

Analytic Resource Assessment Method for Continuous (Unconventional) Oil and Gas Accumulations—The "ACCESS" Method

By Robert A. Crovelli, revised by Ronald R. Charpentier, 2012

Open-File Report 2012–1146

U.S. Department of the Interior U.S. Geological Survey

U.S. Department of the Interior

KEN SALAZAR, Secretary

U.S. Geological Survey

Marcia K. McNutt, Director

U.S. Geological Survey, Reston, Virginia: 2012

For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS

For an overview of USGS information products, including maps, imagery, and publications, visit *http://www.usgs.gov/pubprod*

To order this and other USGS information products, visit http://store.usgs.gov

Suggested citation:

Crovelli, R.A., 2012, Analytical resources assessment method for continuous (unconventional) oil and gas accumulations—The "ACCESS Method": U.S. Geological Survey Open-File Report 2012–1146, 32 p. [Revised by Charpentier, R.R.]

Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report.

Contents

Introduction	1
Geologic Assessment Model	1
Analytic Probabilistic Method.	6
Analytic Probabilistic Method Spreadsheet System	11
Versions	
Acknowledaments	
Acknowledgments	12

Figures

	Flow chart of calculations for determining the number of potential cells	10
3.	Simplified flow chart of the analytic probabilistic method for resource assessment of continuous (unconventional) oil and gas accumulations—the ACCESS method	9
2.	Example of basic input data form for FORSPAN assessment model. (Assessment-unit type: oil) Example of basic input data form for FORSPAN assessment model. (Assessment-unit type: gas)	

1.	Spreadsheet ACCESS panel numbers and contents	. 14	4
----	---	------	---

Analytic Resource Assessment Method for Continuous (Unconventional) Oil and Gas Accumulations—The "ACCESS" Method

By Robert A. Crovelli,¹ revised by Ronald R. Charpentier,¹ 2012

Introduction

The U.S. Geological Survey (USGS) periodically assesses petroleum resources of areas within the United States and the world. The purpose of this report is to explain the development of an analytic probabilistic method and spreadsheet software system called Analytic Cell-Based Continuous Energy Spreadsheet System (ACCESS). The ACCESS method is based upon mathematical equations derived from probability theory. The ACCESS spreadsheet can be used to calculate estimates of the undeveloped oil, gas, and NGL (natural gas liquids) resources in a continuous-type assessment unit. An assessment unit is a mappable volume of rock in a total petroleum system. In this report, the geologic assessment model is defined first, the analytic probabilistic method is described second, and the spreadsheet ACCESS is described third. In this revised version of Open-File Report 00–044, the text has been updated to reflect modifications that were made to the ACCESS program. Two versions of the program are added as appendixes.

Geologic Assessment Model

The geologic assessment model is called the FORSPAN model and is described in Schmoker (1999). The geologic assessment model for an assessment unit consists of the following components (see figs. 1 and 2 for additional descriptions):

- A. A set of four assessment-unit probabilities:
 - 1. Charge
 - 2. Rocks
 - 3. Timing
 - 4. Access

B. A set of nine random variables for an oil assessment unit or a similar set for a gas assessment unit:

- 1. Total assessment-unit area
- 2. Area per cell
- 3. Percentage of total assessment-unit area that is untested

¹ U.S. Geological Survey, MS 939, Box 25046, Denver Federal Center, Denver, Colorado 80225

- 4. Percentage of untested assessment-unit area that has potential for additions to reserves
- 5. Total recovery per cell
- 6. Ratio of coproduct A
- 7. Ratio of coproduct B
- 8. Percent allocation to parcel (or land entity)
- 9. Percent allocation to offshore portion of parcel

(The assessment-unit area, untested percentage of assessment-unit area, percentage of untested assessment-unit area with potential, and area per cell are used to determine the number of potential cells, as explained later.)

C. A set of three descriptive parameters for each of the nine given random variables:

- 1. Minimum (F100)
- 2. Median (F50) or mode (most likely), depending on the version of the program (see p. 13)
- 3. Maximum (FO)

Examples of the basic input data form for the FORSPAN model are given in figures 1 and 2.

	ACCU			IENT MODEL			10-03)	
	_					,	/	
				ATION INFOR	RMATION		-	
	sessment Geologist:		and J.K. Pitm	an			Date:	10/27/2010
	gion:	North Americ					Number:	5
	ovince:	Gulf Coast N					Number:	5049
	al Petroleum System:			s-Tertiary Cor	mposite		Number:	504901
	sessment Unit:	Eagle Ford S	Shale Oil				Number:	50490170
ва	sed on Data as of:	IHS 2010						
Not	tes from Assessor:		-					
		CHA	RACTERIST	ICS OF ASSI	ESSMENT UI	NIT		
Δο	sessment-unit type: C)il (<20.000 c	fa/bo) or Gas	: (>20 000 cfa	/bo) incl dis	c & not add	itions	Oil
	hat is the minimum to			0.002		I A.U.; bcfg fo		
	mber of tested cells:	85		0.002			Ji gas 7.0.)	
	mber of tested cells wit		rv ner cell > r	minimum [.]	64			
	ablished (discovered cel		Hypothetical					
	dian total recovery per				bofa for aas	AU)		
		1st 3rd dis		0.017	2nd 3rd		3rd 3rd	0.011
				0.011	2nd ord	0.000		0.011
Ass	sessment-Unit Probab	oilities:						
	Attribute			Prob	ability of occ	urrence (0-1.0))	
	CHARGE: Adequate pe	troleum charc	le for an unte					1.0
	ROCKS: Adequate rese							1.0
	TIMING: Favorable geol							1.0
	je i							
As	sessment-Unit GEOLO	GIC Probabi	litv (Product	of 1. 2. and 3):			1.0
			, (, _,	,-			
	NO. OF	UNTESTED C	ELLS WITH	POTENTIAL	FOR ADDITI	ONS TO RES	SERVES	
1.	Total assessment-unit	area (acres):	(uncertainty	of a fixed valu	le)			
			, , , , , , , , , , , , , , , , , , ,		,			
	calculated mean	16,474,000	minimum	14,827,000	mode	16,474,000	maximum	18,121,000
2.	Area per cell of untest	ed cells havin	g potential for	additions to	reserves (acre	es): (values a	are inherently	variable)
	calculated mean	176	minimum	80	mode	128	maximum	320
	uncertainty of mean:	minimum	125	maximum	225			
3.	Percentage of total as	sessment-uni	t area that is	untested (%):	(uncertainty	of a fixed va	lue)	
	calculated mean	100	minimum	100	mode	100	maximum	100
L		<u> </u>						

Figure 1. Example of basic input data form for FORSPAN assessment model. (Assessment-unit type: oil)

			Assessment	Unit (name, no)						
				hale Oil, 50490							
			Eagle Fold S		5170						
	NO. OF U	NIESIED (Continued)		NS TO RE	DERVES				
				continued)							
4.	Percentage of untested	200000000	nt unit area that	t has notential	for additions	to reconvec	(%).				
т.	Percentage of untested assessment-unit area that has potential for additions to reserves (%): (a necessary criterion is that total recovery per cell ≥ minimum; uncertainty of a fixed value)										
	(a necessary cittenon is		recovery per ce	<u>, si <u>></u> minimum,</u>	uncertainty						
	calculated mean	17	minimum	0.5	mode	9	maximum	40			
				0.0	mode	<u> </u>	maximam	10			
	Geologic evidence for es	timates:									
	Good TOC and thermal		rouahout AU.								
	Generation and migratio		-	U and upsecti	on into Austi	n Chalk.					
	Best area in SW where										
			TOTAL RE	COVERY PER	CELL						
Tot	al recovery per cell for un	tested cell	s having potent	ial for addition	s to reserves:	:					
va	lues are inherently variab	e; mmbo f	or oil A.U.; bcfg	for gas A.U.)							
	calculated mean	0.055	minimum	0.002	median	0.03	maximum	1			
	AVERAGE CO					SSESS CO	PRODUCTS				
			(uncertainty of		own values)						
	assessment unit:			minimum		mode		maximun			
	Gas/oil ratio (cfg/bo)			1000		2000		3000			
٢	NGL/gas ratio (bngl/mmcf	g)		10		20		30			
_											
	s assessment unit:	. .									
L	iquids/gas ratio (bliq/mm	ctg)									

Figure 1. Example of basic input data form for FORSPAN assessment model. (Assessment-unit type: oil).—Continued

	ACCUM				EL FOR CON ORM (NOGA,		2-10-03)	
							,	
			IDENTIFIC	ATION INF	ORMATION			
As	sessment Geologist:	D.W. Hous	eknecht				Date:	26-Jan-10
Re	gion:	North Amer					Number:	5
Pro	ovince:	Arkoma Ba	sin				Number:	5062
Tot	al Petroleum System:	Woodford-C	Chattanooga				Number:	506202
As	sessment Unit:	Woodford S	hale Gas				Number:	50620261
Ba	sed on Data as of:	IHS (2009)						
No	tes from Assessor:							
			DACTEDIST		SESSMENT			
			ARACIERISI	ICS OF AS	SESSIVIENT			
٨٩	sessment-unit type: C	ii (<20.000	cfa/bo) or Ga	e (>20.000.	cfa/bo) incl (tisc & not	additions	Gas
	hat is the minimum to			0.02			for gas A.U.)	Gas
	mber of tested cells:	985		0.02		TA.O., Doig	loi gus A.O.)	
	mber of tested cells with		erv per cell >	minimum:	926			
	ablished (discovered cel		Hypothetical					
	dian total recovery per d				U.: bcfa for a	as A.U.)		
		1st 3rd di		1	2nd 3rd		3rd 3rd	0.5
As	sessment-Unit Probab	ilities:						
	Attribute			Pro	bability of oc	currence (0-	1.0)	
1. (CHARGE: Adequate per	troleum char	ge for an unte	ested cell wi	th total recov	ery <u>></u> minim	um.	1.0
2. I	ROCKS: Adequate rese	rvoirs, traps	, seals for an	untested ce	ell with total re	ecovery <u>></u> mi	nimum.	1.0
3.	TIMING: Favorable geol	ogic timing f	for an unteste	d cell with t	otal recovery	<u>></u> minimum.		1.0
As	sessment-Unit GEOLO	GIC Probab	ility (Produc	t of 1, 2, and	d 3):			1.0
				DOTENTIA				
	NO. OF U	NIESIED	ELLS WITH	POTENTIA	L FOR ADDI	TIONS TO F	RESERVES	
1	Total assessment-unit	area (aaraa)	(upportaint	v of a fixed y				
1.	Total assessment-unit	area (acres)	. (uncertaint	y of a lixed v	value)			
	calculated mean	6,100,000	minimum	5,800,000	mode	6,100,000	maximum	6,400,000
2.	Area per cell of unteste	ed cells havi	ng potential fo	or additions	to reserves (a	cres): (valu	es are inhere	ntly variable)
	calculated mean	167	minimum	60	mode	120	maximum	320
	uncertainty of mean:	minimum	100	maximum	240			
	incontainty of mouri							
3.	Percentage of total ass	sessment-ur	hit area that is	untested (%): (uncertai	ntv of a fixed	value)	
[.,		
	calculated mean	97	minimum	96	mode	97	maximum	98
								-

Figure 2. Example of basic input data form for FORSPAN assessment model. (Assessment-unit type: gas)

			Assessment L	Jnit (name, n	10.)			
			Woodford Sha					
	NO. OF UN	ITESTED C	ELLS WITH P	POTENTIAL	FOR ADDITI	ONS TO F	RESERVES	
				Continueu)				
4.	Percentage of untested a	assessmer	nt-unit area tha	t has potenti	al for addition	ns to reser	rves (%):	
	(a necessary criterion is							
	calculated mean	38	minimum	10	mode	35	maximum	70
	Geologic evidence for es							
	Min scenario: lower prod							
	along southern margin o					stern marg	gin of Ozark up	olift.
	Max scenario: moderate	e to good pr	oductivity in ar	reas (1), (2), a	and (3).			
			TOTAL RE	COVERY PE	RCELL			
	al recovery per cell for un		s having potent	tial for additio	ons to reserve	2 8:		
	al recovery per cell for un ues are inherently variabl		s having potent	tial for additio	ons to reserve	es:		
	ues are inherently variabl	le; mmbo fo	s having potent or oil A.U.; bcfg	tial for addition g for gas A.U	ons to reserve .)		maximum	10
			s having potent	tial for additio	ons to reserve	es: 0.5	maximum	10
	ues are inherently variabl	le; mmbo fo 0.78	s having potent or oil A.U.; bcfg minimum	tial for additic g for gas A.U 0.02	ons to reserve	0.5		
	ues are inherently variabl	le; mmbo fo 0.78 PRODUCT	s having potent or oil A.U.; bcfg minimum RATIOS FOR	tial for addition g for gas A.U 0.02 UNTESTED	median CELLS, TO	0.5 ASSESS (
va	ues are inherently variabl	le; mmbo fo 0.78 PRODUCT	s having potent or oil A.U.; bcfg minimum RATIOS FOR uncertainty of f	tial for addition g for gas A.U 0.02 UNTESTED	median CELLS, TO	0.5 ASSESS (
(va Oil	ues are inherently variabl calculated mean AVERAGE COP	le; mmbo fo 0.78 PRODUCT	s having potent or oil A.U.; bcfg minimum RATIOS FOR uncertainty of f	tial for additic g for gas A.U 0.02 UNTESTED	median CELLS, TO	0.5		S
(va <u>)</u>)	ues are inherently variabl calculated mean AVERAGE COP assessment unit:	le; mmbo fo 0.78 PRODUCT	s having potent or oil A.U.; bcfg minimum RATIOS FOR uncertainty of f	tial for additic g for gas A.U 0.02 UNTESTED	median CELLS, TO	0.5		S
(va <u>Oil</u> (AVERAGE COP assessment unit: as/oil ratio (cfg/bo) IGL/gas ratio (bngl/mmcf	le; mmbo fo 0.78 PRODUCT	s having potent or oil A.U.; bcfg minimum RATIOS FOR uncertainty of f	tial for additic g for gas A.U 0.02 UNTESTED	median CELLS, TO	0.5		S
(va Oil (fa	AVERAGE COP assessment unit: as/oil ratio (cfg/bo)	e; mmbo fo 0.78 •RODUCT (u	s having potent or oil A.U.; bcfg minimum RATIOS FOR uncertainty of f	tial for additic g for gas A.U 0.02 UNTESTED	median CELLS, TO	0.5		S

Figure 2. Example of basic input data form for FORSPAN assessment model. (Assessment-unit type: gas)—Continued

Analytic Probabilistic Method

The geologic assessment model FORSPAN is a description of a complex probability problem that needs to be solved in order to produce the estimates of the undeveloped petroleum resources (potential additions to reserves). The method derived herein, called ACCESS, is a system that solves the problem. That is, the model FORSPAN poses the problem, and the method ACCESS offers a solution. Simply stated, ACCESS is a solution of FORSPAN.

The nine given random variables (below) are assigned probability distributions as probability models that are based on the descriptive parameters (F100, F50 or mode, and F0). That is, each given random variable is assigned a probability distribution with the specified descriptive parameters: minimum, median or mode, and maximum. It is important to realize that the ACCESS method does not

depend upon the specific assignment of probability distributions; this means many assignments could be accommodated by a modification of ACCESS. The assignment is an operational decision. The following probability distributions were assigned to the set of nine given random variables for an oil assessment unit or for a gas assessment unit:

- 1. Assessment-unit area: Triangular distribution
- 2. Area per cell: Triangular distribution
- 3. Percentage of total assessment-unit area that is untested: Triangular distribution
- 4. Percentage of untested assessment-unit area that has potential for additions to reserves: Triangular distribution
- 5. Total recovery per cell: Truncated shifted lognormal distribution
- 6. Ratio of coproduct A: Triangular distribution
- 7. Ratio of coproduct B: Triangular distribution
- 8. Percent allocation to parcel (or land entity): Triangular distribution
- 9. Percent allocation to offshore: Triangular distribution

The mathematical equations for the triangular distribution are derived from probability theory in Crovelli (1999). The basic probability theory of the triangular distribution is given in Law and Kelton (1991). The probability theory of the lognormal distribution is given in Aitchison and Brown (1957).

A probabilistic method must be derived that combines given random variables of the geologic assessment model (FORSPAN) to determine parameters (especially the mean, standard deviation, F95 fractile, and F5 fractile) of new random variables of interest—these new random variables are functions of the given random variables. The new random variables of interest are the following measures of undeveloped petroleum resources (potential additions to reserves):

- 1. Oil in oil assessment unit
- 2. Gas in oil assessment unit
- 3. NGL in oil assessment unit
- 4. Gas in gas assessment unit
- 5. NGL in gas assessment unit
- 6. Oil in gas assessment unit

A probabilistic method is required to compute the estimates of a probability distribution in the form of parameters (especially the mean for a point estimate and fractiles F95 and F5 for an interval estimate). An analytic probabilistic method is a probabilistic method that uses mathematical equations from probability theory to obtain the estimates of the undeveloped petroleum resources in an assessment unit. The ACCESS method is an analytic probabilistic method that was developed by deriving the necessary mathematical equations based upon conditional probability theory and laws of expectation and variance. Three features of ACCESS are the following:

- 1. ACCESS relates the parameters with mathematical equations.
- 2. ACCESS computes the means, standard deviations, minimums, and maximums exactly.
- 3. ACCESS computes the estimates instantaneously.

For example, in the case of gas in a gas assessment unit, the following relationships are developed for the random variables:

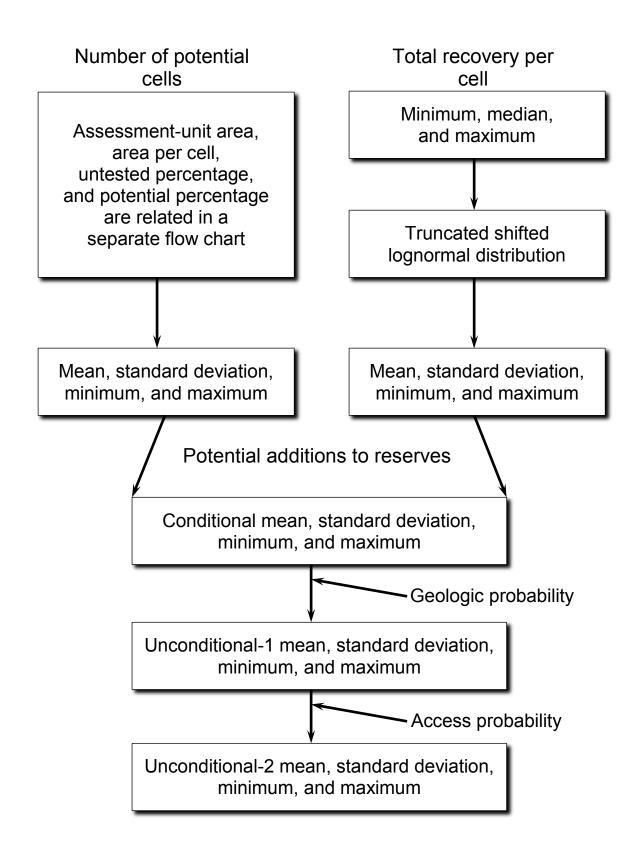
- N: Number of potential cells
- *X*: Total recovery per cell (billion cubic feet of gas)

Y: Gas in gas assessment unit (billion cubic feet of gas)

$$Y = \sum_{i=1}^{N} X_i$$

The random variable *Y* is equal to the sum of a random number of random variables (total recoveries per cell). The mean and standard deviation of *Y* can be derived from the theory of conditional probability and conditional expectation (Ross, 1993). Parameters of particular interest for gas in a gas assessment unit are the mean, standard deviation, minimum, and maximum:

$$\mu_{Y} = \mu_{N}\mu_{X}$$


$$\sigma_{Y} = \sqrt{\mu_{N}\sigma_{X}^{2} + \mu_{X}^{2}\sigma_{N}^{2}}$$

$$Min(Y) = Min(N) Min(X)$$

$$Max(Y) = Max(N) Max(X)$$

Many of the mathematical equations for parameters of the new random variables of interest in the ACCESS method are derived using conditional probability theory in Crovelli (1992). A simplified flow chart of the analytic probabilistic method for resource assessment of continuous (unconventional) oil and gas accumulations (the ACCESS method) is displayed in figure 3. The number of potential cells and the total recovery per cell are combined probabilistically to obtain the undeveloped petroleum resources (potential additions to reserves) in an assessment unit.

How the assessment-unit area, untested percentage of the assessment-unit area, percentage of the untested assessment-unit area with potential, and area per cell are used to determine the number of potential cells will now be explained. The assessment-unit area, untested percentage of the assessment-unit area, and percentage of the untested assessment-unit area with potential are multiplied probabilistically to obtain the potential area of the assessment unit. Then the potential area of the assessment unit and area per cell are combined to generate the number of potential cells. This sequence of calculations for the number of potential cells is described in the flow chart of figure 4.

Figure 3. Simplified flow chart of the analytic probabilistic method for resource assessment of continuous (unconventional) oil and gas accumulations—the ACCESS method.

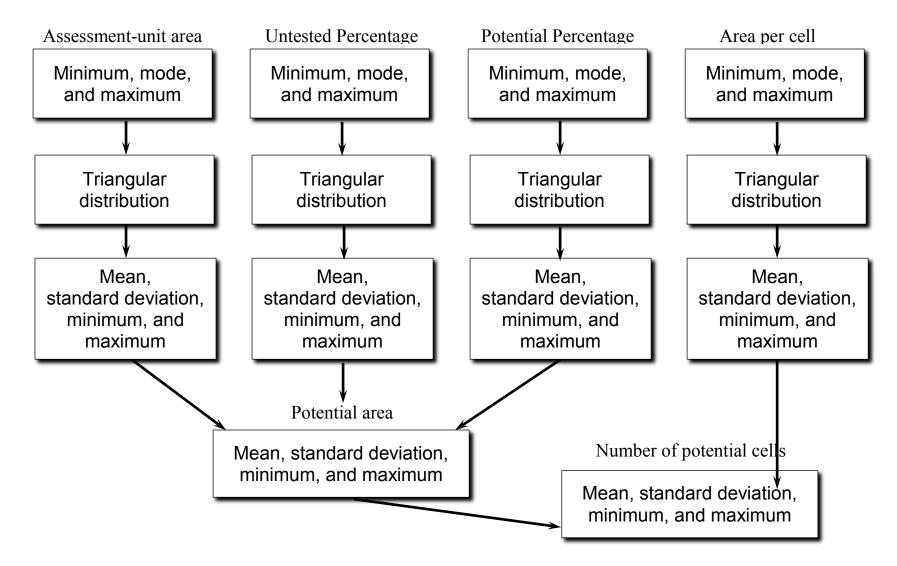


Figure 4. Flow chart of calculations for determining the number of potential cells.

Spreadsheet System

Given the geologic assessment model (the FORSPAN model, figs. 1 and 2), the analytic probabilistic method is used to create a spreadsheet probability system. The analytic probabilistic method of the previous section is incorporated into the ACCESS software system. ACCESS consists of a series of 54 panels in the spreadsheet. A panel is a set of approximately 11 columns of related calculations. Because the total number of columns in ACCESS is 657, it was necessary to construct ACCESS as a workbook with four worksheets called Cond (Conditional), Unc1 (Unconditional-1_, Unc2 (Unconditional-2), and Numb. Cond comprises Panels 1–22, Unc1 contains Panels 23–34, Unc2 contains Panels 35–46, and Numb contains Panels 47–54. Worksheet Cond is linked to the worksheet Numb. Worksheets Unc1 and Unc2 are linked to the worksheet Cond. The topics contained in the worksheets Cond, Unc1, Unc2, and Numb are the following:

- 1. Worksheet Cond: Input data (Panels 1–4), probability distribution calculations (Panels 5–10), and conditional (unrisked) resource estimates (Panels 11–22).
- 2. Worksheet Unc1: Unconditional-1 resource estimates, risked using the geologic probability of the assessment unit.
- 3. Worksheet Unc2: Unconditional-2 resource estimates, risked using both the geologic and the access ("geoacc") probability of the assessment unit.
- 4. Worksheet Numb: Input data (Panel 47), probability distribution calculations (Panels 48–54) for the number of potential cells.

The individual panel numbers and contents of the spreadsheet ACCESS are given in table 1. A probability system is an orderly collection of random variables that are logically related in terms of their probability distributions and parameters. The spreadsheet-probability system ACCESS includes:

Conditional (unrisked) and unconditional (risked) estimates of undeveloped petroleum resources (potential additions to reserves) in

- 1. Assessment unit
- 2. Parcel (or land entity)
- 3. Offshore portion of parcel

The total number of new random variables or sets of estimates (mean, standard deviation, F95, and F5) per assessment unit:

- 1. 72 $(2 \times 4 \times 3 \times 3)$ if one parcel
- 2. 120 ($2 \times 4 \times 3 \times 5$) if two parcels

For illustrative purposes, the ACCESS system is used here to compute the estimates of undeveloped petroleum resources for two assessment units. Note that these two assessment units were used as examples of the basic input data form for the FORSPAN model in figs. 1 and 2. The computer printout of the 54 panels in the ACCESS spreadsheet for this illustration is presented on the following pages. The panel captions explain how the panels are related with respect to their calculations. Examples of particular interest are:

Panel 11. Conditional estimates of undeveloped resources in assessment unit: oil in oil fields and gas in gas fields. Mean, standard deviation, minimum, and maximum are computed by combining

parameters from Panels 5 and 6. Fractiles F95, F75, F50, F25, and F5 are approximated by a lognormal distribution.

Note that the number of potential cells (Panel 5) and the total recovery per cell (Panel 6) produce the estimates for an assessment unit (Panel 11). The corresponding mathematical equations were given in the previous section.

Panel 23. Unconditional-1 estimates of undeveloped resources in assessment unit: oil in oil fields and gas in gas fields. Mean, standard deviation, minimum, and maximum are computed by applying the geologic probability from Panel 23 to parameters from Panel 11. Fractiles F95, F75, F50, F25, and F5 are approximated by a lognormal distribution.

Note that the geologic probability (Panel 23) is applied to the conditional estimates (Panel 11) to generate the unconditional-1 (risked for geology) estimates (Panel 23).

Panel 35. Unconditional-2 estimates of undeveloped resources in assessment unit: oil in oil fields and gas in gas fields. Mean, standard deviation, minimum, and maximum are computed by applying the geoacc probability from Panel 35 to parameters from Panel 11. Fractiles F95, F75, F50, F25, and F5 are approximated by a lognormal distribution.

Note that the geoacc probability (Panel 35) is applied to the conditional estimates (Panel 11) to generate the unconditional-2 (risked for geology and access) estimates (Panel 35).

Versions

Several versions of ACCESS exist. The unnumbered version, originally described in Open-File 00–044, was not used for any official USGS assessments. The first version actually used for assessments is here termed "version 1," which was used from 2000 to 2002. Version 1 differed from the previous version in that it included a variable for "Percentage of total assessment-unit area that is untested" (line 3). Each triangular distribution was described by the minimum, median, and maximum. Version 2 was used from 2003 to 2008. Each triangular distribution was described by the minimum, mode, and maximum. Version 3 was used from 2009 to 2011. It corrected an error in version 2 by which the gas-oil ratio in oil fields was set as a triangle with minimum, mode, and maximum as 240, 320, and 960, ignoring any input on panel 3. Otherwise, version 3 is the same as version 2. Examples given in this revised report are from ACCESS version 3.

Copies of the Microsoft Excel workbooks for versions 1 and 3 are included as part of this report.

Acknowledgments

The author wishes to acknowledge the helpful reviews of T.S. Dyman, J.W. Schmoker, T.A. Cook, and C.J. Schenk of the USGS.

References Cited

Aitchison, J., and Brown, J.A.C., 1957, The lognormal distribution: Cambridge, Cambridge University Press, 176 p.

- Crovelli, R.A., 1992, Probabilistic methodology for estimation of undiscovered petroleum resources in play analysis of the United States: Nonrenewable Resources, v. 1, p. 153–162.
- Crovelli, R.A., 1999, Probabilistic method for subdividing petroleum resources into depth slices: U.S. Geological Survey Open-File Report 99–343, 9 p.

Law, A.M., and Kelton, W.D., 1991, Simulation modeling and analysis (2d ed): New York, McGraw-Hill, Inc., 759 p.

Ross, S.M., 1993, Introduction to probability models (5th ed): New York, Academic Press, Inc., 556 p. Schmoker, J.W., 1999, U.S. Geological Survey assessment model for continuous (unconventional) oil and gas accumulations—The "FORSPAN" model: U.S. Geological Survey Bulletin 2168, 9 p.

Table 1. Spreadsheet ACCESS panel numbers and contents. (NGL, natural gas liquids; Cond., conditional; Unc1., Unconditional 1; Unc2., Unconditional 2; Numb., define here)

(1) Input data: Assessment-unit probabilities (2) Input data: Total recovery per cell (3) Input data: Ratios used to assess coproducts (4) Input data: Percent allocation to parcel and offshore portion of parcel (5) Number of potential cells: Computed parameters (6) Total recovery per cell: Truncated shifted lognormal distribution (7) Ratios used to assess coproducts: Triangular distribution (8) Ratios used to assess coproducts: Triangular distribution (9) Percent allocation to parcel: Triangular distribution (10) Percent allocation to offshore: Triangular distribution (11) Cond. estimates in assessment unit: Oil in oil fields and gas in gas fields (12) Cond. estimates in assessment unit: Gas in oil fields and NGL in gas fields (13) Cond. estimates in assessment unit: NGL in oil fields and oil in gas fields (14) Cond. estimates in assessment unit: Total in oil fields and total in gas fields (15) Cond. allocation to parcel: Oil in oil fields and gas in gas fields (16) Cond. allocation to parcel: Gas in oil fields and NGL in gas fields (17) Cond. allocation to parcel: NGL in oil fields and oil in gas fields (18) Cond. allocation to parcel: Total in oil fields and total in gas fields (19) Cond. allocation to offshore: Oil in oil fields and gas in gas fields (20) Cond. allocation to offshore: Gas in oil fields and NGL in gas fields (21) Cond. allocation to offshore: NGL in oil fields and oil in gas fields (22) Cond. allocation to offshore: Total in oil fields and total in gas fields (23) Unc1. estimates in assessment unit: Oil in oil fields and gas in gas fields (24) Unc1. estimates in assessment unit: Gas in oil fields and NGL in gas fields (25) Unc1. estimates in assessment unit: NGL in oil fields and oil in gas fields (26) Uncl. estimates in assessment unit: Total in oil fields and total in gas fields (27) Unc1. allocation to parcel: Oil in oil fields and gas in gas fields (28) Unc1. allocation to parcel: Gas in oil fields and NGL in gas fields (29) Unc1. allocation to parcel: NGL in oil fields and oil in gas fields (30) Unc1. allocation to parcel: Total in oil fields and total in gas fields (31) Unc1. allocation to offshore: Oil in oil fields and gas in gas fields (32) Uncl. allocation to offshore: Gas in oil fields and NGL in gas fields (33) Uncl. allocation to offshore: NGL in oil fields and oil in gas fields (34) Unc1. allocation to offshore: Total in oil fields and total in gas fields (35) Unc2. estimates in assessment unit: Oil in oil fields and gas in gas fields (36) Unc2. estimates in assessment unit: Gas in oil fields and NGL in gas fields (37) Unc2. estimates in assessment unit: NGL in oil fields and oil in gas fields (38) Unc2. estimates in assessment unit: Total in oil fields and total in gas fields (39) Unc2. allocation to parcel: Oil in oil fields and gas in gas fields (40) Unc2. allocation to parcel: Gas in oil fields and NGL in gas fields (41) Unc2. allocation to parcel: NGL in oil fields and oil in gas fields (42) Unc2. allocation to parcel: Total in oil fields and total in gas fields (43) Unc2. allocation to offshore: Oil in oil fields and gas in gas fields (44) Unc2. allocation to offshore: Gas in oil fields and NGL in gas fields (45) Unc2. allocation to offshore: NGL in oil fields and oil in gas fields (46) Unc2. allocation to offshore: Total in oil fields and total in gas fields (47) Numb. input data: Assess.-unit area, potential percentage, and area per cell (48) Numb. assessment-unit area: Triangular distribution (49) Numb. potential percentage: Triangular distribution (50) Numb. area per cell: Triangular distribution (51) Numb. potential area: Lognormal distribution (52) Numb. number of potential cells: Lognormal distribution

ACCESS

ACCESS: Analytic Cell-based Continuous E	et Syste	m		R.A. Cro	velli	(Panel 1)		
Assessment Unit	Assessment-Unit Probabilities							
Name	No.	Fields	Charge	Rocks	Timing	Geologic	Access	GeoAcc
Eagle Ford Shale Oil	50490170	Oil	1	1	1	1	1	1
Woodford Shale Gas	50620261	Gas	1	1	1	1	1	1

Panel 1. Input data: assessment-unit name, number, and probabilities for charge, rocks, timing, and access. Geologic probability is the product of charge, rocks, and timing probabilities. "Geoacc" probability is the product of geologic and access probabilities.

							(Panel 2)		
					Tota	Total Recovery Per Cell			
		Numbe	r of Potenti	al Cells	Oil (mmbo) and Gas (bcfg)				
No.	Fields				Minimum	Median	Maximum		
50490170	Oil	See Par	See Panel 47 for input data			0.03	1		
50620261	Gas	See Par	See Panel 47 for input data			0.5	10		

Panel 2. Input data: total recovery per cell—minimum, mode, and maximum. See Panel 47 for input data pertaining to the number of potential cells.

								(Panel 3)
	Oil fields:	Gas/	oil ratio (cf	g/bo)	NGL/gas			
	Gas fields:	NGL/gas	s ratio (bngl	/mmcfg)	Oil/gas	nmcfg)		
No.	Fields	Minimum	Mode	Maximum	Minimum	Mode	Maximum	
50490170	Oil	1000	2000	3000	10	20	30	
50620261	Gas	0	0	40	0	0	0	

Panel 3. Input data: ratios used to assess coproducts of undeveloped oil and gas fields—minimum, mode, and maximum.

							(Panel 4)		
				Percent /	Allocation				
			Parcel		Offshore				
Parcel	Fields	Minimum	Mode	Maximum	Minimum	Mode	Maximum		
Texas	Oil	58.88	58.88	58.88	0	0	0		
Oklahoma	Gas	85	85	85	0	0	0		

Panel 4. Input data: percent allocation to parcel and offshore portion of parcel—minimum, mode, and maximum.

										(Panel 5)
			Number of Potential Untested Cells							
No.	Flds	Min,F100						Max,F0	Mean	S.D.
50490170	Oil	232	Se	e Panels	48-54 for (calculation	าร	90605	15444.38	7976.192
50620261	Gas	1740	Se	e Panels	48-54 for (calculation	าร	73173	13609.1	4377.83

Panel 5. Number of potential untested cells: computed parameters are imported from Panel 54. See Panels 48–54 for sequence of calculations.

										(Panel 6)
		Tota	Recovery	Per Cell (m	mbo and	bcfg) Trui	ncated Shift	ted Logno	ormal Distri	oution
No.	Flds	Min,F100	Med,F50	Mu	Sigma	E(X)	E(X^2)	Max,F0	Mean	S.D.
50490170	Oil	0.002	0.03	-3.57555	1.15649	0.053255	0.008905	1	0.055255	0.077902
50620261	Gas	0.02	0.5	-0.73397	0.98206	0.764647	1.381312	10	0.784647	0.89254

Panel 6. Total recovery per cell: truncated shifted lognormal distribution. Mean and standard deviation are computed.

										(Panel 7)
Oil fields:				Gas/oil	ratio (cfg/	/bo) Trian	igular Distri	bution		
Gas fields:				NGL/gas ra	atio (bngl/	mmcfg) T	riangular D	istributio	n	
No.	Flds	Min,F100	Med,F50	Midpoint	Mode			Max,F0	Mean	S.D.
50490170	Oil	1000	2000	2000	2000			3000	2000	408.2483
50620261	Gas	0	11.71573	20	0			40	13.33333	9.42809

Panel 7. Ratios used to assess coproducts: triangular distribution. Midpoint, median, mean, and standard deviation are computed.

											(Panel 8)
Oil fields:				NGL/gas ra	itio (bngl/n	nmcfg) T	riangular Dis	stributior	า		
Gas fields:				Oil/gas ra	atio (bo/mi	ncfg) Tria	angular Dist	ribution			
No.	Flds	Min,F100	Med,F50	Midpoint	Mode			Max,F0	Mean		S.D.
50490170	Oil	10	20	20	20			30		20	4.082483
50620261	Gas	0	0	0	0			0		0	0

Panel 8. Ratios used to assess coproducts: triangular distribution. Midpoint, median, mean, and standard deviation are computed.

		Percent A	Ilocation of	Undevelop	ed Resou	rces by Vo	lume to Pa	rcel		(Panel 9)
			Perc	ent Resour	ces in Oil	/Gas Fields	s Triangul	ar Distri	bution	
Parcel	Flds	Min,F100	Med,F50	Midpoint	Mode			Max,F0	Mean	S.D.
Texas	Oil	58.88	58.88	58.88	58.88			58.88	58.88	0
Oklahoma	Oklahoma Gas 85									

Panel 9. Percent allocation of undeveloped resources by volume to parcel: triangular distribution. Midpoint, median, mean, and standard deviation are computed.

	F	Percent All	ocation of l	Jndevelope	d Resourc	ces by Volu	ume to Offsl	hore		(Panel 1	10)
	Percent Resources in Oil/Gas Fields Triangular Distribution										
Parcel	Flds	Min,F100	Med,F50	Midpoint	Mode			Max,F0	Mean	S.D.	
Texas	Oil	0	0	0	0			0	0		0
Oklahoma	a Gas 0 0 0 0 0										0

Panel 10. Percent allocation of undeveloped resources by volume to offshore portion of parcel: triangular distribution. Midpoint, median, mean, and standard deviation are computed.

CON	DITIC	NAL ESTIN	MATES OF	UNDEVE	LOPED RE	SOURCES	IN ASSE	SSMENT	UNIT (Panel 11)		
					Oil in C	Dil Fields (m	imbo)					
			Gas in Gas Fields (bcfg)									
No.	Flds	Mean	S.D.	Min,F100	F95	F75	Med,F50	F25	F5	Max,F0		
50490170	Oil	853.382	440.8324	0.464	340.6918	546.1581	758.196	1052.555	1687.336	90605		
50620261	Gas	10678.33	78.33 3436.627 34.8 6065.16 8225.118 10164.9 12562.11 17035.8 731730									

Panel 11. Conditional estimates of undeveloped resources in assessment unit: oil in oil fields and gas in gas fields. Mean, standard deviation, minimum, and maximum are computed by combining parameters from Panels 5 and 6. Fractiles F95, F75, F50, F25, and F5 are approximated by a lognormal distribution.

CON	IDITIC	NAL ESTIN	MATES OF	UNDEVE	LOPED RE	SOURCES	IN ASSE	SSMENT	JNIT (F	anel 12)		
			Gas in Oil Fields (bcfg)									
					NGL in Ga	as Fields (m	nmbngl)					
No.	Flds	Mean	S.D.	Min,F100	F95	F75	Med,F50	F25	F5	Max,F0		
50490170	Oil	1706.764	964.9344	0.464	624.7984	1041.548	1485.76	2119.41	3533.089	271815		
50620261	Gas	142.3778	3778 115.2613 0 34.42281 68.55412 110.661 178.6312 355.7498 29269									

Panel 12. Conditional estimates of undeveloped resources in assessment unit: gas in oil fields and NGL in gas fields. Mean, standard deviation, minimum, and maximum are computed by combining parameters from Panels 7 and 11. Fractiles F95, F75, F50, F25, and F5 are approximated by a lognormal distribution.

CON	DITIC	NAL ESTIN	MATES OF	UNDEVE	LOPED RE	SOURCES	IN ASSE	SSMENT	UNIT (F	anel 13)
					NGL in O	il Fields (m	mbngl)			
					Oil in Ga	as Fields (m	nmbo)			
No.	Flds	Mean	S.D.	Min,F100	F95	F75	Med,F50	F25	F5	Max,F0
50490170	Oil	34.13528	20.89278	0.00464	11.5125	19.90131	29.1147	42.59357	73.63023	8154.5
50620261	Gas	0	0	0	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	0

Panel 13. Conditional estimates of undeveloped resources in assessment unit: NGL in oil fields and oil in gas fields. Mean, standard deviation, minimum, and maximum are computed by combining parameters from Panels 8 and 12 for NGL in oil fields and parameters from Panels 8 and 11 for oil in gas fields. Fractiles F95, F75, F50, F25, and F5 are approximated by a lognormal distribution.

CON	IDITIC	ONAL ESTI	MATES OF	UNDEVE	LOPED RE	SOURCES	IN ASSE	SSMENT	JNIT (F	anel 14)		
			Tota	al Resourc	es in Oil Fi	elds (mmbo	o & mmbo	e & mmbng	gl)			
			Total Resources in Gas Fields (mmboe & mmbngl & mmbo)									
No.	Flds	Mean	S.D.	Min,F100	F95	F75	Med,F50	F25	F5	Max,F0		
50490170	Oil	1171.978	609.8713	0.54597	464.7129	747.2827	1039.64	1446.369	2325.837	144062		
50620261	Gas	1922.1	2.1 627.5688 5.8 1082.491 1474.179 1827.17 2264.695 3084.152 151224									

Panel 14. Conditional estimates of undeveloped resources in assessment unit: total resources in oil fields and total resources in gas fields. Mean, standard deviation, minimum, and maximum are computed by combining parameters from Panels 7, 8, and 11. Fractiles F95, F75, F50, F25, and F5 are approximated by a lognormal distribution.

	CON	IDITIONAL	ALLOCATIO	ON OF UN	IDEVELOP	ED RESOL	JRCES TO	PARCEL	(F	anel 15)		
					Oil in O	il Fields (m	mbo)					
			Gas in Gas Fields (bcfg)									
Parcel	Flds	Mean	S.D.	Min,F100	F95	F75	Med,F50	F25	F5	Max,F0		
Texas	Oil	502.4713	259.5621	0.2732	200.5993	321.5779	446.426	619.7445	993.5033	53348		
Oklahoma	Gas	9076.583	76.583 2921.133 29.58 5155.386 6991.351 8640.15 10677.8 14480.43 621971									

Panel 15. Conditional allocation of undeveloped resources to parcel: oil in oil fields and gas in gas fields. Mean, standard deviation, minimum, and maximum are computed by applying parameters from Panel 9 to parameters from Panel 11. Fractiles F95, F75, F50, F25, and F5 are approximated by a lognormal distribution.

	CON	IDITIONAL .	ALLOCATIO	ON OF UN	DEVELOP	ED RESOL	IRCES TO	PARCEL	(P	anel 16)		
					Gas in	Oil Fields (b	ocfg)					
					NGL in Ga	is Fields (m	mbngl)					
Parcel	Flds	Mean	S.D.	Min,F100	F95	F75	Med,F50	F25	F5	Max,F0		
Texas	Oil	1004.943	568.1534	0.2732	367.8813	613.2636	874.813	1247.909	2080.283	160045		
Oklahoma	Gas	121.0211	0211 97.97206 0 29.25939 58.27101 94.062 151.8366 302.3873 24879									

Panel 16. Conditional allocation of undeveloped resources to parcel: gas in oil fields and NGL in gas fields. Mean, standard deviation, minimum, and maximum are computed by applying parameters from Panel 9 to parameters from Panel 12. Fractiles F95, F75, F50, F25, and F5 are approximated by a lognormal distribution.

	CC	ONDITIONAL	ALLOCATIO	ON OF UNI	DEVELOPE	D RESOU	RCES TO F	PARCEL	(Panel 17)			
					NGL in Oi	l Fields (mi	mbngl)						
			Oil in Gas Fields (mmbo)										
Parcel	Flds	Mean	S.D.	Min,F100	F95	F75	Med,F50	F25	F5	Max,F0			
Texas	Oil	20.098852	12.301671	0.002732	6.778558	11.71789	17.14276	25.07909	43.35348	4801.34			
Oklahoma	Gas	0	0 0 0 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0										

Panel 17. Conditional allocation of undeveloped resources to parcel: NGL in oil fields and oil in gas fields. Mean, standard deviation, minimum, and maximum are computed by applying parameters from Panel 9 to parameters from Panel 13. Fractiles F95, F75, F50, F25, and F5 are approximated by a lognormal distribution. Cells with "#DIV/0!" are not calculated because the distribution is not lognormal.

	CON	DITIONAL	ALLOCATIO	ON OF UN	DEVELOP	ED RESOL	IRCES TO	PARCEL	(F	anel 18)		
			Tota	al Resourc	es in Oil Fi	elds (mmbo	& mmbo	e & mmbng	gl)			
			Total Resources in Gas Fields (mmboe & mmbngl & mmbo)									
Parcel	Flds	Mean	S.D.	Min,F100	F95	F75	Med,F50	F25	F5	Max,F0		
Texas	Oil	690.0606	359.0922	0.32147	273.6229	440	612.139	851.6221	1369.453	84824		
Oklahoma	Gas	1633.785	5 533.4335 4.93 920.117 1253.052 1553.1 1924.991 2621.529 128541									

Panel 18. Conditional allocation of undeveloped resources to parcel: total resources in oil fields and total resources in gas fields. Mean, standard deviation, minimum, and maximum are computed by applying parameters from Panel 9 to parameters from Panel 14. Fractiles F95, F75, F50, F25, and F5 are approximated by a lognormal distribution.

0	CONC	ITIONAL A	LLOCATIO	N OF UND	EVELOPE	D RESOUR	CES TO C	DFFSHOR	E (Panel 19)
					Oil in C	il Fields (m	mbo)			
					Gas in (Gas Fields	(bcfg)			
Parcel	Flds	Mean	S.D.	Min,F100	F95	F75	Med,F50	F25	F5	Max,F0
Texas	Oil	0	0	0	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	0
Oklahoma	Gas	0	0	0	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	0

Panel 19. Conditional allocation of undeveloped resources to offshore portion of parcel: oil in oil fields and gas in gas fields. Mean, standard deviation, minimum, and maximum are computed by applying parameters from Panel 10 to parameters from Panel 15. Fractiles F95, F75, F50, F25, and F5 are approximated by a lognormal distribution. Cells with "#DIV/0!" are not calculated because the distribution is not lognormal.

	CON	DITIONAL A	LLOCATIO	N OF UND	EVELOPED	RESOUR	CES TO C	FFSHORE	(F	Panel 20)		
					Gas in (Dil Fields (b	ocfg)					
					NGL in Ga	s Fields (m	mbngl)					
Parcel	Flds	Mean	S.D.	Min,F100	F95	F75	Med,F50	F25	F5	Max,F0		
Texas	Oil	0	0	0	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	0		
Oklahoma	Gas	0	0 0 0 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0									

Panel 20. Conditional allocation of undeveloped resources to offshore portion of parcel: gas in oil fields and NGL in gas fields. Mean, standard deviation, minimum, and maximum are computed by applying parameters from Panel 10 to parameters from Panel 16. Fractiles F95, F75, F50, F25, and F5 are approximated by a lognormal distribution. Cells with "#DIV/0!" are not calculated because the distribution is not lognormal.

	CON	DITIONAL A	LLOCATION	OF UND	EVELOPED	RESOUR	CES TO C	FFSHORE	(Panel 21)		
					NGL in O	il Fields (mr	mbngl)					
					Oil in Ga	is Fields (m	imbo)					
Parcel	Flds	Mean	S.D.	Min,F100	F95	F75	Med,F50	F25	F5	Max,F0		
Texas	Oil	0	0	0	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	0		
Oklahoma	Gas	0	0 0 0 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0									

Panel 21. Conditional allocation of undeveloped resources to offshore portion of parcel: NGL in oil fields and oil in gas fields. Mean, standard deviation, minimum, and maximum are computed by applying parameters from Panel 10 to parameters from Panel 17. Fractiles F95, F75, F50, F25, and F5 are approximated by a lognormal distribution. Cells with "#DIV/0!" are not calculated because the distribution is not lognormal.

(DITIONAL A	ALLOCATI	ON OF UND	EVELOPE	RESOUR	CES TO C	FFSHORE	=	(Panel 22)		
			-	Total Resour	ces in Oil F	ields (mmb	o & mmbc	e & mmbr	ıgl)			
	Total Resources in Gas Fields (mmboe & mmbngl & mmbo)											
Parcel	Flds	Mean	S.D.	Min,F100	F95	F75	Med,F50	F25	F5	Max,F0		
Texas	Oil	il 0 0 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0										
Oklahoma	Gas	as 0 0 0 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0										

Panel 22. Conditional allocation of undeveloped resources to offshore portion of parcel: total resources in oil fields and total resources in gas fields. Mean, standard deviation, minimum, and maximum are computed by applying parameters from Panel 10 to parameters from Panel 18. Fractiles F95, F75, F50, F25, and F5 are approximated by a lognormal distribution. Cells with "#DIV/0!" are not calculated because the distribution is not lognormal.

	UNCO	ONDI	FIONAL ES	TIMATES C	F UNDEV	ELOPED	RESOURCE	ES IN ASS	SESSMEN	T UNIT	(Panel 23)	
						Oil in C	Dil Fields (n	nmbo)				
Probab				Gas in Gas Fields (bcfg)								
Geologic	No.	Flds	Mean	S.D.	Min,F100	F95	F75	Med,F50	F25	F5	Max,F0	
1	50490170	Oil	853.382	440.8324	0.464	340.6918	546.1581	758.196	1052.555	1687.336	90605	
1	50620261	Gas	10678.33	678.33 3436.627 34.8 6065.16 8225.118 10164.9 12562.11 17035.8 731730								

Panel 23. Unconditional-1 estimates of undeveloped resources in assessment unit: oil in oil fields and gas in gas fields. Mean, standard deviation, minimum, and maximum are computed by applying the geologic probability from Panel 23 to parameters from Panel 11. Fractiles F95, F75, F50, F25, and F5 are approximated by a lognormal distribution.

UNCO	ONDI	FIONAL ES	TIMATES C	F UNDEV	ELOPED F	RESOURCE	S IN ASS	ESSMENT	UNIT (F	Panel 24)		
			Gas in Oil Fields (bcfg)									
			NGL in Gas Fields (mmbngl)									
No.	Flds	Mean	S.D.	Min,F100	F95	F75	Med,F50	F25	F5	Max,F0		
50490170	Oil	1706.764	964.9344	0.464	624.7984	1041.548	1485.76	2119.41	3533.089	271815		
50620261	Gas	142.3778	12.3778 115.2613 0 34.42281 68.55412 110.661 178.6312 355.7498 29269									

Panel 24. Unconditional-1 estimates of undeveloped resources in assessment unit: gas in oil fields and NGL in gas fields. Mean, standard deviation, minimum, and maximum are computed by applying the geologic probability from Panel 23 to parameters from Panel 12. Fractiles F95, F75, F50, F25, and F5 are approximated by a lognormal distribution.

UNC		DITIONAL E	STIMATES	OF UNDE	EVELOPED RE	SOURCES	IN ASSE	SSMENT L	JNIT (F	Panel 25)
					NGL in Oil	Fields (mm	ibngl)			
					Oil in Gas	Fields (mn	nbo)			
No.	Flds	Mean	S.D.	Min,F100	F95	F75	Med,F50	F25	F5	Max,F0
50490170	Oil	34.13528	20.89278	0.00464	11.51249738	19.90131	29.1147	42.59357	73.63023	8154.5
50620261	Gas	0	0	0	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	0

Panel 25. Unconditional-1 estimates of undeveloped resources in assessment unit: NGL in oil fields and oil in gas fields. Mean, standard deviation, minimum, and maximum are computed by applying the geologic probability from Panel 23 to parameters from Panel 13. Fractiles F95, F75, F50, F25, and F5 are approximated by a lognormal distribution. Cells with "#DIV/0!" are not calculated because the distribution is not lognormal.

UNCC	NDI	TIONAL ES	TIMATES C	F UNDEV	ELOPED F	RESOURCE	S IN ASS	ESSMENT	UNIT (F	anel 26)		
			Tota	al Resourc	es in Oil Fi	elds (mmbo	o & mmbo	e & mmbng	gl)			
			Total Resources in Gas Fields (mmboe & mmbngl & mmbo)									
No.	Flds	Mean	S.D.	Min,F100	F95	F75	Med,F50	F25	F5	Max,F0		
50490170	Oil	1171.978	609.8713	0.54597	464.7129	747.2827	1039.64	1446.369	2325.837	144062		
50620261	Gas	1922.1	1922.1 627.5688 5.8 1082.491 1474.179 1827.17 2264.695 3084.152 151224									

Panel 26. Unconditional-1 estimates of undeveloped resources in assessment unit: total resources in oil fields and total resources in gas fields. Mean, standard deviation, minimum, and maximum are computed by applying the geologic probability from Panel 23 to parameters from Panel 14. Fractiles F95, F75, F50, F25, and F5 are approximated by a lognormal distribution.

	UNC	ONDITION	AL ALLOCA	TION OF L	JNDEVELO	PED RESC	OURCES TO	D PARCEL	(Panel 27)			
					Oil in C	il Fields (m	nmbo)						
			Gas in Gas Fields (bcfg)										
Parcel	Flds	Mean	S.D.	Min,F100	F95	F75	Med,F50	F25	F5	Max,F0			
Texas	Oil	502.4713	259.5621	0.273203	200.5993	321.5779	446.4259	619.7445	993.5033	53348.2			
Oklahoma	Gas	9076.583	76.583 2921.133 29.58 5155.386 6991.351 8640.151 10677.8 14480.43 621971										

Panel 27. Unconditional-1 allocation of undeveloped resources to parcel: oil in oil fields and gas in gas fields. Mean, standard deviation, minimum, and maximum are computed by applying the geologic probability from Panel 23 to parameters from Panel 15. Fractiles F95, F75, F50, F25, and F5 are approximated by a lognormal distribution.

	UNCO	ONDITIONA	L ALLOCA	TION OF U	NDEVELO	PED RESC	URCES T	O PARCEL	. (I	Panel 28)		
					Gas in	Oil Fields (bcfg)					
		NGL in Gas Fields (mmbngl)										
Parcel	Flds	Mean	S.D.	Min,F100	F95	F75	Med,F50	F25	F5	Max,F0		
Texas	Oil	1004.943	.943 568.1534 0.273203 367.8813 613.2636 874.813 1247.909 2080.283 160045									
Oklahoma	Gas	121.0211	.0211 97.97206 0 29.25939 58.27101 94.062 151.8366 302.3873 24878.8									

Panel 28. Unconditional-1 allocation of undeveloped resources to parcel: gas in oil fields and NGL in gas fields. Mean, standard deviation, minimum, and maximum are computed by applying the geologic probability from Panel 23 to parameters from Panel 16. Fractiles F95, F75, F50, F25, and F5 are approximated by a lognormal distribution.

	UN	CONDITION	AL ALLOCA	ATION OF L	INDEVELO	PED RESC	URCES TO	PARCEL		(Panel 29)		
					NGL in C	Dil Fields (m	nmbngl)					
			Oil in Gas Fields (mmbo)									
Parcel	Flds	Mean	S.D.	Min,F100	F95	F75	Med,F50	F25	F5	Max,F0		
Texas	Oil	20.09885	12.30167	0.002732	6.778558	11.71789	17.142756	25.07909	43.35348	4801.34		
Oklahoma	Gas	0	0 0 0 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0									

Panel 29. Unconditional-1 allocation of undeveloped resources to parcel: NGL in oil fields and oil in gas fields. Mean, standard deviation, minimum, and maximum are computed by applying the geologic probability from Panel 23 to parameters from Panel 17. Fractiles F95, F75, F50, F25, and F5 are approximated by a lognormal distribution. Cells with "#DIV/0!" are not calculated because the distribution is not lognormal.

	UNC	ONDITION	AL ALLOCA	TION OF L	JNDEVELO	PED RESC	OURCES TO	D PARCEL		(Panel 30)		
			Тс	tal Resour	ces in Oil F	ields (mmb	o & mmboe	e & mmbng	l)			
		Total Resources in Gas Fields (mmboe & mmbngl & mmbo)										
Parcel	Flds	Mean	S.D.	Min,F100	F95	F75	Med,F50	F25	F5	Max,F0		
Texas	Oil	690.0606	0606 359.0922 0.321469 273.6229 440 612.1387 851.6221 1369.453 84823.7									
Oklahoma	Gas	1633.785	1633.785 533.4335 4.93 920.117 1253.052 1553.098 1924.991 2621.529 128541									

Panel 30. Unconditional-1 allocation of undeveloped resources to parcel: total resources in oil fields and total resources in gas fields. Mean, standard deviation, minimum, and maximum are computed by applying the geologic probability from Panel 23 to parameters from Panel 18. Fractiles F95, F75, F50, F25, and F5 are approximated by a lognormal distribution.

UN	ICON	IDITIONAL	ALLOCATIO	ON OF UN	DEVELOP	ED RESOU	RCES TO	OFFSHO	RE (Panel 31)
					Oil in C	il Fields (m	mbo)			
					Gas in	Gas Fields	(bcfg)			
Parcel	Flds	Mean	S.D.	Min,F100	F95	F75	Med,F50	F25	F5	Max,F0
Texas	Oil	0	0	0	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	0
Oklahoma	Gas	0	0	0	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	0

Panel 31. Unconditional-1 allocation of undeveloped resources to offshore portion of parcel: oil in oil fields and gas in gas fields. Mean, standard deviation, minimum, and maximum are computed by applying the geologic probability from Panel 23 to parameters from Panel 19. Fractiles F95, F75, F50, F25, and F5 are approximated by a lognormal distribution. Cells with "#DIV/0!" are not calculated because the distribution is not lognormal.

	UN	ICONDITION	VAL ALLOC	CATION OF L	JNDEVELO	PED RESOL	JRCES TO O	FFSHORE	(Panel 32)		
					Gas i	n Oil Fields ((bcfg)					
		NGL in Gas Fields (mmbngl)										
Parcel	Flds	Mean	S.D.	Min,F100	F95	F75	Med,F50	F25	F5	Max,F0		
Texas	Oil	0	0 0 0 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0									
Oklahoma	Gas	0	0 0 0 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0									

Panel 32. Unconditional-1 allocation of undeveloped resources to offshore portion of parcel: gas in oil fields and NGL in gas fields. Mean, standard deviation, minimum, and maximum are computed by applying the geologic probability from Panel 23 to parameters from Panel 20. Fractiles F95, F75, F50, F25, and F5 are approximated by a lognormal distribution. Cells with "#DIV/0!" are not calculated because the distribution is not lognormal.

	UN	CONDITION	VAL ALLOC	ATION OF	UNDEVELO	PED RESOL	JRCES TO O	FFSHORE		(Panel 33)			
					NGL in	Oil Fields (m	nmbngl)						
		Oil in Gas Fields (mmbo)											
Parcel	Flds	Mean	S.D.	Min,F100	F95	F75	Med,F50	F25	F5	Max,F0			
Texas	Oil	0	0	0	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	0			
Oklahoma	Gas	s 0 0 0 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0											

Panel 33. Unconditional-1 allocation of undeveloped resources to offshore portion of parcel: NGL in oil fields and oil in gas fields. Mean, standard deviation, minimum, and maximum are computed by applying the geologic probability from Panel 23 to parameters from Panel 21. Fractiles F95, F75, F50, F25, and F5 are approximated by a lognormal distribution. Cells with "#DIV/0!" are not calculated because the distribution is not lognormal.

UI	NCOI	NDITIONAL	ALLO	CATION OF U	NDEVELOP	ED RESOL	IRCES TO	OFFSHOP	RE	(Panel 34)
				Total Resou	ces in Oil F	ields (mmb	o & mmbo	e & mmbnę	gl)	
				Total Resource	ces in Gas F	ields (mmb	oe & mmb	ongl & mml	00)	
Parcel	Flds	Mean	S.D.	Min,F100	F95	F75	Med,F50	F25	F5	Max,F0
Texas	Oil	C)	0	0 #DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	0
Oklahoma	Gas	C)	0	0 #DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	0

Panel 34. Unconditional-1 allocation of undeveloped resources to offshore portion of parcel: total resources in oil fields and total resources in gas fields. Mean, standard deviation, minimum, and maximum are computed by applying the geologic probability from Panel 23 to parameters from Panel 22. Fractiles F95, F75, F50, F25, and F5 are approximated by a lognormal distribution. Cells with "#DIV/0!" are not calculated because the distribution is not lognormal.

	UNCC	NDI	IONAL ES	TIMATES C)F UNDE∖	ELOPED I	RESOURCI	ES IN ASS	SESSMEN	TUNIT (Panel 35)
						Oil in C	Dil Fields (m	nmbo)			
Probab						Gas in	Gas Fields	(bcfg)			
GeoAcc	No.	Flds	Mean	S.D.	Min,F100	F95	F75	Med,F50	F25	F5	Max,F0
1	50490170	Oil	853.382	440.8324	0.464	340.6918	546.1581	758.196	1052.555	1687.336	90605
1	50620261	Gas	10678.33	378.33 3436.627 34.8 6065.16 8225.118 10164.9 12562.11 17035.8 731730							

Panel 35. Unconditional-2 estimates of undeveloped resources in assessment unit: oil in oil fields and gas in gas fields. Mean, standard deviation, minimum, and maximum are computed by applying the geoacc probability from Panel 35 to parameters from Panel 11. Fractiles F95, F75, F50, F25, and F5 are approximated by a lognormal distribution.

UNCC	NDI	FIONAL ES	TIMATES C	F UNDEV	ELOPED F	RESOURCE	S IN ASS	SESSMENT	TUNIT (F	Panel 36)		
					Gas in	Oil Fields (bcfg)					
			NGL in Gas Fields (mmbngl)									
No.	Flds	Mean	S.D.	Min,F100	F95	F75	Med,F50	F25	F5	Max,F0		
50490170	Oil	1706.764	964.9344	0.464	624.7984	1041.548	1485.76	2119.41	3533.089	271815		
50620261	Gas	142.3778	2.3778 115.2613 0 34.42281 68.55412 110.661 178.6312 355.7498 29269									

Panel 36. Unconditional-2 estimates of undeveloped resources in assessment unit: gas in oil fields and NGL in gas fields. Mean, standard deviation, minimum, and maximum are computed by applying the geoacc probability from Panel 35 to parameters from Panel 12. Fractiles F95, F75, F50, F25, and F5 are approximated by a lognormal distribution.

UNCO	ONDI	TIONAL ES	TIMATES (/ELOPED R	ESOURCE	S IN ASS	ESSMENT	UNIT (F	anel 37)
					NGL in O	il Fields (m	mbngl)			
					Oil in Ga	as Fields (m	nmbo)			
No.	Flds	Mean	S.D.	Min,F100	F95	F75	Med,F50	F25	F5	Max,F0
50490170	Oil	34.13528	20.89278	0.00464	11.512497	19.90131	29.1147	42.59357	73.63023	8154.5
50620261	Gas	0	0	0	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	0

Panel 37. Unconditional-2 estimates of undeveloped resources in assessment unit: NGL in oil fields and oil in gas fields. Mean, standard deviation, minimum, and maximum are computed by applying the geoacc probability from Panel 35 to parameters from Panel 13. Fractiles F95, F75, F50, F25, and F5 are approximated by a lognormal distribution. Cells with "#DIV/0!" are not calculated because the distribution is not lognormal.

UNCO	ONDI	TIONAL ES	TIMATES (OF UNDE	/ELOPED I	RESOURC	ES IN ASS	ESSMENT	UNIT (F	anel 38)		
			Tot	al Resourc	es in Oil F	ields (mmb	o & mmboe	e & mmbng	l)			
			Tota	al Resourc	es in Gas F	Fields (mml	boe & mmb	ngl & mmb	0)			
No.	Flds	Mean										
50490170	Oil	1171.978	609.8713	0.54597	464.7129	747.2827	1039.638	1446.369	2325.837	144062		
50620261	Gas	1922.1 627.5688 5.8 1082.491 1474.179 1827.174 2264.695 3084.152 151224										

Panel 38. Unconditional-2 estimates of undeveloped resources in assessment unit: total resources in oil fields and total resources in gas fields. Mean, standard deviation, minimum, and maximum are computed by applying the geoacc probability from Panel 35 to parameters from Panel 14. Fractiles F95, F75, F50, F25, and F5 are approximated by a lognormal distribution.

	UNC	ONDITION	AL ALLOCA	TION OF L	INDEVELO	PED RESC	OURCES TO	O PARCEL	(Panel 39)			
					Oil in C	Dil Fields (n	nmbo)						
			Gas in Gas Fields (bcfg)										
Parcel	Flds	Mean	S.D.	Min,F100	F95	F75	Med,F50	F25	F5	Max,F0			
Texas	Oil	502.4713	259.5621	0.273203	200.5993	321.5779	446.4259	619.7445	993.5033	53348.2			
Oklahoma	Gas	9076.583	76.583 2921.133 29.58 5155.386 6991.351 8640.151 10677.8 14480.43 621971										

Panel 39. Unconditional-2 allocation of undeveloped resources to parcel: oil in oil fields and gas in gas fields. Mean, standard deviation, minimum, and maximum are computed by applying the geoacc probability from Panel 35 to parameters from Panel 15. Fractiles F95, F75, F50, F25, and F5 are approximated by a lognormal distribution.

L	INCO	NDITIONAL	ALLOCAT	ION OF UN	DEVELOPE	D RESOL	JRCES TO) PARCEL	. (F	Panel 40)			
					Gas in Oi	l Fields (b	cfg)						
			NGL in Gas Fields (mmbngl)										
Parcel	Flds	Mean	S.D.	Min,F100	F95	F75	Med,F50	F25	F5	Max,F0			
Texas	Oil	1004.943	568.1534	0.2732032	367.8813	613.264	874.813	1247.91	2080.28	160045			
Oklahoma	Gas	121.0211	1.0211 97.97206 0 29.25939 58.271 94.062 151.837 302.387 24879										

Panel 40. Unconditional-2 allocation of undeveloped resources to parcel: gas in oil fields and NGL in gas fields. Mean, standard deviation, minimum, and maximum are computed by applying the geoacc probability from Panel 35 to parameters from Panel 16. Fractiles F95, F75, F50, F25, and F5 are approximated by a lognormal distribution.

	UN	ICONDITIO	VAL ALLOC	ATION OF	UNDEVELO	PED RESO	URCES TO	PARCEL		(Panel 41)		
					NGL in C	Dil Fields (m	mbngl)					
		Oil in Gas Fields (mmbo)										
Parcel	Flds	Mean	S.D.	Min,F100	F95	F75	Med,F50	F25	F5	Max,F0		
Texas	Oil	20.09885	12.30167	0.002732	6.7785585	11.717891	17.14276	25.07909	43.353477	4801.34		
Oklahoma	Gas	0	0 0 0 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0									

Panel 41. Unconditional-2 allocation of undeveloped resources to parcel: NGL in oil fields and oil in gas fields. Mean, standard deviation, minimum, and maximum are computed by applying the geoacc probability from Panel 35 to parameters from Panel 17. Fractiles F95, F75, F50, F25, and F5 are approximated by a lognormal distribution. Cells with "#DIV/0!" are not calculated because the distribution is not lognormal.

	UNC	ONDITION	AL ALLOCA	TION OF L	INDEVELO	PED RESC	OURCES TO	D PARCEL	(Panel 42)
			Тс	tal Resourc	es in Oil Fi	ields (mmb	o & mmboe	e & mmbngl	l)	
			Tot	al Resourc	es in Gas F	ields (mmb	ooe & mmb	ngl & mmb	0)	
Parcel	Flds	Mean	S.D.	Min,F100	F95	F75	Med,F50	F25	F5	Max,F0
Texas	Oil	690.0606	359.0922	0.321469	273.6229	440	612.1387	851.6221	1369.453	84823.7
Oklahoma	Gas	1633.785	533.4335	4.93	920.117	1253.052	1553.098	1924.991	2621.529	128541

Panel 42. Unconditional-2 allocation of undeveloped resources to parcel: total resources in oil fields and total resources in gas fields. Mean, standard deviation, minimum, and maximum are computed by applying the geoacc probability from Panel 35 to parameters from Panel 18. Fractiles F95, F75, F50, F25, and F5 are approximated by a lognormal distribution.

UN	ICON	DITIONAL	ALLOCA	TION OF L	INDEVELO	PED RESC	URCES TO	O OFFSHO	RE ((Panel 43)				
			Oil in Oil Fields (mmbo)											
			Gas in Gas Fields (bcfg)											
Parcel	Flds	Mean	S.D.	Min,F100	F95	F75	Med,F50	F25	F5	Max,F0				
Texas	Oil	0)	0 0	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	0				
Oklahoma	Gas	0		0 0	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	0				

Panel 43. Unconditional-2 allocation of undeveloped resources to offshore portion of parcel: oil in oil fields and gas in gas fields. Mean, standard deviation, minimum, and maximum are computed by applying the geoacc probability from Panel 35 to parameters from Panel 19. Fractiles F95, F75, F50, F25, and F5 are approximated by a lognormal distribution. Cells with "#DIV/0!" are not calculated because the distribution is not lognormal.

	UN	CONDITION	VAL ALLOC	ATION OF	UNDEVELO	PED RESOL	JRCES TO O	FFSHORE		(Panel 44)
					Gas	in Oil Fields	(bcfg)			
					NGL in	Gas Fields (mmbngl)			
Parcel	Flds	Mean	S.D.	Min,F100	F95	F75	Med,F50	F25	F5	Max,F0
Texas	Oil	0	C	0	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	0
Oklahoma	Gas	0	C	0	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	0

Panel 44. Unconditional-2 allocation of undeveloped resources to offshore portion of parcel: gas in oil fields and NGL in gas fields. Mean, standard deviation, minimum, and maximum are computed by applying the geoacc probability from Panel 35 to parameters from Panel 20. Fractiles F95, F75, F50, F25, and F5 are approximated by a lognormal distribution. Cells with "#DIV/0!" are not calculated because the distribution is not lognormal.

2	UNC	ONDITION	AL ALLOCAT	FION OF UN	DEVELOPE	ED RESOUF	RCES TO O	FFSHORE	(F	Panel 45)				
			NGL in Oil Fields (mmbngl)											
					Oil in Ga	as Fields (mi	mbo)							
Parcel	Flds	Mean	S.D.	Min,F100	F95	F75	Med,F50	F25	F5	Max,F0				
Texas	Oil	0	0	0	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	0				
Oklahoma	Gas	0	0 0 0 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0											

Panel 45. Unconditional-2 allocation of undeveloped resources to offshore portion of parcel: NGL in oil fields and oil in gas fields. Mean, standard deviation, minimum, and maximum are computed by applying the geoacc probability from Panel 35 to parameters from Panel 21. Fractiles F95, F75, F50, F25, and F5 are approximated by a lognormal distribution. Cells with "#DIV/0!" are not calculated because the distribution is not lognormal.

U	NCO	NDITIONA	L ALLC	CAT	ION OF UN	DEVELOP	ED RESOL	IRCES TO	OFFSHOP	RE (Panel 46)			
			Total Resources in Oil Fields (mmbo & mmboe & mmbngl)											
				Tot	al Resource	es in Gas F	ields (mmb	oe & mmb	ngl & mmb	0)				
Parcel	Flds	Mean	S.D.		Min,F100	F95	F75	Med,F50	F25	F5	Max,F0			
Texas	Oil	(D	0	0	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	0			
Oklahoma	Gas	(C	0	0	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	0			

Panel 46. Unconditional-2 allocation of undeveloped resources to offshore portion of parcel: total resources in oil fields and total resources in gas fields. Mean, standard deviation, minimum, and maximum are computed by applying the geoacc probability from Panel 35 to parameters from Panel 22. Fractiles F95, F75, F50, F25, and F5 are approximated by a lognormal distribution. Cells with "#DIV/0!" are not calculated because the distribution is not lognormal.

												(Pa	inel 47)
					L	Inteste	ed	Poten	tial/Ur	tested	t		
		Assessm	ent-Unit Ar	ea (acres)	Perc	centag	e (%)	Perc	entage	e (%)	Area F	Per Cell	(acres)
No.	Flds	Minimum	Mode	Maximum	Min	Mod	Max	Min	Mod	Max	Min	Mod	Max
50490170	Oil	14827000	16474000	18121000	100	100	100	0.5	9	40	80	128	320
50620261	Gas	5800000	6100000	6400000	96	97	98	10	35	70	60	120	320

Panel 47. Input data for number of potential cells: assessment-unit area, untested percentage of assessment-unit area, potential percentage of untested area, and area per cell -minimum, mode, and maximum.

								(Panel 48)
			Assessme	nt-Unit Are	a (acres)	Triangular I	Distribution	
No.	Flds	Min,F100	Med,F50	Max,F0	Midpoint	Mode	Mean	S.D.
50490170	Oil	14827000	16474000	18121000	16474000	16474000	16474000	672384.9
50620261	Gas	5800000	6100000	6400000	6100000	6100000	6100000	122474.5

Panel 48. Assessment-unit area: triangular distribution. Midpoint, median, mean, and standard deviation are computed.

								(Panel 49)
			Lintonto	d Doroonto	ra(0/) Tri		tribution	
No.	Flds	Min,F100		d Percentao Max.F0		J	Mean	S.D.
50490170		100	100	100	100		100	0.2.
50620261	Gas	96	97	98	97	97	97	0.408248

Panel 49. Untested percentage of assessment-unit area: triangular distribution. Midpoint, median, mean, and standard deviation are computed.

								(Panel 50)
		P	otential/Unt	ested Perc	entage (%)	Triangula	r Distributio	on
No.	Flds	Min,F100	Med,F50	Max,F0	Midpoint	Mode	Mean	S.D.
50490170	Oil	0.5	15.25631	40	20.25	9	16.5	8.487736
50620261	Gas	10	37.5963	70	40	35	38.33333	12.30402

Panel 50. Potential percentage of untested area: triangular distribution. Midpoint, median, mean, and standard deviation are computed.

								(Panel 51)
			Area I	Per Cell (ac	res) Triar	ngular Distri	bution	
No.	Flds	Min,F100	Med,F50	Max,F0	Midpoint	Mode	Mean	S.D.
50490170	Oil	80	168.2107	320	200	128	176	51.84593
50620261	Gas	60	158.7548	320	190	120	166.6667	55.57777

Panel 51. Area per cell: triangular distribution. Midpoint, median, mean, and standard deviation are computed.

										(Panel 52)
				F	Potential Ur	ntested Per	centage (%)		
No.	Flds	Mean	S.D.	Min,F100	F95	F75	Med,F50	F25	F5	Max,F0
50490170	Oil	16.5	8.487736	0.5	6.612732	10.58213	14.67252	20.344	32.5558	40
50620261	Gas	37.18333	11.93603	9.6	21.15147	28.66267	35.40396	43.73077	59.26021	68.6

Panel 52. Potential percentage of assessment-unit area. Mean, standard deviation, minimum, and maximum are computed by combining parameters from Panels 48 and 49. Fractiles F95, F75, F50, F25, and F5 are approximated by a lognormal distribution.

										(Panel 53)
					Potential I	Jntested Ai	rea (acres)			
No.	Flds	Mean	S.D.	Min,F100	F95	F75	Med,F50	F25	F5	Max,F0
50490170	Oil	2718210	1403825	74135	1085410	1739836	2415140	3352558	5373915	7248400
50620261	Gas	2268183	729667.1	556800	1288617	1747313	2159207	2668196	3617968	4390400

Panel 53. Potential untested area of assessment unit. Mean, standard deviation, minimum, and maximum are computed by combining parameters from Panels 48 and 49. Fractiles F95, F75, F50, F25, and F5 are approximated by a lognormal distribution.

										(Panel 54)
		Number of Potential Untested Cells								
No.	Flds	Mean	S.D.	Min,F100	F95	F75	Med,F50	F25	F5	Max,F0
50490170	Oil	15444.38	7976.192	232	6167	9885	13722	19049	30533	90605
50620261	Gas	13609.1	4377.83	1740	7732	10484	12955	16009	21707	73173

Panel 54. Number of potential untested cells. Mean, standard deviation, minimum, and maximum are computed by combining parameters from Panels 50 and 51. Fractiles F95, F75, F50, F25, and F5 are approximated by a lognormal distribution.