Skip Links

USGS - science for a changing world

Open-File Report 2012–1057

Prepared in cooperation with the Bureau of Reclamation

Time Scales of Change in Chemical and Biological Parameters after Engineered Levee Breaches Adjacent to Upper Klamath and Agency Lakes, Oregon

By James S. Kuwabara, Brent R. Topping, James L. Carter, Tamara M. Wood, Francis Parchaso, Jason M. Cameron, Jessica R. Asbill, Rick A. Carlson, and Steven V. Fend

Thumbnail of and link to report PDF (1 MB)Executive Summary

Eight sampling trips were coordinated after engineered levee breaches hydrologically reconnected both Upper Klamath Lake and Agency Lake, Oregon, to adjacent wetlands. The reconnection, by a series of explosive blasts, was coordinated by The Nature Conservancy to reclaim wetlands that had for approximately seven decades been leveed for crop production. Sets of nonmetallic porewater profilers (U.S. Patent 8,051,727 B1; November 8, 2011; week45/OG/html/1372-2/US08051727-20111108.html.) were deployed during these trips in November 2007, June 2008, May 2009, July 2009, May 2010, August 2010, June 2011, and July 2011 (table 1). Deployments temporally spanned the annual cyanophyte bloom of Aphanizomenon flos–aquae and spatially involved three lake and four wetland sites. Spatial and temporal variation in solute benthic flux was determined by the field team, using the profilers, over an approximately 4-year period beginning 3 days after the levee breaches. The highest flux to the water column of dissolved organic carbon (DOC) was detected in the newly flooded wetland, contrasting negative or insignificant DOC fluxes at adjacent lake sites. Over the multiyear study, DOC benthic fluxes dissipated in the reconnected wetlands, converging to values similar to those for established wetlands and to the adjacent lake (table 2). In contrast to DOC, benthic sources of soluble reactive phosphorus, ammonium, dissolved iron and manganese from within the reconnected wetlands were consistently elevated (that is, significant in magnitude relative to riverine and established-wetland sources) indicating a multi-year time scale for certain chemical changes after the levee breaches (table 2). Colonization of the reconnected wetlands by aquatic benthic invertebrates during the study trended toward the assemblages in established wetlands, providing further evidence of a multiyear transition of this area to permanent aquatic habitat (table 3).

Both the lake and wetland benthic environments substantively contribute to macro- and micronutrients in the water column. Wetland areas undergoing restoration, and those being used for water storage, function very differently relatively to the established wetland within the Upper Klamath Lake National Wildlife Refuge, adjacent Upper Klamath Lake. Developing long-term management strategies for water quality in the Upper Klamath Basin requires recognition of the multi-year time scales associated with restoring wetlands that provide natural, seasonal ecosystem function and services.

First posted March 29, 2012

For additional information contact:
Staff information, National Research Program
Hydrologic Research and Development and Program
U.S. Geological Survey
12201 Sunrise Valley Drive, Mail Stop 436
Reston, VA 20192

Part or all of this report is presented in Portable Document Format (PDF); the latest version of Adobe Reader or similar software is required to view it. Download the latest version of Adobe Reader, free of charge.

Suggested citation:

Kuwabara, J.S., Topping, B.R., Carter, J.L., Wood, T.M., Parchaso, F., Cameron, J.M., Asbill, J.R., Carlson, R.A., and Fend, S.V., 2012, Time scales of change in chemical and biological parameters after engineered levee breaches adjacent to Upper Klamath and Agency Lakes, Oregon: U.S. Geological Survey Open-File Report 2012-1057, 26 p.


Executive Summary



Results and Discussion



References Cited

Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo logo U.S. Department of the Interior | U.S. Geological Survey
Page Contact Information: GS Pubs Web Contact
Page Last Modified: Saturday, 12-Jan-2013 15:12:44 EST