

cloudPEST – A Python Module for Cloud-Computing
Deployment of PEST, a Program for Parameter Estimation

Open-File Report 2011–1062

U.S. Department of the Interior
U.S. Geological Survey

Cover photograph by Michael N. Fienen

cloudPEST – A Python Module for Cloud-Computing
Deployment of PEST, a Program for Parameter Estimation

By Michael N. Fienen, Thomas C. Kunicki, and Daniel E. Kester

Open-File Report 2011–1062

U.S. Department of the Interior
U.S. Geological Survey

U.S. Department of the Interior
KEN SALAZAR, Secretary

U.S. Geological Survey
Marcia K. McNutt, Director

U.S. Geological Survey, Reston, Virginia 2011

For product and ordering information:

World Wide Web: http://www.usgs.gov/pubprod

Telephone: 1-888-ASK-USGS

For more information on the USGS—the Federal source for science about the Earth, its natural and living resources,

natural hazards, and the environment:

World Wide Web: http://www.usgs.gov

Telephone: 1-888-ASK-USGS

Suggested citation:
Fienen, M. N., Kunicki, T. C., and Kester, D. E., 2011, cloudPEST – A Python Module for Cloud-Computing Deploy
ment of PEST, a Program for Parameter Estimation: U.S. Geological Survey Open-File Report 2011–1062, 22 p.
[http://pubs.usgs.gov/of/2011/1062]

Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply
endorsement by the U.S. Government.

Although this report is in the public domain, permission must be secured from the individual copyright owners to
reproduce any copyrighted materials contained within this report.

Typeset on March 17, 2011

http://pubs.usgs.gov/of/2011/1062
http:http://www.usgs.gov
http://www.usgs.gov/pubprod

Contents

Abstract . 2

Introduction . 2

Purpose and Scope . 2

Preliminaries . 3

Python . 3

EC2 Command-Line Tools . 4

The AWS Console . 4

Communicating with Nodes . 4

cloudPEST Concepts . 5

Security Groups . 5

EC2 Key Pair . 5

Amazon Machine Image (AMI) . 5

Instance . 6

Instance Types and Pricing . 6

Stopping and Terminating . 6

Session . 6

Instructions . 6

General Strategy . 7

Summary of Steps for a Session . 7

Details and Rationale for Session Steps . 7

Create Master Image . 7

Create Slave Image . 8

Create Service on Slave . 8

Windows Services . 10

Create Both Images . 10

Launch a Master Instance (optional) . 10

Start SSH Tunnel (optional) . 10

Configuring a Port-Forwarding Linux Machine on the Cloud . 11

Establish the SSH Tunnel with Port Forwarding on Command Line . 11

Establish the SSH Tunnel with Port Forwarding Using PuTTY . 11

Launch beoPEST on the Master . 12

Launch Slave Instances . 12

Terminate Slaves and Master At Completion . 13

cloudPEST Classes and Functions . 13

Classes . 13

images: . 13

instances: . 13

master: . 14

iii

iv

cloudPEST Functions . 14

query images() . 14

query instances(∗instance id) . 14

run instances(ami id, instance count, keyname, group,*insttype,*cnodes,*availzone) 15

start instances(instance id) . 15

stop instances(instance id) . 15

terminate instances(instance id) . 16

cloudPESTclient Functions . 16

parseLine(line) . 16

readFTPparfile(infile) . 16

retrieveFTPparfile(FTPaddress, FTPdir, detailedParInfile) . 17

readRUNparfile(infile) . 17

StartNode(bPcasename, bPexec, bPhost, bPport, bPCurrentNode) . 17

node starter.py() . 18

Example Application . 18

Acknowledgments . 19

References Cited . 19

Glossary . 21

Figures

1.	 Diagram illustrating the arrangement of computers for setting up initial images 8

2.	 Diagram illustrating the arrangement of computers for production runs. The multiple locations (1

and 2) in the diagram highlight the fact that each batch of virtual machines run may be hosted at

a different physical location within the cloud network of servers . 9

3.	 Dialogue box for the Non-Sucking Service Manager (NSSM) showing example input for starting

the node starter.py service . 10

4.	 Dialogue of the SSH tunnel section of the PuTTY configuration . 12

5.	 Parameter file with details of FTP downloading used by node starter.py . 16

6.	 Parameter file details of paths and executables needed to start beoPEST in slave mode, used by

node starter.py . 18

7.	 Example implementation of the cloudPEST functions . 19

cloudPEST – A Python Module for Cloud-Computing
Deployment of PEST, a Program for Parameter Estimation

By Michael N. Fienen, Thomas C. Kunicki, and Daniel E. Kester

2 cloudPEST – A Python Module for Cloud-Computing Deployment of PEST, a Program for Parameter Estimation

Abstract

This report documents cloudPEST–a Python module with functions to facilitate deployment of the model-
independent parameter estimation code PEST on a cloud-computing environment. cloudPEST makes use of
low-level, freely available command-line tools that interface with the Amazon Elastic Compute Cloud (EC2TM1)
that are unlikely to change dramatically. This report describes the preliminary setup for both Python and EC2
tools and subsequently describes the functions themselves. The code and guidelines have been tested primarily
on the Windows R ®3®2 operating system but are extensible to Linux R .

Introduction

Cloud computing, in which Internet data-transfer protocols are used to connect many rented computers at
data centers distributed around the world, facilitates large-scale numerical computing for parameter estima
tion applied to groundwater simulations (Hunt and others, 2010). In parameter estimation, for example using
PEST (Doherty, 2010), the most computationally expensive aspect is to calculate the Jacobian matrix of sensi
tivities, which guides the gradient-based inversion. Calculation of the Jacobian matrix requires at least one run
per parameter using the perturbation method but each model run is independent from the other; therefore, the
problem is “embarrassingly parallel” and well suited for parallelization such as using Parallel PEST (Doherty,
2010) and beoPEST (Schreüder, 2009). Both PEST and beoPEST are available online at
http://www.pesthomepage.org, and both use a network of “slave” computers to distribute the computational
load. The ability to launch a virtually limitless number of slave computers on the cloud creates great oppor
tunities for calculation of the Jacobian matrix required many times in the linearized least-squares parameter-
estimation approach used in PEST.

beoPEST is a new parallel run management code that is well-suited for cloud computing. A key advan
tage to using beoPEST over the traditional run-management file approach of parallel PEST are is that much of
the computational load of input/output (I/O) and file construction is pushed out to the slave machines, which
mitigates a bottleneck at the master processor that has been encountered in highly parameterized problems.
Another advantage to beoPEST is that it does not require a static network with shared privileges and static
names or Internet protocol (IP) addresses; only the master needs to have a static address and an open trans
mission control protocol/Internet protocol (TCP/IP) port. The slaves are started and send signals to the master
indicating they are available to accept model runs using either TCP/IP or message passing interface (MPI) pro
tocols; in this report, we focus on the TCP/IP protocol.

Another impediment to large-scale deployment of PEST problems on the cloud is the lack of tailored
scripting functions to automate the launching, monitoring, and termination of the large number of slave machines
required. Users are able to accomplish these tasks through websites or other manual means, but the automation
aspect is important for deploying cloud-based PEST runs on a large scale. cloudPEST is a module of Python
classes and functions designed to address this deficiency.

Purpose and Scope

The goal of this report and of cloudPEST—the software module this report describes—is to provide a
utilitarian, relatively simple, and customizable module made up of functions to allow practitioners to rapidly
deploy PEST runs in parallel using beoPEST on the cloud. The Elastic Compute Cloud from Amazon Web
Services of Amazon.com, Inc. (AWSTM4), hereafter termed “EC2,” was selected as the platform on which to

1“Amazon EC2” is a trademark of Amazon, Inc. in the United States and/or other countries.

2“Windows” is a registered trademark of Microsoft Corporation in the United States and other countries.

3“Linux” is a registered trademark of Linus Torvalds in the United States and other countries

4“Amazon Web Services (AWS)” is a trademark of Amazon, Inc. in the United States and/or other countries.

http:Amazon.com
http:http://www.pesthomepage.org

3 Preliminaries

deploy cloudPEST; other cloud-computing vendors are available and as they develop application programming
interfaces (API) similar to that on EC2, cloudPEST could be adapted to work with them.

The scope of this work is to provide a baseline of information and functionality to allow users to begin
harnessing the power of the cloud. Python was chosen for the module because it is freely available, open-
source software-programming language that is platform independent. Python is a high-level language, mean
ing that the code is concise and compiles at run time, obviating the need for a compiler for each platform. The
functions are really scripts wrapped around the EC2 command-line tools. The cloudPEST tools were devel
oped specifically for EC2 owing to availability of an existing application programming interface (API) toolset
on which to build scripts for large-scale deployment. Some of the protocols in this report are transferable to
other vendors, but the main API-related functions are specific to EC2.

The EC2 command-line tools make it possible for a great amount of flexibility, control, and customization
of using EC2. Low-level, command-line tools were chosen because they are likely to remain available even as
other aspects of the EC2 services change rapidly. The intent of cloudPEST is not to provide access to all of the
functionality of the EC2 tools; cloudPEST is intended to provide the minimum level of interaction required to
deploy parallel PEST runs on the cloud using beoPEST. The interested user is encouraged to consult the EC2
command-line tools documentation and other online references regarding the AWS Console.

The decision was made to develop platform-independent tools, which would allow users the flexibility to
work on Windows or Linux platforms. The choice between Windows and Linux on the cloud is based on sim
ilar considerations as for local use. Each platform has advantages and disadvantages: for example, networking
on Linux is more advanced whereas many modeling-support tools, particularly for groundwater modeling, are
supported principally in Windows. Users should also consider cost differences when making a decision regard
ing which platform to use.

This report is aimed at intermediate to advanced users with some aptitude toward adapting programs or
original coding. No graphical user interface is provided for the cloudPEST module; hence, the use of cloud-
PEST is dependent on the user writing scripts as text files and running them from the command line. However,
it is hoped that many applications will be able to use of the basic scripts provided, without significant modifi
cation.

Preliminaries

The setup of software required to run cloudPEST is described in the following subsections, including
Python and EC2 tools. The versions used here are Python 2.6.5 or later and EC2-tools version 2009-11-30.
Some basic information about preferred computer configuration for cloudPEST also is provided.

While the computational load in beoPEST is transferred to the cloud when using cloudPEST, a local com
puter also is used to coordinate the process. The cloudPEST module typically is run both locally (to start and
stop slaves and to run the master) and on the cloud (to start the slaves and initiate their communication with
the master). Depending on local firewall restrictions, port forwarding may be required to establish a secure
connection through the firewall. Details of these operations are provided throughout this report.

Python

Several options exist for installing Python 2.6.5. Python can be downloaded from
http://www.Python.org/download/. The install is accomplished using either an installer (Windows and OSX)
or compiled from source (Linux, for example). After installation, the install folder (typically C:\Python26
on Windows) must be added to the system PATH so it can be called from the command line. Other options
are bundles such as the Enthought Python Distribution (http://www.enthought.com/products/getepd.php) or
Python(x,y)

http://www.enthought.com/products/getepd.php
http://www.Python.org/download

4 cloudPEST – A Python Module for Cloud-Computing Deployment of PEST, a Program for Parameter Estimation

(http://www.Pythonxy.com).With the bundled approach, many useful packages are included that must oth
erwise be added later. Python (x,y) is free for use on Windows while Enthought is not free (unless used in
academia). Adding packages is most easily accomplished using easy install (http://pypi.Python.org/pypi/setuptools).
Python should be installed on all computers being used with cloudPEST, including all Amazon Machine Images
(defined below).

EC2 Command-Line Tools

The EC2 command-line tools are used on a local machine to interact with EC2. As a result, these tools and
associated files need only be downloaded locally in order to control the machines on the cloud.

The EC2 command-line tools can be downloaded from http://tinyurl.com/ec2-api. After downloading the
files, a couple of modifications to the PATH and other environment variables need to be made, as discussed
in detail later in this section. A security connection also must be made with AWS; the security connection
allows for secure communication with computers on the cloud. Detailed instructions for OSX5 can be found
at: http://tinyurl.com/ec2-osx, and similar instructions for Windows are found at: http://tinyurl.com/ec2-win.
Users can access and download the X.509 Certificate, described in the installation instructions, from the user
account area at http://aws.amazon.com/account/, by following the link to ”Security Credentials.”

The AWS Console

Much of the functionality that can be accessed through the EC2 command-line tools and, by extension,
through cloudPEST also can be accessed through a graphical user interface (GUI) in a web browser, called
the AWS Console. Initially setting up an Amazon Machine Image (AMI) is most efficient through the con
sole. Furthermore, as a session is underway, the console allows for quick checking on the status. Note that
when using the console, automatic refreshing of the page can be a bit slow, so frequent manually refreshing
either of the entire page or using the “refresh” button is recommended. The console is initially accessed at
http://aws.amazon.com from which there are links to access the console and also to set up and manage other
aspects of the Amazon AWS account. The AWS Console shows conclusively how many instances are running.
In other words, even if the cloudPEST tools lose communication, the AWS Console always is available with a
definitive list of active instances and the ability to stop them and confirm they are stopped.

Every running instance is incurring an hourly cost, so at the completion of any work using AWS,
a user should view the AWS Console to confirm that all instances are stopped. If, for any reason, the
cloudPEST APIs have failed to stop instances, the user can stop them through the AWS Console. Failure
to take this step could result in unintended costs for resources not being used.

Communicating with Nodes

The standard means of communicating remotely with a computer running the Windows operating sys
tem is through the Remote Desktop Protocol (RDP). This manual, graphical interface is useful for configur
ing a Windows image but is not a practical solution for running a distributed parallel-computing implemen
tation. Unfortunately, there is not a built-in protocol on Windows to facilitate the necessary remote control.
As a result, configuration of an initial image node on Windows is accomplished through RDP, and slaves are
started using Windows services (described later) to launch beoPEST and initiate communication with master
machines.

On Linux, the default method of communicating with nodes is through secure shell (SSH). This protocol
is lower-level than RDP (it is primarily a command-line interface) so scripting of commands to the nodes is

5If using OSX, following the instructions for the environment variables EC2 PRIVATE KEY and EC2 CERT, note that the entire path for the asso
ciated files must be provided if the user wants to use the EC2 command-line tools outside the installation directory.

http:http://aws.amazon.com
http://aws.amazon.com/account
http://tinyurl.com/ec2-win
http://tinyurl.com/ec2-osx
http://tinyurl.com/ec2-api
http://pypi.Python.org/pypi/setuptools
http://www.Pythonxy.com).With

5 Preliminaries

much easier. It may be impractical to start slaves using SSH so daemons may be used similar to Windows ser
vices. Initial testing was conducted using daemons as a service with beoPEST on the cloud on Linux instances,
but a complete test case has not been performed.

cloudPEST Concepts

The cloudPEST library is predicated on certain behavioral assumptions about how EC2 resources are used.
There are many options available, and other approaches certainly are possible and are likely to have advan
tages over the approach presented here. A few concepts are explained here, the understanding of which is nec
essary to implement cloudPEST.

Security Groups

Each user must establish security groups (most easily done through the console) to configure which ports
are open for communication. In case of attacks, it is inadvisable to open all ports for incoming traffic. For
cloudPEST, it is only necessary to open a port for SSH (typically 22 (the standard) or 2222 (similar to the stan
dard but marginally less likely to be attacked)), a port for RDP access (port 2289 is the standard), and a port
for beoPEST. During testing of cloudPEST, the port 4040 was opened for beoPEST. This choice is arbitrary,
but using a high number (greater than 4000) is less likely to interfere with other port usage on installed pro
grams.

Opening ports on the security group does not mean all instances will have an open port through their fire-
walls. In fact, when using Windows, the user must open the beoPEST and SSH ports manually in the firewall
as part of configuring a base image.

EC2 Key Pair

A key pair is required to associate a particular user account with an instance. This is a security measure
to ensure that the connection between the cloud and the accessing computer is valid and associated with a
specific account. New key pairs can be created at the console or using the command-line tools (a function in
cloudPEST also allows this). When initiating (running) an instance from an AMI (both terms are described
below), the user must specify a key pair by name to be used for that instance.

Amazon Machine Image (AMI)

An Amazon Machine Image (AMI) is a virtual machine configuration created either by Amazon (a base
image), created by a user, or selected from a public library of machine images. An AMI may be cloned as
many times as desirable. AMIs are identified by alphanumeric codes starting with " ami-#######". An AMI
can be created from any running instance and, once created, it will be an image reflecting the exact configura
tion of the instance (for example, files, software, network configurations) at the time of its creation. While it
is possible to create an AMI using command-line tools, it typically is easiest to create an AMI in the console
by clicking on the active instance desired to be the base for the AMI and selecting Instance Actions > Create
Image (EBS AMI) from the menu bar in the browser.

A user can run an instance based on an AMI. The term “run” has a very specific meaning in this context,
which is that running an instance from an AMI means a brand-new virtual machine will be instanced that is a
clone of the AMI configuration indicated. Regardless of the contents of other instances run from an AMI, each
clone instance reflects the configuration of the AMI at the time of its creation.

An important consideration when building an image is that AMIs and instances must be of the same archi
tecture. For example, various instances have both different architecture (64-bit Windows vs. 32-bit Windows

6 cloudPEST – A Python Module for Cloud-Computing Deployment of PEST, a Program for Parameter Estimation

vs. 64-bit Ubuntu Linux, for example) and different specifications (for example, processing power and mem
ory). Instances can change specifications from the AMI used as their clone base, but cannot change architec
ture. For example, an AMI based on a previously existing 32-bit Windows instance cannot be used to run a
64-bit Windows instance. An additional consideration pertains to image size. For example, the maximum size
that can be run on 32-bit Windows is c1.medium, which is incompatible with 64-bit Windows under which the
smallest image is c1.large. Therefore, careful consideration should be made when choosing which the archi
tecture from which to build an AMI.

Instance

An instance is a clone of an AMI representing a specific virtual machine that can be accessed and used for
computation. Many instances can be spawned or cloned from an AMI. Instances are identified with alphanu
meric codes starting with "i-#######".

A user can either run an instance, as decsribed above, or can start an instance. The difference is, when
starting an instance, rather than making a new clone of an AMI, an instance that was created using run ear
lier and later was stopped is re-started using start. When an instance is re-started, the configuration of files
includes any modifications made to the image before it was stopped, so each instance may reflect changes
made from the time it was launched from an AMI.

Instance Types and Pricing

The types of instances available at EC2 occasionally change. A complete list of available instances is
maintained at http://aws.amazon.com/ec2/pricing/. The discrepancy between Linux and Windows instance
pricing is based on the need to pay for Windows licensing when using Windows instances. New instance types
are added periodically with different configurations of memory and processing capabilities.

Stopping and Terminating

Another important distinction must be made between “stopping” and “terminating” an instance. If a user
stops an instance, charges will be suspended the instance will be parked as if a local computer was shut down
and is waiting to be re-started. Some charges for the storage of the image files may be incurred. If an instance
is terminated, it is destroyed and all of the data on it are lost forever. So, stopping an instance is a way to park
it for future use, while termination is permanent and should be done at the end of a session.

Session

In the context of this report, “session” means a period of time in which virtual cloud machines are started,
parallel runs are performed with them, and they are shut down. Activities during a session include starting the
slave machines (instances), running beoPEST (and the model) on them, checking their status, and shutting
them down.

Instructions

Broadly speaking, there are two approaches to managing nodes on the EC2. One is to configure, start, and
stop machines using the AWS Console, exclusively and the other is to use the APIs in this module for machine
management. The remainder of this section is general and discusses the approach regardless of whether the
APIs in this module are used. In the discussion of functions and classes later in this section, more details are
discussed specific to the APIs.

http://aws.amazon.com/ec2/pricing

7 Instructions

General Strategy

In this section, we describe the general strategy that can be implemented, using either Windows or Linux,
to start on the cloud. First is a summary list of steps, followed by a detailed list including a description of the
rationale behind the selection of these specific steps. We emphasize here that this approach is not meant to be
the only approach, but rather is an example. Individual users may well create implementations that work better
for their own applications. Nonetheless, we have found success with the following approach and believe it
may work well for many general applications. Figure 1 illustrates the initial configuration of cloud resources,
discussed in steps 1–4 of the following list. Figure 2 illustrates running a project after configuration, discussed
in steps 5–9 of the following list.

Summary of Steps for a Session

1.	 Create Master Image: Custom software and model files must be installed, typically from a File Transfer
Protocol (FTP) site. Each master image is configured as a base AMI illustrated in figure 1.

2.	 Create Slave Image: Custom software and all model files must be installed, typically from an FTP site.
Each slave image is configured as a base AMI illustrated in figure 1.

3.	 Create Service on Slave: The service installed on the slave is created to automatically launch the slave
version of beoPEST when instances are started.

4.	 Create Both Images: Private images are created as Elastic Block Storage (EBS)-backed images so that
clones can be launched.

5.	 Launch a Master Instance: A single master instance is launched, and the IP address is noted and uploaded
to the configuration file that will be used by the slave service.

6.	 Start SSH Tunnel (optional): If running the master on a local machine (advised), establish an SSH tunnel
to the cloud master instance and forward the beoPEST port from the cloud master to the local machine.
This is necessary to provide secure communication among master and slave machines without the need
to open a port for general access through the local (not on the cloud) firewall.

7.	 Launch beoPEST on the Master: If using port forwarding, this launch will be local.

8.	 Launch Slave Instances: The number of slaves launched depends on the requirements of the problem,
account details, and cost considerations. In any case, launching in batches of 20 or less is advised. When
the slaves start, they may retrieve configuration files from an FTP site.

9.	 At Completion, Terminate Slaves and Master or Port Forwarder: All instances can be safely terminated
provided that all results are either stored on a local machine (through port forwarding of the master) or
transferred off the cloud.

Details and Rationale for Session Steps

Create Master Image

First a master image should be created. This image typically is created from a general, public, base image
provided by EC2. The first step is to select a base image and to start an instance of it for configuration and,
ultimately, to save (create) as a new image. This is most easily accomplished through the AWS Console. All
custom software must be installed (for example, Python, numpy, beoPEST, and all model files) on this instance

8 cloudPEST – A Python Module for Cloud-Computing Deployment of PEST, a Program for Parameter Estimation

internet

office computer

python 2.6
cloudPEST.py
cloudDriver.py
EC2-tools
beoPEST
model files

installed

cloud server

python 2.6
cloudPESTclient.py
node_starter.py
beoPEST
model files

installed

base ami
CONFIGURATION STEP

rdp/ssh V

ftp site
ftpoffice computer

EXPLANATION
cloud server

V virtual machine

desktop machine

Figure 1. Diagram illustrating the arrangement of computers for setting up initial images.

using either RDP on Windows or SSH and curl on Linux. The time it takes to copy a large folder (even when
compressed) of model files and executables can be long, so it is advised to download them once when creat
ing the general image rather than transferring the files at run time. This way, any instance run based on this
image will already have the files in place. On Windows, using RDP to access the machine, FTP (through a
web browser or otherwise) is the recommended transfer method as using RDP directly to map drives will not
handle the large files typically needed for models.

Create Slave Image

A similar suite of installations and file transfers as on the master image generally will be required on the
slave image. Copying all model files to this image is the fastest way to deploy the files, as each instance started
from the slave image will be configured with the entire suite of files. Another critical issue on Windows images
is to disable renaming of the computer, which requires a reboot as part of the EC2 virtualization and instanti
ating protocol. Taking advantage of the TCP/IP communication protocols, the Windows computer name does
not serve an important purpose, so while each slave instance will be started with a unique IP address, each will
have the same name (based on an encoding of the IP address assigned to the image at the beginning). This
naming protocol would cause problems if a Windows network was to be created, but such a step is unneces
sary here. Disabling rebooting requires editing the file

c:\Program Files\Amazon\Ec2ConfigService\Settings\config.xml and changing the state for
Ec2SetComputerName from <State>Enabled</State> to <State>Disabled</State>. The editing of
this file only needs not be performed on the slave image—not on the master image. Preventing renaming obvi
ates the reboot and also means the instances are available for use faster than if rebooting is allowed.

Create Service on Slave

A service is a program that runs in the background at the operating system root and can be configured to
start automatically when a machine is powered on (or, in our case, an instance is launched). On Unix, services
are called “daemons.” We use services with cloudPEST so that slave machines automatically start beoPEST
in slave mode at launch, obviating the need for user intervention. Starting a service is platform specific and
requires several steps. The rationale for using services to automatically launch beoPEST on slave instances
is based on several factors. First, the alternative would require establishing an SSH connection to each slave

9 Instructions

internet

cloud server

security

cloud server:
location 1

slave nodes

cloud server
location 2

slave nodes

ssh tunnel

ftp site

config files data

forward host
port to office
computer

host clone
V

V

V

V

V

V

V

V

V

:

tcp/IP

ftp

PRODUCTION RUNS

true master
controlling
runs

master

office computer

EXPLANATION
cloud server

V virtual machine - cloned from an image

desktop machine

Figure 2. Diagram illustrating the arrangement of computers for production runs. The multiple locations (1 and 2) in the dia
gram highlight the fact that each batch of virtual machines run may be hosted at a different physical location within the cloud
network of servers.

instance and the control of remotely launched processes through SSH. However, setting up an SSH host on
Windows can be difficult. Furthermore, the most efficient way to transfer model files to each computational
node is through creating instances from an image that contains the necessary files. Each instance is “throw
away” in the sense that its existence is only for the purpose of running models, and persistence is not impor
tant. Therefore, using a service, while specific to the problem at hand, is more efficient and poses fewer logis
tical challenges than a more general approach.

In this report, an example code is provided that can act as a service. The code node starter.py depends
on cloudPESTclient.py, which must be in the PYTHONPATH or in the same directory as node starter.py.
These Python code files must both be loaded onto the slave image. The node starter code has two sim
ple purposes. First, it (optionally) pulls a configuration file from an FTP site. This configuration file typi
cally informs each node of the IP address and port for the master and the problem-specific information such
as the exact version of beoPEST to run and the name of the case (.pst) file to run. Furthermore, paths to spe
cific slave-node folders can be defined. These path designations are local on an individual slave image, and
recall that the directory structure in a slave image will be recreated on every instance launched from it. Sec
ond, node starter.py goes to each slave-node folder location and spawns a subprocess for beoPEST in each

http:starter.py
http:starter.py
http:cloudPESTclient.py
http:starter.py

10 cloudPEST – A Python Module for Cloud-Computing Deployment of PEST, a Program for Parameter Estimation

Figure 3. Dialogue box for the Non-Sucking Service Manager (NSSM) showing example input for starting the
node starter.py service.

location; this subprocess is kept active as long as the service is running. More details about the configuration
files and slave functions are discussed later in the Functions section.

The specific process to establish a service is platform dependent, so the following paragraphs provide
instructions for Windows. The details for Linux would require creating a daemon with associated permissions
handling.

Windows Services

In Windows, there are many ways to establish services. Third-party applications provide the ability to con
vert any application to a service and in this report the Non-Sucking Service Manager (NSSM)
(http://iain.cx/src/nssm/) is discussed. Note that, for the previous URL, “http” may be replaced by “https” if
following the results of a Google search, so take care in following this link directly from this document, or
confirm “http” in the URL if typing it in directly. When using NSSM, the application converted to a service
actually is the Python engine. This should use a fully qualified path to define–in other words, the path should
be defined in full from the root, which is the c: drive on Windows. The argument for the application should
be the fully qualified path to node starter.py. Starting NSSM uses the syntax nssm install on the com
mand line. Figure 3 shows the arguments entered in the NSSM GUI.

Create Both Images

Once images are configured, they must be saved as EBS-backed images to enable instances to be started
from them (as clones). In EC2 terminology, this process is referred to as “creating” the images. The easi
est way to create the EBS-backed images is to use the menu on the AWS Console website (right-click on the
Instance and select “Create Image (EBS AMI)”). The result is a new EBS-backed image, which can, in turn,
be cloned as necessary.

Launch a Master Instance (optional)

A single master instance is launched and the IP address is noted and inserted into the configuration file
that will be uploaded to an FTP site to later be downloaded and used by the slave service. This is optional, as
the master can be run on the office computer (not on the cloud) and either directly host beoPEST or forward
the port from an SSH tunnel machine, if necessary, to securely move through a firewall. On figure 2 no master
instance is launched, rather the master is on the office computer and port forwarding is used through the host
clone.

Start SSH Tunnel (optional)

SSH tunnels allow a secure and encrypted connection to be maintained across a firewall between a locally
owned master computer and a cloud machine, which has the sole purpose of forwarding data from the cloud
across the secure SSH tunnel to the master. Regardless of which operating system is being used to run beoPEST

http:starter.py
http://iain.cx/src/nssm
http:starter.py

Instructions 11

and the models, the easiest and most reliable way to establish an SSH tunnel is to launch a Linux machine
on the cloud to forward a port. In this example, Ubuntu 10.04 was selected as the Linux version, and steps
to establish the tunnel are outlined. The host clone in figure 2 represents the port-forwarding virtual machine.
The alternative to SSH tunneling is opening a port through the firewall, which may be considered a security
risk in some environments.

Configuring a Port-Forwarding Linux Machine on the Cloud

First, select a suitable base Ubuntu 10.04 image as the starting point. Selecting an EBS-backed image is
preferable in that it simplifies creating images for future use. One source of such images is available from
the Canonical Ubuntu Team at http://uec-images.ubuntu.com/releases/10.04/release/. Next, connect to the
instance using SSH and edit the file /etc/ssh/sshd config or /etc/sshd config. There should be only
one file called sshd config and it can be located at either path noted above. Using vi or another command-
line text editor, go to the bottom of the file and add the line GatewayPorts yes. This will allow a port to be
forwarded from the cloud through the SSH tunnel back to the local master. Note that this ability is disabled by
default, and that when establishing the SSH tunnel, a user with non-administrative rights locally should always
be used. Establishing the port forwarding over the SSH tunnel can pose a minor security risk, although estab
lishing the SSH tunnel as a non-administrative user mitigates most of that risk because even if someone hacked
the connection, with non-administrative rights, they would be limited in the damage they could do. To restart
SSHD, type sudo /etc/init.d/ssh restart at the command line. This only is necessary if the SSH tun
nel is to be established prior to restarting the system. On subsequent restarts, port forwarding will be enabled
owing to the changes made above. Finally, to obviate the need for performing these steps on every session, the
Ubuntu machine can be created as an EBS image so instances simply can be spawned whenever forwarding is
to be established.

There are two options for establishing an SSH tunnel with Port Forwarding. The first option is a command-
line sequence and the second employs a GUI.

Establish the SSH Tunnel with Port Forwarding on Command Line

If a command-line interface is available for SSH, such as on Linux or using CYGWIN on Windows, the
following syntax is used on the local master to forward a remote port from the Ubuntu cloud machine:

ssh -i curr key.pem -R unbuntu@remoteIP 4040:localhost:4040
In this example, ssh is the call to the SSH program; the -i argument indicates that RSA encryption using

an identity file is used for authentication in lieu of a password. curr key.pem is the identity file, which is also
called the private key in previous discussions of establishing an Amazon AWS account. ubuntu@remoteIP is
the account name (this should always be “ubuntu”) to log onto at the address represented by remoteIP. The
address is obtained after the port-forwarding instance is started up through the AWS Console or through the
APIs. Finally, the final three-argument string indicates the port to forward to (first) followed by the IP address
to forward to, and finally the port to forward to. In this example, port 4040 on the cloud port-forwarding machine
will be forwarded to the master machine localhost on port 4040. In effect, this establishes a listening port
for TCP/IP on the cloud and that should be the target for the slaves (e.g. ###.###.###.###:4040, where
###.###.###.### is the IP address of the master). When the master is started, however, it is started with “:4040”
as the port which will listen on localhost.

The terminal/command window in which the call was made, above, must remain open on the master to
keep the SSH tunnel open.

Establish the SSH Tunnel with Port Forwarding Using PuTTY

A free GUI for establishing SSH connections–including tunnels–on Windows is called PuTTY

http://uec-images.ubuntu.com/releases/10.04/release

12 cloudPEST – A Python Module for Cloud-Computing Deployment of PEST, a Program for Parameter Estimation

Figure 4. Dialogue of the SSH tunnel section of the PuTTY configuration.

(http://www.chiark.greenend.org.uk/ sgtatham/putty/). Figure 4 shows the dialogue box in the PuTTY GUI
for establishing an SSH tunnel. In source port, the open port on the cloud (4040 in this example) is indi
cated, and in destination, the full address on the master is indicated (localhost:4040). The “Remote” radio
button also should be selected as shown, and then clicking the “Add” button is the final step. This tunneling
step should be added to the general PuTTY configuration step for using PuTTY to access cloud computers in
Amazon AWS

(http://it.toolbox.com/blogs/managing-infosec/connecting-to-amazon-aws-from-windows-to-a-linux-ami
30656).

Launch beoPEST on the Master

If using port forwarding, this launch will be local and the port specified will be the port to which traffic is
forwarded. An example is

beopest.exe casename.pst /H :4040. If not using port forwarding, the launch is still local.

Launch Slave Instances

Slave instances can be launched using either the AWS Console (ideal if a small number of slaves are to be
launched) or the APIs in the cloudPEST module, discussed in detail later in this report. Note that if instances
are launched using the APIs, they still can be monitored using the AWS Console. In either case,
cloudPESTclient.py and node starter.py must be present on the slave image in order to appear on each
slave instance. The number of slaves launched depends on the requirements of the problem, account details,
and cost considerations. In any case, launching in batches of 25 or less is advised. An important side issue
is that the default allowance for concurrently run instances is 20 on EC2. To launch more than that, a special
exception must be requested. However, even after receiving the exception, particularly when running Windows
instances, EC2 may prevent large numbers of instances from starting owing to security and performance con
cerns. Currently (2011) the only solution to these limits is ad hoc communication with EC2 customer service.

http:starter.py
http:cloudPESTclient.py
http://it.toolbox.com/blogs/managing-infosec/connecting-to-amazon-aws-from-windows-to-a-linux-ami
http://www.chiark.greenend.org.uk

cloudPEST Classes and Functions 13

In the process of increasing the limit, users should make a strong effort to communicate details of their compu
tational needs and usage goals to enable a smooth transition to larger numbers of instances.

Terminate Slaves and Master At Completion

All instances can be safely terminated after all results are either stored on a local machine (through port
forwarding to the master) or transferred off the cloud.

cloudPEST Classes and Functions

The remainder of this report outlines the classes and functions implemented in cloudPEST for interac
tion with EC2. The classes provided are objects largely used to organize the information used by the functions
and, in turn, by the users. These objects contain attributes but not methods. The functions facilitate the actual
interaction with the cloud. The classes are defined in cloudPEST.py as are the main functions. A separate
file, cloudPESTclient.py, provides utility programs that are used on the slave machines to pull and interpret
parameter files from an FTP site and to start beoPEST in slave mode. Finally, node starter.py provides an
example script that can be used as a service (as discussed above) to implement the necessary functions from
cloudPESTclient.py.

Classes

images:

The images class contains the information for all AMIs owned by the user. Attributes are:
Attribute Description

ami id AMI identification number for each available image.

description Description of each image (this short description is the name

given to the AMI at time of creation).

instances:

The instances class contains the information for all node machines for a particular session. Attributes
are:

Attribute Description

ami id AMI identification number from which the node is instanced.

instance id Instance-identification number for each node.

password Administrator password-assigned to new instances and used only

for RDP connection to a node.

port Port opened for master communication using beoPEST.

ip address IP address for the node. This address persists throughout the session

but is lost at stop/termination.

state Current state (running, stopped, or pending).

private DNS Private Domain Name System (DNS) address accessible only within the EC2 cloud.

public DNS Public DNS address that should be accessible outside the EC2 cloud.

group Security group with which the instance is associated.

http:cloudPESTclient.py
http:starter.py
http:cloudPESTclient.py
http:cloudPEST.py

14 cloudPEST – A Python Module for Cloud-Computing Deployment of PEST, a Program for Parameter Estimation

master:

The master class contains the information for the master machine in a particular session. The master typi
cally is a local machine rather than a cloud instance, although this is not required. Attributes are:

Attribute Description

ami id Optional variable naming the AMI on which the master is instanced.

instance id Optional instance-identification number if master is on the cloud.

address Address (IP address, DNS address, or computer name) at

which the master is contacted by beoPEST.

port Port opened for master communication using beoPEST.

cloudPEST Functions

Functions in cloudPEST.py are described in this section. All functions are described in terms of their
input, output, description, an example call, and the underlying EC2-tools functions used. The functions for the
client installation that starts slave machines is in the section titled cloudPESTclient.

To use the API functions, they need not be run on the master, but on any machine configured with the EC2
command-line tools and the cloudPEST Python module. The first step in running the functions, which are the
subject of this report, is to import them into either an interactive Python session or a Python script. This can be
done selectively, for example:

from cloudPEST import query instances
Alternatively, all classes and functions can be imported from the entire package:
from cloudPEST import *

query images()

The query images function returns a cloudPEST.images object with a list of available AMIs owned by
the user and their descriptive names.

Input None.

Output A cloudPEST.images object.

Underlying ec2-tools API Functions ec2-describe-images

query instances(∗instance id)

The query instances function returns a cloudPEST.instances object with a list of instances cur
rently running, stopped, or pending. The optional input variable instance id is a list of specific instances the
user wishes to query. The default returns information about all instances owned by the user.

Input A specific instance ID or list of instance IDs–optional.

Output A cloudPEST.instances object.

Underlying ec2-tools API Functions ec2-describe-instances

http:cloudPEST.py

cloudPEST Classes and Functions 15

run instances(ami id, instance count, keyname, group,*insttype,*cnodes,*availzone)

The run instances function runs (creates) as many instances as requested by the call. Note that limits
may be imposed by Amazon regarding the maximum number of allowed instances. Currently (2011), a default
limit of 20 instances is imposed and users must contact Amazon to increase this limit. The instances run typ
ically are either a single instance intended to be used as a master, or a group of instances intended to be used
as slave nodes. When launching a large number of instances (greater than 10 or 20), it is advisable to launch in
subgroups. This helps distribute the load among various physical locations. It is critical to remember that, once
instances are run, the user is being billed for the time—even in partial hours. For example, if a user runs 100
instances in a single call, and those instances are allowed by EC2, even if it is a mistake and they are imme
diately terminated, the user will be charged for 1 hour of use on each of the 100 instances. Extreme caution
should be exercised when launching multiple instances and frequent checking at either the AWS Console or
using the query instances should be conducted to keep tabs on exactly how many instances are running at a
given time.

Input ami id (string) identifier of the AMI from which clones should be run, instance count (integer);
number of instances to run, keyname (string); the name of the keypair used to communicate with the
instances, group (string); the name of the security group in which the instances will be run; insttype=[]
(string); is the optional instance type, which must be chosen from the available list, that should be peri
odically updated within the code. The default is the smallest/least-expensive instance type supported
by the AMItype. cnodes=[] (instances class) is the instances class, which will contain information on
the started instances. If blank, a new one will be started, or if provided, it will be appended to with the
new instacnes. availzone=[] (string) defines the availability zone in which instances are to be started.
Typically, this should be left as default because AWS optimizes based on loads, etc.

Output Screen output indicates success or provides an appropriate error message on failure.

Underlying ec2-tools API Functions ec2-run-instances

start instances(instance id)

The start instances function starts the instances identified in the calling instance id list.

Input A specific instance ID or list of instance IDs. This applies to instances that were previously run and are
currently in a stopped state.

Output Screen output indicates success or provides an appropriate error message on failure.

Underlying ec2-tools API Functions ec2-start-instances

stop instances(instance id)

The stop instances function starts the instances identified in the calling instance id list.

Input A specific instance ID or list of instance IDs. This applies to instances that were previously run and are
currently in a stopped state.

Output Screen output indicates success or provides an appropriate error message on failure.

Underlying ec2-tools API Functions ec2-stop-instances

16 cloudPEST – A Python Module for Cloud-Computing Deployment of PEST, a Program for Parameter Estimation

terminate instances(instance id)

The terminate instances function starts the instances identified in the calling instance id list.

Input A specific instance ID or list of instance IDs. This applies to instances that were previously run and are
currently in a stopped state.

Output Screen output indicates success or provides an appropriate error message on failure.

Underlying ec2-tools API Functions ec2-terminate-instances

cloudPESTclient Functions

Functions in cloudPESTclient.py are described in this section. The functions are described similarly
to those in the cloudPEST Functions section. An example calling function called node starter.py is provided
following the description of the functions. Several paths are hard coded in cloudPESTclient.py. Passing all
these paths through configuration files quickly becomes confusing, so the user should create either the same
directory structure on his or her slave instances and images as described here, or should change the paths in
the code. A comment in the code stating “# changeable path” indicates that the path on the next line can be
changed.

parseLine(line)

The parseLine function returns a string with the first value on a line prior to whitespace. This function is
used to read in configuration files.

Input A string containing an entire line read from a file.

Output A string with the first value from the line.

readFTPparfile(infile)

The readFTPparfile function reads a configuration (parameter) file identified by the input variable
infile. The function returns values indicating whether a configuration file containing run-specific infor
mation should be downloaded from an FTP site and, if so, the address of the FTP site and the path at the site
where the file resides. The current (2011) version assumes anonymous login is enabled. A straightforward
modification can expand functionality to allow passing login information; however, such login information
must be represented unencrypted to properly communicate it to the process.

figure 5 shows an example configuration file. Note that the binary flag on the first line indicates whether
the run-specific configuration file should be retrieved from an FTP file or if the local version should be used.
The “local path” referred to is the subdirectory on the FTP site in which the files reside—not the path on the
instance where the files will be saved.

Figure 5. Parameter file with details of FTP downloading used by node starter.py.

Input A fully qualified path identifying the location of the configuration file, which contains a detailed con
figuration file for the node starter.py program.

http:starter.py
http:starter.py
http:cloudPESTclient.py
http:starter.py
http:cloudPESTclient.py

cloudPEST Classes and Functions 17

Output Three variables are returned: FTPaddress is the host address of the root FTP site from which the file
will be downloaded such as ftp.example.com; FTPflag is a boolean flag indicating whether a remote
detailed configuration file should be downloaded from an FTP site (the boolean value is converted from
1=True or 0=False in the configuration file); and FTPdir is the the working directory on the host con
taining the file to be downloaded.

retrieveFTPparfile(FTPaddress, FTPdir, detailedParInfile)
The retrieveFTPparfile function retrieves the detailed configuration file needed for node starter.py

from the host specified in FTPaddress and FTPdir to the fully qualified path and filename locally identified
in detailedParInfile. detailedParInfile should be of the form:

r’c:\\runner\\Node starter\\node start ftp.par’

Input FTPaddress is the host address of the root FTP site from which the file will be downloaded such as
ftp.example.com, FTPdir is the the working directory on the host containing the file to be downloaded,
and detailedParInfile is the fully qualified path.

Output Three variables are returned: FTPflag is a boolean flag indicating whether a remote detailed con
figuration file should be downloaded from an FTP site (the boolean value is converted from 1=True or
0=False in the configuration file); FTPaddress is the host address of the root FTP site from which the
file will be downloaded such as ftp.example.com; FTPdir is the working directory on the host contain
ing the file to be downloaded; and detailedParInfile is the fully qualified path and filename of the
local destination (local meaning on the slave instance) for the configuration file being downloaded from
the FTP site.

readRUNparfile(infile)
The readRUNparfile function reads the detailed configuration (parameter) file typically downloaded

using retrieveFTPparfile and identified in infile, which typically is the fully qualified path identified in
detailedParInfile. The returned values are case-specific values to be used when starting nodes. This func
tion is highly customizable depending on the specific application. In this case, the specific variables should be
used as a guide for customization by the user.

Input infile is the fully qualified path to the detailed configuration file for node starter.py.

Output As currently (2011) constructed, the following variables are returned (this is, again, customizable to
meet the user’s needs):
bPcasename (string) is the name of the case to be run (e.g. casename.pst).
bPexec (string) is the name of the executable called to start the slaves (e.g. beopest64.exe).
bPhost (string) is the IP address of the master node.
bPport (string) is the port of the master node.
bPlocalNodes is a list of strings, each identifying the full path to a slave directory on the instance.
Because the instances are clones of an image (an AMI), the local node paths will be the same on each.

figure 6 shows an example parameter file for running beoPEST locally.

StartNode(bPcasename, bPexec, bPhost, bPport, bPCurrentNode)
The StartNode function performs the first step of starting a node, using all the calling information and

path identification passed in the input variables. A critical note is, in the calling function, each handle to a pro
cess (the returned value from this function) must have a “wait” call performed so that the operating system
keeps the subprocess active. An example section of code is as follows:

http:starter.py
http:ftp.example.com
http:ftp.example.com
http:starter.py
http:ftp.example.com

18 cloudPEST – A Python Module for Cloud-Computing Deployment of PEST, a Program for Parameter Estimation

Figure 6. Parameter file details of paths and executables needed to start beoPEST in slave mode, used by node starter.py.

for bPCurrentNode in bPlocalNodes:

a = StartNode(bPcasename, bPexec, bPhost, bPport, bPCurrentNode)

live nodes.append(a)

for a in live nodes:

a.wait()

Input bPcasename (string) is the name of the PEST case, including the “.pst” extension.
bPexec (string) is the name of the executable that will be run.
bPhost (string) is the IP address of the master machine (or the port-forwarding machine if SSH tunnel
ing is employed).
bPport (string) is the port on the master, which is listening for beoPEST.
bPCurrentNode (string) is the fully qualified path to the node.

Output p (subprocess module Popen object) references the specific beoPEST slave instance started by the
function. This object can be used by other processes to which it is passed, specifically using the “wait”
call as discussed above.

node starter.py()

The file node starter.py included in this distribution provides an example implementation of the cloud-
PESTclient functions. Comments are provided within the code. The path on line 9 may be changed to any
location where the logging files are desired to be accessible. All other manipulation of the behavior of this
code is through the two parameter files discussed next. The main tasks performed in this code are as follows:

readFTPparfile The parameter file determining if the run parameter file should be downloaded from an FTP
and, if so, details needed for the download is read. Figure 5 shows the details of an example FTP param
eter file. Note that, as currently (2011) structured, only anonymous login to the FTP is supported. The
function readFTPparfile can be altered to enable password authentication.

readRUNparfile The parameter file for runs, as illustrated in figure 6, is read next, providing all the informa
tion needed to start slave instances of beoPEST in the appropriate local directories. This file is read from
the local directory, but can be in place either at the creation of the image or downloaded from an FTP
site as indicated above.

Start Nodes The final step is to start each node (or slave instance of beoPEST) in a distinct directory. This
code should not be altered, as it takes important steps to ensure that, once started, the nodes stay active.

Example Application

Figure 7 illustrates an example application of a Python script that can be used to query available images,
start a master and several groups of slaves, and terminate all the slaves when a session is complete. These snip
pets of code can be combined into a menu-driven application, run with an integrated development environment
using break points, or run as separate scripts.

http:starter.py
http:starter.py
http:starter.py

cloudPEST Classes and Functions 19

Figure 7. Example implementation of the cloudPEST functions.

Acknowledgments

The authors acknowledge collaborative support from John Doherty (Watermark Numerical Computing),
Randall Hunt (U.S. Geological Survey, USGS, Groundwater Systems Team, Middleton, Wis.), Matthew Ungaro
and Nathaniel Booth (USGS, Center for Integrated Data Analytics, Middleton, Wis.). Reviews and testing
by Jonathon Carter (Barr Engineering), Charles Spalding (McDonald Morrissey Associates), Erik Johnson
(enStratus), Bonnie Stich Fink (USGS, Science Publishing Network, Louisville, Ky.), Kevin Breen (USGS,
Office of Science Quality and Integrity, New Cumberland, Pa.), Rodney Sheets (USGS, Water Science Field
Team, Columbus, Ohio), and Steven Peterson (USGS, Nebraska Water Science Center, Lincoln, Nebr.) also
are greatly appreciated. Finally, John Shim of Amazon Web Services was a valuable resource for navigating
the logistics of EC2.

References Cited

Doherty, John, 2010, PEST–Model-independent parameter estimation–User manual (5th ed., with slight addi
tions): Brisbane, Australia, Watermark Numerical Computing, 336 p.

Hunt, R. J., Luchette, Joseph, Schreüder, W. A., Rumbaugh, J. O., Doherty, John, Tonkin, M. J., and Rum
baugh, D. B., 2010, Using a cloud to replenish parched groundwater modeling efforts. Ground Water, v. 48,
no. 3, p. 360-365, doi: 10.1111/j.1745-6584.2010.00699.x.

Schreüder, W. A., 2009, Running BeoPEST. in Proceedings of the 1st PEST Conference, Potomac, Md., 1–3
November.

20 cloudPEST – A Python Module for Cloud-Computing Deployment of PEST, a Program for Parameter Estimation

Blank page

Glossary 21

Glossary

Abbreviations

AMI — Amazon Machine Image

API — Application programming interface

AWS — Amazon Web Services

DNS — Dynamic Name System

EBS — Elastic Block Storage

EC2 — Elastic Compute Cloud

FTP — File Transfer Protocol

GUI — Graphical User Interface

IP — Internet Protocol

MPI — Message Passing Interface

NSSM — Non-Sucking Service Manager

RDP — Remote Desktop Protocol

SSH — Secure Shell

Terms

cloud computing — Cloud computing, in general, refers to networked computers, potentially at distant loca
tions, connected using Internet data-transfer protocols, being used to distribute data storage or computa
tional loads. In the context of this report, cloud computing also implies the renting of CPUs to be used
as a temporary super computer.

image — An image (typically an AMI in this report) is a configuration of a virtual computer that can be invoked
as an instance. AMI images can be made from a running or stopped instance using the console or command-
line tools.

instance — An instance is a specific invocation of an image, like a clone. Many instances may be invoked
from a single image, and each will share the same base configuration.

fully qualified path — A fully qualified path, is a path in which every level of the directory structure is explic
itly identified, starting at the drive level. In Windows, an example is; c:\runner\subdir\file1.txt
and on Linux and OSX, an example is /users/fienen/runner/file1.txt.

GUI — A graphical user interface is the way many people interact with modern computer programs through
menus, graphics, and mouse-related options. This is in contrast with scripts and command-line pro
grams, which are run from a system terminal prompt and require typing commands.

22 cloudPEST – A Python Module for Cloud-Computing Deployment of PEST, a Program for Parameter Estimation

master — A computer processor on which the host process of beoPEST or parallel PEST is run. This host
process coordinates the scheduling of runs distributed to slave processors.

node — The term “node” is used interchangeably with “slave.”

PATH — An environment variable for the operating system directing the search for applications when names
are typed at the command line. For example, to run Python from the command line in an arbitrary loca
tion, the PATH variable must include c:\python26.

run — To run an instance is to create a fresh clone from an AMI.

PYTHONPATH — An environment variable, similar to PATH, in which Python searches for modules to
import. When the comment import is used in Python, first the local directory is searched for the mod
ule, followed by the directories in PYTHONPATH. On Windows, this is set in Advanced settings in the
control panel.

service — A process that starts automatically when a machine is booted. In cloudPEST, the slave processes

are started on the cloud as services.

session — A session means a period in which instances are created and interacted with. A session starts when
a group of one or more instances are started, and ends when those instances are stopped or terminated.

slave — A computer processor (typically one of many) in which individual model runs scheduled by a master
processor are run. In cloudPEST, a large number of slave computers typically are started to facilitate
parallel model runs using beoPEST.

start — To start an instance is to awaken an instance that was run already and has been stopped (parked).

stop — To stop an instance is to shut down a running instance. This is similar in behavior to shutting down a
physical machine in that all data are retained if the instance is started again.

terminate — To terminate an instance is identical in behavior to physically destroying a tangible machine. No
trace of its existence remains accessible again.

	cloudPEST_V5.pdf
	Abstract
	Introduction
	Purpose and Scope

	Preliminaries
	Python
	EC2 Command-Line Tools
	The AWS Console
	Communicating with Nodes
	cloudPEST Concepts
	Security Groups
	EC2 Key Pair
	Amazon Machine Image (AMI)
	Instance
	Instance Types and Pricing
	Stopping and Terminating
	Session

	Instructions
	General Strategy
	Summary of Steps for a Session
	Details and Rationale for Session Steps
	Create Master Image
	Create Slave Image
	Create Service on Slave
	Windows Services
	Create Both Images
	Launch a Master Instance (optional)
	Start SSH Tunnel (optional)
	Configuring a Port-Forwarding Linux Machine on the Cloud
	Establish the SSH Tunnel with Port Forwarding on Command Line
	Establish the SSH Tunnel with Port Forwarding Using PuTTY
	Launch beoPEST on the Master

	Launch Slave Instances
	Terminate Slaves and Master At Completion

	cloudPEST Classes and Functions
	Classes
	images:
	instances:
	master:

	cloudPEST Functions
	query_images()
	query_instances(instance_id)
	run_instances(ami_id, instance_count, keyname, group,*insttype,*cnodes,*availzone)
	start_instances(instance_id)
	stop_instances(instance_id)
	terminate_instances(instance_id)

	cloudPESTclient Functions
	parseLine(line)
	readFTPparfile(infile)
	retrieveFTPparfile(FTPaddress, FTPdir, detailedParInfile)
	readRUNparfile(infile)
	StartNode(bPcasename, bPexec, bPhost, bPport, bPCurrentNode)
	node_starter.py()
	Example Application

	Acknowledgments
	References Cited

	Glossary

