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1. Abstract
Magnetic field data are traditionally used to analyze igneous and meta-
morphic rocks, but recent efforts have shown that magnetic sources 
within sediments may be detectable, suggesting new applications for 
high-resolution magnetic field data. Candidates for such sources in-
clude heavy mineral sands transported from upland sources, biogenic 
magnetite, and certain forms of glauconite. Magnetic field surveys can 
be used to map distributions of these sediments with much denser and 
widespread coverage than possible by sampling, providing constraints 
on the composition, deposition, and transport of local sediments. How-
ever, as sedimentary sources are likely to be much weaker than their 
crystalline counterparts, mapping requires the sensor to be relatively 
close to the source, and filtering approaches are needed to distinguish 
signals from both system noise and deeper basement features.  

Marine geophysical surveys conducted in July, 2010, over the Stono and
North Edisto River inlets and their riverine inputs south of Charleston, 
S.C., used a total field cesium magnetometer and 900 kilohertz (kHz) 
sidescan sonar. In these tidally influenced estuarine environments, 
unconsolidated Quaternary sediments of 0–10 meters (m) thickness 
overlie an indurated Tertiary substrate. Calm survey conditions allowed 
the towing of sensors 2–20 m above the seabed with background mag-
netometer variations of less than 0.5 nanotesla (nT) and a measurement 
spacing of less than 0.4 m. Isolated anomalies associated with metallic 
objects such as crab pots or other anthropogenic debris were filtered in
part by comparisons to the high-resolution sonar. 
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2. Titanium in stream sediments 

Stream sediments collected and analyzed as part of the National Ura-
nium Resource Evaluation (NURE) program show areas of enhanced Ti 
that are aligned with the metamorphic Blue Ridge and Piedmont prov-
inces, outlined in black dashed lines (defined by Fenneman and Johnson, 
1946). Titanium-rich sediments most likely originate from these provinces 
and have been transported and reworked throughout Coastal Plain sedi-
ments. Data compiled by Smith (1997).

4. Shipboard geophysical surveys Shipboard sidescan sonar and magnetic surveys were conducted in tidal rivers and inlets near Charleston, S.C. Yellow 
lines (section 4) delineate ship tracks in areas A, B, and C. Filled circles (section 4, far left) denote stream sediment 
samples (see section 2).

Short-wavelength magnetic anomalies can be highlighted using spectral filtering (see section 8). Peaks in short-
wavelength spectral amplitudes, shown as gray-filled profiles in section 5, represent concentrations of shallow 
magnetic sources. Anthropogenic sources typically produce single isolated anomalies, which are often associated 
with objects that can be seen in the sidescan data. 

Clusters of short-wavelength magnetic anomalies are concentrated in shallow areas usually at river bends where 
there is confluence of waters that originate upland. Sediments with stronger magnetic properties are usually com-
posed of Fe- and Ti-rich minerals that are denser than their silicon (Si)- and calcium (Ca)-rich counterparts and can 
thus become concentrated through sorting, forming what are essentially small placer deposits. The insides of river 
bends often represent depositional environments, but placer formation usually involves entrainment sorting, where 
lighter or less dense sediments are transported elsewhere. The presence of anomalies near the insides of river bends 
suggests that these areas may undergo a balance between deposition and entrainment that works to concentrate heavy 
minerals.
 

The Kiawah River exhibits very few grouped magnetic anomalies. It is much younger than the Stono and North Edisto 
inlets, aligned coast-parallel and bounded on either side by oyster reefs. The Kiawah River is thus likely to receive a 
much lower concentration of Fe- and Ti-rich sediments from upland sources.
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8. Magnetic filtering via spectral amplitudes
Anomalies associated with shallow magnetic sources can be visualized by apply-
ing spectral filtering methods to individual shiptrack profiles. These methods 
highlight areas where short-wavelength or “narrow” anomalies, which represent 
shallow magnetic sources, are present regardless of longer wavelength features. 
The approach is described in detail by Shah and others (2012). Briefly, for each 
point along a ship track, the profile is windowed around that point and the fre-
quency spectrum calculated for the corresponding sub-segment (windowing 
helps to prevent “leaking” from longer wavelength anomalies). Amplitudes corre-
sponding to shorter wavelengths are then summed and the value assigned to that 
point. This sum is highest where short-wavelength anomalies are present.  
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5. Magnetics—short-wavelength spectral amplitudes over seafloor depth

6. Sidescan sonar—900 kHz
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Example from the North Edisto River (Area A)
For this study, filtering parameters were set to highlight variations of about 
14-m width or less.

9. Models
Models can be used to estimate the thickness of 
magnetic source layers. If magnetic grains are 
not aligned, induced magnetization will cause a 
canonical 3-m thick layer to generate a 5 nT 
anomaly for source properties listed. Slight 
alignment of magnetic grains (presumably in the 
direction of Earth's field) generates remanent 
magnetization, potentially reducing the needed 
layer thickness to about 1 m. 
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Regional magnetic data were collected between 1958 and 
1978 using airborne methods from altitudes of about 150–450 m, 
with line spacing ranging from 800 m to 4,800 m (compiled by 
Daniels, 2005). Because magnetic anomalies attenuate with 
distance from the source, magnetic data collected at these 
altitudes typically represent sources with stronger magnetic 
properties such as igneous and metamorphic rocks that 
comprise the crystalline basement.  Near Charleston, the 
“magnetic basement” represents Jurassic basalts at roughly 
1-kilometer (km) depth (Behrendt and others, 1983; Daniels 
and others, 1983). Weaker signals generated by sedimentary 
sources are not apparent in the aeromagnetic data.
 
White lines represent shipboard magnetic surveys; black 
lines delineate the coastline and waterways.

3. Regional magnetic field
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Spectral processing to highlight short-wavelength magnetic anomalies 
revealed 10- to 40-m-wide, 1- to 6-nT magnetic anomalies associated 
with shallow, sand-covered seabed as indicated by the sidescan sonar 
data. These anomalies are distinct from system noise but are too 
narrow to represent basement features. The anomalies are observed 
mostly in shallow areas where river sediments originating from upland 
areas enter the inlets. In contrast, the anomalies are not observed near 
or within the younger, coast-parallel Kiawah River, where sedimentary 
inputs are primarily from closer surrounding areas. 

Previous studies do not indicate biogenic magnetite or glauconite 
within the strata underlying the survey area, but rivers and reworked 
Pleistocene barrier island sands supplying the Charleston area inlets 
originate from within the metamorphic Piedmont and Blue Ridge ter-
ranes. Grab samples from the North Edisto River contain trace amounts 

 of hematite, maghemite, ilmenite, and magnetite, as well as garnet, 
epidote, zircon, and rutile. If the sands are sorted by prevailing currents, 
greater concentrations of heavy mineral sands are likely to reside a 
few centimeters below the seafloor and could generate the observed 
magnetic anomalies. The presence of anomalies in inlets connected to 
upland areas and the distribution of stream sediment titanium (Ti) over 
the Atlantic Coastal Plain suggest that the magnetic anomalies are 
generated by Ti- and iron (Fe)-rich heavy mineral sands ultimately origi-
nating from the Piedmont and Blue Ridge, which are then reworked 

 and concentrated by tidal currents. The distribution of these sands 
within each of the inlets reflects the local hydrodynamic environment.   
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7. Anomalies and sediment type
The sidescan sonar data, when ground-truthed using  grab samples from   
Area A, show dark (less reflective; lower acoustic backscatter) areas associ-
ated with finer-grained sediments; lighter (more reflective; higher acoustic 
backscatter), smooth areas associated with medium- to coarse-grained sands; 
and hatched areas in the deeper channels that are associated with very 
coarse sands and gravels. The hatches delineate ripples created by stronger 
tidal currents, and the direction of these ripples varies since some areas were 
surveyed at different points in the tidal cycle. 

Short-wavelength magnetic anomaly clusters, outlined in green (right), are 
mostly observed in areas representing medium- to coarse-sands. Exceptions 
include anomalies observed over some finer-grained sands and an absence of 
anomalies over possible Tertiary outcrop (panel 2, labeled “T”). White lines 
represent 2-m depth contours. Locations of these data are shown in section 6.

BA
C

Notes: Models assume Earth’s local field: amplitude = 48898.5 nT, declination = –7°, inclination = +61.5°. 
Source properties are based on sand samples from Chesapeake Bay (Shah and others, 2012). 




