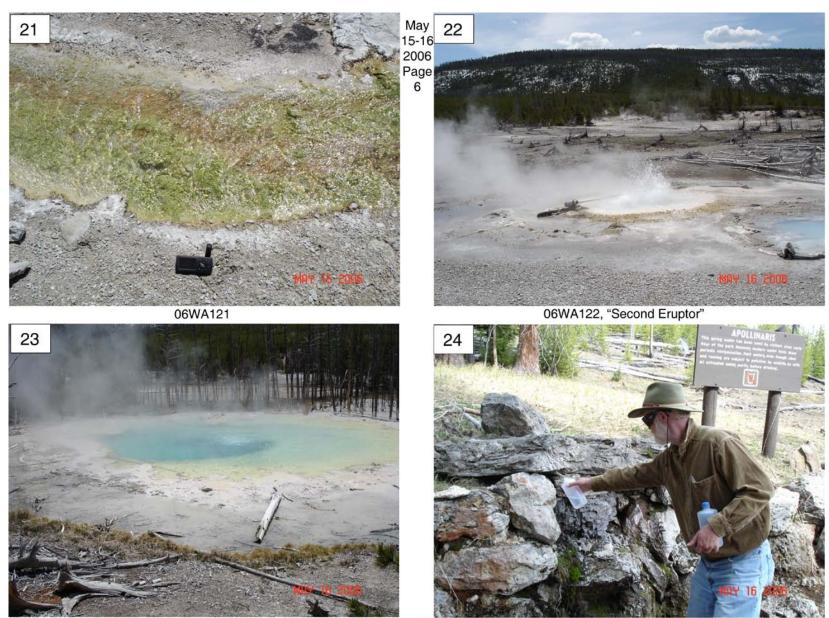
Maria Pereira, Kirk Nordstrom, and Blaine McCleskey setting up for water sampling at 06WA107


Sampling line in place at 06WA109


Kirk Nordstrom and Blaine McCleskey collecting water samples at 06WA111, Maria Pereira measuring specific conductance at 06WA112

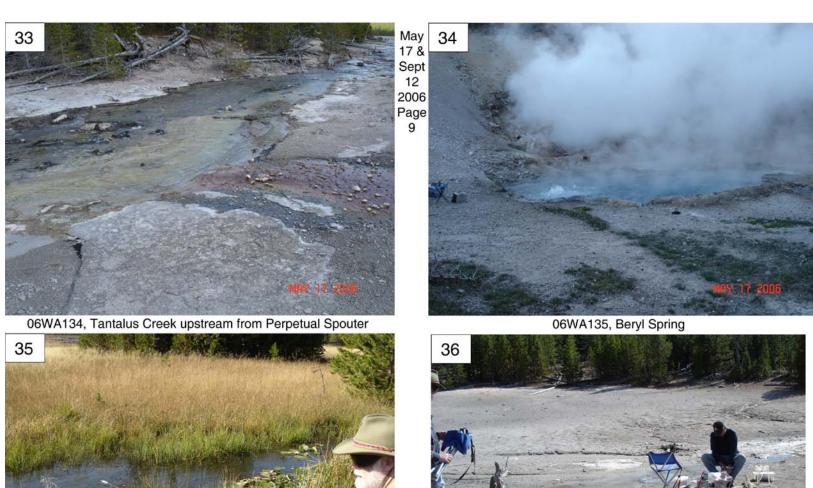



06WA114



Sampling line and filtration assembly at 06WA114D

06WA115



06WA123, Cistern Spring

Kirk Nordstrom collecting a water sample at 06WA124, Apollinaris Spring

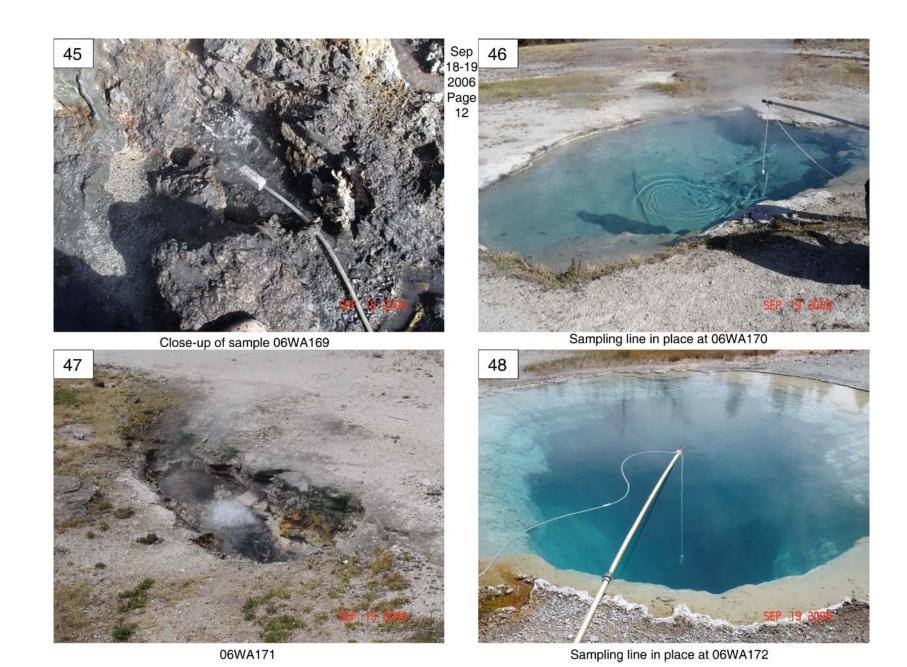
Kirk Nordstrom recording site data at 06WA136, Nymphy Creek

SEP 12 2016

Blaine McCleskey and Kirk Nordstrom collecting water samples at 06WA139

Blaine McCleskey and Jim Ball collecting water samples at 06WA146

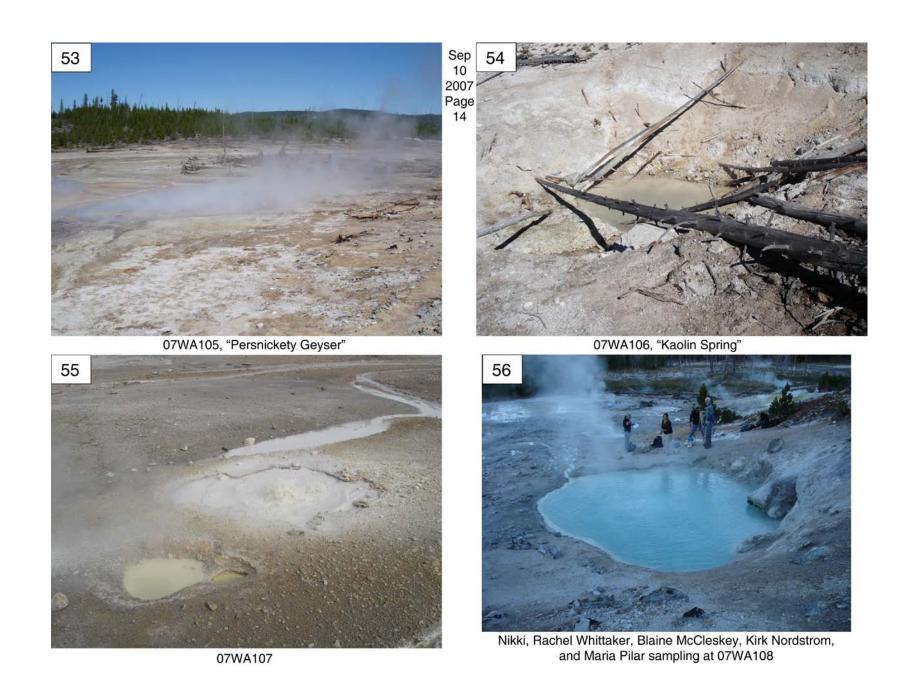
Kirk Nordstrom placing sample line at 06WA158, Tantalus Creek at weir


10

Kirk Nordstrom and Blaine McCleskey measuring onsite parameters at 06WA157, Beryl Spring

Blaine McCleskey at 06WA159 Cistern Spring

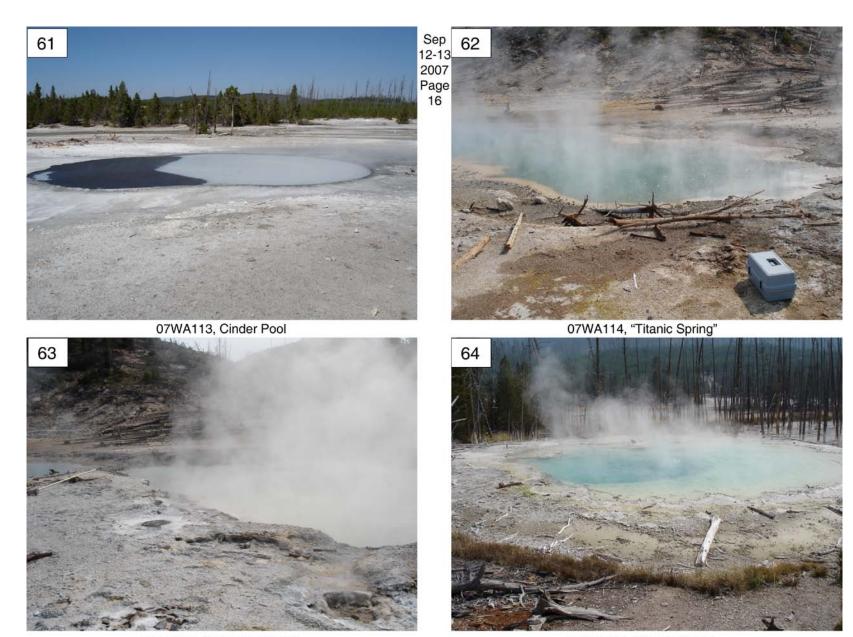
Blaine McCleskey setting up sampling line at 06WA173, Snort Geyser


Blaine McCleskey setting up sampling line at 06WA174

Blaine McCleskey setting up sampling line at 06WA173, Snort Geyser

Blaine McCleskey sampling at 06WA174

Rachel Whittaker, Kirk Nordstrom, Nikki, Maria Pilar, and Blaine McCleskey preparing for water sampling at 07WA109, Turbulent Pool


07WA111, Sulphur Spring

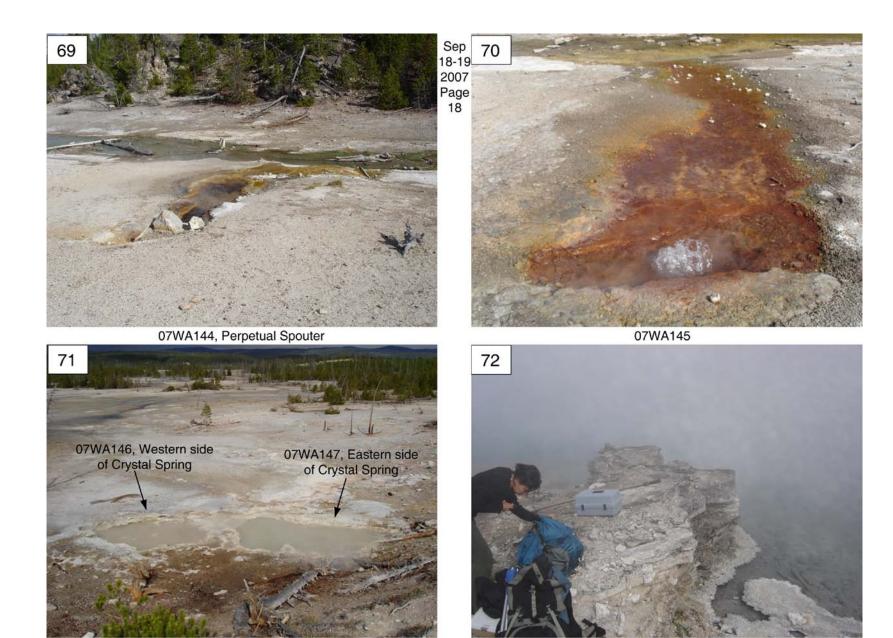
Maria Pilar and Blaine McCleskey sampling at 07WA110, Sulphur Caldron

Sampling line in place at 07WA112

07WA115, "Lifeboat Spring"

07WA116, Cistern Spring

Maria Pilar and Blaine McCleskey collecting water samples at 07WA140


07WA142, "Second Eruptor"

Kirk Nordstrom and Blaine McCleskey collecting water samples at 07WA141

07WA143, Porkchop Geyser

07WA146 and 07WA147, Crystal Spring

Maria Pilar sampling at 07WA148, Excelsior Geyser Crater

Randall Chiu, Kirk Nordstrom, and Blaine McCleskey positioning an automated data logger at 08WA105, Tantalus Creek at weir

08WA110A

Blaine McCleskey and Kirk Nordstrom at 08WA108A

08WA112

Kirk Nordstrom recording onsite data at 08WA119

Jim Ball and Nuno Durães preparing to collect water samples at 08WA121

Nuno Durães, Randall Chiu, and Kirk Nordstrom collecting water samples at 08WA120

08WA122

Kirk Nordstrom positioning the sample intake tubing at 08WA126, Echinus Geyser

08WA127, Cistern Spring

08WA129, Porkchop Geyser

08WA128, "Second Eruptor"

Nuno Durães and Kirk Nordstrom measuring pH at 08WA130, Perpetual Spouter

Kirk Nordstrom and Jim Ball Sampling water from 08WA134

