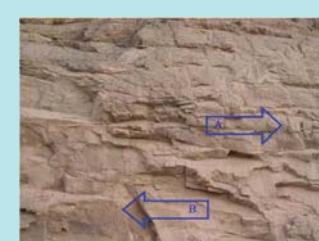


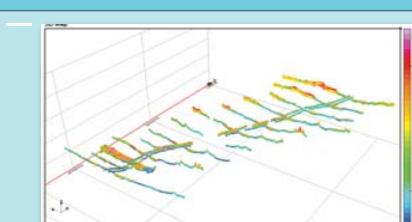
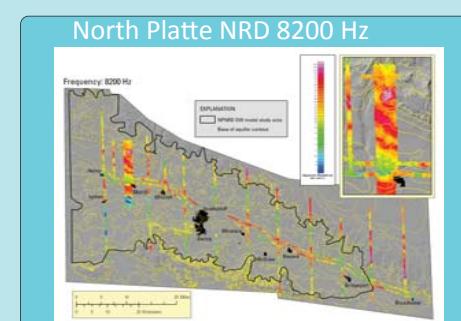
Design of Reconnaissance Helicopter Electromagnetic and Magnetic Geophysical Surveys of the North Platte River and Lodgepole Creek, Nebraska

Introduction

An innovative flight line layout using widely separated lines was used for frequency domain helicopter electromagnetic (HEM) surveys in 2008 and 2009 in the Panhandle of western Nebraska. Use of HEM methods for hydrologic mapping had been demonstrated by HEM surveys conducted in 2007 of sites in the glaciated Platte River Basin in eastern Nebraska. These surveys covered township-scale areas with flight lines laid out in blocks where the lines were spaced about 270 m apart. The purpose of this poster is to demonstrate the underlying principles critical in design of the HEM survey. There is a temptation to use widely spaced lines to reduce survey cost, but this can be done only when survey objectives, system performance, and background information are all carefully considered. Much of the background information was obtained from the Cooperative Hydrology Study (COHYST), a hydrogeologic study of surface and groundwater resources in the Platte River Basin of Nebraska upstream from Columbus, Nebraska.

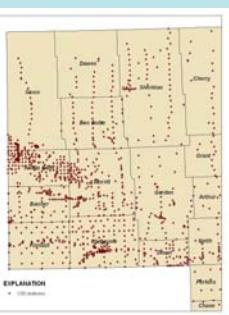
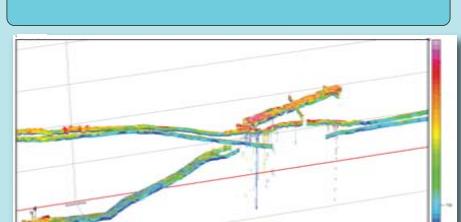
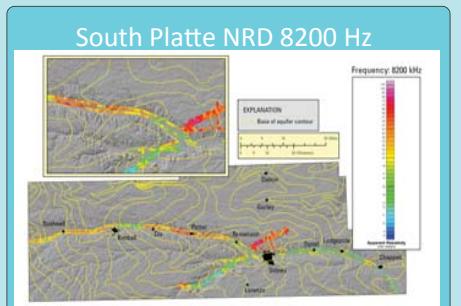

The HEM survey design was developed as part of a joint hydrologic study by the North Platte Natural Resource District, South Platte Natural Resources District, UNL-Conservation and Survey Division, and U.S. Geological Survey to improve the understanding of relationships between surface water and groundwater systems critical to developing groundwater flow models used in water resources management programs.

The block diagram describes the conceptual model of the hydrogeologic framework of the North Platte River valley illustrating the interaction of groundwater and surface water. This complicated system includes surface water, canal systems, streams and groundwater all interacting with one another to create this unique hydrologic system. The diagram shows how paleochannels of the ancestral Platte River System are eroded into the impermeable bedrock. These channels create subsurface topographic highs of bedrock that are barriers to groundwater movement and contain the alluvial aquifers of the area. It is this complex relationship between alluvial fill and bedrock that the HEM survey can map in detail – a feat traditional methods can not accomplish.

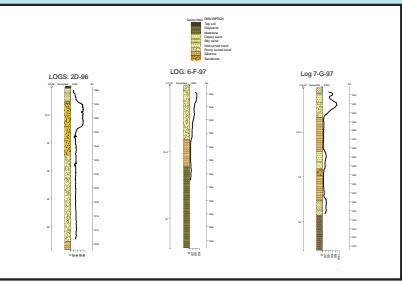
Geology and Lithology

The following sediment types make up the bulk of sediments in the project area. In most places, the Quaternary alluvium and Pliocene Broadwater Formation alluvium overlie the Tertiary Brule Formation of the White River Group siltstone. The coarse sediments of the alluvial deposits are electrically resistive, whereas the siltstone is electrically conductive.

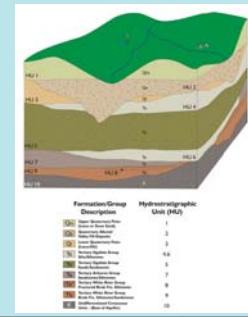
Cross-bedded, fluvial, coarse grained sediments of the Broadwater Formation. Photo taken west ~ 1.5 miles north of Big Springs, Nebraska
A. Iron-stained sediments.
B. Siltstone clasts ~1.5 feet in diameter
C. Manganese-stained sediments.

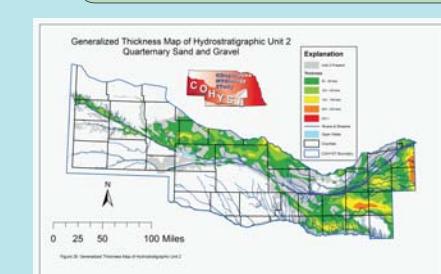
Resistivity depth sections have been constructed along the flight lines and are shown for the North Platte River and Lodgepole Creek survey areas. The high resistivity (red) areas define coarse grained sediments and sandstone channels that are important in understanding the groundwater flow. The flight lines are from the 2008 survey. Data from this survey have been released as USGS Open-File-Report 2009-110 (<http://pubs.usgs.gov/of/2009/110/>). The block flight lines in the Morrill area helped to understand spatial variations of resistivity for the North Platte survey area. Both 2008 and 2009 flight lines are shown above. The additional fill-in for the Morrill block, done in 2009, was needed to help map a poorly located buried alluvial channel (compare 2008 and 2009). This is an example of a target that is not appropriate for widely spaced lines.


Resistivity depth images are shown for the 2008 flying for both areas. Fence diagrams using depth images are a more appropriate display of data from the widely spaced lines than the resistivity maps. This is due to the difficulty of displaying data without implying a lateral extent. Present work is to develop methods to easily display these depth sections in a web display, such as Google Earth.

One of the more critical elements in planning the location of the widely spaced lines is the information from drill holes. Conservation and Survey Division Test hole location map shows where each site is in relation to the project area. These test holes were originally used in developing the COHYST hydrostratigraphic units map. However the HEM data provides greater spatial detail both laterally and with depth

The geophysical logs demonstrate that the gravels overlying the electrically conductive bedrock has higher, variable, electrical resistivity. The logs verify the conceptual model that the design of the HEM flight lines was based on. These test holes are used in the project as ground truth for the airborne resistivity maps and depth sections.


Drill Hole Lithology and Geophysical Logs


By Bruce D. Smith (1, bsmith@usgs.gov), James C. Cannia(2), and Jared D. Abraham(1)

(1) U.S. Geological Survey, Crustal Imaging and Characterization Science Center, Denver, Colorado
(2) U.S. Geological Survey, Nebraska Water Science Center, Lincoln, Nebraska

Hydrostratigraphy

Three-dimensional diagram of the hydrostratigraphic units (HU) used in the COHYST groundwater model. The units of greatest importance to be mapped by this project are HU 1 and 2 which make up the primary aquifers of the valley and HU 8 and 9 which make the basal confining units of the area.

