Skip Links

USGS - science for a changing world

Open-File Report 2011–1088

Prepared in cooperation with the Bureau of Reclamation

Demographics and Run Timing of Adult Lost River (Deltistes luxatus) and Shortnose (Chasmistes brevirostris) Suckers in Upper Klamath Lake, Oregon, 2009

By David A. Hewitt, Brian S. Hayes, Eric C. Janney, Alta C. Harris, Justin P. Koller, and Mark A. Johnson

Executive Summary

Data from a long-term capture-recapture program were used to assess the status and dynamics of populations of two long-lived, federally endangered catostomids in Upper Klamath Lake, Oregon. Lost River suckers (Deltistes luxatus) and shortnose suckers (Chasmistes brevirostris) have been captured and tagged with passive integrated transponder (PIT) tags during their spawning migrations in each year since 1995. In addition, beginning in 2005, individuals that had been previously PIT-tagged were re-encountered on remote underwater antennas deployed throughout the spawning areas. Captures and remote encounters during spring 2009 were used to describe the spawning migrations in that year and also were incorporated into capture-recapture analyses of population dynamics over the last decade. Cormack-Jolly-Seber (CJS) open population capture-recapture models were used to estimate annual survival probabilities, and a reverse-time analog of the CJS model was used to estimate recruitment of new individuals into the spawning populations. In addition, data on the size composition of captured fish was examined for any additional evidence of recruitment. Survival and recruitment estimates were combined to estimate changes in population size over time and to determine the status of the populations through 2007. Separate analyses were conducted for each species and also for each subpopulation of Lost River suckers (LRS). One subpopulation of LRS migrates into tributaries to spawn, similar to shortnose suckers (SNS), whereas the other subpopulation spawns at upwelling areas along the eastern shoreline of the lake.

In 2009, we captured and tagged 781 LRS at four shoreline areas and recaptured an additional 638 individuals that had been tagged in previous years. Across all four areas, the remote antennas detected 6,056 individual LRS during the spawning season. Spawning activity peaked in April and most individuals were encountered at Sucker Springs and Cinder Flats. In the Williamson River, we captured and tagged 3,008 LRS and 287 SNS, and recaptured 271 LRS and 81 SNS that had been tagged in previous years. Remote antennas that spanned the river downstream of the tributary spawning areas detected a total of 12,509 LRS and 5,023 SNS. Most LRS passed upstream in mid-April when water temperatures were rising and near or greater than 10 °C. In contrast, peaks in upstream passage of SNS occurred in late April and early May when water temperatures were rising and near or greater than 12 °C. Finally, an additional 1,569 LRS and 1,794 SNS were captured in trammel net sampling at pre-spawn staging areas in the northeastern portion of the lake. Of these, 209 of the LRS and 452 of the SNS had been PIT-tagged in previous years. For LRS, encounter histories showed that nearly all of the fish captured at the staging areas were members of the subpopulation that spawns in the tributaries.

Capture-recapture analyses for the LRS subpopulation that spawns at the shoreline areas included encounter histories for more than 9,000 individuals, and analyses for the subpopulation that spawns in the tributaries included more than 14,000 encounter histories. With a few exceptions, the survival of males and females in both subpopulations was high (> 0.9) between 1999 and 2007. Notably lower survival occurred for both sexes from the tributaries in 2000, for males from the shoreline areas in 2002, and for males from the tributaries in 2006. Recruitment of new individuals into either spawning population was trivial in all years between 2002 and 2007. Over that period, the abundance of males in the lakeshore spawning subpopulation declined by 44–53 percent and the abundance of females declined by 25–38 percent. Similarly, the abundance of males in the tributary spawning subpopulation declined by as much as 39 percent and the abundance of females declined by as much as 33 percent.

Capture-recapture analyses for SNS included encounter histories for more than 12,000 individuals. The majority of annual survival estimates between 2001 and 2007 were high (> 0.8), but SNS experienced more years of low survival than either LRS subpopulation. The survival of both sexes was particularly low in both 2001 and 2004, and male survival also was somewhat low in 2002 and 2006. Similar to LRS, recruitment of new individuals into the spawning population was trivial in all years between 2001 and 2007. Over that period, the abundance of male SNS declined by 58–80 percent and the abundance of females declined by 52–73 percent.

Despite relatively high survival in most years, both species have experienced substantial declines in the abundance of spawning fish because losses from mortality have not been balanced by recruitment of new individuals. Indeed, all populations appear to be largely comprised of fish that were present in the late 1990s and early 2000s. As a result, the status of the endangered sucker populations in Upper Klamath Lake remains worrisome, and the situation is most dire for shortnose suckers. Survival analyses show that the two species do not necessarily experience poor survival in the same years and that poor survival on an annual scale is not predictable from fish die-offs observed in the summer and fall. Future analyses will explore the connections between annual sucker survival and environmental factors of interest, such as water quality and disease. Our monitoring program provides a robust platform for estimating vital population parameters, evaluating the status of the populations, and assessing the effectiveness of conservation and recovery efforts.

First posted May 31, 2011

For additional information contact:
Director, Western Fisheries Research Center
U.S. Geological Survey
6505 NE 65th Street
Seattle, Washington 98115

Part or all of this report is presented in Portable Document Format (PDF); the latest version of Adobe Reader or similar software is required to view it. Download the latest version of Adobe Reader, free of charge.

Suggested citation:

Hewitt, D.A., Hayes, B.S., Janney, E.C., Harris, A.C., Koller, J.P., and Johnson, M.A., 2011, Demographics and run timing of adult Lost River (Deltistes luxatus) and shortnose (Chasmistes brevirostris) suckers in Upper Klamath Lake, Oregon, 2009: U.S. Geological Survey Open-File Report 2011-1088, 38 p.


Executive Summary






References Cited

Accessibility FOIA Privacy Policies and Notices logo U.S. Department of the Interior | U.S. Geological Survey
Page Contact Information: Contact USGS
Page Last Modified: Wednesday, December 07, 2016, 11:41:54 PM