Bibliography of Literature Pertaining to Long Valley Caldera and Associated Volcanic Fields

By John W. Ewert, Christopher J. Harpel, Suzanna K. Brooks, and Mae Marcaida

Open-File Report 2010-1320

U.S. Department of the Interior
U.S. Geological Survey
Bibliography of Literature Pertaining to Long Valley Caldera and Associated Volcanic Fields

By John W. Ewert, Christopher J. Harpel, Suzanna K. Brooks, and Mae Marcaida

1 USGS Cascades Volcano Observatory, 1300 SE Cardinal Court, Suite 100, Vancouver, WA 98683
2 USGS Long Valley Observatory, 345 Middlefield Rd., MS 977, Menlo Park, CA 94025

Introduction

On May 25-27, 1980, Long Valley caldera was rocked by four M = 6 earthquakes that heralded the onset of a wave of seismic activity within the caldera which has continued through the present. Unrest has taken the form of seismic swarms, uplift of the resurgent dome, and areas of vegetation killed by increased CO₂ emissions, all interpreted as resulting from magma injection into different levels beneath the caldera, as well as beneath Mammoth Mountain along the southwest rim of the caldera. Continuing economic development in the Mammoth Lakes area has swelled the local population, increasing the risk to people and property if an eruption were to occur. The U.S. Geological Survey (USGS) has been monitoring geophysical activity in the Long Valley area since the mid-1970s and continues to track the unrest in real time with a sophisticated network of geophysical sensors. Hazards information obtained by this monitoring is provided to local, State, and Federal officials and to the public through the Long Valley Observatory.

The Long Valley area also was scientifically important before the onset of current unrest. Lying at the eastern foot of the Sierra Nevada, the deposits from this active volcanic system have provided fertile ground for research into Neogene tectonics, Quaternary geology and geomorphology, regional stratigraphy, and volcanology. In the early 1970s, intensive studies of the area began through the USGS Geothermal Investigations Program, owing to the presence of a large young silicic volcanic system (Muffler and Williams, 1976). The paroxysmal eruption of Long Valley caldera about 760,000 years ago produced the Bishop Tuff and associated Bishop ash (Gilbert, 1938; Bailey and others, 1976; Hildreth, 1979). The Bishop Tuff is a well-preserved ignimbrite deposit that has continued to provide new and developing insights into the dynamics of ignimbrite-forming eruptions (for example, Wilson and Hildreth, 2003). Another extremely important aspect of the Bishop Tuff is that it is the oldest known normally magnetized unit of the Brunhes Chron. Thus, the age of the Bishop Tuff is used to define the beginning of the Brunhes Chron and helps constrain the Brunhes-Matuyama boundary (Izett and Obradovich, 1994; Sarna-Wojcicki and others, 2000). The Bishop ash, which was dispersed as far east as Nebraska, Kansas, and Texas, provides an important tephrostratigraphic marker throughout the Western United States (Borchardt and others, 1972; Izett, 1982; Ward and others, 1993).
The obsidian domes of both the Mono and Inyo Craters, which were produced by rhyolitic eruptions in the past 40,000 years, have been well studied (Putnam, 1938; Samson and Cameron, 1987; Kelleher and Cameron, 1990; Bursik and others, 2003; Higgins and Meilleur, 2009), including extensive scientific drilling through the domes (Eichelberger, 1989). Exploratory drilling to 3-km depth on the resurgent dome and subsequent instrumentation of the Long Valley Exploratory Well (LVEW) have led to a number of important new insights (McConnell and others, 1992; Sorey and others, 2000; Farrar and others, 2003; Sorey and others, 2003). Scientific drilling also has been done within the Casa Diablo geothermal field (Smith and others, 1977), which, aside from drilling, has been commercially developed and is currently feeding 40 MW of power into the Southern California Edison grid (Duffield and others, 1994).

Studies in all the above-mentioned volcanic fields have contributed to the extensive scientific literature published on the Long Valley region. Although most of this scientific literature has been published since 1970, a significant amount of historical literature extends backward to the late 1800s. The purpose of this bibliography is to compile references pertaining to the Long Valley region from all time periods and all Earth science fields into a single listing, thus providing an easily accessible guide to the published literature for current and future researchers.

Methods

We include references here if they are directly applicable to Long Valley caldera and its recent geophysical unrest or to Mono Craters, Inyo Craters, the Mono Lake field, and the deposits from these volcanoes, or if they contain regional geologic, biologic, or meteorologic information useful to a researcher investigating aspects of the geology and geophysics of the region. Because of the relatively small number of references before 1940, we took a broader view of relevance within the older literature; in contrast, we took a more restrictive view of the relevancy of the post-1940 references.

We researched references primarily by using the Internet resource GeoRef (http://www.GeoRef.org/), as well as supplemental online library searches of the most current literature. Other Internet search engines, such as ScienceDirect, WorldCat, and Google, provided additional references that were omitted from the GeoRef database. Meeting abstracts from a broad spectrum of symposiums (current through August 2010), and articles published in the weekly Transactions of the American Geophysical Union, are included.

EndNote Reference Database

This bibliography is maintained by using the EndNote software, within which we recognize the following reference types: book, edited book, book section, journal article, map, online database, report, thesis, and Web page. The bibliography is searchable by author, title, year, journal, or discipline keyword. In more recent references (dating from 1998-August 2010), some journal-article abstracts have been included in the EndNote reference records because they were posted online. A total of 20 discipline keywords are used to indicate the content of the references (table 1). More than one keyword may be applied to a single reference; for example, references on the tomography of the Long Valley area are listed under both the "seismology" and "geophysics" keywords because
the subject pertains to both disciplines. Similarly, references on the Bishop ash are listed under both the "stratigraphy" and "Bishop Tuff" keywords. The keywords themselves are relatively self-explanatory except for "descriptive", which applies to field guides, descriptions of eruption mechanisms, and general references that do not specifically fit into any other category. Highly specific searches of the title field that can be made by using a single word or phrase may be the most useful search strategy. For example, a search for titles that include the word "Holocene" returns 23 references. For those readers who do not have EndNote, a trial version is downloadable from Thomson Reuter’s Web site (http://www.endnote.com/).

Formatted Bibliography

This bibliography is available as a standard alphabetical listing of publications both as a file in Adobe Portable Document Format (PDF) and as a library in EndNote. The bibliographic style follows the guidelines in “Suggestions to Authors of the Reports of the United States Geological Survey” (Hansen, 1991). The entire bibliography may be printed from either Adobe Reader or EndNote. Adobe Reader’s simple search utility can be used to find specific words or phrases, and EndNote provides a full search utility of references.

Statistics

This bibliography contains a total of 1,942 references, which we classify into five main types for this discussion: journal articles, meeting abstracts, government reports and maps, books and book sections, and theses (fig. 1). We estimate that this bibliography is complete through August 2010.
Figure 1. Pie chart showing the distribution of references by type.

The largest category is journal articles, which compose 734 references, or 38 percent of the bibliography. This predominance is not surprising because the same trend is evident in other bibliographic databases, such as the Hawaiian bibliography compiled by Wright and Takahashi (1998).

Meeting abstracts compose 720 references, or 37 percent of the bibliography, including meeting abstracts of the American Geophysical Union (AGU) and the Geological Society of America (GSA), as well as those of other international symposiums.

Government reports and maps compose 227 references, or 12 percent of the bibliography, including all State and Federal documents, such as USGS Professional Papers and Open-File Reports, as well as geologic maps generated by both the USGS and the California Division of Mines and Geology, except for meeting abstracts published by a government agency, such as the International Association of Volcanology and Chemistry of the Earth’s Interior’s Continental Magmatism Abstracts, published as New Mexico Bureau of Mines and Mineral Resources Bulletin 131. Another exception is the field guide to the Long Valley area by Bailey and others (1989), published as New Mexico Bureau of Mines and Mineral Resources Memoir 47, which is included in the books and book sections category.

Books and book sections compose 179 references, or 9 percent of the bibliography, including parts of GSA Special Papers and Geothermal Resources Council Transactions, as well as chapters in books about hazard management and techniques for volcano monitoring (for example, Farrar and Sorey, 1985; McNutt and Martin, 1986;
Gualda and others, 2004). Proceedings of professional meetings are also included in this category (for example, Liddicoat and Bailey, 1989) and generally are distinguished from abstracts by being over one page in length.

Theses is the final and smallest category, composing 82 references, or 4 percent of the bibliography, including 35 M.S. and 47 Ph.D. theses, with topics ranging from geologic mapping (for example, Dunn, 1951), through volcanic geology and petrology (for example, Bailey, 1978), to seismology (for example, Mayeda, 1991).

The number of references for each discipline keyword ranges from 10, for biology, to 435, for seismology (table 1); the other disciplines are fairly linearly distributed between these two end members.

Table 1. Discipline keywords and the total number of references covered by each keyword.

<table>
<thead>
<tr>
<th>Discipline Keyword</th>
<th>Total Number of References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seismology</td>
<td>435</td>
</tr>
<tr>
<td>Geochemistry</td>
<td>347</td>
</tr>
<tr>
<td>Geophysics</td>
<td>270</td>
</tr>
<tr>
<td>Petrology</td>
<td>259</td>
</tr>
<tr>
<td>Geothermal</td>
<td>219</td>
</tr>
<tr>
<td>Bishop Tuff</td>
<td>215</td>
</tr>
<tr>
<td>Deformation</td>
<td>199</td>
</tr>
<tr>
<td>Descriptive</td>
<td>197</td>
</tr>
<tr>
<td>Hydrology</td>
<td>168</td>
</tr>
<tr>
<td>Stratigraphy</td>
<td>128</td>
</tr>
<tr>
<td>Geomorphology</td>
<td>110</td>
</tr>
<tr>
<td>Geochronology</td>
<td>94</td>
</tr>
<tr>
<td>Tectonics</td>
<td>93</td>
</tr>
<tr>
<td>Drilling</td>
<td>85</td>
</tr>
<tr>
<td>Hazards</td>
<td>64</td>
</tr>
<tr>
<td>Monitoring</td>
<td>57</td>
</tr>
<tr>
<td>Remote Sensing</td>
<td>46</td>
</tr>
<tr>
<td>Modeling</td>
<td>28</td>
</tr>
<tr>
<td>Atmosphere</td>
<td>15</td>
</tr>
<tr>
<td>Biology</td>
<td>10</td>
</tr>
</tbody>
</table>

Discussion

As plotted in figure 2, the bulk of the literature on Long Valley has been published since 1970; however, several interesting patterns are apparent in the early literature on the area. The first geologic exploration of the region occurred in the 1860s (Whitney, 1865). The region's volcanism has been recognized since at least the 1870s, and many of the early references published from 1870 through 1900 are related to such volcanic features as the obsidian domes (for example, Le Conte, 1879). From 1900 until 1920, however, the water resources of the region took the forefront of the published research (for example, Lee, 1912). Through the 1920s to 1940s, volcanic and Pleistocene geology returned to prominence, (for example, Mayo, 1934; Gilbert, 1938; Kesseli, 1948). In the 1950s, general geology was emphasized, and geologic maps of both the
Casa Diablo and Bishop 15-minute quadrangles were published (Bateman, 1957; Rinehart and Ross, 1957), along with the results from the first geophysical survey of the region (Pakiser and others, 1960).

![Bar chart of number of references on Long Valley published per decade from 1880 through present (August 2010), showing the increase in volume of published literature since the 1960s, reflecting intensity of geophysical unrest within the region.](image)

Figure 2. Bar chart of number of references on Long Valley published per decade from 1880 through present (August 2010), showing the increase in volume of published literature since the 1960s, reflecting intensity of geophysical unrest within the region.

The rising trend in the number and variety of publications that began in the 1960s was principally due to an increasing interest in the Casa Diablo geothermal area. Initial exploratory geothermal drilling was carried out during the 1960s, followed by more intensive drilling and study in the 1970s. In 1976, an entire *Journal of Geophysical Research* volume was dedicated to geothermal research in Long Valley, and multiple USGS Open-File Reports were published on the geothermal exploration there (see Muffler and Williams, 1976).

The number of published references increased abruptly in the 1980s, in relation to the onset of geophysical unrest within the caldera and implementation of the USGS effort to monitor the unrest both as a basis for understanding its nature and its implications for providing advance warning of an impending eruption. The papers cover a wide range of topics, such as ground deformation (for example, Castle and others, 1984), seismicity (for example, Ryall and Ryall, 1983), and the consequences of a large-scale eruption (for example, Miller and others, 1982), including two special issues of the *Journal of Geophysical Research* devoted to Long Valley caldera (Hill and others, 1985; Goldstein
and Stein, 1988), as well as a more recent special issue in the *Journal of Volcanology and Geothermal Research* (Sorey, 2003).

The publication rate during the 1990s and 2000s has dropped off slightly from the 1980s level, although the rate remained high relative to pre-1980 levels. The elevated number of publications reflects the continuing unrest within the caldera, the continuous stream of real-time geophysical data, and the emergence of a new volcanic phenomenon during the 1990s. Recognition of "tree kill" areas caused by the effusion of magmatic CO₂ from the ground in the vicinity of Mammoth Mountain, for example, spurred a sequence of publications (for example, Farrar and others, 1995; Gerlach and others, 1999; List and others, 2003). Also, new forms of monitoring, such as the Global Positioning System, began to be utilized within the caldera during this decade, further adding to the literature (for example, Marshall and others, 1997; Newman and others, 2001; Langbein, 2003).

Readers wishing to improve their understanding of the geologic history and ongoing geophysical unrest of Long Valley caldera and associated volcanic fields, and who are new to the subject, may be daunted by the sheer volume of literature on the region. An overview of the subject matter can be gained by reading the papers by Bailey and others (1976), Hill (1976, 2006), Hermance (1983), Wood (1983), Hill and others (1985), Rundle and Hill (1988), Bailey (1989), Kelleher and Cameron (1990), Prejean and others (2002), Sorey and others (2003), Hildreth (2004), and Hill and Prejean (2005).

Conclusions

This bibliography comprises a total of 1,942 references on Long Valley caldera and associated volcanic fields. We have tried to be as complete as possible in our coverage of the geologic and geophysical literature pertaining to the volcanic system (through August 2010). As time and resources permit, we will update this database with references that may have been omitted, and keep it up to date with newly published literature.

EndNote Software and Database

Download the EndNote database for Open-File Report 2010-1320 (of2010-1320.enlp.zip)

Download a free-trial version of the EndNote software (http://www.endnote.com/)

For questions about the content of this Open-File Report, contact J.W. Ewert (jwewert@usgs.gov).

Previous Versions

Open-File Report 2010-1320 replaces the previous version of this bibliography that was published as USGS Open-File Report 00-221 in 2000 and updated in 2005.
Bibliography

Adarkwah, N., and Cuff, K., 2003, Radon outgassing in the Casa Diablo region, Long Valley Caldera, California [abs.]: Eos (American Geophysical Union Transactions), v. 84, no. 46, supp., p. 460.

Aki, K., 1984, Source mechanism of Mammoth Lake earthquakes; further support for magma intrusion [abs.]: Eos (American Geophysical Union Transactions), v. 65, no. 16, p. 242.

Andrews, D.J., 1982, Shear-wave and coda spectra and coda attenuation of two aftershocks at Mammoth Lakes, California [abs.]: Eos (American Geophysical Union Transactions), v. 63, no. 45, p. 1029.

Andrews, D.J., 1983, Distribution of dynamic stress drop [abs.]: Eos (American Geophysical Union Transactions), v. 64, no. 18, p. 263.

Archuleta, R.J., 1985, Strong ground motion recorded downhole [abs.]: Eos (American Geophysical Union Transactions), v. 66, no. 46, p. 976.

Ayers, J.C., Loflin, M., Miller, C.F., Barton, M.D., and Coath, C.D., 2006, In situ oxygen isotope analysis of monazite as a monitor of fluid infiltration during contact metamorphism; Birch Creek Pluton aureole, White Mountains, eastern California: Geology, v. 34, no. 8, p. 653-656.

Bachmann, O., and Bergantz, G.W., 2008, Deciphering magma chamber dynamics from styles of compositional zoning in large silicic ash flow sheets: Reviews in Mineralogy and Geochemistry, v. 69, no. 1, p. 651-674.

Bartel, L.C., 1984, Results of a limited CSAMT survey across the Inyo chain dike near Glass Creek [abs.]: Eos (American Geophysical Union Transactions), v. 66, no. 18, p. 384.
Bartley, J.M., Coleman, D.S., and Glazner, A.F., 2005, Junction fault zone, Sierra Nevada, CA, may transfer displacement between the Kern Canyon and Owens Valley Faults [abs.]: Geological Society of America Abstracts with Program, v. 37, no. 4, p. 73.

Behr, J.A., Bilham, R., and Beavan, J., 1992, Monitoring of magma chamber inflation using a biaxial Michelson tiltmeter in Long Valley Caldera, California [abs.]: Eos (American Geophysical Union Transactions), v. 73, no. 43, p. 347-348.

Bennett, H.F., 1988, Crustal shear wave birefringence in the Mammoth Lakes, California area [abs.]: Eos (American Geophysical Union Transactions), v. 69, no. 44, p. 1330.

Bennett, M.J., 1982, Subsurface geology at liquefaction sites in Mono County, California [abs.]: Geological Society of America Abstracts with Programs, v. 14, no. 4, p. 149.

Benoit, W.R., 1984, Initial results from drillholes PLV-1 and PLV-2 in the western moat of the Long Valley Caldera, in Geothermal energy; bet on it!: Davis, CA, Geothermal Resources Council Transactions, v. 8, p. 397-402.

Bilham, R., 1984, Radar visibility of subsurface paleoseismic features [abs.]: Eos (American Geophysical Union Transactions), v. 65, no. 45, p. 1015.

Birkeland, P.W., 1975, Quaternary glaciations in the Sierra Nevada, in Mahaney, W.C., ed., Quaternary Stratigraphy Symposium Abstracts with Program: Toronto [Canada], York University, Department of Geography, p. 17-23.

Birkeland, P.W., and Burke, R.M., 1979, Soils and subsurface rock weathering features of Sherwin and pre-Sherwin glacial deposits, eastern Sierra Nevada, California, in Burke, R.M., and Birkeland, P.W., eds., Field guide to relative dating methods applied to glacial deposits in the third and fourth recesses and along the eastern Sierra Nevada, California, with supplementary notes on other Sierra Nevada localities: Friends of the Pleistocene, Pacific Cell Field Trip Guidebook, p. 63-78.

Birkeland, P.W., Walker, A.L., and Burke, R.M., 1979, Preliminary remarks on chemical data for soils formed on Sherwin and pre-Sherwin glacial deposits, eastern Sierra Nevada, California, in Burke, R.M., and Birkeland, P.W., eds., Field guide to relative dating methods applied to glacial deposits in the third and fourth recesses and along the eastern Sierra Nevada, California, with supplementary notes on other Sierra Nevada localities: Friends of the Pleistocene, Pacific Cell Field Trip Guidebook, p. 79-88.

Boyce, J.W., Grove, M., and Reid, M.R., 1998, Diffusivity of Ar in quartz, and the geometry, density, and distribution of radiogenic Ar-bearing glass inclusions in quartz phenocrysts from Bishop Tuff, California, USA [abs.]: Eos (American Geophysical Union Transactions), v. 79, no. 45, p. 964.

Boyce, J.W., Grove, M., and Reid, M.R., 1999, Experimental evidence for the non-retentive behavior of Ar from melt inclusions in quartz phenocrysts [abs.]: Eos (American Geophysical Union Transactions), v. 80, no. 46, p. 1130.

Broecker, W.S., and Stine, S., 1988, Mono Lake's radiocarbon budget; an unsolved enigma [abs.]: Eos (American Geophysical Union Transactions), v. 69, no. 23, p. 633.

Bryant, W.A., 1984, Evaluation of active faults of the Sierra Nevada frontal fault zone (SNFFZ), Inyo and Mono counties, California [abs.]: Geological Society of America Abstracts with Programs, v. 16, no. 6, p. 458.

Bryce, J.G., Furman, T., and Reid, J.B., Jr., 1993, Transport of pumice during an extreme hydrologic event; a case study from the Owens River, eastern California [abs.]: Geological Society of America Abstracts with Programs, v. 25, no. 4, p. 5.

Burke, R.M., 1979, Roadlog from Mono Lake to Green Creek, *in* Burke, R.M., and Birkeland, P.W., eds., Field guide to relative dating methods applied to glacial deposits in the third and fourth recesses and along the eastern Sierra Nevada, California, with supplementary notes on other Sierra Nevada localities: Friends of the Pleistocene, Pacific Cell Field Trip Guidebook, p. 58-62.

Burke, R.M., and Birkeland, P.W., 1979, Reevaluation of multiparameter relative dating techniques and their application to the glacial sequence along the eastern escarpment of the Sierra Nevada, California: Quaternary Research, v. 11, no. 1, p. 21-51.

Burke, R.M., and Birkeland, P.W., 1979, Relative dating technique and reevaluation of the glacial deposits along Sawmill Canyon (N)-Bloody Canyon, *in* Burke, R.M., and Birkeland, P.W., eds., Field guide to relative dating methods applied to glacial deposits in the third and fourth recesses and along the eastern Sierra Nevada, California, with supplementary notes on other Sierra Nevada localities: Friends of the Pleistocene, Pacific Cell Field Trip Guidebook, p. 29-53.

Burke, R.M., and Birkeland, P.W., 1979, Road log from Mammoth Creek to Sawmill Canyon (N)-Bloody Canyon, *in* Burke, R.M., and Birkeland, P.W., eds., Field guide to relative dating methods applied to glacial deposits in the third and fourth recesses and along the eastern Sierra Nevada, California, with supplementary notes on other Sierra Nevada localities: Friends of the Pleistocene, Pacific Cell Field Trip Guidebook, p. 23-28.

Burke, R.M., and Birkeland, P.W., 1979, Summary of the relative dating philosophy and the glacial stratigraphy along the eastern escarpment of the Sierra Nevada, *in* Burke, R.M., and Birkeland, P.W., eds., Field guide to relative dating methods applied to glacial deposits in the third and fourth recesses and along the eastern Sierra Nevada, California, with supplementary notes on other Sierra Nevada localities: Friends of the Pleistocene, Pacific Cell Field Trip Guidebook, p. 101-110.

Bursik, M.I., 1992, How to predict an eruption at Long Valley Caldera [abs.]: Eos (American Geophysical Union Transactions), v. 73, no. 43, supp., p. 343.

Bursik, M.I., 2006, Most recent eruptions in the southernmost Mono-Inyo Craters, California [abs.]: Eos (American Geophysical Union Transactions), v. 87, no. 52, supp., abstract V22B-08.

Bursik, M.I., 2009, A general model for tectonic control of magmatism; examples from Long Valley Caldera (USA) and El Chichon (Mexico): Geofisica Internacional, v. 48, no. 1, p. 171-183.

Buseck, P.R., and Varekamp, J.C., 1982, Changing Hg soil patterns in the Long Valley Caldera; a response to new magma influxes? [abs.]: Eos (American Geophysical Union Transactions), v. 63, no. 45, p. 1132.
California Division of Oil and Gas, 1974, Casa Diablo: California Division of Oil and Gas Geothermal Map G5-1, scale 1:2000.
Cameron, B.I., Fink, J.H., DeGroat, P.J., and Holloway, J.R., 1999, Magmatic H2O contents in glassy lavas and obsidian clasts revealed by step-heating hydrogen isotope analyses [abs.]: Eos (American Geophysical Union Transactions), v. 80, no. 46, p. 1109.

Chang, C., and Haimson, B.C., 2000, Strength and deformability of the Long Valley Caldera basement rock [abs.]: Eos (American Geophysical Union Transactions), v. 81, no. 48, supp., p. 1385.

Christensen, J.N., and DePaolo, D.J., 1993, Time scales of large volume silicic magma systems; Sr isotopic systematics of phenocrysts and glass from the Bishop Tuff, Long Valley, California: Contributions to Mineralogy and Petrology, v. 113, no. 1, p. 100-114.

Christensen, J.N., Halliday, A.N., and Nash, W.P., 1992, Exploitation of high 87Rb/86Sr in high-silica rhyolites for constraints on timescales of evolution of large rhyolitic magma chambers [abs.]: Eos (American Geophysical Union Transactions), v. 73, no. 43, p. 623.

Clark, M.M., and Gillespie, A.R., 1981, Record of late Quaternary faulting along the Hilton Creek Fault in the Sierra Nevada, California [abs.]: Seismological Society of America Earthquake Notes, v. 52, no. 1, p. 46.

Coe, R.S., and Prevot, M., 1987, Very rapid paleomagnetic field changes [abs.]: Eos (American Geophysical Union Transactions), v. 68, no. 44, p. 1257.

Connolly, N.T., Jessup, M.J., Pack, S.M., Polissar, P.J., Reynolds, J.L., Reid, J.B., Jr., and Hainsworth, L.J., 1996, A pumice filled oxbow in the floodplain of the Owens River, Long Valley Caldera, California; clues to the events around the 600 yr BP Inyo Crater eruptions [abs.]: Eos (American Geophysical Union Transactions), v. 77, no. 46, p. 802.

Council, T.C., and Bennett, P.C., 1993, Geochemistry of ikaite formation at Mono Lake, California; implications for the origin of tufa mounds: Geology, v. 21, no. 11, p. 971-974.

Cousens, B.L., 1992, Geochemistry and isotopic composition of post-caldera basaltic lavas from Long Valley, California [abs.]: Eos (American Geophysical Union Transactions), v. 73, no. 43, p. 337.

Cousens, B.L., 1995, Mantle sources and mantle vs. crustal contributions to Quaternary basaltic volcanism at Long Valley Caldera and Devils Postpile National Monument [abs.]: Eos (American Geophysical Union Transactions), v. 76, no. 46, supp., p. 687.

Cousens, B.L., 1995, Sources of Quaternary basaltic magmas of the western Great Basin, USA; Long Valley Caldera and Devils Postpile, California [abs.]: Geological Association of Canada Abstracts with Program, v. 20, p. 20.

Dalrymple, G.B., 1980, K-Ar ages of the Friant Pumice Member of the Turlock Lake Formation, the Bishop Tuff, and the tuff of Reds Meadow, central California: Isochron/West, v. 28, p. 3-5.

Delaplain, T.W., and Peppin, W.A., 1987, Laterally variable crustal models for pre-S observations at Station SLK, NW of Long Valley Caldera, California [abs.]: Seismological Research Letters, v. 58, no. 1, p. 34.

Denham, C.R., 1971, Eastward drift of the geomagnetic field 25,000 years ago [abs.]: Eos (American Geophysical Union Transactions), v. 52, no. 11, p. 822.

DePaolo, D.J., Perry, F.V., Baldridge, W.S., and Christensen, J.N., 1993, Neodymium isotopic monitor of eruption potential; postcaldera lavas of Long Valley, California [abs.]: Eos (American Geophysical Union Transactions), v. 74, no. 16, supp., p. 334.

Eichelberger, J.C., 1986, Behavior of silicic magma during ascent and emplacement; results from drilling at Inyo Domes, California [abs.]: Jahrestagung der Deutschen Geophysikalischen Gesellschaft, Joint Symposium of the ILP/SFB 108 on the Continental Lithosphere; Structure, Composition and Processes, v. 46, p. 179.

Eichelberger, J.C., 1986, Research hole to intersect Inyo Dike [abs.]: Eos (American Geophysical Union Transactions), v. 67, no. 40, p. 768.

Eichelberger, J.C., 1988, Volcanic equivalents of mafic inclusions in granites [abs.]: Eos (American Geophysical Union Transactions), v. 69, no. 44, p. 1495-1496.

Eichelberger, J.C., Lysne, P.C., Miller, C.D., and Younker, L.W., 1984, 1984 drilling results at Inyo Domes, California [abs.]: Eos (American Geophysical Union Transactions), v. 66, no. 18, p. 384.

Eichelberger, J.C., Lysne, P.C., and Younker, L.W., 1984, Continental scientific drilling at Inyo Domes, Long Valley Caldera, CA [abs.]: Eos (American Geophysical Union Transactions), v. 65, no. 45, p. 1096.

Eichelberger, J.C., and Younker, L.W., 1988, Inyo drilling; a summary [abs.]: Eos (American Geophysical Union Transactions), v. 69, no. 44, p. 1472.

Ekstroem, G., and Dziewonski, A.M., 1983, Moment tensor solutions of Mammoth Lake earthquakes [abs.]: Eos (American Geophysical Union Transactions), v. 64, no. 18, p. 262.

Endo, E.T., and Iwatsubo, E.Y., 2000, Real-time GPS at the Long Valley Caldera, California [abs.]: Eos (American Geophysical Union Transactions), v. 81, no. 48, supp., p. 320.

Farrar, C.D., 1985, Electronic instrumentation for monitoring the hydrologic system of Long Valley, California [abs.]: Eos (American Geophysical Union Transactions), v. 66, no. 46, p. 911.

Fessenden, J.E., and Rahn, T.A., 1996, Magmatic degassing of \(CO_2\) recorded in tree rings at Mammoth Mountain, California [abs.]: Eos (American Geophysical Union Transactions), v. 77, no. 17, p. 279-280.

Fessenden, J.E., and Wahlen, M., 1997, Variations in magmatic \(CO_2\) emission rates at Mammoth Mountain, California [abs.]: Eos (American Geophysical Union Transactions), v. 78, no. 46, p. 745.
Findley, D.P., 1984, Late Cenozoic tectonic deformation along the northern White Mountains, Mono and Inyo counties, California: Reno, University of Nevada, M.S. thesis, 93 p.

Fink, J.H., and Kieffer, S.W., 1992, Pyroclastic flows generated by explosive decompression during lava dome collapse [abs.]: Eos (American Geophysical Union Transactions), v. 73, no. 43, supp., p. 628.

Fischer, M., Roeller, K., Kuester, M., McConnell, V.S., and Stoeckhert, B., 2000, Growth history of quartz crystals from open fissures at 2600 m depth, Long Valley exploratory well, California [abs.]: Eos (American Geophysical Union Transactions), v. 81, no. 48, supp., p. 1322.

Fisher, J.C., and Hollibaugh, J.T., 2004, Role of sulfide, selenate and nitrate in arsenite oxidation in Mono Lake, CA [abs.]: Eos (American Geophysical Union Transactions), v. 85, no. 47, supp., abstract H21C-1028.

Flechsig, C., Schuetze, C., and Jacobs, F., 2002, DC-resistivity imaging and self-potential measurements; a tool to investigate the present state of the Long Valley Caldera, California [abs.]: Eos (American Geophysical Union Transactions), v. 83, no. 47, supp., p. 1477.

Foster, J.G., and Reid, J.B., Jr., 1993, Crustal deformation in eastern Long Valley Caldera, California during the last 600,000 yrs [abs]: Geological Society of America, Abstracts with Programs, v. 25, no. 6, p. 72.

Fox, A.N., and Bloom, A.L., 1989, Change in surface roughness through time on moraines in Mono Basin, California; a comparison of field profiler and aircraft radar data [abs.]: Geological Society of America Abstracts with Programs, v. 21, no. 6, p. 270.

Fox, L.K., 2003, Geology in context; an introductory geology course with a multi-disciplinary focus on a field trip to Yosemite and Owens Valley [abs.]: Geological Society of America Abstracts with Programs, v. 35, no. 6, p. 276.

Fuis, G., Cockerham, R.S., and Halbert, W., 1979, Preliminary report on the Bishop earthquake, Ms = 5.8, October 4, 1978; aftershocks and ground breakage [abs.]: Geological Society of America Abstracts with Programs, v. 11, no. 3, p. 79.
Fumal, T.E., Warrick, R.E., Etheredge, E.C., and Archuleta, R.J., 1985, Downhole geology, seismic velocity structure and instrumentation at the McGee Creek, California recording site [abs.]: Seismological Society of America Earthquake Notes, v. 55, no. 1, p. 5.

Glen, J.M., Coe, R.S., and Boughn, S., 1992, Preliminary estimate of the age of the Matuyama/Brunhes reversal based on a sedimentary record from Owens Lake, CA [abs.]: Eos (American Geophysical Union Transactions), v. 73, no. 43, p. 632.

Goldstein, N.E., 1988, Pre-drilling data review and synthesis for the Long Valley Caldera, California: Eos (American Geophysical Union Transactions), v. 69, no. 3, p. 43-45.

Goldstein, N.E., 1988, Magma under Long Valley Caldera; reply: Eos (American Geophysical Union Transactions), v. 69, no. 11, p. 154.

Gonnermann, H.M., 2005, Shear brecciation of magma and obsidian formation during the ca. 1340 A.D. sub-plinian eruption of Mono Craters, California [abs.]: Eos (American Geophysical Union Transactions), v. 86, no. 52, supp., abstract V411-04.

Grosfils, E.B., 2003, Data use in an undergraduate remote sensing course; an integrated exploration of geology, hydrology and vegetation in the Mono Lake region of California [abs.]: Geological Society of America Abstracts with Programs, v. 35, no. 6, p. 120.

Halliday, A.N., and Mahood, G., 1988, Highly evolved liquids in the early history of the Long Valley (California) high silica rhyolite magma system [abs.]: Eos (American Geophysical Union Transactions), v. 69, no. 44, p. 1494.

Hardee, H.C., and Luth, W.C., 1980, Continental scientific drilling; comparative assessment of five potential sites for hydrothermal magma systems [abs.]: Eos (American Geophysical Union Transactions), v. 61, no. 46, p. 1148-1149.

Hauksson, E., 1985, Tomographic studies of the Casa Diablo magma chamber using rays from local earthquakes, Long Valley, eastern California [abs.]: Eos (American Geophysical Union Transactions), v. 66, no. 18, p. 302.

Hermance, J.F., 1982, Where is all the magma beneath the major silicic centers? [abs.]: Eos (American Geophysical Union Transactions), v. 63, no. 45, p. 1133.

Higbee, P., Bergmann, R., Owen, S., and Dreger, D., 1999, Why the Sierras are so stressed-out; the effect of Long Valley Caldera inflation on faulting in the eastern Sierra Nevada [abs.]: Eos (American Geophysical Union Transactions), v. 80, no. 46, p. 981.

Higgins, M.D., 1985, Boron in the Inyo Domes rhyolites; mobile but not volatile [abs.]: Eos (American Geophysical Union Transactions), v. 66, no. 18, p. 387-388.

Hildreth, E.W., 1976, The Bishop Tuff; compositional zonation in a silicic magma chamber without crystal settling [abs.]: Geological Society of America Abstracts with Programs, v. 8, no. 6, p. 918.

Hill, D.P., 1990, A perspective on recent unrest in Long Valley Caldera, eastern California [abs.]: Eos (American Geophysical Union Transactions), v. 71, no. 43, p. 1466.

Hill, D.P., and Cockerham, R.S., 1985, Seismicity in Long Valley Caldera, California [abs.]: Eos (American Geophysical Union Transactions), v. 66, no. 46, p. 959.

Hill, D.P., and Pitt, A.M., 1992, Long period earthquakes at mid-crustal depths beneath the western margin of Long Valley Caldera, California [abs.]: Eos (American Geophysical Union Transactions), v. 73, no. 43, p. 343.

Honjas, W., Peppin, W.A., and Delaplain, T.W., 1986, Further results on the postulated magma body near the south end of Hilton Creek Fault, Mammoth Lakes, California [abs.]: Eos (American Geophysical Union Transactions), v. 67, no. 44, p. 1108.

Hurford, A.J., and Hammerschmidt, K., 1985, $^{40}\text{Ar}/^{39}\text{Ar}$ and K/Ar dating of the Bishop and Fish Canyon tuffs; calibration ages for fission-track-dating standards: Chemical Geology, v. 58, no. 1-2, p. 23-32.

Iyer, H.M., and Dawson, P.B., 1992, Interpreting magma chamber models derived using teleseismic tomography; application to Long Valley, California [abs.]: Eos (American Geophysical Union Transactions), v. 73, no. 25, supp., p. 60.

Izett, G.A., and Obradovich, J.D., 1991, Dating of the Matuyama-Brunhes boundary based on \(^{40} \text{Ar}^{39}\text{Ar} \) ages of the Bishop Tuff and Cerro San Luis Rhyolite [abs.]: Geological Society of America Abstracts with Programs, v. 23, no. 5, p. 106.

Jehl, J.R., 1983, Tufa formation at Mono Lake, California, Mono County: California Geology, v. 36, no. 1, p. 3.

Jellinek, M., and DePaolo, D.J., 2000, Why was the eruption of the Bishop Tuff so large? [abs.]: Eos (American Geophysical Union Transactions), v. 81, no. 48, supp., p. 1321.

John, B.E., and Fountain, D.M., 2003, Seismic character of an active silicic volcanic system; Long Valley Caldera, California [abs.]: Eos (American Geophysical Union Transactions), v. 84, no. 46, supp., abstract V52B-0441.

Johnson, S., 1980, At Mono Lake: Terra, v. 18, no. 4, p. 8-16.

Johnston, M.J.S., Mueller, R.J., and Langbein, J.O., 1992, Ongoing volcanomagnetic, geodetic and seismicity anomalies observed from mid 1989 in Long Valley Caldera, California [abs.]: Eos (American Geophysical Union Transactions), v. 73, no. 25, supp., p. 60.

Kelleher, P.C., Cameron, K.L., and Nimz, G.J., 1985, Evidence for several magma batches at Mono Craters (MC)-Mono Lake Islands (MLI), Calif. [abs.]: Eos (American Geophysical Union Transactions), v. 66, no. 46, p. 1112.

Kesseli, J.E., 1941, Studies in the Pleistocene glaciation of the Sierra Nevada, California; 1, Topographic map of the Pleistocene glacial deposits in the Mammoth Embayment, Mono County; 2, Changes in the courses of some Pleistocene glaciers and their relation to interglaciation: University of California Publications in Geography, v. 6, no. 8, p. 315-361.

Kieffer, H.H., and Marley, M., 1983, Quantitative measurement of thermal radiation from localized heatflow; Long Valley, 1982 [abs.]: Eos (American Geophysical Union Transactions), v. 64, no. 45, p. 891.

Kilbourne, R.T., and Anderson, C.L., 1981, Volcanic history and "active" volcanism in California: California Geology, v. 34, no. 8, p. 159-168.

Kissling, E., Cockerham, R.S., and Ellsworth William, L., 1983, Structure of the Long Valley Caldera region as interpreted from seismic data [abs.]: Eos (American Geophysical Union Transactions), v. 64, no. 45, p. 890.

Knesel, K.M., 1999, Isotopic and petrologic constraints on the longevity of silicic magma bodies [abs.]: Eos (American Geophysical Union Transactions), v. 80, no. 46, p. 1178.
Kobs, S.E., and Bursik, M.I., 2007, Plumes and wind; II, Potential hazards to air traffic from Inyo Craters [abs.]: Eos (American Geophysical Union Transactions), v. 88, no. 52, supp., abstract V31A-0290.

Kulp, T.R., Oremland, R.S., and Hoeft, S.E., 2003, Redox transformations of arsenic(V) and arsenic(III) associated with periphyton communities [abs.]: Geological Society of America Abstracts with Program, v. 35, no. 6, p. 149.

Lajoie, K.R., Liddicoat, J.C., and Robinson, S.W., 1980, Refinement of the chronology and paleomagnetic record at Mono Lake, California [abs.]: Eos (American Geophysical Union Transactions), v. 61, no. 17, p. 215.

Le Conte, J., 1879, On the extinct volcanoes about Lake Mono and their relation to the glacial drift: American Journal of Science, v. 18, no. 103, p. 35-44.

Liddicoat, J.C., and Coe, R.A., 1975, Mono Lake 24,000 year B.P. geomagnetic excursion; additional data [abs.]: Eos (American Geophysical Union Transactions), v. 56, no. 12, p. 978.

Liddicoat, J.C., and Lund, S.P., 1983, A high resolution record of secular variation from Quaternary sediments from Mono Lake, California [abs.]: Eos (American Geophysical Union Transactions), v. 64, no. 45, p. 685.

Linker, M.F., Langbein, J.O., and McGarr, A., 1983, Two color geodimeter measurements of crustal deformation at Long Valley, California; initial results [abs.]: Eos (American Geophysical Union Transactions), v. 64, no. 45, p. 841.

Louros, M., Martos, A., and Browne, B., 2006, Complex basaltic eruption styles observed at Red Cones volcanoes, central Sierra Nevada, California [abs.]: Eos (American Geophysical Union Transactions), v. 87, no. 52, supp., abstract V53C-1762.

Lovely, P.J., Flodin, E., and Guzofski, C., 2008, Geologic insights from 3D mechanical models of a field outcrop extensional system, volcanic tablelands, Bishop, CA [abs.]: Eos (American Geophysical Union Transactions), v. 89, no. 53, supp., abstract T24A-06.

Lu, F., Anderson, A.T., Jr., and Davis, A.M., 1992, New and larger sanidine/melt partition coefficients for Ba and Sr as determined by ion microprobe analysis of melt inclusions and their sanadine host crystals [abs.]: Geological Society of America Abstracts with Programs, v. 24, no. 7, p. 44.

Lu, F., Davis, A.M., Skirius, C.M., and Anderson, A.T., Jr., 1989, Significance of uranium variations in rhyolitic melt inclusions from the Bishop plinian and early
ash-flow deposits [abs.]: Geological Society of America Abstracts with Programs, v. 21, no. 6, p. 271.

Maggs, W.W., 1988, Was Mono Lake a 14C dump? [abs.]: Eos (American Geophysical Union Transactions), v. 69, no. 28, p. 714.

Mahood, G.A., Ring, J.H., and McWilliams, M., 2000, Contemporaneous mafic and silicic eruptions during the past 160 ka at Long Valley Caldera, California; implications of new 40Ar/39Ar eruption ages for current volcanic hazards [abs.]: Eos (American Geophysical Union Transactions), v. 81, no. 48, supp., p. 1321.

Malin, P.E., 2004, Approaching seismology in the source; earthquake source studies at LVEW and SAFOD: Durham, NC, Duke University, Division of Earth and Ocean Sciences, 35 p. [Final Report for the USGS National Earthquakes Reduction Program].

Mann, D., and Segall, P., 2003, Distributed source model for deformation caused by magma reservoirs [abs.]: Eos (American Geophysical Union Transactions), v. 84, no. 46, supp., abstract V52E-06.

Martini, B.A., Silver, E.A., Potts, D.C., and Pickles, W.L., 2000, Hyperspectral remote sensing for research and monitoring in active volcanic regions; Long Valley Caldera, CA [abs.]: Eos (American Geophysical Union Transactions), v. 81, no. 48, supp., p. 1385.

Martini, M., Capaccioni, B., Giannini, L., and de la Cruz, S., 1987, Experiences on volcano monitoring and eruption forecasting during the last decade; Vulcano and Phlegrean fields (Italy), Long Valley (USA), Nevado del Ruiz (Colombia) and Tacana (Mexico) [abs.]: International Union of Geodesy and Geophysics General Assembly Abstracts, v. 19, no. 2, p. 428.

Martos, A., Louros, M., and Browne, B.L., 2007, Contrasting basaltic eruption styles observed at Red Cones; two neighboring cinder cones in the central Sierra Nevada, California [abs.]: Geological Society of America Abstracts with Programs, v. 39, no. 4, p. 72.

Matlick, J.S., III, and Buseck, P.R., 1978, Exploration for geothermal areas using mercury; a new geochemical technique: Geothermal Energy, v. 6, no. 9, p. 15-23.

May, R.J., 1976, Thermoluminescence dating of young silicic volcanic rocks [abs.]: Eos (American Geophysical Union Transactions), v. 57, no. 12, p. 1014.

Mayeda, K.M., Koyanagi, S., and Aki, K., 1990, Temporal correlation between coda Q-1 and extension rate in the Long Valley Caldera, California [abs]: Eos, Transactions, American Geophysical Union, v. 71, no. 43, p. 1466.

Mayo, E.B., 1930, Preliminary report on the geology of southwestern Mono County, California in Mining in California (v. 26, no. 4), Report XXVI of the State Mineralogist: California State Mining Bureau, p. 475-482.

McConnell, V.S., 1993, Post-emplacement alteration beneath the resurgent dome of the Long Valley Caldera, California [abs.]: Eos (American Geophysical Union Transactions), v. 74, no. 43, p. 670.

McConnell, V.S., 1994, Applying Sr isotope geochemistry to interpreting the history of the Long Valley Caldera, California [abs.]: Eos (American Geophysical Union Transactions), v. 75, no. 44, p. 733.

McNutt, S.R., and Maclean, J., 1988, Analysis of time varying earthquake spectra from the Long Valley, California, region using data from the NEWT seismic system [abs.]: Eos (American Geophysical Union Transactions), v. 69, no. 44, p. 1301.

Merriam, R., and Bischoff, J.L., 1975, Bishop ash; a widespread volcanic ash extended to southern California: Journal of Sedimentary Petrology, v. 45, no. 1, p. 207-211.

Michael, P.J., 1983, Chemical differentiation of the Bishop Tuff and other high-silica magmas through crystallization processes: Geology, v. 11, no. 1, p. 31-34.

Miller, C.D., 1983, Chronology of Holocene eruptions at the Inyo volcanic chain, California [abs.]: Eos (American Geophysical Union Transactions), v. 64, no. 45, p. 900.

Miller, C.D., Eichelberger, J.C., Lysne, P.C., and Younker, L.W., 1985, Scientific drilling at Inyo Domes, California; geologic background and scientific objectives [abs.]: Eos (American Geophysical Union Transactions), v. 66, no. 18, p. 384.

Moos, D., and Zoback, M.D., 1992, Stresses in the Long Valley Caldera, California, from analysis of wellbore breakouts in geothermal exploratory wells [abs.]: Eos (American Geophysical Union Transactions), v. 73, no. 43, Suppl., p. 559.

Naney, M.T., and Swanson, S.E., 1984, Fe³⁺-Fe²⁺ variations in rhyolite lava at Inyo Domes, California [abs.]: Eos (American Geophysical Union Transactions), v. 66, no. 18, p. 385.

Negrini, R., Zic, M., Quilliam, M., and Meyer, S., 2000, New age estimates for the sediments of Summer Lake, Oregon and for the Mono Lake and Laschamp (?) excursions through the extension of the environmental magnetism record in the time and frequency domains [abs.]: Eos (American Geophysical Union Transactions), v. 81, no. 48, supp., p. 356.

Newhall, C.G., 1982, Historical activity at calderas of the world as a framework for interpreting recent activity at Long Valley Caldera, California [abs.]: Seismological Society of America Abstracts, v. 54, no. 1, p. 73.

Newman, A.V., Dixon, T.H., and Gourmelen, N., 2005, From ground deformation to magmatic source processes; why simple elastic models are not enough; examples from Long Valley Caldera, California, USA [abs.]: Eos (American Geophysical Union Transactions), v. 86, no. 52, supp., abstract G53B-0885.

Newton, M.S., and Stine, S.W., 1991, Late Holocene paleoclimatic record of Mono Lake, California [abs.], in Sedimentary and paleolimnological records of saline lakes, Saskatoon, Saskatchewan, Canada, 1991, Conference program and abstracts: Saskatoon [Canada], National Hydrology Research Institute (Canada), p. [unknown].

Oremland, R.S., 1979, CH₄ content of geothermal gases before and after an earthquake [abs.]: Eos (American Geophysical Union Transactions), v. 60, no. 46, p. 883.

Oremland, R.S., 1983, Methane in association with seismic activity [abs.]: Eos (American Geophysical Union Transactions), v. 64, no. 24, p. 410.

Owen, S.E., Mills, S., Higbee, P., and Burgmann, R., 1999, Seismicity and strain in the Sierra Nevada south of Long Valley Caldera [abs.]: Eos (American Geophysical Union Transactions), v. 80, no. 46, p. 960.

Palacz, Z.A., 1994, 238U-, 230Th-, 226Ra- constraints on the origin of the Mono Craters rhyolites, eastern California [abs.]: Eos (American Geophysical Union Transactions), v. 75, no. 44, p. 740.

Pamukcu, A., Anderson, A.T., and Gualda, G., 2006, Crystal sinking and bubble rising in late-erupted Bishop Tuff; a study of pumice clasts by X-ray tomography and physical separation [abs.]: Eos (American Geophysical Union Transactions), v. 87, no. 52, supp., abstract V33C-0684.

Peppin, W.A., 1984, Seismic moments of Mammoth Lakes earthquakes; data from close in displacement seismograms [abs.]: Eos (American Geophysical Union Transactions), v. 65, no. 45, p. [unknown].

Peppin, W.A., 1985, New evidence for magma bodies south of Long Valley Caldera, Mammoth Lakes, California [abs.]: Eos (American Geophysical Union Transactions), v. 66, no. 46, p. 959.

Peppin, W.A., 1991, Peak ground accelerations recorded at Long Valley Caldera, California and at Guerrero, Mexico; the effects of site versus the effects of differing tectonic environments: Reno, University of Nevada, Seismological Laboratory, 14 p.

Piccoli, P.M., and Candela, P.A., 1992, A model calculation for the estimation of chlorine and fluorine in magmatic systems; an example from the Bishop Tuff [abs.]: Eos (American Geophysical Union Transactions), v. 73, no. 14, supp., p. 367.

Pietraszek, J., Deming, J., Valley, P., and Bursik, M.I., 1999, Preliminary study of uplift and eruption of Paoha Island, Mono Lake, CA [abs.]: Eos (American Geophysical Union Transactions), v. 80, no. 46, p. 981.

Pinter, N., 1995, Faulting on the volcanic tableland, Owens Valley, California: Journal of Geology, v. 103, no. 1, p. 73-83.

Poreda, R.J., Ku, T.C.W., and Cerling, T.E., 1995, Cosmogenic 3He exposure ages of June Lake basalts; application to Sierra Nevadan glacial geochronology [abs.]: Eos (American Geophysical Union Transactions), v. 76, no. 46, supp., p. 685.

Prothero, W.A., Jr., and Steck, L., 1988, Seismic calibration using the simplex algorithm [abs.]: Eos (American Geophysical Union Transactions), v. 69, no. 44, p. 1320.

Reid, M.R., and Coath, C.D., 1999, Crystal residence times in the Bishop Tuff; evidence from in-situ U-Pb ages of zircons [abs.]: Eos (American Geophysical Union Transactions), v. 80, no. 46, p. 1130.

Reid, M.R., and Coath, C.D., 2000, In situ U-Pb ages of zircons from the Bishop Tuff; no evidence for long crystal residence times: Geology, v. 28, no. 5, p. 443-446.

Reid, M.R., Coath, C.D., Harrison, T.M., and McKeegan, K.D., 1996, In situ ion microprobe 238U-230Th dating of zircon; long magma residence times for the youngest rhyolites associated with Long Valley Caldera [abs.]: Eos (American Geophysical Union Transactions), v. 77, no. 46, p. 794.

Ren, M., 2004, Partitioning of Sr, Ba, Rb, Y, and LREE between alkali feldspar and peraluminous silicic magma: American Mineralogist, v. 89, no. 8-9, p. 1290-1303.

Ring, J.H., 2000, Young volcanism in western Long Valley Caldera, California; (1) Hazards due to lahars and block-and-ash flows at Mammoth Mountain; (2) Contemporaneous mafic and silicic eruptions during the past 160 Ka at Long Valley Caldera, California; implications of new $^{40}Ar/^{39}Ar$ eruption ages for current volcanic hazard; (3) Evidence for magma mixing from petrography and electron microprobe analyses: Stanford, CA, Stanford University, M.S. thesis, 202 p.

Rison, W., Welhan, J.A., Poreda, R., and Craig, H., 1983, Long Valley; increase in the \(^{3}\text{He}/^{4}\text{He} \) ratio from 1978 to 1983 [abs.]: Eos (American Geophysical Union Transactions), v. 64, no. 45, p. 891.

Roberts, C.W., and Jachens, R.C., 1984, Gravity evidence for prior igneous intrusion beneath the south moat of Long Valley Caldera, California [abs.]: Eos (American Geophysical Union Transactions), v. 65, no. 45, p. 1117.

Roeloffs, E.A., and Johnston, M.J.S., 2003, A seismic wave-induced fluid pressure increase; an alternative hypothesis for the strain transient at Long Valley Caldera following the 1992 M 7.3 Landers, California earthquake [abs.]: Eos (American Geophysical Union Transactions), v. 84, no. 46, supp., p. 1071-1072.

Rogers, D.B., and Dreiss, S.J., 1991, Variable density groundwater flow near a closed-basin saline lake; a case study at Mono Lake, California: Santa Cruz, University of California, Earth Sciences Board, 26 p. [final project report].

Ryall, A.S., Jr., 1982, Seismicity and magma injection near Mammoth Lakes, California, in the context of regional tectonics [abs.]: Eos (American Geophysical Union Transactions), v. 63, no. 45, p. 1132.

Ryall, A.S., Jr., and Ryall, F.D., 1984, Shallow magma bodies related to lithospheric extension in the western Great Basin, western Nevada and eastern California [abs.]: Seismological Society of America Earthquake Notes, v. 55, no. 1, p. 11-12.

Sarmiento, J., and Bennett, M.J., 1982, Use of the cone penetrometer to differentiate and correlate subsurface sediments for geological and geotechnical purposes [abs.]: Geological Society of America Abstracts with Programs, v. 14, no. 4, p. 230.

Segall, P., 1999, What we don't know about volcano deformation [abs.]: Eos (American Geophysical Transactions), v. 80, no. 46, p. 1193.

Sheehan, T.P., and Dawers, N.H., 2005, Spatial evolution of Neogene normal faults, northern Owens Valley; constraints on oblique-slip partitioning within the Eastern California shear zone [abs.]: Eos (American Geophysical Transactions), v. 86, no. 18, supp., abstract T43B-06.

Sheridan, M.F., 1975, Tectonic displacement of the Bishop Tuff; a field guide to Cenozoic deformation along the Sierra Nevada Province and Basin and Range Province boundary: California Geology, v. 28, no. 5, p. 107-110.

Simon, J.I., and Reid, M.R., 2003, Transient rhyolites; a fresh perspective on the generation of silicic magmas associated with Long Valley Caldera [abs.]: Eos (American Geophysical Union Transactions), v. 84, no. 46, supp., p. 1487-1488.

Skirius, C.M., Peterson, J.W., and Anderson, A.T., Jr., 1989, Pre-eruptive volatile content of Bishop Tuff ash flow magma; results of glass inclusion homogenization experiments [abs.]: Geological Society of America Abstracts with Programs, v. 21, no. 6, p. 270.

Smith, A.T., 1983, Microseismicity near Mammoth Lakes, California [abs.]: Eos (American Geophysical Union Transactions), v. 64, no. 5, p. 44.

Smith, B.M., 1990, Comparisons of oxygen isotope systematics of fossil and active calderas; Bonanza, CO and Long Valley, CA [abs.]: Eos (American Geophysical Union Transactions), v. 71, no. 43, p. 1677.

Soles, S., 1993, Age of the Tahoe Moraine at Bloody Canyon, Mono County, California, based on tephrochronology: San Jose, CA, San Jose State University, M.S. thesis, 166 p.

Sorey, M.L., 1999, Constraints on deep fluid circulation in Long Valley Caldera [abs.]: Eos (American Geophysical Union Transactions), v. 80, no. 46, p. 1162.

Sorey, M.L., Kennedy, B.M., Evans, W.C., and Farrar, C.D., 1990, Increases in $^3\text{He}/^4\text{He}$ in fumarolic gas associated with the 1989 earthquake swarm beneath Mammoth Mountain, CA [abs.]: Eos (American Geophysical Union Transactions), v. 71, no. 43, p. 1674-1675.

Stamm, J.F., 2002, Virtual climate change; an online lab to simulate modern, last glacial and doubled-CO$_2$ climate of Mono Lake, CA using an energy budget approach [abs.]: Geological Society of America Abstracts with Program, v. 34, no. 6, p. 298.

Steeples, D.W., 1975, Heat anomaly estimation from teleseismic P-delays [abs.]: Eos (American Geophysical Union Transactions), v. 56, no. 12, p. 1020.

Stierman, D.J., 1985, Natural earthquakes triggered by pore pressure fluctuations [abs.]: Seismological Society of America Earthquake Notes, v. 55, no. 1, p. 19.

Stine, S.W., 1984, Late Holocene lake level fluctuations and island volcanism at Mono Lake, California, in Stine, S., Wood, S., Sieh, K.E., and Miller, C.D., eds., Holocene paleoclimatology and tephrochronology, east and west of the central Sierran Crest: Friends of the Pleistocene, Pacific Cell Field Trip Guidebook, p. 21-49.

Stine, S.W., 1987, Mono Lake; the past 4,000 years: Berkeley, University of California, Ph.D. thesis, 615 p.

Stine, S.W., 1990, Late Holocene fluctuations of Mono Lake, eastern California: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 78, no. 3-4, p. 333-381.

Stoeckhert, B., Kuester, M., Fischer, M., and Roeller, K., 1999, Episodic phase separation (H2O - CO2) in the hydrothermal system at Long Valley exploratory well, recorded by quartz microstructures and fluid inclusions [abs.]: Eos (American Geophysical Union Transactions), v. 80, no. 46, p. 1161.

Stormer, J.C., Jr., 1983, Determination of the depth of origin of large volume silicic magmas; two-feldspar + Fe-Ti oxide method [abs.]: Eos (American Geophysical Union Transactions), v. 64, no. 18, p. 336.

Swanson, S.E., Naney, M.T., and Westrich, H.R., 1985, Origin of microlites in rhyolite; an example from Inyo Domes, California [abs.]: Eos (American Geophysical Union Transactions), v. 66, no. 46, p. 1112.

Tanzer, M.O., and MacDougall, J.D., 1984, 230Th-238U disequilibrium systematics from Long Valley and Mono domes, California; evidence for magma replenishment since 0.1 m.y. ago [abs.]: Eos (American Geophysical Union Transactions), v. 65, no. 45, p. 1128.

Templeton, D.C., and Dreger, D.S., 2003, Fluid influenced faulting in the Long Valley volcanic region [abs.]: Eos (American Geophysical Union Transactions), v. 84, no. 46, supp., abstract V52B-0439.

Thatcher, W.R., 1982, Seismic triggering and earthquake prediction [abs.]: Eos (American Geophysical Union Transactions), v. 63, no. 18, p. 436.

Thatcher, W.R., 1999, What active magmatic processes are imaged by satellite radar interferometry (InSAR)? [abs.]: Eos (American Geophysical Union Transactions), v. 80, no. 46, p. 1193.

Thompson, G.A., Parsons, T., and Smith, R., 1990, Examples of magma overpressure suppressing normal faulting and inhibiting seismicity; Snake River plain, Idaho, Yucca Mountain, Nevada, and Mono Craters, California [abs.]: Eos (American Geophysical Union Transactions), v. 71, no. 43, p. 1622.

Tryggvason, A., 1998, Seismic tomography; inversion for P- and S-wave velocities [Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, no. 369]: Uppsala [Sweden], Uppsala University, 31 p.

Urban, T.C., and Diment, W.H., 1988, Precision temperature log in the hottest well in the Long Valley Caldera, California; implications as to hydrothermal conditions and fluid exchange along the well [abs.]: Geological Society of America Abstracts with Programs, v. 20, no. 7, p. 92.

Urban, T.C., Diment, W.H., and Moses, T.H., 1988, Heat transport mechanisms in the west moat of the Long Valley Caldera, California, as revealed by precision temperature logs in PLV-1 repeated over a 3 yr interval [abs.]: Eos (American Geophysical Union Transactions), v. 69, no. 44, p. 1187.

van den Bogaard, P., and Schirnick, C., 1995, $^{40}\text{Ar}^{39}\text{Ar}$ laser probe ages of Bishop Tuff quartz phenocrysts substantiate long-lived silicic magma chamber at Long Valley, United States: Geology, v. 23, no. 8, p. 759-762.

Van Ry, M.E., and Browne, B., 2008, Mafic inputs into the earthquake dome magma system, Mammoth Lakes, CA [abs.]: Eos (American Geophysical Union Transactions), v. 89, no. 53, supp., abstract V41D-2136.

Varekamp, J.C., and Buseck, P.R., 1984, Changing mercury anomalies in Long Valley, California; indication for magma movement or seismic activity: Geology, v. 12, no. 5, p. 283-286.

Verosub, K.L., and Summa, L.L., 1992, Effect of diagenesis on magnetic minerals as determined from unaltered and altered tephra layers [abs.]: Eos (American Geophysical Union Transactions), v. 73, no. 14, p. 94.

Vogel, T.A., Schuraytz, B.C., and Younker, L.W., 1984, Preliminary geothermometry of the conduit to Obsidian Dome based on coexisting ilmenite-magnetite and augite-orthopyroxene [abs.]: Eos (American Geophysical Union Transactions), v. 66, no. 18, p. 384.

Vogel, T.A., Younker, L.W., and Schuraytz, B.C., 1987, Constraints on magma ascent, emplacement, and eruption; geochemical and mineralogical data from drill-core samples at Obsidian Dome, Inyo chain, California: Geology, v. 15, no. 5, p. 405-408.

Waring, C.A., 1917, Geological map of Inyo County, California: California State Mining Bureau Geological Map, scale 1:250,000

Wark, D.A., and Bachmann, O., 2005, Contrasting Ti zoning patterns in quartz phenocrysts from the Bishop and Fish Canyon Tuffs; an expression of volatile composition in recharge melts [abs.]: Eos (American Geophysical Union Transactions), v. 86, no. 52, supp., abstract V13B-0523.

Westrich, H.R., and Eichelberger, J.C., 1988, Obsidian lava; evidence for a degassed magma [abs.]: Eos (American Geophysical Union Transactions), v. 69, no. 44, p. 1469-1470.

Williams, C.A., Rundle, J.B., and Wawersik, W., 1993, Finite element modeling of stresses and deformation in Long Valley, California [abs.]: Eos (American Geophysical Union Transactions), v. 74, no. 43, p. 609.
Williams, S.N., and Hudnut, K.W., 1984, Soil gas radon and mercury at an active silicic caldera; Long Valley, California [abs.]: Geological Society of America Abstracts with Programs, v. 16, no. 6, p. 695.

Winick, J.A., Dunbar, N.W., and McIntosh, W.C., 2000, Melt inclusion hosted excess argon (40ArE) in the quartz crystals of the Bishop and and Bandelier magma systems [abs.] New Mexico Geology, v. 22, no. 2, p. 38.

Winick, J.A., McIntosh, W.C., and Dunbar, N.W., 2001, Melt-inclusion-hosted excess 40Ar in quartz crystals of the Bishop and Bandelier magma systems: Geology, v. 29, no. 3, p. 275-278.

Wolfe, C., Terpolilli, C., and Browne, B.L., 2007, Petrologic constraints on eruption triggering and magma ascent at Mammoth Mountain, California [abs.]: Geological Society of America Abstracts with Programs, v. 39, no. 4, p. 73.

Wu, M., and Wang, H.F., 1986, Effect of magma chamber shape on ground deformations; application to uplift at Long Valley, California [abs.]: Eos (American Geophysical Union Transactions), v. 67, no. 16, p. 402.

Zhang, Y., Stolper, E.M., and Ihinger, P.D., 1995, Kinetics of the reaction H_2O+O = 2OH in rhyolitic and albitic glasses; preliminary results: American Mineralogist, v. 80, no. 5-6, p. 593-612.

