Skip Links

USGS - science for a changing world

Open-File Report 2012–1044

Prepared in cooperation with the Consortium of Universities for the Advancement of Hydrologic Science, Inc.

In Situ Optical Water-Quality Sensor Networks—Workshop Summary Report

By Brian A. Pellerin, U.S. Geological Survey, Brian A. Bergamaschi, U.S. Geological Survey, and Jeffery S. Horsburgh, Utah Water Research Laboratory, Department of Civil and Environmental Engineering, Utah State University, Logan, Utah


Executive Summary

Advanced in situ optical water-quality sensors and new techniques for data analysis hold enormous promise for furthering scientific understanding of aquatic systems. These sensors measure important biogeochemical parameters for long deployments, enabling the capture of data at time scales over which they vary most meaningfully. The high-frequency, real-time water-quality data they generate provide opportunities for early warning of water-quality deterioration, trend detection, and science-based decision support. However, developing networks of optical sensors in freshwater systems that report reliable and comparable data across and between sites remains a challenge to the research and monitoring community. To address this, the U. S. Geological Survey (USGS) and the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) convened a joint 3-day workshop (June 8–10, 2011) at the National Conservation Training Center in Shepardstown, West Virginia, to explore ways to coordinate development of standards and applications for optical sensors, and improve handling, storing, and analyzing the continuous data they produce.

The workshop brought together more than 60 scientists, program managers, and vendors from universities, government agencies, and the private sector. Several important outcomes emerged from the presentations and breakout sessions. There was general consensus that making intercalibrated measurements requires that both manufacturers and users better characterize and calibrate the sensors under field conditions. For example, the influence of suspended particles, highly colored water, and temperature on optical sensors remains poorly understood, but consistently accounting for these factors is critical to successful deployment and for interpreting results in different settings. This, in turn, highlights the lack of appropriate standards for sensor calibrations, field checks, and characterizing interferences, as well as methods for data validation, treatment, and analysis of resulting measurements. Participants discussed a wide range of logistical considerations for successful sensor deployments, including key physical infrastructure, data loggers, and remote-communication techniques. Tools to manage, assure, and control quality, and explore large streams of continuous water-quality data are being developed by the USGS, CUAHSI, and other organizations, and will be critical to making full use of these highfrequency data for research and monitoring.

First posted March 14, 2012

For additional information contact:
Director, California Water Science Center
U.S. Geological Survey
6000 J Street, Placer Hall
Sacramento, California 95819

Part or all of this report is presented in Portable Document Format (PDF); the latest version of Adobe Reader or similar software is required to view it. Download the latest version of Adobe Reader, free of charge.

Suggested citation:

Pellerin, B.A., Bergamaschi, B.A., and Horsburgh, J.S., 2012, In situ optical water-quality sensor networks—Workshop summary report: U.S. Geological Survey Open-File Report 2012–1044, 13 p.


Executive Summary

Introduction and Background

Workshop Proceedings

What Do Optical Sensors Measure?

Needs and Recommendations

Future Directions


References Cited

Appendix 1. Workshop Participants

Appendix 2. Workshop Agenda

Accessibility FOIA Privacy Policies and Notices logo U.S. Department of the Interior | U.S. Geological Survey
Page Contact Information: Contact USGS
Page Last Modified: Saturday, January 12, 2013, 03:12:22 PM