

The Lake Tahoe Basin Land Use Simulation Model

By William M. Forney and I. Benson Oldham

Open-File Report 2011-1275

U.S. Department of the Interior
U.S. Geological Survey

U.S. Department of the Interior
KEN SALAZAR, Secretary

U.S. Geological Survey
Marcia K. McNutt, Director

U.S. Geological Survey, Reston, Virginia: 2011

For product and ordering information:
World Wide Web: http://www.usgs.gov/pubprod
Telephone: 1-888-ASK-USGS

For more information on the USGS—the Federal source for science about the Earth,
its natural and living resources, natural hazards, and the environment:
World Wide Web: http://www.usgs.gov
Telephone: 1-888-ASK-USGS

Suggested citation:
Forney, W.M., and Oldham, I.B., 2011, The Lake Tahoe Basin Land Use Simulation Model: U.S.
Geological Survey Open-File Report 2011-1275, 63 p., available at http://pubs.usgs.gov/of/2011/1275/.

Any use of trade, product, or firm names is for descriptive purposes only and does not imply
endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured
from the individual copyright owners to reproduce any copyrighted material contained within this report

http://www.usgs.gov/pubprod
http://www.usgs.gov
http://pubs.usgs.gov/of/2011/1275/

Table of Contents

Abstract ... 1
Introduction .. 2
Using the Model ... 4
Inputs and Results ... 6
Acknowledgments .. 9
Figures ..10

Figure 1. Overview of Lake Tahoe Basin, LUSM inputs, and relevant jurisdictions .. 10
Figure 2. Screen shot of the internet GUI for the LUSM showing the list of user variables and values. 11
Figure 3. Screen shot of the internet GUI for the LUSM showing the Model parameter values for LUSM
administrators. ... 12

Tables .. 13
Table 1. User parameters, commodities and their descriptions in the LUSM. .. 13
Table 2. Model parameters and their descriptions for the LUSM. ... 14
Table 3. TahoeLanduse.txt. .. 15
Table 4. TahoeCondensedLanduse.txt. .. 16
Table 5. TahoeCondensedTransitions.txt. .. 17
Table 6. TahoeLanduseByYear.txt. ...18
Table 7. TahoeTransitionsByYear.txt. ... 19
Table 8. TahoeTransCandidatesByYear.txt. ... 20
Table 9. TahoeCategoryTotals.txt. ...21

Appendixes ... 22
Appendix 1: Tahoe Regional Planning Agency’s Parcel Land Use Codes ...22
Appendix 2: Assessor’s 2008 Parcel Map Data Summary .. 27
Appendix 3: Samples of Required Databases for the Land Use Simulation Model ... 30
 Table 1. Parcel database with Plan Area Statement ID linkage. .. 30
 Table 2. Plan Area Statement database .. 31
Appendix 4: Python Code for the Land Use Simulation Model .. 32

iii

Acronyms

ALLOC_DG Parcel allocated to Douglas County
ALLOC_COMM Parcel allocated to Commercial square footage
ALLOC_EL Parcel allocated to El Dorado County
ALLOC_MFH Parcel allocated to multiple family housing
ALLOC_PL Parcel allocated to Placer County
ALLOC_PL_SENSITIVE Parcel allocated to the sensitive lots of Placer County
ALLOC_SLT Parcel allocated to the city of South Lake Tahoe
ALLOC_TOUR Parcel allocated to tourist accommodation units
ALLOC_WA Parcel allocated to Washoe County
APN Assessor’s parcel number
CTC California Tahoe Conservancy
GUI Graphical user interface
IPES Individual Parcel Evaluation System
OFR U.S. Geological Survey Open-File Report
LUSM Lake Tahoe Basin Land Use Simulation Model
LU Land Use
MFD Multiple (or multi-) family dwelling (or housing)
NDSL Nevada Division of State Lands
PAS Plan Area Statement
RETIRE_CTC_PRIORITY Sensitive parcel allocated to California Tahoe Conservancy
RETIRE_CTC_SECONDARY Non-sensitive parcel allocated to California Tahoe Conservancy
RETIRE_NEV_PRIORITY Sensitive parcel allocated to Nevada State Lands
RETIRE_NEV_SECONDARY Non-sensitive parcel allocated to Nevada State Lands
RETIRE_TRPA_PRIORITY Sensitive parcel allocated to Tahoe Regional Planning Agency
RETIRE_TRPA_SECONDARY Non-sensitive parcel allocated to Tahoe Regional Planning Agency
RETIRE_USFS_PRIORITY Sensitive parcel allocated to U.S. Forest Service
RETIRE_USFS_SECONDARY Non-sensitive parcel allocated to U.S. Forest Service
SFD Single family dwelling
TAU Tourist accommodation unit
TIIMS Tahoe Integrated Information Management System
TRPA Tahoe Regional Planning Agency
USFS U.S. Forest Service
USGS U.S. Geological Survey

iv

The Lake Tahoe Basin Land Use Simulation Model

By William M. Forney and I. Benson Oldham

Abstract

This U.S. Geological Survey Open-File Report describes the final modeling product for the

Tahoe Decision Support System project for the Lake Tahoe Basin funded by the Southern Nevada

Public Land Management Act and the U.S. Geological Survey’s Geographic Analysis and Monitoring

Program. This research was conducted by the U.S. Geological Survey Western Geographic Science

Center. The purpose of this report is to describe the basic elements of the novel Lake Tahoe Basin Land

Use Simulation Model, publish samples of the data inputs, basic outputs of the model, and the details of

the Python code. The results of this report include a basic description of the Land Use Simulation

Model, descriptions and summary statistics of model inputs, two figures showing the graphical user

interface from the web-based tool, samples of the two input files, seven tables of basic output results

from the web-based tool and descriptions of their parameters, and the fully functional Python code.

2

Introduction

The Lake Tahoe Basin Land Use Simulation Model (LUSM), which simulates parcel-based,

land-use transitions in a stochastic, spatially constrained, agent-based model, was built to inform land

management decisions in a complex regulatory environment in the Lake Tahoe Basin (fig. 1). Building

on the experience, knowledge and research of the authors and the other U.S. Geological Survey (USGS)

Western Geographic Science Center staff, the LUSM was developed in close collaboration with the

Tahoe Regional Planning Agency (TRPA). The LUSM provides to TRPA, Basin resource managers and

stakeholders a web-based, 20-year-scenario generation tool to simulate the possible allocation of retired

(that is, maintained as open space) and developed parcels, and their subsequent transition to another

land use fate. Due to the model’s capability to project up to 20 years into the future, a random or

stochastic element is included to account for the inherent uncertainty of the future. To give the LUSM

more site-specific relevance, the model is constrained by 1) neighborhood characteristics and

requirements that are defined by Plan Area Statements1 (PAS) and 2) TRPA’s land capability systems

(that is, the Individual Parcel Evaluation System (IPES) and the Bailey Capability System2). Although

the definition of an agent can vary, the agent of change in this agent-based model is the parcel’s

potential land owner. Using standard software packages, coding languages, and readily available

datasets, the final LUSM results include reasonable tabular results that can be translated into map-based

outputs with minimal additional effort by knowledgeable geographic information system users.

The LUSM is designed as a constrained, stochastic simulation model. This is based on requests

of TRPA, data availability, and the consideration of land-use modeling theory when deterministic

1 Includes community plans, both of which are defined by planners at the TRPA. Available at:
http://www.trpa.org/default.aspx?tabid=204
2 TRPA Code of Ordinances, Chapter 37 and Chapter 20, respectively.

http://www.trpa.org/default.aspx?tabid=204

3

outcomes can be misleading, and future scenarios are important to characterize with an adequate

balance of realism and uncertainty. The model is constrained by PAS neighborhood allowances, the

initial conditions set by the user, and the physical characteristics of a given parcel. The PAS must allow

for the parcel’s land use type or real estate commodity—otherwise, no commodities of that type will be

allocated to the parcels of that PAS. The stochasticity is created by randomizing certain aspects of the

selection process, the order of parcels being considered for transition, and modeling specifications and

functionality. Also, an essential component—uncertainty—is generated by performing multiple runs or

iterations to obtain a set of outcomes. The multiple iterations provide a count of the number of times a

specific parcel transitions to a particular land use type or fate, thereby allowing for a probabilistic

estimate of the likelihood of that transition.

4

Using the Model

The model and its database are maintained by the Tahoe Integrated Information Management

System (TIIMS) and TRPA, and can be fully executed by way of the internet. The model works on a

Servoy platform and Servoy’s internet-based Graphical User Interface (GUI), and calls the Postgres

databases and Python scripting. A description of the project can be found here:

http://www.tiims.org/Science-Research/Environmental-Modeling/TDSS.aspx. The LUSM, with

permission obtained from TRPA, can be accessed from this webpage.

Instead of running multiple iterations of allocations in a single year to create the stochastic

simulation results—then moving onto the next year until 20 years have been reached—the model runs a

single iteration of allocations in a given year, removes the parcels that have been allocated from the

vacant pool, and moves on to the next year until 20 years have been reached. Upon reaching the

twentieth year, this is considered one, full iteration of the model, then—if multiple iterations are

specified—it returns to the start time and begins again. This allows for quicker model runs, and arbitrary

stochasticity on an annual basis is reduced as allocation targets are maintained from year to year.

All data used for the model were either obtained directly from the TRPA, or were derived from

TRPA and other public documents and datasets. The parcel land use codes of TRPA dictate the level of

planning detail and functionality of the LUSM. As detailed in appendix 1, only certain TRPA land use

codes are important to the LUSM: vacant (private) land (code 1); single family dwelling (SFD, code

1011); multiple family dwelling (MFD, codes 1005, 1006, and 1007); a representative class (3000) for

commercial uses including retail, entertainment, services, light industrial, and wholesale/storage; a

representative Tourist Accommodation Unit (TAU)—specifically the Hotel unit (code 2002); and the

Resource Management category open space land (code 6401). Please note that multiple family

http://www.tiims.org/Science-Research/Environmental-Modeling/TDSS.aspx

5

dwellings can also be called multi-family dwellings and housing and the acronym MFD represents them

both, and that open space land is land that has been taken off the real estate market for development, or

retired. Appendix 2 summarizes the 2008 assessor’s parcel map dataset that is currently used in the

LUSM, and characterizes the land uses in the Lake Tahoe Basin. As of 2008, sixty-eight percent of the

land use is residential, less than 1 percent is tourist, over 2 percent is commercial, and over sixteen

percent is open space. It is notable that of 60,376 parcels, only 6,326 parcels remain as vacant; these

6,326 parcels that potentially can transition to a different land use are used in the execution of the

LUSM. In terms of area, the Tahoe Basin has over 86,000 hectares designated with some type zoning,

of which over 2,750 hectares are vacant and included in the execution of the LUSM.

6

Inputs and Results

The LUSM has two primary inputs: the parcel database and Plan Area Statement (PAS) database

(fig. 1). Samples of these inputs and the fields are provided in tables 1 and 2 of appendix 3. Table 1

provides a list and description of the variables that are available to the user, and figure 2 shows what the

graphical user interface (GUI) looks like on the internet. Table 2 provides a list of the model’s

parameters, which are only available to be changed by certain users with administrative privileges, and

figure 3 shows what that GUI looks like on the internet.

The user of the model can execute different initial conditions to generate different future land

use patterns. Note that for an individual parcel there are multiple fates, which assist in creating the

probability of transitioning. Each commodity type has certain variable values and decision rules that

govern its behavior. The results of the LUSM are shown in tables 3 through 9, which represent

examples of the primary, basic, tabular outputs of the LUSM. The examples were run with the default

values of the model, using two iterations. The default values were derived from existing datasets and

communications with TRPA. The seven comma-delimited .txt files produced by the web-based model

were brought into Microsoft Excel for formatting and display purposes. Each table is titled the way it is

provided when downloaded in a .zip file from the internet-based model for the sake of continuity and to

facilitate the following documentation.

In table 3, “APN” is assessor’s parcel number; “Landuse” is the TRPA Land Use Code

(appendix 1); “UsePct” is the percent of the time the model designates this particular land use; “Units”

are the density-restricted number of units that can be built on a parcel relevant to SFD, MFD, and TAU;

and “CommSF” is the amount of commercial square footage allocated in a particular commercial parcel.

In table 4, new variables are: “Category”, a particular combination of land use fates for a given parcel;

7

“LU_XXXX”, a different formulation of the TRPA land use codes and the values are the percent of the

time the model designates this particular Land Use; and “MFHUnits,” “TourUnits”, and “CommSF,”

static variables that do not change from one run to another and thus they should be disregarded as useful

output.

In table 5, new variables are: “ALLOC_DG,” the likelihood that a parcel is allocated to Douglas

County for SFD; “ALLOC_EL,” the likelihood that a parcel is allocated to Eldorado County for SFD;

“ALLOC_PL,” the likelihood that a parcel is allocated to Placer County for SFD;

“ALLOC_PL_SENSITIVE,” the likelihood that a parcel is allocated to the sensitive lots of Placer

County for SFD as related to the IPES threshold and the Vacant Lot Equation3; “ALLOC_WA,” the

likelihood that a parcel is allocated to Washoe County for SFD; “ALLOC_SLT,” the likelihood that a

parcel is allocated to the city of South Lake Tahoe for SFD; “ALLOC_MFH,” the likelihood that a

parcel is allocated to multiple family housing; “ALLOC_TOUR,” the likelihood that a parcel is

allocated to TAU; “ALLOC_COMM,” the likelihood that a parcel is allocated to Commercial square

footage; “RETIRE_CTC_PRIORITY,” the likelihood that a sensitive parcel (as deemed IPES scores

and Bailey scores) is allocated to the retirement program of the California Tahoe Conservancy;

“RETIRE_CTC_SECONDARY,” the likelihood that a non-sensitive parcel is allocated to the retirement

program of the California Tahoe Conservancy; “RETIRE_NEV_PRIORITY,” the likelihood that a

sensitive parcel is allocated to the retirement program of the Nevada State Lands;

“RETIRE_NEV_SECONDARY,” the likelihood that a non-sensitive parcel is allocated to the

retirement program of the Nevada State Lands; “RETIRE_TRPA_PRIORITY,” the likelihood that a

sensitive parcel is allocated to the retirement program of the TRPA; “RETIRE_TRPA_SECONDARY,”

the likelihood that a non-sensitive parcel is allocated to the retirement program of the TRPA;

“RETIRE_USFS_PRIORITY,” the likelihood that a sensitive parcel is allocated to the retirement

3 TRPA Code of Ordinances, Chapter 37.8

8

program of the U.S. Forest Service; “RETIRE_USFS_SECONDARY,” the likelihood that a non-

sensitive parcel is allocated to the retirement program of the U.S. Forest Service. Retirement programs

are land acquisition efforts in the Lake Tahoe Basin. Please note that the jurisdictions of the counties

and retirement programs are maintained.

Table 6 represents the number of parcels that transition into a particular land use type in a given

year, tracked for the duration of the model run. The column headings Y1 through Y20 designate the

year of the transition. Table 7 represents the number of parcels that transition into a particular allocation

type in a given year, tracked for the years of the model run. Table 8 details the number of parcels that

remain available for transitioning to a particular Allocation type in a given year, tracked for the years of

the model run. Table 9 represents the frequency of transition fates for the vacant parcels in the Lake

Tahoe Basin. New, previously undefined variables in table 9 include: “Count,” representing the

frequency with which that combination occurs. Note that Category 1 is the most likely combination that

results 1,435 times and represents the outcome that a vacant parcel transitions 100 percent of the time to

retired/open space (that is, Land Use Code 6401).

The Python source code for the LUSM can be found in appendix 4.

9

Acknowledgments

This research has been supported by the USGS Geographic Analysis and Monitoring Program

and funded by the Southern Nevada Public Land Management Act. The research has been conducted in

cooperation with the TRPA. The authors would like to thank Peter Ng, Richard Champion, Mara

Tongue, and Susan Benjamin for their thorough reviews, and the USGS Western Geographic Science

Center staff who laid the groundwork of this effort, especially Richard Bernknopf, David Halsing, Mark

Hessenflow, Sean Devlin, Elizabeth Duffy, Peter Ng, and Michael Gould. We appreciate the

collaboration with and support of Neil Crescenti, Leif Larson, and Marie Bledsoe of TRPA.

Figures

Figure 1. Overview of Lake Tahoe Basin, LUSM inputs, and relevant jurisdictions

10

Figure 2. Screen shot of the internet GUI for the LUSM showing the list of user variables and values.

11

Figure 3. Screen shot of the internet GUI for the LUSM showing the Model parameter values for LUSM

administrators.

The Model File Name shows where updates and changes to the Python Code can be made; the Database Name shows where
the database can be updated. Also, this is where additional password-protected users and their administrator privileges can be
established.

12

Tables

Table 1. User parameters, commodities and their descriptions in the LUSM.

[Single family dwelling (SFD); multi or multiple family dwelling (MFD); tourist accommodation unit (TAU); California
Tahoe Conservancy (CTC); Nevada Division of State Lands (NDSL); Tahoe Regional Planning Agency (TRPA); U.S. Forest
Service (USFS); plan area statement (PAS)]

PARAMETER OR COMMODITY NAME DESCRIPTION OR NOTES
Development
Douglas County—Minimum Spatial Allocation by County of SFD
Douglas County—Maximum Spatial Allocation by County of SFD
Washoe County—Minimum Spatial Allocation by County of SFD
Washoe County—Maximum Spatial Allocation by County of SFD
El Dorado County—Minimum Spatial Allocation by County of SFD
El Dorado County—Maximum Spatial Allocation by County of SFD
Placer County—Minimum Spatial Allocation by County of SFD
Placer County—Maximum Spatial Allocation by County of SFD
South Lake Tahoe—Minimum Spatial Allocation by County of SFD
South Lake Tahoe—Maximum Spatial Allocation by County of SFD
Multi-Family Dwelling—Minimum Spatial Allocation for Basin of MFD
Multi-Family Dwelling—Maximum Spatial Allocation for Basin of MFD
Tourist Accommodation Unit—Minimum Spatial Allocation for Basin of TAU
Tourist Accommodation Unit—Maximum Spatial Allocation for Basin of TAU
Commercial Area—Total sq. ft. Spatial Allocation for Basin of Commercial for the entire model run
Retirement
CTC—Minimum Spatial Allocation within California
CTC—Maximum Spatial Allocation within California
CTC—Priority Weighting of preferentially sensitive lands to retire
NDSL—Minimum Spatial Allocation within Nevada
NDSL—Maximum Spatial Allocation within Nevada
NDSL—Priority Weighting of preferentially sensitive lands to retire
TRPA—Minimum Spatial Allocation for entire Tahoe Basin
TRPA—Maximum Spatial Allocation for entire Tahoe Basin
TRPA—Priority Weighting of preferentially sensitive lands to retire
USFS—Minimum Spatial Allocation for entire Tahoe Basin
USFS—Maximum Spatial Allocation for entire Tahoe Basin
USFS—Priority Weighting of preferentially sensitive lands to retire
Other
Allocation Rollover Pool5 Initial amount in the pool
Minimum Size Minimum size threshold (ac)
Special Use Allowance Inclusion of special uses as designated by individual PASes
Starting Year Beginning year of the model run
Ending Year Final year of the model run

5 TRPA Code of Ordinances, 33.2.A.

13

Table 2. Model parameters and their descriptions for the LUSM.

[Multi- or multiple family dwelling (MFD); and Plan Area Statement (PAS)]
PARAMETER DESCRIPTION OR NOTES
Commercial Area Ratio Ratio of parcel size to commercial

footprint area
IPES threshold Value at and below which parcels are

unable to be developed for Placer
County until the Vacant Lot Equation is
satisfied

Iterations Number of iterations run by the model
MFD Units Per Acre Density metric for MFD, varies by PAS
Tourism Units Per Acre Density metric for Tourist

accommodations, varies by PAS

14

Table 3. TahoeLanduse.txt.

[This is only a sample of the total parcel-based output. “APN” is assessor’s parcel number; “Landuse” is the TRPA Land
Use Code; “UsePct” is the percent of the time the model designates this particular land use; “Units” are the density-restricted
number of units that can be built on a parcel relevant to single family dwelling, multiple family dwelling, and tourist
accommodations; and “CommSF” is the amount of commercial square footage allocated in a particular commercial parcel]

APN Landuse UsePct Units CommSF
093-130-026 LU_1011 0.5 1 0
093-130-026 LU_6401 0.5 0 0
093-130-028 LU_1011 0.5 1 0
093-130-028 LU_6401 0.5 0 0
111-120-036 LU_1011 1 1 0
1318-23-810-017 LU_1011 0.5 1 0
1318-23-810-017 LU_6401 0.5 0 0
111-120-034 LU_1011 0.5 1 0
111-120-034 LU_6401 0.5 0 0
1418-03-811-025 LU_1011 0.5 1 0
1418-03-811-025 LU_6401 0.5 0 0
023-501-13 LU_6401 1 0 0
023-103-14 LU_6401 1 0 0
023-103-15 LU_1011 0.5 1 0
023-103-15 LU_6401 0.5 0 0
023-103-16 LU_1011 0.5 1 0
023-103-16 LU_6401 0.5 0 0
023-103-11 LU_1011 0.5 1 0
023-103-11 LU_6401 0.5 0 0
023-512-06 LU_6401 1 0 0
023-512-09 LU_6401 1 0 0
025-271-04 LU_1011 1 1 0
116-110-015 LU_1011 0.5 1 0
116-110-015 LU_6401 0.5 0 0
083-300-015 LU_1011 1 1 0
090-041-009 LU_6401 1 0 0
031-081-10 LU_6401 1 0 0
016-202-20 LU_6401 1 0 0
026-096-05 LU_1011 0.5 1 0

15

Table 4. TahoeCondensedLanduse.txt.

[This is only a sample of the total parcel-based output. “APN” is assessor’s parcel number; “Category”, a particular combination of fates for a given parcel;
“LU_XXXX”, a different formulation of the TRPA land use codes and the values are the percent of the time the model designates this particular land use; and
“MFHUnits,” “TourUnits”, and “CommSF,” static variables that do not change from one run to another and thus they should be disregarded as useful output]
APN Category LU_0001 LU_1005 LU_1006 LU_1007 LU_1011 LU_2002 LU_3000 LU_6401 MFHUnits TourUnits CommSF
093-130-026 19 0 0 0 0 0.5 0 0 0.5 13 0 8264
093-130-028 19 0 0 0 0 0.5 0 0 0.5 11 0 6736
111-120-036 6 0 0 0 0 1 0 0 0 0 0 0
1318-23-810-017 8 0 0 0 0 0.5 0 0 0.5 0 0 0
111-120-034 6 0 0 0 0 0.5 0 0 0.5 0 0 0
1418-03-811-025 8 0 0 0 0 0.5 0 0 0.5 0 0 0
023-501-13 2 0 0 0 0 0 0 0 1 0 0 0
023-103-14 2 0 0 0 0 0 0 0 1 0 0 0
023-103-15 2 0 0 0 0 0.5 0 0 0.5 0 0 0
023-103-16 2 0 0 0 0 0.5 0 0 0.5 0 0 0
023-103-11 2 0 0 0 0 0.5 0 0 0.5 0 0 0
023-512-06 2 0 0 0 0 0 0 0 1 0 0 0
023-512-09 2 0 0 0 0 0 0 0 1 0 0 0
025-271-04 4 0 0 0 0 1 0 0 0 0 0 0
116-110-015 6 0 0 0 0 0.5 0 0 0.5 0 0 0
083-300-015 6 0 0 0 0 1 0 0 0 0 0 0
090-041-009 32 0 0 0 0 0 0 0 1 0 0 767
031-081-10 27 0 0 0 0 0 0 0 1 0 15 5635
016-202-20 5 0 0 0 0 0 0 0 1 0 0 0
026-096-05 2 0 0 0 0 0.5 0 0 0.5 0 0 0
026-096-04 2 0 0 0 0 0 0 0 1 0 0 0
112-090-005 6 0 0 0 0 0.5 0 0 0.5 0 0 0
025-451-18 4 0 0 0 0 0.5 0 0 0.5 0 0 0
025-451-16 4 0 0 0 0 0.5 0 0 0.5 0 0 0
111-190-024 6 0 0 0 0 0.5 0 0 0.5 0 0 0
1418-10-611-001 1 0 0 0 0 0 0 0 1 0 0 0
022-171-68 1 0 0 0 0 0 0 0 1 0 0 0
022-171-60 3 0 0 0 0 0.5 0 0 0.5 0 0 0
032-323-16 5 0 0 0 0 0.5 0 0 0.5 0 0 0

16

Table 5. TahoeCondensedTransitions.txt.

[This is only a sample of the total parcel-based output. “APN” is assessor’s parcel number; “ALLOC_DG,” a parcel is allocated to Douglas County;
“ALLOC_EL,” a parcel is allocated to Eldorado County; “ALLOC_PL,” a parcel is allocated to Placer County; “ALLOC_PL_SENSITIVE,” a parcel is allocated
to the sensitive lots of Placer County; “ALLOC_WA,” a parcel is allocated to Washoe County; “ALLOC_SLT,” a parcel is allocated to the city of South Lake
Tahoe; “ALLOC_MFH,” a parcel is allocated to multiple family housing; “ALLOC_TOUR,” a parcel is allocated to Tourist accommodations;
“ALLOC_COMM,” a parcel is allocated to commercial square footage; “RETIRE_CTC_PRIORITY,” a sensitive parcel is allocated to the retirement program of
the California Tahoe Conservancy; “RETIRE_CTC_SECONDARY,” a non-sensitive parcel is allocated to the retirement program of the California Tahoe
Conservancy; “RETIRE_NEV_PRIORITY,” a sensitive parcel is allocated to the retirement program of the Nevada State Lands;
“RETIRE_NEV_SECONDARY,” a non-sensitive parcel is allocated to the retirement program of the Nevada State Lands; “RETIRE_TRPA_PRIORITY,” a
sensitive parcel is allocated to the retirement program of the TRPA; “RETIRE_TRPA_SECONDARY,” a non-sensitive parcel is allocated to the retirement
program of the TRPA; “RETIRE_USFS_PRIORITY,” a sensitive parcel is allocated to the retirement program of the U.S. Forest Service;
“RETIRE_USFS_SECONDARY,” a non-sensitive parcel is allocated to the retirement program of the U.S. Forest Service]

APN
ALLO
C_DG

ALLOC
_EL

ALLO
C_PL

ALLOC_PL_
SENSITIVE

ALLOC
_WA

ALLOC
_SLT

ALLOC
_M FH

ALLOC
_TOUR

ALLOC_
COM M

RETIRE_CTC
_PRIORITY

RETIRE_CTC_
SECONDARY

RETIRE_NEV
_PRIORITY

RETIRE_NEV_
SECONDARY

RETIRE_TRPA
_PRIORITY

RETIRE_TRPA_
SECONDARY

RETIRE_USFS
_PRIORITY

RETIRE_USFS_
SECONDARY

093-130-026 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5
093-130-028 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5
111-120-036 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1318-23-810-017 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5
111-120-034 0 0 0.5 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0
1418-03-811-025 0.5 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0
023-501-13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0.5
023-103-14 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
023-103-15 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0.5
023-103-16 0 0 0 0 0 0.5 0 0 0 0 0.5 0 0 0 0 0 0
023-103-11 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0.5
023-512-06 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0.5
023-512-09 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0.5 0 0
025-271-04 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
116-110-015 0 0 0.5 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0
083-300-015 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
090-041-009 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
031-081-10 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
016-202-20 0 0 0 0 0 0 0 0 0 0.5 0 0 0 0 0 0.5 0
026-096-05 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0.5
026-096-04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
112-090-005 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0
025-451-18 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0
025-451-16 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5
111-190-024 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5
1418-10-611-001 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
022-171-68 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
022-171-60 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0.5 0
032-323-16 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0

17

Table 6. TahoeLanduseByYear.txt.

[Y1 through Y20 designate the year of the transition; “LU_XXXX”, a different formulation of the TRPA land use codes and the values are the percent of the
time the model designates this particular Land Use; and “MFHUnits,” “TourUnits”, and “CommSF,” static variables that do not change from one run to another
and thus they should be disregarded as useful output]
Desc Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16 Y17 Y18 Y19 Y20
LU_0001 - - - - - - - - - - - - - - - - - - - -
LU_1005 13 9 12 9 16 9 8 6 8 12 10 4 - - - - - - - -
LU_1006 1 2 2 1 2 2 2 2 2 1 3 1 - - - - - - - -
LU_1007 1 1 - 1 - 1 1 1 1 1 - 1 - - - - - - - -
LU_1011 187 203 173 173 128 155 123 166 163 143 149 89 - - - - - - - -
LU_2002 2 2 3 2 3 4 7 3 3 2 3 1 - - - - - - - -
LU_3000 3 4 2 2 - - - 10 3 3 2 1 - - - - - - - -
LU_6401 357 368 407 379 335 389 375 347 362 357 308 254 - - - - - - - -
MFHUnits 42 40 38 40 47 45 42 34 49 45 39 18 - - - - - - - -
TourUnits 35 12 54 28 35 55 46 25 49 43 45 19 - - - - - - - -
CommSF 6,976 4,412 3,231 4,396 - - - 28,036 21,558 7,323 11,024 4,531 - - - - - - - -

18

Table 7. TahoeTransitionsByYear.txt.

[Y1 through Y20 designate the year of the transition; “ALLOC_DG,” a parcel is allocated to Douglas County; “ALLOC_EL,” a parcel is allocated to Eldorado
County; “ALLOC_PL,” a parcel is allocated to Placer County; “ALLOC_PL_SENSITIVE,” a parcel is allocated to the sensitive lots of Placer County;
“ALLOC_WA,” a parcel is allocated to Washoe County; “ALLOC_SLT,” a parcel is allocated to the city of South Lake Tahoe; “ALLOC_MFH,” a parcel is
allocated to multiple family housing; “ALLOC_TOUR,” a parcel is allocated to tourist accommodation units; “ALLOC_COMM,” a parcel is allocated to
commercial square footage; “RETIRE_CTC_PRIORITY,” a sensitive parcel is allocated to the retirement program of the California Tahoe Conservancy;
“RETIRE_CTC_SECONDARY,” a non-sensitive parcel is allocated to the retirement program of the California Tahoe Conservancy;
“RETIRE_NEV_PRIORITY,” a sensitive parcel is allocated to the retirement program of the Nevada State Lands; “RETIRE_NEV_SECONDARY,” a non-
sensitive parcel is allocated to the retirement program of the Nevada State Lands; “RETIRE_TRPA_PRIORITY,” a sensitive parcel is allocated to the retirement
program of the TRPA; “RETIRE_TRPA_SECONDARY,” a non-sensitive parcel is allocated to the retirement program of the TRPA;
“RETIRE_USFS_PRIORITY,” a sensitive parcel is allocated to the retirement program of the U.S. Forest Service; “RETIRE_USFS_SECONDARY,” a non-
sensitive parcel is allocated to the retirement program of the U.S. Forest Service]
Desc Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16 Y17 Y18 Y19 Y20
ALLOC_DG 12 17 14 14 15 12 2 - - - - - - - - - - - - -
ALLOC_EL 74 67 58 67 45 70 64 87 78 71 77 32 - - - - - - - -
ALLOC_PL 34 51 46 45 38 44 36 50 53 46 44 30 - - - - - - - -
ALLOC_PL_SENSITIVE - - - - - - - - - - - - - - - - - - - -
ALLOC_WA 31 41 24 18 1 - - - - - - - - - - - - - - -
ALLOC_SLT 36 29 32 29 30 31 21 29 32 27 29 28 - - - - - - - -
ALLOC_MFH 14 11 13 11 18 12 11 8 11 14 12 5 - - - - - - - -
ALLOC_TOUR 2 2 3 2 3 4 7 3 3 2 3 1 - - - - - - - -
ALLOC_COMM 3 4 2 2 - - - 10 3 3 2 1 - - - - - - - -
RETIRE_CTC_PRIORITY 59 86 99 73 59 93 88 55 - - - - - - - - - - - -
RETIRE_CTC_SECONDARY 79 84 101 79 61 81 93 120 189 171 140 124 - - - - - - - -
RETIRE_NEV_PRIORITY 17 16 14 14 18 13 12 4 - - - - - - - - - - - -
RETIRE_NEV_SECONDARY 22 17 11 17 18 16 14 3 - - - - - - - - - - - -
RETIRE_TRPA_PRIORITY 17 21 17 20 17 18 17 11 - - - - - - - - - - - -
RETIRE_TRPA_SECONDARY 18 16 21 17 22 17 21 27 41 38 37 29 - - - - - - - -
RETIRE_USFS_PRIORITY 73 62 73 83 74 81 57 42 - - - - - - - - - - - -
RETIRE_USFS_SECONDARY 73 69 73 77 69 71 75 87 132 149 132 102 - - - - - - - -

19

Table 8. TahoeTransCandidatesByYear.txt.

[Y1 through Y20 designate the year of the transition; “ALLOC_DG,” a parcel is allocated to Douglas County; “ALLOC_EL,” a parcel is allocated to Eldorado
County; “ALLOC_PL,” a parcel is allocated to Placer County; “ALLOC_PL_SENSITIVE,” a parcel is allocated to the sensitive lots of Placer County;
“ALLOC_WA,” a parcel is allocated to Washoe County; “ALLOC_SLT,” a parcel is allocated to the city of South Lake Tahoe; “ALLOC_MFH,” a parcel is
allocated to multiple family housing; “ALLOC_TOUR,” a parcel is allocated to tourist accommodation units; “ALLOC_COMM,” a parcel is allocated to
commercial square footage; “RETIRE_CTC_PRIORITY,” a sensitive parcel is allocated to the retirement program of the California Tahoe Conservancy;
“RETIRE_CTC_SECONDARY,” a non-sensitive parcel is allocated to the retirement program of the California Tahoe Conservancy;
“RETIRE_NEV_PRIORITY,” a sensitive parcel is allocated to the retirement program of the Nevada State Lands; “RETIRE_NEV_SECONDARY,” a non-
sensitive parcel is allocated to the retirement program of the Nevada State Lands; “RETIRE_TRPA_PRIORITY,” a sensitive parcel is allocated to the retirement
program of the TRPA; “RETIRE_TRPA_SECONDARY,” a non-sensitive parcel is allocated to the retirement program of the TRPA;
“RETIRE_USFS_PRIORITY,” a sensitive parcel is allocated to the retirement program of the U.S. Forest Service; “RETIRE_USFS_SECONDARY,” a non-
sensitive parcel is allocated to the retirement program of the U.S. Forest Service]

Desc Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16 Y17 Y18 Y19 Y20
ALLOC_DG 150 123 89 63 39 16 2 - - - - - - - - - - - - - -
ALLOC_EL 1,823 1,649 1,475 1,305 1,147 1,019 849 697 533 341 180 45 - - - - - - - - -
ALLOC_PL 1,130 1,109 1,014 913 813 731 625 535 421 295 168 66 - - - - - - - - -
ALLOC_PL_SENSITIVE 60 - - - - - - - - - - - - - - - - - - - -
ALLOC_WA 155 105 52 22 1 - - - - - - - - - - - - - - - -
ALLOC_SLT 1,268 1,177 1,089 991 888 801 707 600 487 362 234 107 - - - - - - - - -
ALLOC_MFH 797 716 638 561 498 431 358 300 236 164 86 29 - - - - - - - - -
ALLOC_TOUR 98 91 83 70 62 55 47 34 26 18 12 4 - - - - - - - - -
ALLOC_COMM 286 263 241 222 203 184 166 146 121 91 61 31 - - - - - - - - -
RETIRE_CTC_PRIORITY 1,299 1,145 978 791 616 459 266 106 - - - - - - - - - - - - -
RETIRE_CTC_SECONDARY 4,463 4,155 3,846 3,521 3,209 2,939 2,621 2,299 1,880 1,340 822 349 - - - - - - - - -
RETIRE_NEV_PRIORITY 260 212 154 110 75 47 24 6 - - - - - - - - - - - - -
RETIRE_NEV_SECONDARY 259 208 155 115 70 43 18 3 - - - - - - - - - - - - -
RETIRE_TRPA_PRIORITY 1,559 1,357 1,131 901 691 505 290 111 - - - - - - - - - - - - -
RETIRE_TRPA_SECONDARY 4,722 4,362 4,001 3,635 3,279 2,982 2,639 2,302 1,880 1,340 822 349 - - - - - - - - -
RETIRE_USFS_PRIORITY 1,559 1,357 1,131 901 691 505 290 111 - - - - - - - - - - - - -
RETIRE_USFS_SECONDARY 4,722 4,362 4,001 3,635 3,279 2,982 2,639 2,302 1,880 1,340 822 349 - - - - - - - - -

20

Table 9. TahoeCategoryTotals.txt.

[“Category”, a particular combination of fates for a given parcel; “Count”, number of times that category and combination of
fates occurs; “LU_XXXX”, a different formulation of the TRPA land use codes and the values are the percent of the time the
model designates this particular land use]
Category Count LU_0001 LU_MFH LU_1011 LU_2002 LU_3000 LU_6401

1 1435 0.0% 0.0% 0.0% 0.0% 0.0% 100.0%
4 1228 0.0% 0.0% 50.3% 0.0% 0.0% 49.7%
6 949 0.0% 0.0% 46.5% 0.0% 0.0% 53.5%
2 855 0.0% 0.0% 31.8% 0.0% 0.0% 68.2%
5 320 0.0% 0.0% 16.4% 0.0% 0.0% 83.6%

12 260 0.0% 23.8% 23.3% 0.0% 0.0% 52.9%
14 252 0.0% 16.5% 44.4% 0.0% 0.0% 39.1%
16 149 0.0% 15.1% 36.9% 0.0% 0.0% 48.0%
3 118 0.0% 0.0% 12.7% 0.0% 0.0% 87.3%
8 94 0.0% 0.0% 58.5% 0.0% 0.0% 41.5%

32 74 0.0% 0.0% 0.0% 0.0% 15.5% 84.5%
10 64 0.0% 0.0% 82.0% 0.0% 0.0% 18.0%
7 59 0.0% 0.0% 14.4% 0.0% 0.0% 85.6%
9 53 0.0% 0.0% 51.9% 0.0% 0.0% 48.1%

11 49 0.0% 0.0% 72.4% 0.0% 0.0% 27.6%
30 41 0.0% 0.0% 0.0% 0.0% 13.4% 86.6%
31 31 0.0% 0.0% 0.0% 0.0% 14.5% 85.5%
13 28 0.0% 16.1% 5.4% 0.0% 0.0% 78.6%
0 25 0.0% 2.0% 14.0% 14.0% 0.0% 70.0%

27 25 0.0% 0.0% 0.0% 40.0% 10.0% 50.0%
15 23 0.0% 4.3% 13.0% 0.0% 0.0% 82.6%
18 22 0.0% 4.5% 61.4% 0.0% 0.0% 34.1%
28 22 0.0% 0.0% 0.0% 43.2% 6.8% 50.0%
20 20 0.0% 0.0% 25.0% 25.0% 10.0% 40.0%
17 14 0.0% 3.6% 64.3% 0.0% 0.0% 32.1%
19 12 0.0% 8.3% 33.3% 0.0% 0.0% 58.3%
24 12 0.0% 12.5% 0.0% 0.0% 8.3% 79.2%
22 9 0.0% 11.1% 0.0% 0.0% 0.0% 88.9%
26 7 0.0% 0.0% 0.0% 35.7% 0.0% 64.3%
29 7 0.0% 0.0% 0.0% 7.1% 0.0% 92.9%
33 7 0.0% 0.0% 0.0% 0.0% 0.0% 100.0%
21 6 0.0% 0.0% 66.7% 0.0% 0.0% 33.3%
25 4 0.0% 0.0% 0.0% 0.0% 0.0% 100.0%
34 4 0.0% 0.0% 0.0% 0.0% 0.0% 100.0%
23 3 0.0% 0.0% 0.0% 0.0% 0.0% 100.0%

21

Appendixes

Appendix 1: Tahoe Regional Planning Agency’s Parcel Land Use Codes

Bolded codes are used in the LUSM.

(Updated 10-8-98)

0 – 999 MISCELLANEOUS

0 Unknown
1 Vacant (private)
99 Streets/Highways

1000 RESIDENTIAL

1001 Domestic animal raising
1002 Employee housing
1003 Mobile home dwelling
1004 * Mobile Home Park
1005 Multiple family dwelling (2-4 units)
1006 Multiple family dwelling (5-10 units)
1007 Multiple family dwelling (10+ units)
1008 Multi-person dwelling
1009 Nursing and personal care
1010 Residential care
1011 Single family dwelling (Existing)
1012 Single family dwelling (New)
1013 Summer home
1014 Condominium
1015 Condominium Common Area
1016 Accessory use to a Single Family Dwelling
1017 Abandoned Residential Structure

2000 TOURIST ACCOMMODATION

2001 Bed and breakfast facilities
2002 Hotel, motel, and other transient dwelling units
2003 Time sharing (hotel/motel design)
2004 Time sharing (residential design)

3000 COMMERCIAL

3100 A. Retail

3101 Auto, mobile home and vehicle dealers
3102 Building materials and hardware
3103 General merchandise stores
3104 Mail order and vending
3105 Nursery
3106 Outdoor retail sales
3107 Eating and drinking places
3108 Food and beverage retail sales
3109 Furniture, home furnishings and equipment
3110 Service Stations

3200 B. Entertainment

3201 Amusements and recreation services
3202 Gaming-nonrestricted (Nevada only)
3203 Privately owned assembly and entertainment
3204 Outdoor amusements

3300 C. Services

22

3301 Animal husbandry services
3302 Auto repair and service
3303 Broadcasting studios
3304 Business support services
3305 Contract construction services
3306 Financial services
3307 Health care services
3308 Laundries and dry cleaning plant
3309 Personal services
3310 Professional offices
3311 Repair services
3312 Sales lots
3313 Schools – business and vocational
3314 Secondary storage

3400 D. Light Industrial

3401 Batch plants
3402 Food and kindred products
3403 Fuel and ice dealers
3404 Industrial services
3405 Printing and publishing
3406 Recycling and scrap
3407 Small scale manufacturing

3500 E. Wholesale/Storage

3501 Storage yards
3502 Vehicle and freight terminals
3503 Vehicle storage and parking
3504 Warehousing
3505 Wholesale and distribution
3601 * Abandoned Commercial Structure

4000 PUBLIC SERVICE

4100 A. General

4101 Airfields, landing strips, heliports (New non-emergency sites
prohibited)
4102 Cemeteries
4103 Churches
4104 Collection stations
4105 Cultural facilities
4106 Day care centers/pre-schools

4107 Government offices
4108 Hospitals
4109 Local assembly and entertainment
4110 Local post office
4111 Local public health and safety facilities
4112 Power generating
4113 Public owned assembly and entertainment
4114 Public utility centers
4115 Regional public health and safety facilities
4116 Schools – college
4117 Schools – Kindergarten through secondary
4118 Social service organizations

4200 B. Linear Public Facilities

4201 Pipelines and power transmission
4202 Transit stations and terminals
4203 Transportation routes
4204 Transmission and receiving facilities

5000 RECREATION

5001 Beach recreation
5002 Boat launching facilities
5003 Cross country ski courses
5004 Day use areas
5005 Developed campgrounds
5006 Downhill ski facilities
5007 Golf courses
5008 Group facilities
5009 Marinas
5010 Off road vehicle courses
5011 Outdoor recreation concessions
5012 Participant sports facilities
5013 Recreation centers
5014 Recreations vehicle parks
5015 Riding and hiking trails
5016 Rural Sports
5017 Snowmobile courses
5018 Sport Assembly
5019 Undeveloped campgrounds
5020 Visitor information centers

6000 RESOURCE MANAGEMENT

23

6100 A. Timber Management

6101 Reforestation
6102 Regeneration harvest
6103 Sanitation salvage cut
6104 Selection cut
6105 Special cut
6106 Thinning
6107 Timber stand improvement
6108 Tree farms

6200 B. Wildlife and Fishes

6201 Early successional vegetation management
6202 Non-structural fish habitat management
6203 Non-structural wildlife habitat management
6204 Structural fish habitat management
6205 Structural wildlife habitat management

6300 C. Range

6301 Farm/Ranch structures
6302 Grazing
6303 Range pasture management
6304 Range improvement

6400 D. Open Space

6401 Allowed in all areas of the region

6500 E. Vegetation Protection

6501 Fire detection and suppression
6502 Fuels treatment/management
6503 Insect and disease suppression
6504 Prescribed fire/burning management
6505 Sensitive plant management
6506 Uncommon plant community management

6600 F. Watershed Improvements

6601 Erosion control
6602 Runoff control
6603 Stream environment zone restoration

7000 SHOREZONE

7010 Safety and navigational facilities
7020 Salvage operations
7030 Seaplane operations
7040 Tour boat operations
7050 Water borne transit
7060 Water intake lines
7070 Beach recreation
7080 Boat launching facilities
7090 Construction equipment storage
7100 Marinas
7110 Water oriented outdoor recreation concessions
7120 Commercial boating
7130 Parasailing
7140 Fish Habitat Restoration
7150 Scientific Study

Shorezone Accessories (4th digit in project code)

1 Boat ramp
2 Breakwaters or jetties
3 Buoys
4 Fences
5 Floating docks and platforms
6 Piers
7 Shoreline protective structures
8 Water intake lines
9 Beach raking

24

EIP PROJECT CODES

9000 EIP GENERAL

9010 Multi-purpose project (general)
9011 Redevelopment Project
9012 Community Plan Project
9013 Public Agency Project
9014 Private Funded Project
9080 Multi-Purpose Programs
9081 Research and Evaluation (TRPA)
9090 Multi-Purpose Regulations
9091 Streamlining

9100 WATER QUALITY

9110 Research/Evaluation Project
9120 SEZ Restoration Project
9130 SEZ Creation Project
9140 Erosion Control/WQ Treatment
9150 Soil Conservation Project
9180 Water Quality Programs
9181 Research and Evaluation (TRPA)
9182 SEZ Research
9190 Water Quality Regulations

9200 AQ/TRANSPORTATION

9210 Transit Project
9220 Highway Project
9230 Airport Project
9240 Bikeway Project
9250 Pedestrian Project
9260 Multi-Purpose Project
9270 Parking Project
9280 AQ/Transportation Program
9281 Research and Evaluation (TRPA)
9290 AQ/Transportation Regulation

9300 NOISE

9310 Noise Reduction Project
9380 Noise Reduction Program
9381 Research and Evaluation (TRPA)
9390 Noise Reduction Regulations

9400 RECREATION

9410 PAOT Projects
9411 Overnight
9412 Day Use
9413 Winter
9415 Marinas/Ramps
9420 Non PAOT Projects
9430 Recreation Land Acquisition
9480 Recreation Program
9481 Research and Evaluation (TRPA)
9491 Recreation Regulation

9500 FISHERY

9510 Stream
9520 Lake
9580 Fishery Program
9581 Research and Evaluation – In Stream
9582 Research and Evaluation – In Lake
9590 Fishery Regulation
9591 In-Stream Fisheries
9592 In-Lake Fisheries

9600 WILDLIFE

9610 Wildlife Enhancement Projects
9680 Wildlife Programs
9681 Research and Evaluation (TRPA)
9690 Wildlife Regulation

9700 SCENIC

9710 Scenic Restoration Project
9720 Undergrounding
9780 Scenic Programs
9781 Research and Evaluation (TRPA)
9790 Scenic Regulation

9800 VEGETATION

9810 Forest Project
9880 Vegetation Program

25

9881 Research and Evaluation (TRPA)
9890 Vegetation Regulation

9900 OTHER

9910 Health and Safety

26

Appendix 2: Assessor’s 2008 Parcel Map Data Summary

[Level I of the table represents the first major category of land uses as defined in appendix 1 (e.g. 1000), level II represents the second category (e.g. 3100), and
level III represents the most specific hierarchical level of the land use categories (e.g. 3105)]

Level I Level II Level III
Level II

Total
Level III

Total
 Area in Acres

Description Count Description Count Description Count Landuse Min Area Med Area Max Area Total Area

Unknown (null) 210 210 Unknown (or null) 210 0 0.0 0.1 4,182 6,707 6,707 6,707

Vacant 6,326 6,326 Vacant 6,326 1 0.0 0.2 468 6,801 6,801 6,801

Residential 41,219 41,219 Domestic Animal Raising 1 1001 24.3 24.3 24 24 13,790 13,790
 Mobile Home Dwelling 747 1003 0.0 0.0 1 30
 Mobile Home Park 34 1004 0.1 0.9 23 82
 Multiple Family Dwelling (2-4 units) 1,697 1005 0.0 0.1 41 592
 Multiple Family Dwelling (5-10 units) 196 1006 0.1 0.2 20 79
 Multiple Family Dwelling (10+ units) 82 1007 0.0 0.5 7 86
 Nursing and Personal Care 1 1009 1.5 1.5 1 1
 Residential Care 1 1010 1.3 1.3 1 1
 Single Family Dwelling (existing) 28,927 1011 0.0 0.2 596 10,825
 Summer Home 518 1013 0.1 0.3 134 378
 Condominium 7,988 1014 0.0 0.0 9 218
 Condominium Common Area 725 1015 0.0 0.5 87 1,372
 Accessory use to a Single Family Dwelling 302 1016 0.0 0.2 4 100
Tourist 427 427 Bed and Breakfast Facilities 3 2001 0.3 0.3 1 2 389 389
 Hotel, Motel, and other Transient Dwelling Units 256 2002 0.1 0.5 22 320
 Time Sharing (Hotel/Motel Design) 20 2003 0.0 0.6 6 25
 Time Sharing (Residential Design) 148 2004 0.0 0.0 24 42
Commercial 1,279 Retail 430 n/a 1 3100 0.2 0.2 0 0 340 971
 Auto, Mobile Home and Vehicle Dealers 8 3101 0.2 0.5 3 8
 Building Materials and Hardware 17 3102 0.2 0.5 4 18
 General Merchandise Stores 197 3103 0.0 0.3 18 160
 Mail Order and Vending 6 3105 0.3 0.4 1 3
 Nursery 7 3106 0.1 0.3 1 2
 Outdoor Retail Sales 112 3107 0.0 0.4 5 73
 Eating and Drinking Places 25 3108 0.0 0.5 14 33
 Food and Beverage Retail Sales 9 3109 0.1 0.3 1 3
 Furniture, Home Furnishings and Equipment 35 3110 0.1 0.5 1 17
 Service Stations 13 3111 0.1 0.8 8 21

27

 Entertainment 14 Amusements and Recreation Services 7 3201 0.1 1.1 4 11 20
 Gaming-nonrestricted (Nevada only) 5 3202 0.2 0.9 4 8
 Privately Owned Assembly and Entertainment 2 3203 0.2 0.3 0 1
 Services 385 Animal Husbandry Services 5 3301 0.1 0.4 1 3 197
 Auto Repair and Service 55 3302 0.1 0.3 2 28
 Broadcasting Studios 1 3303 1.1 1.1 1 1
 Business Support Services 3 3304 0.2 0.3 2 3
 Contract Construction Services 27 3305 0.1 0.3 2 11
 Financial Services 16 3306 0.1 0.7 2 12
 Health Care Services 37 3307 0.1 0.5 2 21
 Laundries and Dry Cleaning Plant 2 3308 0.1 0.3 0 1
 Personal Services 30 3309 0.0 0.2 2 11
 Professional Offices 198 3310 0.0 0.3 6 103
 Repair Services 7 3311 0.0 0.3 1 2
 Sales Lots 1 3312 0.3 0.3 0 0
 Schools - Business and Vocational 1 3313 0.2 0.2 0 0
 Secondary Storage 2 3314 0.3 0.4 0 1
 Light Industrial 91 Batch Plants 5 3401 0.6 1.0 4 9 172
 Food and Kindred Products 26 3402 0.1 1.0 45 73
 Fuel and Ice Dealers 5 3403 0.2 1.0 2 5
 Industrial Services 23 3404 0.0 0.5 49 64
 Printing and Publishing 3 3405 0.2 0.3 1 1
 Recycling and Scrap 6 3406 0.5 0.6 3 6
 Small Scale Manufacturing 23 3407 0.1 0.3 3 14
 Whlsle Storage 359 Storage Yards 168 3501 0.0 0.0 34 76 243
 Vehicle and Freight Terminals 9 3502 0.1 0.5 1 4
 Vehicle Storage and Parking 101 3503 0.0 0.3 60 116
 Warehousing 75 3504 0.0 0.3 4 43
 Wholesale and Distribution 6 3505 0.2 0.6 2 5
Public Service 537 General 349 n/a 1 4100 0.0 0.0 0 0 1,724 1,817
 Airfields, Landing Strips, Heliports 11 4101 1.0 23.5 70 336
 Cemeteries 4 4102 0.3 0.9 10 12
 Churches 31 4103 0.0 1.6 5 58
 Cultural Facilities 6 4105 0.2 7.9 54 108
 Day Care Centers/Pre-Schools 10 4106 0.1 0.4 1 5
 Government Offices 20 4107 0.0 1.2 30 76
 Hospitals 3 4108 3.4 5.9 7 16
 Local Assembly and Entertainment 7 4109 0.1 0.2 3 5
 Local Post Office 11 4110 0.2 0.7 6 11
 Local Public Health and Safety Facilities 59 4111 0.0 0.4 120 211
 Power Generating 7 4112 0.1 0.6 3 6

28

 Public Owned Assembly and Entertainment 1 4113 13.4 13.4 13 13
 Public Utility Centers 115 4114 0.0 0.2 87 257
 Regional public health and Safety Facilities 18 4115 0.1 0.7 33 66
 Schools - College 7 4116 0.4 1.6 113 132
 Schools - Kindergarten through Secondary 31 4117 0.2 5.0 80 409
 Social Services Organizations 7 4118 0.0 0.2 2 3
 Linear Facilities 188 Pipelines and Power Transmission 3 4201 0.0 0.3 0 1 93
 Transit Stations and Terminals 3 4202 0.6 0.8 11 12
 Transportation Routes 176 4203 0.0 0.2 9 76
 Transmission and Receiving Facilities 6 4204 0.0 0.5 2 4
Recreation 621 621 Beach Recreation 71 5001 0.0 1.2 226 389 19,693 19,693
 Boat Launching Facilities 8 5002 0.4 2.3 11 26
 Day Use Areas 150 5004 0.0 7.0 3,765 12,403
 Developed Campgrounds 16 5005 5.1 36.0 307 1,172
 Downhill Ski Facilities 91 5006 0.1 10.5 821 4,262
 Golf Courses 44 5007 0.0 4.7 224 1,013
 Group Facilities 9 5008 0.7 9.6 33 110
 Marinas 177 5009 0.0 0.0 19 66
 Outdoor Recreation Concessions 6 5011 0.2 1.0 6 11
 Participant Sports Facilities 9 5012 0.2 3.5 30 87
 Recreation Centers 12 5013 0.9 1.5 18 52
 Riding and Hiking Trails 22 5015 0.1 1.9 23 96
 Rural Sports 1 5016 0.7 0.7 1 1
 Undeveloped Campgrounds 1 5019 4.6 4.6 5 5
 Visitor Information Centers 4 5020 0.0 0.4 1 2
Resource Mgmt 9,757 Open Space 9,757 Retired 9,757 6401 0.0 0.3 3,747 164,385 164,385 164,385

 60,376 60,376 60,376 214,552 214,552 214,552

29

Appendix 3: Samples of Required Databases for the Land Use Simulation Model

Below are samples of records and their attributes of the two primary datasets used in

PostGreSQL.

Table 1. Parcel database with Plan Area Statement ID linkage.

Assessor's Parcel
Number

Plan Area
Statement ID Jurisdiction Area (ac)

IPES
Score

Bailey
Score

South Lake
Tahoe

010-170-01 1520 EL 49.475 0 4 FALSE
010-170-02 1520 EL 160.659 0 4 FALSE
014-231-05 1540 EL 0.263 826 5 FALSE
014-231-09 1540 EL 0.323 874 5 FALSE
014-232-01 1540 EL 0.230 836 5 FALSE
014-232-03 1540 EL 0.203 814 5 FALSE
014-232-09 1540 EL 0.276 814 5 FALSE
014-234-02 1540 EL 0.246 846 5 FALSE
014-234-11 1540 EL 0.246 846 5 FALSE
014-235-06 1540 EL 0.276 836 1b FALSE
014-236-05 1540 EL 0.230 826 5 FALSE
014-236-08 1540 EL 0.230 804 5 FALSE
014-236-12 1540 EL 0.230 811 5 FALSE
014-237-03 1540 EL 0.230 820 5 FALSE
014-237-04 1540 EL 0.230 820 5 FALSE
014-238-12 1540 EL 0.246 836 5 FALSE
014-241-07 1540 EL 0.230 830 1b FALSE
014-242-06 1540 EL 0.229 0 1b FALSE
014-243-07 1540 EL 0.230 440 5 FALSE
014-244-06 1540 EL 0.246 805 5 FALSE
014-244-11 1540 EL 0.246 783 5 FALSE
014-247-04 1540 EL 1.758 0 4 FALSE
014-262-03 1540 EL 0.232 819 5 FALSE
014-262-10 1540 EL 0.244 768 5 FALSE
014-262-12 1540 EL 0.232 807 5 FALSE

30

Table 2. Plan Area Statement database

Plan Area
Statement ID

Plan Area
Statement Name

Multiple
Family

Dwelling

Single
Family

Dwelling
Tourist

Accommodation
Commercial

Uses

Multiple Family
Dwelling Density

(units/ac)

Tourist
Accommodation
Density (units/ac)

001A1 TAHOE CITY N N A A 0 40
001A2 TAHOE CITY N N N A 0 0
001A3 TAHOE CITY N N N S 0 0
001A4 TAHOE CITY A A A S 15 40
001A5 TAHOE CITY A A S A 15 40

20
FAIRWAY

TRACT N A N N 0 0

21
FAIRWAY
TRACT SA A A N N 8 0

22
FAIRWAY
TRACT SA N A S A 0 40

30
LOWER

TRUCKEE N A N S 0 0

40
BURTON
CREEK N S N S 0 0

50
ROCKY
RIDGE N A S S 0 20

70

LAKE
FOREST

GLEN A A N N 15 0

71

LAKE
FOREST

GLEN A A N A 15 0

80
LAKE

FOREST N A N N 0 0

81
LAKE

FOREST N A N S 0 0

009A1

LAKE
FOREST

COM. S S S A 15 40

009A2

LAKE
FOREST

COM. S S N A 15 0

009B0
DOLLAR

HILL S S N A 15 0

100
DOLLAR

POINT N A N N 0 0

120
NORTH

TAHOE HIGH N S N N 0 0

130
WATSON

CREEK N N N N 0 0
 Notes: (A) is allowed use, (S) is a special use and must be considered under the provisions of the particular plan area

statement or community plan, and (N) is not allowed use. The density of single family dwellings is 1 unit per parcel, and the

density of commercial lots is 25 percent of a parcel’s area.

31

Appendix 4: Python Code for the Land Use Simulation Model

The following code and its extensive comments executes as a stand-alone version and is provided here as a professional

courtesy for any developer who would like to apply the code to their own problem or location, or prove to themselves that the code is

adequate and fully functional. Note that this version of the code is not an exact copy of the code behind the TIIMS-hosted decision

support tool.

__

from random import *
from copy import deepcopy
from pg import DB
import datetime
import time

#Tahoe Decision Support Software
#Model coded by Ben Oldham
#Model logic prototype developed by Ben Oldham and Will Forney
#Model transferred to new Desktop by Will Forney, Peter Ng and Mike Gould. Will Updated Default Model Values, 1/25/2010.

#Notes:

The model consists of a single simulation within which there are a number of runs.
During the course of a simulation run, vacant parcels can stay vacant or they can transition into a variety of other landuses.
These landuses are LU_0001, LU_1005, LU_1006, LU_1007, LU_1011, LU_2002, LU_3000, LU_6401.
These transitions can occur as a result as a variety of different mechanisms.

#Generalized Model flow:
Pass in the Model ID.
Initialize the model object:
Obtain the model parameter values.
Get PAS db data (model.PASList) that specifies what landuses and densities are allowed for the parcels in each PAS (PAS.allowedLanduseDensities).
Get vacant parcel db data (model.parcelList) with attributes that help determine the various possible fates of a parcel.

32

For each parcel, identify the possible transitions and landuses that the parcel qualifies for (parcel.possibleTransitionsMasterList, parcel.landuseCounts).
Generate a master set of lists (model.transitionCandidatesMasterLists), one for each transition type, with each list containing the apns of the parcels that
qualify for that transition type.
Initialize a number of analysis statistics.
Identify each parcels category (parcels with the same category all share functionally similar attributes and can be expected to have similar outcome
probabilities).
Initialize the run object.
Perform n runs (where n = the ITERATIONS parameter):
At the start of each run, initialize the run (run.initRun):
Initialize the year and pool values, etc.
Refresh the working copy of the transition candidate parcel lists (thisRunTransitionCandidates) and randomize them.
For each parcel, copy the thisRunPossibleTransitions list from the possibleTransitionsMasterList.
For each year of the run:
Initialize the thisYearTrans list (initRunYear):
Determine how many transitions of each type will be scheduled for the current year based on the input parameters (run.thisYearTrans) (stochastic values).
For all SFH and Retirement transitions, add that number of items to the list.
MFH, Tourist and Commercial each have only a single item added to the list as they are handled with a different mechanism (pools).
Randomize the list.
Do some minor annual tasks (filterLargeCommLots, checkVacantLotEqPL).
Attempt to do the current year's scheduled transitions:
For each transition, determine the transition list, landuse, and transition type (there are special pool mechanisms for MFH, Tour and Comm).
If a candidate parcel exists (the length of the transition list is greater than 0), do the transition (if no candidates exist, then the scheduled transition is
disregarded):
With the first parcel in the transition list:
For each of the transition types in the parcel thisRunPossibleTransitions, remove that parcel from the associated transition list (in
thisRunTransitionCandidates).
Update various analysis statistics.
Increment the run year.
Now that the simulation is done, do some minor massaging of the analysis statistics to make them ready for output (calcOutputResults).
Print the seven analysis reports.

class TDSS(object):
 #class instantiates the Model and Run objects, runs the appropriate number of iterations, and prints the results

 def __init__(self, modelID):
#Starting the simulation.
#The model object stores data and results for the entire course of the simulation (all runs).
#The run object stores data and results for a single run of the simulation.
 print "START: ", datetime.datetime.fromtimestamp(time.time())

33

 model = Model(modelID)
#Initialize the Model object - get db data (paramater, pas, parcel), do initialization for the simulation.
 run = Run(model)
#Initialize the Run object.
#Now that we're initialized, we can do the simulation.
 for iteration in range(model.params["ITERATIONS"]):
 print "ITER = ", iteration
 run.initRun() #Initialize start-of-run values and transition lists.
 while (run.thisYear <= model.params["TOTAL_YEARS"]):
 run.initRunYear() #Determine the scheduled transitions for the year.
 run.filterLargeCommLots() #Unclog the commercial "development pipeline".
 run.checkVacantLotEqPL() #See if the PL vacant lot equation is satisfied.
 run.annualTransitions() #Attempt to process the scheduled transitions for the year.
 run.thisYear += 1
#Simulation is finished, now print the results
 model.calcOutputResults() #Massage the analysis statistics to make them ready for output.
 model.printLanduse(str(modelID)) #Analysis report #1.
 model.printCondensedLanduse(str(modelID)) #Analysis report #2.
 model.printCondensedTransitions(str(modelID)) #Analysis report #3.
 model.printLanduseByYear(str(modelID)) #Analysis report #4.
 model.printTransitionsByYear(str(modelID)) #Analysis report #5.
 model.printTransCandidatesByYear(str(modelID)) #Analysis report #6.
 model.printCategoryTotals(str(modelID)) #Analysis report #7.
 print "END:", datetime.datetime.fromtimestamp(time.time())

class Model(object):

 def __init__(self, modelID):
#The model object stores data and results for the entire course of the simulation (all runs).

 self.landuseNames = ("LU_0001", "LU_1005", "LU_1006", "LU_1007", "LU_1011", "LU_2002", "LU_3000", "LU_6401", "MFHUnits", "TourUnits",
"CommSF") #really a grabbag of stuff - used for the TahoeLanduseByYear report
 self.transTypes = ("ALLOC_DG", "ALLOC_EL", "ALLOC_PL", "ALLOC_PL_SENSITIVE", "ALLOC_WA", "ALLOC_SLT", "ALLOC_MFH",
"ALLOC_TOUR", "ALLOC_COMM", "RETIRE_CTC_PRIORITY", "RETIRE_CTC_SECONDARY", "RETIRE_NEV_PRIORITY",
"RETIRE_NEV_SECONDARY", "RETIRE_TRPA_PRIORITY", "RETIRE_TRPA_SECONDARY", "RETIRE_USFS_PRIORITY",
"RETIRE_USFS_SECONDARY")
 self.dbConn = self.getDBConn()
 self.params = self.getFixedParams() #Simulation parameters
 self.params["MODEL_ID"] = modelID

34

 self.params.update(self.getUserParams())
 self.PASList = self.getPASs() #List of all PASs, key is pas_id
 self.parcelList = self.getParcels(self.params["IPES_THRESHOLD"]) #List of all vacant parcels, key is apn
 self.dbConn.close()
 self.getParcelPossibleFates() #For each parcel, identify valid transition types and add them to the parcels
possibleTransitionsMasterList.
 # Also initializes the parcel landuse analysis statistic (landuseCounts) (reports #1 & 2).
 self.transitionCandidatesMasterLists = self.popTransitionCandidates() #A master set of lists that never change, one for each transition type.
 # Each sub-list contains a list of parcels (apn numbers) that are valid candidates for that transition type.
 # If an apn is in a particular model.transitionCandidatesMasterLists list, than the possibleTransitionsMasterList for that parcel will always include that transition
type.
 # There is always a one-to-one correspondence between the apns in a particular model.transitionCandidatesMasterLists list and the transitions in the member
parcel.possibleTransitionsMasterList.
 self.initParcelTransitionCounts() #Initialize the parcel transition type analysis statistic (report #3).
 self.landuseByYear = self.initLanduseByYear() #Initialize the simulation landuse by year analysis statistic (report #4).
 self.transitionsByYear = self.initTransitionsByYear() #Initialize the simulation transitions by year analysis statistic (report #5).
 self.transCandidatesByYear = self.initTransCandidatesByYear() #Initialize the simulation transitions candidates by year analysis statistic (report
#6).
 self.categoryTotals = self.initCategoryTotals() #Initialize the simulation category totals analysis statistic (report #7).
 self.calcParcelCatLanduseBinaryTotal() #Calculate parcel landuseBinaryTotal values (used to help determine the parcel's
category).
 self.calcParcelCategory() #For each parcel, identify the category for the parcel.

 def getDBConn(self):
#Opens a connection to the postgresql database.
#Java version may want to read connection parameters from some sort of ini file

 dbname = "test2"
 host = "localhost"
 port = 5432
 options = None
 tty = None
 user = "postgres2"
 password = "QAZSE45tgb1!2@"
 return DB(dbname, host, port, options, tty, user, password) # returns a connection to the database

 def getFixedParams(self):
#Getting the model parameters that aren't exposed to the users for input.
#Java version will probably read paramater values from a model_execution_parameters table using the Model ID as an identifier.

35

#Both fixed and user parameter values should probably be stored in the model_execution_parameters table.
#Master default values should probably be stored in a static table (perhaps fixed_params).

 params = {}
 dbParams = self.dbConn.query("SELECT * FROM fixed_params").dictresult()
#params["ITERATIONS"] = dbParams[0]["iterations"]
#The somewhat arbitrary value of 500 used in the previous version of the model is again used as a default.
 params["ITERATIONS"] = 2
 params["IPES_THRESHOLD"] = dbParams[0]["ipes_threshold"]
#At some point in the run, threshold may change to zero once the PL vacant lot equation has been satisfied.
 params["COMM_AREA_RATIO"] = dbParams[0]["comm_area_ratio"]
#Ratio used to tell the net commercial area sf based on the parcel size (default set to historical value of .25)
 params["MFD_UNITS_PER_ACRE"] = dbParams[0]["mfd_units_per_acre"] #Empirically derived (default set to 18).
 params["TOUR_UNITS_PER_ACRE"] = dbParams[0]["tour_units_per_acre"] #Empirically derived (default set to 30).
 return params

 def getUserParams(self):
#Getting the model parameters with user-input values.
#Java version will probably read paramater values from a model_execution_parameters table using the Model ID as an identifier.
#Both fixed and user parameter values should probably be stored in the model_execution_parameters table.
#Master default values should probably be stored in a static table (perhaps default_user_params) and then displayed to the user.
#Most of the values (annual housing allocation, retirement, allocation rollover pool) were determined by Will Forney based on historical averages and review of
TRPA Code of Ordinances such as the Residential Allocation Performance Table.
#Other values were jointly arrived at by discussion Will Forney/Ben Oldham.

 params = {}
#housing allocations - all are annual numbers
 params["MIN_ALLOC_DG"] = 9 #was 10
 params["MAX_ALLOC_DG"] = 21 #was 14, then 17 for Ben's Evaluation
 params["MIN_ALLOC_EL"] = 27 #was 73
 params["MAX_ALLOC_EL"] = 111 #was 89, then 83 for Ben's Evaluation
 params["MIN_ALLOC_PL"] = 18 #was 38
 params["MAX_ALLOC_PL"] = 66 #was 46, then 50 for Ben's Evaluation
 params["MIN_ALLOC_WA"] = 13 #was 32
 params["MAX_ALLOC_WA"] = 49 #was 40, then 38 for Ben's Evaluation
 params["MIN_ALLOC_SLT"] = 11 #was 29
 params["MAX_ALLOC_SLT"] = 47 #still 35
 params["MIN_ALLOC_MFH"] = 30 #was 18
 params["MAX_ALLOC_MFH"] = 50 #was 18
 params["MIN_ALLOC_TOUR"] = 30 #was 5

36

 params["MAX_ALLOC_TOUR"] = 50 #was 10
#retirements - all are annual numbers
 params["MIN_RETIRE_CTC"] = 86 #was 5
 params["MAX_RETIRE_CTC"] = 250 #was 10
 params["MIN_RETIRE_NEV"] = 3 #was 0
 params["MAX_RETIRE_NEV"] = 59 #was 5
 params["MIN_RETIRE_TRPA"] = 29 #was 5
 params["MAX_RETIRE_TRPA"] = 46 #was 10
 params["MIN_RETIRE_USFS"] = 91 #was 5
 params["MAX_RETIRE_USFS"] = 189 #was 20
#retirement priorities
 params["PRIORITY_RETIRE_CTC"] = .5
 params["PRIORITY_RETIRE_NEV"] = .5
 params["PRIORITY_RETIRE_TRPA"] = .5
 params["PRIORITY_RETIRE_USFS"] = .5
#other params
 params["COMM_AREA_TOTAL_ALLOC"] = 160000 #Net commercial area sf allocation for the entire term of the model - was 40000
 params["ALLOC_ROLLOVER_POOL"] = 48 #was 300 for Ben's Evaluation
 params["MIN_ACRES"] = .1 #Applies to SFH, MFH and tourist parcels
 params["ALLOW_SPECIAL_USE"] = False #Will parcels in PAS's with LU "S" be included? (Default inclusion is LU "A")
 params["START_YEAR"] = 2009
 params["END_YEAR"] = 2028
 params["TOTAL_YEARS"] = params["END_YEAR"] - params["START_YEAR"] + 1
 return params

 def getPASs(self):
#Getting the PAS (TRPA Plan Area Statement) data from the db (the db contains data for all PASs).

 PASList= {}
 PASs = self.dbConn.query("SELECT * FROM pas_areas").dictresult()
 for pas in PASs:
 PASList[pas["pas_id"]] = PAS(self.params["ALLOW_SPECIAL_USE"], **pas)
 return PASList

 def getParcels(self, ipesThreshold):
#Getting the parcel data from the db (the db contains only vacant parcels - landuse code 1)

 parcelList = {}
 parcels = self.dbConn.query("SELECT * FROM parcels").dictresult()
 for parcel in parcels:

37

 parcelList[parcel["apn"]] = Parcel(self.PASList, ipesThreshold, **parcel)
 return parcelList

 def getParcelPossibleFates(self):
#Here, the parcels possible transitions and possible landuses are identified and stored.
#Go through all the parcels, and, for each landuse allowed by the parcel's PAS, call the appropriate function.
#The selected parcelPossibleLanduseXXXX function will examine the parcel to see if it meets the criteria for that landuse.
#If it meets the criteria, the called function adds the appropriate possible transition type to the parcels possibleTransitionsMasterList.
#Also, initialize the parcel landuse analysis statistic (reports #1 & 2).
#Gives each parcel a dictionary of valid possible landuses (landuseCounts) with each value set to 0 (dictionary does not typically include the entire set of
landuses).
#Ultimately, each value will represent the number of times that the parcel transitioned to that landuse.

 landuseFunctions = {"LU_1005": self.parcelPossibleLanduse1005, "LU_1011": self.parcelPossibleLanduse1011, "LU_2002": self.parcelPossibleLanduse2002,
"LU_3000": self.parcelPossibleLanduse3000, "LU_6401": self.parcelPossibleLanduse6401}
 for apn in self.parcelList:
 parcel = self.parcelList[apn]
 PAS = self.PASList[parcel.pas_id]
 for landuse in PAS.allowedLanduseDensities.keys():
 landuseFunctions.get(landuse)(parcel, PAS.allowedLanduseDensities[landuse])
 parcel.landuseCounts["LU_0001"] = 0

 def parcelPossibleLanduse1005(self, parcel, PASdensity):
#MFH
#Parcel derivedIPES must exceed 0, it must exceed the minimum size, and the calculated units must exceed 1.
#The landuse is either 1005 (2-4 units) or 1006 (5-10 units) or 1007 (10+ units) depending on the number of units that the parcel supports.
#Calculate unitsMFH, a new Parcel attribute which is the developable MFH units based on the min of parcel size * MFH_UNITS_PER_ACRE, or the legal max
density from PASdensity

 if (parcel.derivedIPES > 0) and (parcel.acres >= self.params["MIN_ACRES"]):
 units = min(int(parcel.acres * self.params["MFD_UNITS_PER_ACRE"]), PASdensity)
 if units > 1:
 parcel.unitsMFH = units
 parcel.possibleTransitionsMasterList.append("ALLOC_MFH")
 landuse = parcel.mfhLanduse(units)
 parcel.landuseCounts[landuse] = 0

 def parcelPossibleLanduse1011(self, parcel, PASdensity):
#SFH
#Parcel derivedIPES must exceed 0, and it must exceed the minimum size.

38

#The transition type depends on the jurisdiction (5 jurisdictions, including SLT).
#Additionally, the transition type for jurisdiction PL has two types, depending on the derivedIPES (because of the PL vacant lot equation).

 if (parcel.derivedIPES > 0) and (parcel.acres >= self.params["MIN_ACRES"]):
 if parcel.jurisdiction == "PL":
 if parcel.derivedIPES > self.params["IPES_THRESHOLD"]:
 parcel.possibleTransitionsMasterList.append("ALLOC_PL")
 else:
 parcel.possibleTransitionsMasterList.append("ALLOC_PL_SENSITIVE")
 elif parcel.jurisdiction == "EL":
 if parcel.slt:
 parcel.possibleTransitionsMasterList.append("ALLOC_SLT")
 else:
 parcel.possibleTransitionsMasterList.append("ALLOC_EL")
 elif parcel.jurisdiction in ("DG", "WA"):
 parcel.possibleTransitionsMasterList.append("ALLOC_" + parcel.jurisdiction)
 parcel.landuseCounts["LU_1011"] = 0

 def parcelPossibleLanduse2002(self, parcel, PASdensity):
#Tourist
#Parcel derivedIPES must exceed 0, it must exceed the minimum size, and the calculated units must exceed 1.
#Calculate unitsTour, a new Parcel attribute which is the developable tour units based on the min of parcel size * TOUR_UNITS_PER_ACRE, or the legal max
density from PASdensity

 if (parcel.derivedIPES > 0) and (parcel.acres >= self.params["MIN_ACRES"]):
 units = min(int(parcel.acres * self.params["TOUR_UNITS_PER_ACRE"]), PASdensity)
 if units > 1:
 parcel.unitsTour = units
 parcel.possibleTransitionsMasterList.append("ALLOC_TOUR")
 parcel.landuseCounts["LU_2002"] = 0

 def parcelPossibleLanduse3000(self, parcel, PASdensity):
#Commercial
#Parcel derivedIPES must exceed 0.
#Calculate commFt, a new Parcel attribute which is the developable comm sf based on the parcel size * COMM_AREA_RATIO (no maximum)

 SF_PER_ACRE = 43560
 if (parcel.derivedIPES > 0):
 feet = int(parcel.acres * SF_PER_ACRE * self.params["COMM_AREA_RATIO"])
 if feet > 0:

39

 parcel.commFt = feet
 parcel.possibleTransitionsMasterList.append("ALLOC_COMM")
 parcel.landuseCounts["LU_3000"] = 0

 def parcelPossibleLanduse6401(self, parcel, PASdensity):
#Retirement
#All parcels are eligible for retirement.
#There are 4 retirement agencies and every parcel will be eligible for retirement by exactly 3 of these agencies.
#All parcels throughout the Tahoe basin qualify for USFS retirement.
#All parcels throughout the Tahoe basin qualify for TRPA retirement.
#Nevada parcels (DG and WA) qualify for NEV retirement.
#California parcels (EL/SLT and PL) qualify for CTC retirement.
#Additionally, each agency is deemed to have a priority retirement policy and a secondary retirement policy.
#All agencies are deemed to prioritize sensitive parcels (derivedIPES <= IPES_THRESHOLD).
#Therefore, each parcel qualifies for 3 of the 8 different retirement transition types.

 parcel.landuseCounts["LU_6401"] = 0
 if parcel.derivedIPES <= self.params["IPES_THRESHOLD"]:
 parcel.possibleTransitionsMasterList.append("RETIRE_USFS_PRIORITY")
 parcel.possibleTransitionsMasterList.append("RETIRE_TRPA_PRIORITY")
 if parcel.jurisdiction in ("EL", "PL"):
 parcel.possibleTransitionsMasterList.append("RETIRE_CTC_PRIORITY")
 if parcel.jurisdiction in ("DG", "WA"):
 parcel.possibleTransitionsMasterList.append("RETIRE_NEV_PRIORITY")
 else:
 parcel.possibleTransitionsMasterList.append("RETIRE_USFS_SECONDARY")
 parcel.possibleTransitionsMasterList.append("RETIRE_TRPA_SECONDARY")
 if parcel.jurisdiction in ("EL", "PL"):
 parcel.possibleTransitionsMasterList.append("RETIRE_CTC_SECONDARY")
 if parcel.jurisdiction in ("DG", "WA"):
 parcel.possibleTransitionsMasterList.append("RETIRE_NEV_SECONDARY")

 def popTransitionCandidates(self):
#Generate a master set of lists, one for each transition type, with each list containing the apns of the parcels that qualify for that transition type.

 transitionCandidates = {}
 for transType in self.transTypes:
 transitionCandidates[transType] = []
 for apn in self.parcelList:
 for transType in self.parcelList[apn].possibleTransitionsMasterList:

40

 transitionCandidates[transType].append(apn)
 return transitionCandidates

 def initParcelTransitionCounts(self):
#Initialize the parcel transition type analysis statistic (report #3).
#Gives each parcel a dictionary of transition types with each value set to 0.
#Ultimately, each value will represent the number of times that the parcel experienced that transition type.

 for apn in self.parcelList:
 parcel = self.parcelList[apn]
 for transType in self.transTypes:
 parcel.transitionCounts[transType] = 0

 def initLanduseByYear(self):
#Initialize the simulation landuse by year analysis statistic (report #4).
#Creates a set of lists, one for each landuse.
#Gives landuseByYear[landuse] a list of length TOTAL_YEARS with each value set to 0.
#Ultimately, each list will contain a set of values that represent the average number of parcels that transitioned to that landuse in that year.
#landuseByYear[landuse][0] is the count for that landuse in year 1, while the last item in the list, landuseByYear[landuse][19] is the count for that landuse in
year 20.

 landuseByYear = {}
 for landuse in self.landuseNames:
 landuseByYear[landuse] = [0] * self.params["TOTAL_YEARS"]
 return landuseByYear

 def initTransitionsByYear(self):
#Initialize the simulation transitions by year analysis statistic (report #5).
#Creates a set of lists, one for each transition type.
#Gives transitionsByYear[transType] a list of length TOTAL_YEARS with each value set to 0.
#Ultimately, each list will contain a set of values that represent the average number of parcels that experienced that transition type in that year.
#transitionsByYear[transType][0] is the count for that transition in year 1, while the last item in the list, transitionsByYear[transType][19] is the count for that
transition in year 20.

 transitionsByYear = {}
 for transType in self.transTypes:
 transitionsByYear[transType] = [0] * self.params["TOTAL_YEARS"]
 return transitionsByYear

 def initTransCandidatesByYear(self):

41

#Initialize the simulation transitions candidates by year analysis statistic (report #6).
#Creates a set of lists, one for each transition type.
#Gives transCandidatesByYear[transType] a list of length TOTAL_YEARS + 1 with all values set to 0
#except for the year zero values which are initialized with the appropriate number of candidate parcels.
#These lists are different from the other "ByYear" lists in that there is a year zero.
#Ultimately, each list will contain a set of values that represent the average number of candidate parcels for that transition type at the end of that year.
#transCandidatesByYear[transType][0] is the count of available candidate parcels for that transition type at the end of year 0,
#transCandidatesByYear[transType][1] is the count of available candidate parcels for that transition type at the end of year 1,
#while the last item in the list, transCandidatesByYear[transType][20] is the count of available candidate parcels for that transition type at the end of year 20.

 transCandidatesByYear = {}
 for transType in self.transTypes:
 transCandidatesByYear[transType] = [0] * (self.params["TOTAL_YEARS"] + 1)
 transCandidatesByYear[transType][0] = len(self.transitionCandidatesMasterLists[transType])
 return transCandidatesByYear

 def initCategoryTotals(self):
#Initialize the simulation category totals analysis statistic (report #7).
#Creates a set of lists, one for each category (there are 35 categories).
#Each list contains seven values, each initially set to 0.
#The first list value is the count of how many parcels are associated with that category.
#The next six values in the list are associated with the six major landuses (1005/1006/1007 is consolidated into LU_MFH).
#Ultimately, each landuse value will represent the average chance that category member parcels were transitioned into that landuse (ranges from 0 to 1).

 categoryTotals = {}
 for catID in range(35):
 categoryTotals[catID] = {"Count": 0, "LU_0001": 0, "LU_MFH": 0, "LU_1011": 0, "LU_2002": 0, "LU_3000": 0, "LU_6401": 0}
 return categoryTotals

 def calcParcelCatLanduseBinaryTotal(self):
#For each parcel, calculate a value (landuseBinaryTotal) that will help determine the parcel's category.
#This value stores all the valid possible landuses in a single "binary number" which is then used by calcParcelCategory.

 for apn in self.parcelList:
 parcel = self.parcelList[apn]
 for landuse in parcel.landuseCounts:
 if landuse == "LU_1011": #SFH
 parcel.landuseBinaryTotal += 1
 if landuse in ("LU_1005", "LU_1006", "LU_1007"): #MFH
 parcel.landuseBinaryTotal += 2

42

 if landuse == "LU_2002": #Tourist
 parcel.landuseBinaryTotal += 4
 if landuse == "LU_3000": #Commercial
 parcel.landuseBinaryTotal += 8

 def calcParcelCategory(self):
#A parcel category identifies a parcel in terms of its expected behavior as determined by its attributes.
#Parcels with the same category all share functionally similar attributes and can be expected to have similar outcome probabilities (which will generally display a
bell curve distribution).
#Categories depend on a small set of variables (jurisdiction, landuses, IPES and size).
#Theoretically, there are some 320 categories (5 jurisdictions * 16 use combos * 2 IPES buckets * 2 size buckets (usually)). (Use combos = 0 uses (1 way) + 1
use (4 ways) + 2 uses (6 ways) + 3 uses (4 ways) + 4 uses (1 way))
#In practice, empirical examination of the model results indicated that there some 35 identifiable categories.
#Many of the categories have a relatively small number of members, with only ten of the categories having as many as 100 member parcels out of the 6,281
parcels modeled (smallest has 3 members).
#The most populated categories are:
1 - 1,435 parcels - various
4 - 1,229 parcels - jur = EL (not SLT), landuse = SFH, IPES > 725, size >= .1
6 - 958 parcels - jur = PL, landuse = SFH, IPES > 725, size >= .1
2 - 856 parcels - jur = SLT (EL), landuse = SFH, IPES > 725, size >= .1
5 - 319 parcels - jur = PL, landuse = SFH, IPES 1 to 725, size >= .1
12 - 261 parcels - jur = SLT (EL), landuse = SFH + MFH, IPES > 725, size >= .1
14 - 252 parcels - jur = EL (not SLT), landuse = SFH + MFH, IPES > 725, size >= .1
16 - 149 parcels - jur = PL, landuse = SFH + MFH, IPES > 725, size >= .1
3 - 117 parcels - jur = SLT (EL), landuse = SFH + MFH, IPES 1 to 725, size >= .1
8 - 100 parcels - jur = DG, landuse = SFH, IPES > 725, size >= .1
#Category #1 is a special category where, for a variety of reasons, no development ever occurs.
#Category #0 (23 member parcels) is also special - its parcels are so unusual that they avoid forming even a small category and so are left in the inhomogeneous
category #0.

#The below mare's nest of if statements suffice only to identify parcels in categories 1 through 34.
#If a parcels should happen to belong to one of the other 286 (320-34=286) theoretical categories, the original category value of 0 is left unchanged.
#Finally, larger acreage parcels that have an allowed commercial landuse must be treated carefully because of the tendency for large commercial parcels to get
"stuck in the pipeline".

 for apn in self.parcelList:
 parcel = self.parcelList[apn]
 if parcel.landuseBinaryTotal == 0: #no allowed uses
 parcel.category = 1
 elif parcel.landuseBinaryTotal == 1: #SFH only

43

 if parcel.jurisdiction == "EL":
 if parcel.slt:
 if parcel.derivedIPES > self.params["IPES_THRESHOLD"]:
 parcel.category = 2
 else:
 parcel.category = 3
 else:
 if parcel.derivedIPES > self.params["IPES_THRESHOLD"]:
 parcel.category = 4
 else:
 parcel.category = 5
 elif parcel.jurisdiction == "PL":
 if parcel.derivedIPES > self.params["IPES_THRESHOLD"]:
 parcel.category = 6
 else:
 parcel.category = 7
 elif parcel.jurisdiction == "DG":
 if parcel.derivedIPES > self.params["IPES_THRESHOLD"]:
 parcel.category = 8
 else:
 parcel.category = 9
 elif parcel.jurisdiction == "WA":
 if parcel.derivedIPES > self.params["IPES_THRESHOLD"]:
 parcel.category = 10
 else:
 parcel.category = 11
 elif parcel.landuseBinaryTotal == 2: #MFH only
 if parcel.jurisdiction == "EL":
 if parcel.slt:
 if parcel.derivedIPES > self.params["IPES_THRESHOLD"]:
 parcel.category = 22
 elif parcel.jurisdiction == "WA":
 if parcel.derivedIPES > self.params["IPES_THRESHOLD"]:
 parcel.category = 23
 elif parcel.landuseBinaryTotal == 3: #SFH, MFH
 if parcel.jurisdiction == "EL":
 if parcel.slt:
 if parcel.derivedIPES > self.params["IPES_THRESHOLD"]:
 parcel.category = 12
 else:

44

 parcel.category = 13
 else:
 if parcel.derivedIPES > self.params["IPES_THRESHOLD"]:
 parcel.category = 14
 else:
 parcel.category = 15
 elif parcel.jurisdiction == "PL":
 if parcel.derivedIPES > self.params["IPES_THRESHOLD"]:
 parcel.category = 16
 elif parcel.jurisdiction == "WA":
 if parcel.derivedIPES > self.params["IPES_THRESHOLD"]:
 parcel.category = 17
 else:
 parcel.category = 18
 elif parcel.landuseBinaryTotal == 4: #Tour only
 if parcel.jurisdiction == "PL":
 if parcel.derivedIPES > self.params["IPES_THRESHOLD"]:
 parcel.category = 26
 elif parcel.landuseBinaryTotal == 8: #Comm only
 if parcel.jurisdiction == "EL":
 if parcel.slt:
 if parcel.derivedIPES > self.params["IPES_THRESHOLD"]:
 if parcel.acres < 4:
 parcel.category = 30
 elif parcel.acres < 12:
 parcel.category = 0
 else:
 parcel.category = 1
 else:
 if parcel.derivedIPES > self.params["IPES_THRESHOLD"]:
 if parcel.acres < 4:
 parcel.category = 31
 elif parcel.acres < 12:
 parcel.category = 0
 else:
 parcel.category = 1
 elif parcel.jurisdiction == "PL":
 if parcel.derivedIPES > self.params["IPES_THRESHOLD"]:
 parcel.category = 32
 elif parcel.jurisdiction == "DG":

45

 if parcel.derivedIPES > self.params["IPES_THRESHOLD"]:
 parcel.category = 33
 else:
 parcel.category = 34
 elif parcel.landuseBinaryTotal == 10: #MFH, Comm
 if parcel.jurisdiction == "EL":
 if parcel.slt:
 if parcel.derivedIPES > self.params["IPES_THRESHOLD"]:
 parcel.category = 24
 elif parcel.jurisdiction == "WA":
 if parcel.derivedIPES > self.params["IPES_THRESHOLD"]:
 parcel.category = 25
 elif parcel.landuseBinaryTotal == 11: #SFH, MFH, Comm
 if parcel.jurisdiction == "PL":
 if parcel.derivedIPES > self.params["IPES_THRESHOLD"]:
 parcel.category = 19
 elif parcel.landuseBinaryTotal == 12: #Tour, Comm
 if parcel.jurisdiction == "EL":
 if parcel.slt:
 if parcel.derivedIPES > self.params["IPES_THRESHOLD"]:
 parcel.category = 27
 elif parcel.jurisdiction == "PL":
 if parcel.derivedIPES > self.params["IPES_THRESHOLD"]:
 parcel.category = 28
 elif parcel.jurisdiction == "WA":
 if parcel.derivedIPES > self.params["IPES_THRESHOLD"]:
 parcel.category = 29
 elif parcel.landuseBinaryTotal == 13: #SFH, Tour, Comm
 if parcel.jurisdiction == "PL":
 if parcel.derivedIPES > self.params["IPES_THRESHOLD"]:
 parcel.category = 20
 elif parcel.jurisdiction == "WA":
 if parcel.derivedIPES > self.params["IPES_THRESHOLD"]:
 parcel.category = 21

 def calcOutputResults(self):
#Now that the simulation is finished, we need to do some massaging of the analysis statistics to make them ready for output.
#Loop through all the parcels to:
Create a LU_0001 total by subtracting the totals of other landuse totals from the number of iterations (needed because LU_0001 is not a transition - the parcel
is simply remaining in its original state).

46

Populate the categoryTotals "Count" field with the count of member parcels.
With all parcel landuseCounts (used for reports #1 & 2):
For each landuse:
Convert landuseCounts values from raw simulation totals to percentages by dividing by the number of iterations.
Populate categoryTotals (report #7) with landuses by landuse totals (LU_1005/6/7 are consolidated into LU_MFH).
With all parcel transitionCounts (used for report #3):
Convert the transitionCounts from raw simulation totals to average values by dividing by the number of iterations.
With all simulation landuseByYear (report #4):
For each year of each landuse:
Convert the landuseByYear value from a raw simulation total to an average value by dividing by the number of iterations.
With all simulation transitionsByYear (report #5):
For each year of each transition type:
Convert the transitionsByYear value from a raw simulation total to an average value by dividing by the number of iterations.
#With all simulation transCandidatesByYear (report #6):
For each year of each transition type (except year 0 which is unique to this report and needs no adjustment):
Convert the transCandidatesByYear value from a raw simulation total to an average value by dividing by the number of iterations.
#With all simulation categoryTotals (report #7):
For each landuse of each category:
Convert the category landuse count from a raw simulation total to a percentage by dividing by the category count.

 for apn in self.parcelList:
 parcel = self.parcelList[apn]
 parcel.landuseCounts["LU_0001"] = self.params["ITERATIONS"] - sum(landuseCt for landuseCt in parcel.landuseCounts.values())
 self.categoryTotals[parcel.category]["Count"] += 1
 for landuse in parcel.landuseCounts:
 parcel.landuseCounts[landuse] /= float(self.params["ITERATIONS"])
 if landuse in ("LU_1005", "LU_1006", "LU_1007"):
 self.categoryTotals[parcel.category]["LU_MFH"] += parcel.landuseCounts[landuse]
 else:
 self.categoryTotals[parcel.category][landuse] += parcel.landuseCounts[landuse]
 for transType in parcel.transitionCounts:
 parcel.transitionCounts[transType] /= float(self.params["ITERATIONS"])
 for landuse in self.landuseByYear:
 for year in range(self.params["TOTAL_YEARS"]):
 self.landuseByYear[landuse][year] /= float(self.params["ITERATIONS"])
 for transType in self.transitionsByYear:
 for year in range(self.params["TOTAL_YEARS"]):
 self.transitionsByYear[transType][year] /= float(self.params["ITERATIONS"])
 for transType in self.transCandidatesByYear:
 for year in range(1, (self.params["TOTAL_YEARS"]) + 1):

47

 self.transCandidatesByYear[transType][year] /= float(self.params["ITERATIONS"])
 for catID in self.categoryTotals:
 category = self.categoryTotals[catID]
 for landuse in category.keys():
 if landuse != "Count":
 category[landuse] /= float(category["Count"])

 def printLanduse(self, modelID):
#Analysis report #1.
#Generates output that has one line with the probability percentage for every landuse of every parcel (where the probability is greater than 0).
#If the landuse is MFH or tourist, include the appropriate number of units.
#If the landuse is comm, include the appropriate number of developed sf.
#This report isn't particularly useful, as it's pretty difficult to import the data into ArcMap in any useful way, however, it was the original output format agreed to
with the client.
#The total of the UsePct values should equal the number of parcels in the simulation.

 self.logFile = open("TahoeLanduse" + modelID + ".txt", "w")
 self.logFile.write("APN,Landuse,UsePct,Units,CommSF\n")
 for apn in self.parcelList:
 parcel = self.parcelList[apn]
 for landuse in parcel.landuseCounts:
 useCount = parcel.landuseCounts[landuse]
 if useCount > 0:
 commSF = 0
 units = 0
 if landuse in ("LU_1005", "LU_1006", "LU_1007"):
 units = parcel.unitsMFH
 elif landuse == "LU_2002":
 units = parcel.unitsTour
 elif landuse == "LU_1011":
 units = 1
 elif landuse == "LU_3000":
 commSF = parcel.commFt
 parcelData = (apn, landuse, str(useCount), str(units), str(commSF))
 self.logFile.write(",".join(parcelData) + "\n")
 self.logFile.close()

 def printCondensedLanduse(self, modelID):
#Analysis report #2.
#Generates one line of data for every parcel.

48

#Data included are the probability percentages for all landuses, all units/sf, and the category code.
#This report is similar to the LandUse report (#1), but it is in a format that makes it much easier to import into ArcMap.
#The sum total of all landuse totals should equal the number of parcels in the simulation.

 self.logFile = open("TahoeCondensedLanduse" + modelID + ".txt", "w")
 self.logFile.write("APN,Category,LU_0001,LU_1005,LU_1006,LU_1007,LU_1011,LU_2002,LU_3000,LU_6401,MFHUnits,TourUnits,CommSF\n")
 landuses = ("LU_0001", "LU_1005", "LU_1006", "LU_1007", "LU_1011", "LU_2002", "LU_3000", "LU_6401")
 for apn in self.parcelList:
 parcel = self.parcelList[apn]
 dataRow = [apn]
 dataRow.append(str(parcel.category))
 for landuse in landuses:
 if landuse in parcel.landuseCounts:
 dataRow.append(str(parcel.landuseCounts[landuse]))
 else:
 dataRow.append("0")
 if set(["LU_1005", "LU_1006", "LU_1007"]) & set(parcel.landuseCounts):
 dataRow.append(str(parcel.unitsMFH))
 else:
 dataRow.append("0")
 if "LU_2002" in parcel.landuseCounts:
 dataRow.append(str(parcel.unitsTour))
 else:
 dataRow.append("0")
 if "LU_3000" in parcel.landuseCounts:
 dataRow.append(str(parcel.commFt))
 else:
 dataRow.append("0")
 self.logFile.write(",".join(dataRow) + "\n")
 self.logFile.close()

 def printCondensedTransitions(self, modelID):
#Analysis report #3.
#Generates one line of data for every parcel.
#Data included are the probability percentages for every transition type.
#This report is similar to the CondensedLanduse report (#2) except that it contains transition data instead of landuse data.
#The sum total of all transition type totals should equal the number of parcels in the simulation.

 self.logFile = open("TahoeCondensedTransitions" + modelID + ".txt", "w")
 fileHeader = ["APN"]

49

 fileHeader.extend(self.transTypes)
 self.logFile.write(",".join(fileHeader) + "\n")
 for apn in self.parcelList:
 parcel = self.parcelList[apn]
 dataRow = [apn]
 for transType in self.transTypes:
 dataRow.append(str(parcel.transitionCounts[transType]))
 self.logFile.write(",".join(dataRow) + "\n")
 self.logFile.close()

 def printLanduseByYear(self, modelID):
#Analysis report #4.
#Generates one line of data for every landuse.
#Data included are the average number of parcels transitioning to a particular landuse, broken down by year.
#This report contains summarized data that is not suitable for import into ArcMap.
#The sum total of all year totals should equal the number of parcels in the simulation, as should the sum total of all the landuses.
#The landuse totals should match the landuse totals from report #2.

 self.logFile = open("TahoeLanduseByYear" + modelID + ".txt", "w")
 fileHeader = ["Desc"]
 for year in range(self.params["TOTAL_YEARS"]):
 fileHeader.append("Y" + str(year + 1))
 self.logFile.write(",".join(fileHeader) + "\n")
 for landuseName in self.landuseNames:
 dataRow = [landuseName]
 for year in range(self.params["TOTAL_YEARS"]):
 dataRow.append(str(self.landuseByYear[landuseName][year]))
 self.logFile.write(",".join(dataRow) + "\n")
 self.logFile.close()

 def printTransitionsByYear(self, modelID):
#Analysis report #5.
#Generates one line of data for every transition type.
#Data included are the average number of parcels experiencing a particular transition type, broken down by year.
#This report contains summarized data that is not suitable for import into ArcMap.
#The sum total of all year totals should equal the number of parcels in the simulation, as should the sum total of all the transition types.
#The transition type totals should match the transition type totals from report #3.

 self.logFile = open("TahoeTransitionsByYear" + modelID + ".txt", "w")
 fileHeader = ["Desc"]

50

 for year in range(self.params["TOTAL_YEARS"]):
 fileHeader.append("Y" + str(year + 1))
 self.logFile.write(",".join(fileHeader) + "\n")
 for transType in self.transTypes:
 dataRow = [transType]
 for year in range(self.params["TOTAL_YEARS"]):
 dataRow.append(str(self.transitionsByYear[transType][year]))
 self.logFile.write(",".join(dataRow) + "\n")
 self.logFile.close()

 def printTransCandidatesByYear(self, modelID):
#Analysis report #6.
#Generates one line of data for every transition type.
#Data included are the number of candidate parcels for that transition type broken down by year.
#Data values represent the number of candidates at the end of that year.
#Accordingly, this report, unlike the by-year reports # 4 and #5, contains a year zero which represents the initial state of the simulation.
#This report contains summarized data that is not suitable for import into ArcMap.
#Neither the yearly totals or the transition type totals have any real meaning.

 self.logFile = open("TahoeTransCandidatesByYear" + modelID + ".txt", "w")
 fileHeader = ["Desc"]
 for year in range((self.params["TOTAL_YEARS"]) + 1):
 fileHeader.append("Y" + str(year))
 self.logFile.write(",".join(fileHeader) + "\n")
 for transType in self.transTypes:
 dataRow = [transType]
 for year in range((self.params["TOTAL_YEARS"]) + 1):
 dataRow.append(str(self.transCandidatesByYear[transType][year]))
 self.logFile.write(",".join(dataRow) + "\n")
 self.logFile.close()

 def printCategoryTotals(self, modelID):
#Analysis report #7.
#Generates one line of data for every category.
#Data included are the probability percentages for all landuses as well as the count of the member parcels for that category.
#This report contains summarized data that is not suitable for import into ArcMap (but symbolizing parcels by category within ArcMap provides excellent
feedback)..
#The sum of the counts should equal the number of parcels in the simulation.

 self.logFile = open("TahoeCategoryTotals" + modelID + ".txt", "w")

51

 fileHeader = ["Category"]
 catFields = ["Count", "LU_0001", "LU_MFH", "LU_1011", "LU_2002", "LU_3000", "LU_6401"]
 fileHeader.extend(catFields)
 self.logFile.write(",".join(fileHeader) + "\n")
 for catID in range(35):
 category = self.categoryTotals[catID]
 dataRow = [str(catID)]
 for field in catFields:
 dataRow.append(str(category[field]))
 self.logFile.write(",".join(dataRow) + "\n")
 self.logFile.close()

class PAS(object):

 def __init__(self, allowSpecialUse, **kwargs):
#The pas_areas table in the db has been reviewed and validated so that validation does not have to occur in the model code.
#Values in the pas_id field (primary key) are limited to valid PAS IDs.
#Values in the landuse fields (lu_1005_allowed, lu_1011_allowed, lu_2002_allowed, lu_3000_allowed) are limited to "A", "S", and "N".
#Whenever a lu_1005_allowed or lu_2002_allowed field has a "A" or a "S", the corresponding density field (lu_1005_density, lu_2002_density) must be an
integer greater than 0.

#A PAS (TRPA Plan Area Statement) is a geographic unit encompassing one or more parcels.
#Each PAS has a set of applicable permissible landuses and densities that are stored in the pas_areas table.
#These uses are defined for landuse codes 1005 (MFH), 1011 (SFH), 2002 (Tourist), 3000 (Commercial),
#with permissions of either "A" (allowed), "S" (special use) or "N" (not allowed).
#Landuse densities exist only for MFH and Tourist landuses (a density of 1 is assigned to other landuses
#for purposes of the model).
#Landuse code 1005 is really a catchall for 1005 (2-4 units), 1006 (5-10 units), 1007 (10+ units)
#as the number of units that can built on a parcel depends on its size.
#Landuse code 2002 includes hotels only - not the other three tourist types (2001/2003/2004).
#Landuse 3000 includes all commercial landuses, with the "most permissive" use prevailing (if there is a
#mix of "A", "S", and "N" in the commercial use section of the PAS document, then the PAS is set to "A").
#Every PAS is assumed to have an allowed 6401 (retired) landuse, even though this is not explicitly in the db table.

#Each PAS object has a allowedLanduseDensities dictionary. The keys are the landuse codes and the values are the
#allowed density for that landuse. A landuse code is only present in the dictionary if that landuse is permitted.

 self.pas_id = kwargs["pas_id"]
 self.allowedLanduseDensities = {}

52

 if self.useAllowed(allowSpecialUse, kwargs["lu_1005_allowed"].upper()):
 self.allowedLanduseDensities["LU_1005"] = kwargs["lu_1005_density"]
 if self.useAllowed(allowSpecialUse, kwargs["lu_1011_allowed"].upper()):
 self.allowedLanduseDensities["LU_1011"] = 1
 if self.useAllowed(allowSpecialUse, kwargs["lu_2002_allowed"].upper()):
 self.allowedLanduseDensities["LU_2002"] = kwargs["lu_2002_density"]
 if self.useAllowed(allowSpecialUse, kwargs["lu_3000_allowed"].upper()):
 self.allowedLanduseDensities["LU_3000"] = 1
 self.allowedLanduseDensities["LU_6401"] = 1

 def useAllowed(self, allowSpecialUse, useval):
#Decide if a particular landuse is allowed or not based on the PAS permissions and the
#user specified treatment of the "S" (allow special) permission.
 allowed = False
 if (useval == "A") or ((useval == "S") and allowSpecialUse):
 allowed = True
 return allowed

class Parcel(object):
#The parcels table in the db has been reviewed and validated so that validation does not have to occur in the model code.
#Values in the apn field (primary key) are limited to valid APNs.
#Values in the pas_id field (foreign key) are limited to valid PAS IDs.
#Values in the jurisdiction field are limited to DG, EL, PL, WA.
#Values in the acres field must be greater than 0.
#Values in the ipes_score field must be 0 or greater.
#Values in the land_cap field are limited to 1a, 1b, 1c, 2, 3, 4, 5, 6, 7.
#The slt field is a boolean field.

 @staticmethod
 def mfhLanduse(units):
#Identifies the appropriate MFH landuse code based on the number of units that the parcel supports.

 if units <= 4:
 landuse = "LU_1005"
 elif units <= 10:
 landuse = "LU_1006"
 else:
 landuse = "LU_1007"
 return landuse

53

 def __init__(self, PASList, ipesThreshold, **kwargs):
 self.apn = kwargs["apn"] #Assessors Parcel Number
#attributes that help determine the various possible fates of a parcel
 self.pas_id = kwargs["pas_id"] #Foreign key to PAS data
 self.jurisdiction = kwargs["jurisdiction"] #DG, EL, PL, WA (but not SLT, which is a subset of EL)
 self.acres = kwargs["acres"] #Parcel size
 self.ipes_score = kwargs["ipes_score"] #Score indicating the "developability" of a parcel - higher scores are better suited for development.
Many of these values from the client are "0" - which was used to denote an IPES score of zero or to indicate that the IPES score was unknown (garbage data).
Hence the need to attempt to develop an IPES alternative
(Every one of the approximately 1800 PL parcels has an IPES score of 0, which would otherwise make the calculation of the PL vacant lot equation
problematic).
This score is not directly used in the model (derivedIPES is).
 self.land_cap = kwargs["land_cap"]
#IPES alternative generated from a GIS join of Bailey valued areas with parcel areas (1a, 1b, 1c, 2, 3, 4, 5, 6, 7).
This score is not directly used in the model (derivedIPES is).
 self.slt = self.getBool(kwargs["slt"])
#True if the parcel is a South Lake Tahoe parcel (subset of EL) (generated from a GIS join of the SLT area with parcel areas).
 self.derivedIPES = self.getDerivedIPES(self.ipes_score, self.land_cap, ipesThreshold)
#Final IPES score that the model uses to help determine possible fates for parcel.
#initializing some simulation logic attributes - they will be populated/calculated later on
 self.possibleTransitionsMasterList = [] #The possible transitions for a parcel based on its attributes.
These are calculated once at the beginning of the simulation and never changes.
If a transition is in a parcel.possibleTransitionsMasterList, then that parcel's apn will be found in the appropriate model.transitionCandidatesMasterLists
transition list.
There is always a one-to-one correspondence between the transitions in parcel.possibleTransitionsMasterList and the apns in the appropriate
model.transitionCandidatesMasterLists list.
 self.thisRunPossibleTransitions = [] #The current possible transitions for a parcel (in the current run).
Copied from the possibleTransitionsMasterList at the beginning of each run.
Can sometimes change in the middle of a run as events dictate.
Prior to a parcel being transitioned, if a transition is in a parcel.thisRunPossibleTransitions, then that parcel's apn will be found in the appropriate
run.thisRunTransitionCandidates transition list.
Prior to a parcel being transitioned, there is always a one-to-one correspondence between the transitions in parcel.thisRunPossibleTransitions and the apns in
the appropriate run.thisRunTransitionCandidates list.
#initializing some analysis statistics attributes - they will be populated/calculated later on
 self.landuseCounts = {} #Analysis statistic that counts the number of landuses by landuse throughout the simulation (reports #1 &
2).
The keys are the landuse (LU_0001, LU_1005, LU_1006, LU_1007, LU_1011, LU_2002, LU_3000, LU_6401).
Landuses LU_0001, LU_1006, LU_1007 are newly used here as they did not exist in the PAS.allowedLanduseDensities.
 self.transitionCounts = {} #Analysis statistic that counts the number of transitions by transition type (report #3).

54

 self.category = 0 #A parcel category identifies a parcel in terms of its expected behavior as determined by its attributes.
Parcels with the same category all share functionally similar attributes and can be expected to have similar outcome probabilities (which will generally display
a bell curve distribution).
 self.landuseBinaryTotal = 0 #Value that, once calculated (calcParcelCatLanduseBinaryTotal), helps determine the parcel's category

 def getBool(self, boolval):
#Needed because of a pg/python oddity.

 if boolval == 't':
 return True
 else:
 return False

 def getDerivedIPES(self, ipes, land_cap, ipesThreshold):
#If the ipes_score is 0 (garbage data), use the land_cap value instead and translate the land_cap values into generalized IPES scores.
#Otherwise, the IPES score is greater than 0, which means that we have a good value that we can use.
#Translation values determined by Will Forney.
#The derivedIPES value is then used by the model to help determine possible fates for parcel.

 derivedIPES = ipes
 if ipes == 0:
 if land_cap in ("1a", "2", "3"): #less suitable for development (sensitive)
 derivedIPES = ipesThreshold
 elif land_cap in ("4", "5", "6", "7"): #well suited for development (not sensitive)
 derivedIPES = ipesThreshold + 1
 else:#1b, 1c #development prohibited
 derivedIPES = 0
 return derivedIPES

class Run(object):

 def __init__(self, model):
 self.model = model
 self.thisRunTransitionCandidates = {}
 self.thisYearTrans = []

self.model = model
#The Run sometimes needs access to data contained within the Model object - making the Model an attribute of the Run object gives easy access to this data.
self.thisRunTransitionCandidates = {}

55

#A mutable set of lists, one for each transition type, with each list containing the apns of the parcels that qualify for that transition type.
As the years of the run go by, the length of these lists is shortened as transitions occur.
Prior to a parcel being transitioned, if an apn is in a particular run.thisRunTransitionCandidates list, than the thisRunPossibleTransitions for that parcel will
always include that transition type.
Prior to a parcel being transitioned, there is always a one-to-one correspondence between the apns in a particular run.thisRunTransitionCandidates list and the
transitions in the member parcel.thisRunPossibleTransitions.
self.thisYearTrans = [] #A list of transitions to be executed in the current year of the current run.

 def initRun(self):
 self.thisYear = 1
#The first year of a run is always year 1 (year 0 references refer to conditions prior to the start of the model).
 self.commAllocated = 0
#This is a cumulative value representing the number of commercial sq. ft. transitioned throughout the course of the run.
 self.mfhRolloverPool = 0
#Each year, the run tries to use as many MFH allocation units as it can. The value typically hovers a little bit above zero throughout the course of the run and
never drops below zero.
 self.tourRolloverPool = 0
#Each year, the run tries to use as many Tourist allocation units as it can. The value typically hovers a little bit above zero throughout the course of the run and
never drops below zero.
 self.vacantLotEqSatisfiedPL = False
#See http://www.trpa.org/documents/agendas/Archive/apc_agendas/2002/apc/2002-02-13.PDF, pages 41/42.
Placer county is the only county that still needs to meet this requirement.
 self.refreshTransitionCandidates()
#Generate a randomized list of transitions scheduled for the year.

 def refreshTransitionCandidates(self):
#first, populate the run's thisRunTransitionCandidates lists from the model's transitionCandidates
 for transType in self.model.transitionCandidatesMasterLists.keys():
 self.thisRunTransitionCandidates[transType] = deepcopy(self.model.transitionCandidatesMasterLists[transType])
 shuffle(self.thisRunTransitionCandidates[transType])
#second, populate the Parcel currentPossibleTransitions from the Parcel initialPossibleTransitions
 for apn in self.model.parcelList:
 parcel = self.model.parcelList[apn]
 parcel.thisRunPossibleTransitions = deepcopy(parcel.possibleTransitionsMasterList)

def refreshTransitionCandidates(self):
#Make a randomized set of run transition candidate parcels (thisRunTransitionCandidates) copied from the transitionCandidatesMasterLists.
#Also, for each parcel, copy the thisRunPossibleTransitions list from the possibleTransitionsMasterList.

###Refreshing the run thisRunTransitionCandidates list:

56

http://www.trpa.org/documents/agendas/Archive/apc_agendas/2002/apc/2002-02-13.PDF

for transType in self.model.transitionCandidatesMasterLists.keys():
self.thisRuntransitionCandidates[transType] = deepcopy(self.model.transitionCandidatesMasterLists[transType])
shuffle(self.thisRunTransitionCandidates[transType])
###Refreshing all the parcels thisRunPossibleTransitions list:
for apn in self.model.parcelList:
parcel = self.model.parcelList[apn]
parcel.thisRunPossibleTransitions = deepcopy(parcel.initialPossibleTransitions)

 def OLDinitRunYear(self):
#No longer user - replaced by a gaussian version.

 self.thisYearTrans = [] #Reset the list
 self.thisYearTrans.extend(["ALLOC_DG"] * randint(self.model.params["MIN_ALLOC_DG"], self.model.params["MAX_ALLOC_DG"]))
 self.thisYearTrans.extend(["ALLOC_EL"] * randint(self.model.params["MIN_ALLOC_EL"], self.model.params["MAX_ALLOC_EL"]))
 self.thisYearTrans.extend(["ALLOC_PL"] * randint(self.model.params["MIN_ALLOC_PL"], self.model.params["MAX_ALLOC_PL"]))
 self.thisYearTrans.extend(["ALLOC_WA"] * randint(self.model.params["MIN_ALLOC_WA"], self.model.params["MAX_ALLOC_WA"]))
 self.thisYearTrans.extend(["ALLOC_SLT"] * randint(self.model.params["MIN_ALLOC_SLT"], self.model.params["MAX_ALLOC_SLT"]))
 self.thisYearTrans.extend(["RETIRE_CTC"] * randint(self.model.params["MIN_RETIRE_CTC"], self.model.params["MAX_RETIRE_CTC"]))
 self.thisYearTrans.extend(["RETIRE_NEV"] * randint(self.model.params["MIN_RETIRE_NEV"], self.model.params["MAX_RETIRE_NEV"]))
 self.thisYearTrans.extend(["RETIRE_TRPA"] * randint(self.model.params["MIN_RETIRE_TRPA"], self.model.params["MAX_RETIRE_TRPA"]))
 self.thisYearTrans.extend(["RETIRE_USFS"] * randint(self.model.params["MIN_RETIRE_USFS"], self.model.params["MAX_RETIRE_USFS"]))
 self.thisYearTrans.extend(["ALLOC_MFH"])
 self.thisYearTrans.extend(["ALLOC_TOUR"])
 self.thisYearTrans.extend(["ALLOC_COMM"])
 shuffle(self.thisYearTrans)

 self.mfhRolloverPool += randint(self.model.params["MIN_ALLOC_MFH"], self.model.params["MAX_ALLOC_MFH"])
 self.tourRolloverPool += randint(self.model.params["MIN_ALLOC_TOUR"], self.model.params["MAX_ALLOC_TOUR"])
 self.thisYearCommTarget = int(((self.model.params["COMM_AREA_TOTAL_ALLOC"] / self.model.params["TOTAL_YEARS"]) * self.thisYear) -
self.commAllocated)

 def initRunYear(self):
#Determine how many transitions of each type will be scheduled based on the input parameters (values are stochastic).
#Stochastic values are calculated using a Gaussian (normal curve) distribution. Earlier versions of the model used a straight-line distribution, but no great
difference between the methods was noted.
#For all SFH and Retirement transitions, add that number of items to the list (thisYearTrans).
#MFH, Tourist and Commercial each have only a single item added to the list as they are handled with a different mechanism (pools).
#The list is then randomized and is ready for use.

#Some notes on transitions and model logic:

57

#Transitions generally have min and max annual values based on user inputs (Comm only has a single value for the entire simulation).
#These annual values do not change throughout the course of the simulation.
#SFH allocations are assumed to vary due to various deduction and incentive increments.
#Input parameter values should evenly bracket expected allocations rather than reflecting the theoretical min/max values that the TRPA code provides for
#(min annual allocation total of 78, max annual allocation total of 294, base allocation total of 150).
#All allocations are expected to be used in the year of issue (with the exception of MFH/tourist/Comm allocations which work with an allocation pool
mechanism.

 self.thisYearTrans = [] #Reset the list
 self.thisYearTrans.extend(["ALLOC_DG"] * self.randomGauss(self.model.params["MIN_ALLOC_DG"], self.model.params["MAX_ALLOC_DG"]))
 self.thisYearTrans.extend(["ALLOC_EL"] * self.randomGauss(self.model.params["MIN_ALLOC_EL"], self.model.params["MAX_ALLOC_EL"]))
 self.thisYearTrans.extend(["ALLOC_PL"] * self.randomGauss(self.model.params["MIN_ALLOC_PL"], self.model.params["MAX_ALLOC_PL"]))
 self.thisYearTrans.extend(["ALLOC_WA"] * self.randomGauss(self.model.params["MIN_ALLOC_WA"], self.model.params["MAX_ALLOC_WA"]))
 self.thisYearTrans.extend(["ALLOC_SLT"] * self.randomGauss(self.model.params["MIN_ALLOC_SLT"], self.model.params["MAX_ALLOC_SLT"]))
 self.thisYearTrans.extend(["RETIRE_CTC"] * self.randomGauss(self.model.params["MIN_RETIRE_CTC"], self.model.params["MAX_RETIRE_CTC"]))
 self.thisYearTrans.extend(["RETIRE_NEV"] * self.randomGauss(self.model.params["MIN_RETIRE_NEV"], self.model.params["MAX_RETIRE_NEV"]))
 self.thisYearTrans.extend(["RETIRE_TRPA"] * self.randomGauss(self.model.params["MIN_RETIRE_TRPA"],
self.model.params["MAX_RETIRE_TRPA"]))
 self.thisYearTrans.extend(["RETIRE_USFS"] * self.randomGauss(self.model.params["MIN_RETIRE_USFS"], self.model.params["MAX_RETIRE_USFS"]))
 self.thisYearTrans.extend(["ALLOC_MFH"])
 self.thisYearTrans.extend(["ALLOC_TOUR"])
 self.thisYearTrans.extend(["ALLOC_COMM"])
 shuffle(self.thisYearTrans)

 self.mfhRolloverPool += self.randomGauss(self.model.params["MIN_ALLOC_MFH"], self.model.params["MAX_ALLOC_MFH"])
 self.tourRolloverPool += self.randomGauss(self.model.params["MIN_ALLOC_TOUR"], self.model.params["MAX_ALLOC_TOUR"])
 self.thisYearCommTarget = int(((self.model.params["COMM_AREA_TOTAL_ALLOC"] / self.model.params["TOTAL_YEARS"]) * self.thisYear) -
self.commAllocated)

 def randomGauss(self, minVal, maxVal):
#Calculated a gaussian (normal curve) integer value based on a min and max, which are enforced.
#The sigma (standard deviation) is deemed to be one third of the difference between the mean and the min.

 sigma = (maxVal - minVal) / 6.0
 returnVal = gauss((maxVal + minVal) / 2.0, sigma)
 if returnVal > maxVal:
 returnVal = maxVal
 if returnVal < minVal:
 returnVal = minVal
 return int(round(returnVal))

58

 def filterLargeCommLots(self):
#Large lots can clog up the commercial "development pipeline", causing the total developed commercial s.f. to be much less than the allocation parameter.
#Accordingly, if, during the current run year, a lot is too large to be developed, remove it from the ALLOC_COMM thisRunTransitionCandidates list
#(and the parcel thisRunPossibleTransitions list as well).

 maxSize = self.model.params["COMM_AREA_TOTAL_ALLOC"] - self.commAllocated
 for apn in self.thisRunTransitionCandidates["ALLOC_COMM"]:
 parcel = self.model.parcelList[apn]
 if parcel.commFt > maxSize:
 parcel.thisRunPossibleTransitions.remove("ALLOC_COMM")
 self.thisRunTransitionCandidates["ALLOC_COMM"].remove(apn)

 def checkVacantLotEqPL(self):
#See http://www.trpa.org/documents/agendas/Archive/apc_agendas/2002/apc/2002-02-13.PDF, (pdf pages 48-50).
#Placer county is the only county that still needs to meet this requirement.
#Once the PL vacant lot equation is satisfied, add all the ALLOC_PL_SENSITIVE parcels to the ALLOC_PL list.

 if self.vacantLotEqSatisfiedPL == False:
 if ((len(self.thisRunTransitionCandidates["ALLOC_PL_SENSITIVE"]) / 1667.0) < 0.2):
 self.vacantLotEqSatisfiedPL = True
#now all non-zero IPES PL parcels may be developed
 if (len(self.thisRunTransitionCandidates["ALLOC_PL_SENSITIVE"]) > 0):
 self.thisRunTransitionCandidates["ALLOC_PL"].extend(self.thisRunTransitionCandidates["ALLOC_PL_SENSITIVE"])
 shuffle(self.thisRunTransitionCandidates["ALLOC_PL"])

 for apn in self.thisRunTransitionCandidates["ALLOC_PL_SENSITIVE"]:
 parcel = self.model.parcelList[apn]
 parcel.thisRunPossibleTransitions.append("ALLOC_PL")
 parcel.thisRunPossibleTransitions.remove("ALLOC_PL_SENSITIVE")
 self.thisRunTransitionCandidates["ALLOC_PL_SENSITIVE"] = []

 def annualTransitions(self):
#Go through the transitions scheduled for this year and attempt to fulfill them by calling the function appropriate to each transition type.
#Each of these five called functions determines the appropriate transition list, landuse, and transition type and then calls the transitionParcel function which does
the actual transitioning of a parcel.
#The SFH and retirement functions will be called repeatedly whereas the MFH, Tour and Comm functions are only called once each year.
#When all scheduled transitions have been processed, update the transCandidatesByYear analysis statistic (report #6).

 for transType in self.thisYearTrans:

59

http://www.trpa.org/documents/agendas/Archive/apc_agendas/2002/apc/2002-02-13.PDF

 if transType in ("ALLOC_DG", "ALLOC_EL", "ALLOC_PL", "ALLOC_WA", "ALLOC_SLT"):
 self.sfhTransition(transType)
 elif transType in ("RETIRE_CTC", "RETIRE_NEV", "RETIRE_TRPA", "RETIRE_USFS"):
 self.retireTransition(transType)
 elif transType == "ALLOC_MFH":
 self.mfhTransition(transType)
 elif transType == "ALLOC_TOUR":
 self.tourTransition(transType)
 elif transType == "ALLOC_COMM":
 self.commTransition(transType)
 for transType in self.model.transTypes:
 self.model.transCandidatesByYear[transType][(self.thisYear)] += len(self.thisRunTransitionCandidates[transType])

 def sfhTransition(self, transType):
#SFH transitions are straightforward - the transition list, landuse, and transition type are always well defined.

 self.transitionParcel(self.thisRunTransitionCandidates[transType], "LU_1011", transType)

 def retireTransition(self, transType):
#Retirement transitions are complicated by the fact that we have both priority and secondary retirements.
#Accordingly, we need to determine which list and transaction type to use, priority or secondary.
#Assuming that there are parcels in both priority and secondary lists, we randomly choose which list to use based on the user priority parameter for that
retirement type.
#If only one of the lists is populated, we will default to using that list.

 priorityList = self.thisRunTransitionCandidates[transType + "_PRIORITY"]
 secondaryList = self.thisRunTransitionCandidates[transType + "_SECONDARY"]
 if (len(priorityList) > 0) and (len(secondaryList) > 0):
 if random() < self.model.params["PRIORITY_" + transType]:
 transType += "_PRIORITY"
 else:
 transType += "_SECONDARY"
 elif (len(priorityList) > 0):
 transType += "_PRIORITY"
 else:
 transType += "_SECONDARY"
#If the secondary list has zero length, transitionParcel will do nothing.
 self.transitionParcel(self.thisRunTransitionCandidates[transType], "LU_6401", transType)

 def mfhTransition(self, transType):

60

#MFH transition are complicated by two things:
#1) MFH transitions use a pool approach rather than individually scheduled transitions.
#2) We don't know the landuse (which depends on the number of units a parcel supports).
#Pool approach transition types attempt to transition as many parcels as possible, one after the next, without exceeding the current pool allocation.
Any unused pool capacity rolls forward to the next year.
For example, say that at the beginning of the current year the mfhRolloverPool stood at 40 and the units of the first 3 parcels in the MFH list were 16, 4, 25.
The first and second parcels would be transitioned in the current year, but the third parcel would not be because the available pool units would be exceeded.
At the beginning of the next year, the parcel with 25 units would be first in the list and the starting pool allocation would be 20 (to which would be added the
new allocation for the year).
#To obtain the landuse, we look at units of the first parcel in the MFH list and calculate the landuse from that.
#Because this is a pool approach transition type, there is only one MFH transition scheduled per year.
#The landuseByYear analysis statistic for MFHUnits is also updated here.

 done = False
 transList = self.thisRunTransitionCandidates[transType]
 while ((not done) and (len(transList) > 0)):
 apn = transList[0]
 candidateParcel = self.model.parcelList[apn]
 parcelUnits = candidateParcel.unitsMFH
 if parcelUnits <= self.mfhRolloverPool:
 landuse = candidateParcel.mfhLanduse(parcelUnits)
 self.transitionParcel(transList, landuse, transType)
 self.model.landuseByYear["MFHUnits"][(self.thisYear - 1)] += parcelUnits
 self.mfhRolloverPool -= parcelUnits
 else:
 done = True

 def tourTransition(self, transType):
#Tourist transitions use a pool approach similar to the MFH transition approach described above.
#Tourist transitions are straightforward - the transition list, landuse, and transition type are always well defined.

 done = False
 transList = self.thisRunTransitionCandidates[transType]
 while ((not done) and (len(transList) > 0)):
 apn = transList[0]
 candidateParcel = self.model.parcelList[apn]
 parcelUnits = candidateParcel.unitsTour
 if parcelUnits <= self.tourRolloverPool:
 self.transitionParcel(transList, "LU_2002", transType)
 self.model.landuseByYear["TourUnits"][(self.thisYear - 1)] += parcelUnits

61

 self.tourRolloverPool -= parcelUnits
 else:
 done = True

 def commTransition(self, transType):
#Comm transitions use a pool approach similar to the MFH and Tour transition approachs described above.
#One difference is that the Comm "pool" is expressed as a single value representing the allowance for the entire life of the simulation, rather than as an annual
value.
#The run attribute thisYearCommTarget is calculated as a surrogate for a pool value.
#Another difference is that Comm is based on developed s.f. (some 25% of the parcel s.f.) rather than on parcel units.

 done = False
 transList = self.thisRunTransitionCandidates[transType]
 while ((not done) and (len(transList) > 0)):
 apn = transList[0]
 candidateParcel = self.model.parcelList[apn]
 parcelCommSF = candidateParcel.commFt
 if parcelCommSF <= self.thisYearCommTarget:
 self.transitionParcel(transList, "LU_3000", transType)
 self.model.landuseByYear["CommSF"][(self.thisYear - 1)] += parcelCommSF
 self.thisYearCommTarget -= parcelCommSF
 self.commAllocated += parcelCommSF
 else:
 done = True

 def transitionParcel(self, transList, landuse, transType):
#Now that a scheduled transition has had the setup work done to identify the transition list, landuse, and transition type,
we can attempt to do a transition.
#A transition can only be done if candidate parcels exist (the length of the transList is greater than 0).
#If there are no candidate parcels, then there is no transition.
#If there is a candidate parcel, then we do the transition with the first parcel in the list:
For each of the transition types in parcel.thisRunPossibleTransitions, remove that parcel from the associated transition list (this makes the parcel unavailable
for any other transitions).
Update various analysis statistics.

 if len(transList) > 0:
 apn = transList[0]
 parcel = self.model.parcelList[apn]
 for transName in parcel.thisRunPossibleTransitions:
 self.thisRunTransitionCandidates[transName].remove(apn)

62

 parcel.landuseCounts[landuse] += 1
 parcel.transitionCounts[transType] += 1
 self.model.landuseByYear[landuse][(self.thisYear - 1)] += 1
 self.model.transitionsByYear[transType][(self.thisYear - 1)] += 1

def main():
 #Here we are invoking the model with a hardcoded model id.
 #The final Java version should pass this value in.
 t = TDSS("1a")

if __name__ == "__main__":
 #Program execution begins here
 main()

63

	Title Page
	backs Title Page

	Table of Contents
	Figures
	Tables
	Appendixes
	Acronyms

	Abstract
	Introduction
	Using the Model
	Input and Results
	Acknowledgements
	Figures
	Figure 1.
	Figure 2.
	Figure 3.

	Tables
	Table 1.
	Table 2.
	Table 3.
	Table 4.
	Table 5.
	Table 6.
	Table 7.
	Table 8.
	Table 9.

	Appendixes
	Appendix 1
	Appendix 2
	Appendix 3
	Table 1.
	Table 2.

	Appendix 4

