
Abstract
Important changes to how customizations and automa-

tions are created have been included in the latest update to Esri
ArcGIS software, version 10. Microsoft has dropped support
for Component Object Model (COM)-based programming
languages Visual Basic 6 and Visual Basic for Applications
(VBA) and is emphasizing a shift to Java- and .NET-compliant
languages. As a result of this change, Esri is following suit
by removing the familiar VBA development environment
from their products, discontinuing its support, and promoting
new scripting and application development alternatives. This
paper seeks to describe the process of making the change from
COM to .NET by (1) clarifying the reasons for the change,
(2) discussing the leading vendor-supported, alternative
scripting methods, (3) explaining the new Add-in model for
customizing the ArcGIS interface, and (4) describing the
most common and important differences between VBA and
VB.NET code that are encountered during a conversion from
previous versions of ArcGIS to version 10.

Introduction
With the release of ArcGIS 10, Esri has implemented

many new features and updated components to their popular
GIS software package. One of the most significant changes

Automation in ArcGIS 10: Understanding Changes in
Methods of Customization and Options for Migration of

Legacy Code

By Andrew L. Wunderlich

 Tectonics & Structural Geology Research Group
 Department of Earth and Planetary Sciences
 and Science Alliance Center of Excellence
 306 Earth & Planetary Sciences Building

 1412 Circle Drive
 University of Tennessee

 Knoxville, TN 37996-1410
 Telephone: (865) 974-6448

 Fax: (865) 974-9326
 email: gibbon@utk.edu

for power users is the way in which scripting, automations,
and customizations to the user interface are handled. At the
DMT’09 meeting in Morgantown, W.Va., I gave a presenta-
tion entitled “Improving ArcGIS workflow: Automation
using Visual Basic for Applications (VBA)” in which I
described using VBA to customize the ArcMap 9.x interface
(Wunderlich, 2010). Since that time, the automations I
described and posted to the Esri ArcScripts Web site have
been downloaded over 1,600 times collectively, and I have
received many emails regarding that presentation and the
scripts described within it. Clearly, there is still a great interest
in VBA applications, but as support for these applications is
waning, it is now necessary to update these applications to
work in the new customization framework of ArcGIS.

Since the debut of the ArcGIS suite (v. 8.0) more than
10 years ago, Visual Basic for Applications (VBA) has been
its supported, integrated scripting language. In ArcGIS 10,
support for the Microsoft Component Object Model (COM)-
based VBA has been dropped, and a shift to Java- and .NET
Framework-compliant programming languages is being
emphasized. Customizations to the ArcGIS interface now
require new methods of developing and debugging applica-
tions and scripts. Scripts, tools, and user interfaces developed
using VBA will have to be converted to a compliant scripting
language (such as Python) or converted to Java or .NET.

From “Digital Mapping Techniques ‘10—Workshop Proceedings”
U.S. Geological Survey Open-File Report 2012–1171
http://pubs.usgs.gov/of/2012/1171/

mailto:gibbon@utk.edu
http://pubs.usgs.gov/of/2012/1171/

82   Digital Mapping Techniques ‘10

Customizing ArcGIS 10
One of the great advantages of the ArcGIS framework

is that it is open for users to create customizations at any
level of expertise, across the entire spectrum of the software’s
functionality. The most common forms of customization in
ArcGIS 10 remain fundamentally the same as they were at 9.x,
but with some notable differences, as explained below:

•	 Layer files, styles, representations, and templates in
ArcMap documents

•	 Model Builder for creating geoprocessing workflows

•	 Python scripting (now with ArcPy) for advanced geo-
processing and map production

•	 Custom buttons and user interfaces (Add-ins) are cre-
ated with Java, VB.NET, or C# outside ArcGIS using
Microsoft Visual Studio (or Eclipse).

The first two items in this list remain relatively unchanged
from 9.x. The more significant changes are the increased
support for Python scripting and the deprecation of VBA and
adoption of the Add-in component model, which uses the
.NET development environment. The remainder of the discus-
sion in this paper regarding customizations will focus on the
latter two forms of customization.

Python Scripting and the New ArcPy Site-
Package

With the launch of ArcGIS 10, Esri has fully embraced
Python as its scripting language of choice for geoprocessing
and automation of map production. Python is an open-source,
cross-platform scripting language that has been in extensive
use since the early 2000s. Some of the advantages of Python
include its gentle learning curve, highly readable code
structure, and runtime interpretation (no compilation or system
registration is necessary). The ability to use Python for script-
ing has existed within the ArcGIS framework since version
9.0, mainly for creating geoprocessing scripts for use within
ArcToolbox. Until now, Python was rather limited in func-
tionality because many components of the ArcGIS framework
were not exposed to Python. To improve the functionality
of Python, Esri created the ArcPy site-package and added a
command-line Python scripting window to all ArcGIS applica-
tions in order to allow scripts to be loaded and run on-the-fly
within the individual applications (for example, in ArcMap
and ArcCatalog). The ArcGIS Help describes ArcPy as an
add-on to Python that “…provides access to geoprocessing
tools as well as additional functions, classes, and modules that
allow you to create simple or complex workflows quickly and
easily” (ArcGIS Resource Center, 2011a).

Esri states that ArcPy has five major organizational
groups: tools, environments, functions, classes, and modules

(ArcGIS Resource Center, 2011a). ArcPy tools expose all
available Toolbox tools, depending on your license level.
This includes basic tools such as Buffer, Copy, Append, and
Dissolve, and additional tools that are exposed by ArcEditor
or ArcInfo license levels (for example, Densify, Snap), plus
any tools exposed by licensed extensions such as the Hillshade
tool in Spatial Analyst. Environments allow you to modify
the tool’s parameters that are used while executing, including:
snapping tolerance, cell size for raster analysis, and input
and output workspaces. Functions are general-use with no
license dependence. They are used to do basic things such
as checking for the existence of an object, querying feature
class parameters such as the spatial reference, and refreshing
the map view. Classes are “helpers” that aid the creation of
objects (also known as instances) such as a spatial reference, a
coordinate pair (point), or a cursor to store a set of features to
be processed iteratively. These “instances” of objects can be
referenced as often as needed during the execution of a script.
Modules are groups of classes, used for referencing a specific
set of functions related to a particular aspect of ArcGIS. For
example, the Mapping module gives the user access to func-
tions that open map documents, manipulate layers, and export
or print maps. For more information about using Python and
ArcPy in ArcGIS, see the ArcGIS Desktop Help topic “What
is ArcPy?”

Using the Python window and utilizing the functions
exposed by ArcPy, one can create some very powerful automa-
tions to aid in speeding up repetitive geoprocessing and map
creation tasks. Consider the following example of a workflow
that could be scripted with Python:

An organization making an atlas is trying to cre-
ate a graphical index of the atlas pages that shows
the extent of each larger scale regional map on a
small-scale map of the world. The process to do this
manually would go something like this:

•	 Open the ArcMap document of the atlas page.

•	 Create a feature class to store a polygon that repre-
sents the spatial extent of the page.

•	 Query the extent of the map and draw the corre-
sponding polygon.

•	 Create fields and calculate values in the polygon fea-
ture class attribute table that identify the map name
and map scale.

•	 Close the atlas page map document.

•	 Open the map document that represents the graphical
index.

•	 Add the polygon feature class created in the previous
steps.

•	 Set the layer properties to label the polygon with the
map name.

•	 Save and close the graphical index map document.

http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#/What_is_ArcPy/000v000000v7000000/
http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#/What_is_ArcPy/000v000000v7000000/

Automation in ArcGIS 10   83

Each step in this scenario can be accomplished by accessing
various ArcPy modules and their classes: open and close map
documents, create feature classes, query the map extent, create
a feature based on the extent, add fields to the attribute table,
calculate values based on map parameters queried from the
document, add layers to map documents, and set map layer-
labeling parameters. The user could additionally make the
process iterative, whereby the script opens each map page,
carries out the process of creating the extent polygon, and
adds it to the graphical index map document in turn. If you or
your organization has handled this type of process with a VBA
script in the past, then a Python script will probably work very
well for you in ArcGIS 10. Automation of repetitive processes
that do not require a lot of user interaction are prime candi-
dates for Python scripting.

Limitations of Python

The example presented in the previous section is one that
is well suited to a Python solution. Many other tasks, such
as generating empty databases from a template, validating
database structures, and automated export of maps, are all
perfect candidates for Python scripting solutions. However,
as a development environment, Python has two major
shortcomings when compared to more robust development
environments such as Microsoft Visual Studio .NET (or even
VBA). First, not all components of ArcGIS are exposed to
Python. Geoprocessing tools and many functions for creating
and interrogating datasets and map documents are available,
but customizations to tool functions, or building new tools,
is really not possible because access to the full library of
ArcObjects is not available. Second, the editing and debug-
ging capabilities of Python are limited. Third-party editors
for Python, such as PythonWin (which is included with the
ArcGIS 10 application suite), improve the readability and
editability of the code, but do not have the power to debug and
validate code as Visual Studio can. These are minor shortcom-
ings and should not prevent users from developing scripts with
Python. It is, after all, a scripting language, not an application
development environment.

This brings us to the discussion of where the usefulness
of Python gives way to more robust programming solutions.
Python is not unlimited in capability and it is not appropri-
ate for some important types of customizations that were
accomplished with VBA in the past. Python’s most important
limitations compared to VBA or .NET are (1) it cannot
listen for or respond to events within the ArcGIS application
framework and (2) you cannot create any custom user inter-
faces that are tied directly to the application framework, such
as buttons, toolbars, or user forms. If you have custom buttons,
toolbars, combo boxes, editor extensions, or interactive forms
that you need to function in ArcGIS 10, they will have to be
recreated in the new system of customizations that Esri has
implemented; these are called Add-ins.

Goodbye, VBA! Introducing Add-ins for
ArcGIS

The Add-in model for customizing ArcGIS is a new
feature, added at version 10. Add-ins have taken the place
of VBA as the method for extending the user interface of
Microsoft Windows-based applications that support custom-
ization. According to the ArcGIS Resource Center, the Add-in
model “provides you with a declaratively-based framework for
creating a collection of customizations conveniently packaged
within a single compressed file” (ArcGIS Resource Center,
2011b). A more detailed discussion of the components of an
Add-in for ArcGIS is presented in the next section. As for
VBA, Esri has decided to continue support in a very limited
fashion to facilitate the changeover. By default, VBA is not
installed with ArcGIS 10, but it can be installed separately. If
you choose to install VBA, a special license keycode must be
requested from Esri to make it work, as if it were an extension
such as Spatial Analyst. Esri is strongly discouraging any
development using VBA and suggests that users migrate
code to a supported language such as VB.NET, C#, C++, or
Python. After version 10.0, VBA will be completely removed
from ArcGIS and users will need to use the Add-in model for
customizations to the user interface.

Overview of Add-ins

Add-ins are written in either a .NET or Java development
environment. Major development packages that are supported
by Esri include Eclipse and Microsoft Visual Studio (MSVS)
2008 and 2010, including the MSVS 2008 Express edition,
which can be downloaded free of charge from Microsoft.
[Note: As of this writing, only the 2008 version of MSVS
Express is supported by the ArcObjects software develop-
ment kit (SDK) for the Microsoft .NET Framework. See the
SDK system requirements page for more information.] The
ArcObjects SDK includes a wizard that integrates into these
development environments to easily build new projects. The
wizard handles the creation of all the required components
of the Add-in. These components consist of the .NET or Java
class (the code) and an XML file that describes the Add-in to
ArcGIS, as well as any icons or picture resources required by
the Add-in. When a new Add-in is created with the wizard,
the user can name it, describe it, and specify its type. Then the
required components are created and opened in the Solution
Explorer of MSVS for the user to add the custom code.

There are many types of Add-ins available for ArcGIS
when using the wizard:

•	 Buttons

•	 Tools

•	 Combo boxes

•	 Menus and context menus

http://www.microsoft.com/express/Downloads/#Visual_Studio_2008_Express_Downloads
http://resources.arcgis.com/content/arcgissdks/10.0/system-requirements

84   Digital Mapping Techniques ‘10

•	 Multi-items

•	 Toolbars

•	 Tool palettes

•	 Dockable windows

•	 Application extensions

•	 Editor extensions
For more information about each type, and help in choosing
the right one for your needs, see the article “Building add-ins
for ArcGIS Desktop” in the ArcGIS Resource Center. The most
common customizations are buttons, tools, combo boxes, tool-
bars, and editor extensions. Also, customizations that display
information or accept input from the operator may present the
user with a Windows user form, which can easily be added to
button and tool projects.

Once an Add-in is created and custom code is written
or converted from an existing VBA or VB6 project, it can be
built and registered for use in ArcGIS. One of the advantages
to the new system of Add-ins is that the user no longer has to
paste code or load forms into the VBA editor manually or run
an installation program to enable the Add-in to be recognized
by ArcGIS. Simply building the project in MSVS will auto-
matically register the Add-in on the computer used to develop
it, and the .ESRIAddin file created during that process can be
distributed to others and registered for use in ArcGIS simply
by double-clicking the file and following the prompts.

Common Issues Encountered when
Migrating Code

The purpose of this paper is not to step through a conver-
sion of code from VBA to .NET, as there are many articles
and resources available on the Web to help with specific
details about the process. It is also difficult in a concise paper
to explain all the nuances of conversion, so I have compiled
some helpful resources for conversion, as well as links to
articles that describe specific conversion tasks. Instead, I want
to emphasize major differences between developing in .NET
(specifically Visual Basic .NET) and in the VBA environment,
including some of the most common errors you will encounter
and some of the key differences in properties and syntax.

One consideration when beginning the conversion is the
software environment in which you will be redeveloping your
VBA projects. If you choose to use the freely available MSVS
Express (VB.NET or C#), keep in mind that only the 2008
version is currently compatible with the ArcObjects SDK. The
new project wizard will not be available if you use any 2010
Express edition (the wizard is available in all full versions
of MSVS, 2008 and 2010). Also, one of the most helpful
components of the SDK is the ArcGIS Snippet Finder, which
is only available with full versions of MSVS and will not be

available in any Express edition. Snippet Finder allows you
to search for bits of code already written in .NET that can be
inserted into your project.

Importing VBA Code to an Add-in

The first step for most code conversions is simply to
import or copy/paste code from a VBA project to a new add-in
project, in Visual Studio. In ArcGIS 9.x and earlier, code is
commonly stored in the ThisDocument class of the “Normal”
template of the application being customized (for example,
in ArcMap or ArcCatalog). The code in that class can be
exported to a file, typically called ThisDocument.cls. When
you begin a new project in Visual Studio, you can import the
contents of ThisDocument.cls to a new class in your project.
Then you can take advantage of some of the error correction
features of Visual Studio, which are far more advanced than
the VBA editor’s debugging capabilities. Depending on
how many custom buttons and functions are stored in the
ThisDocument class, you will probably need to split the code
among several new classes and (or) several add-ins.

Once the code you need is imported into your project,
notice the zigzag underlines on certain parts of the code. These
denote errors in the code. The MSVS Error List inventories
all the errors in the code, and by stepping through each error
and either making the suggested correction or reworking the
syntax, errors can be quickly identified and corrected. If you
find that some of the errors are repetitive (as some of the
errors undoubtedly will be) you can use the “Find All Refer-
ences” command from the context menu that pops up when
right-clicking on an object in the code window. This command
returns, to the Find Symbol Results window, all instances of a
particular property or function within your project and gives
you important information such as the object definition and
line and character number of the occurrence (fig. 1). This is
very helpful when you need to edit all instances of a reference
or property consistently. Hovering the cursor over an error
brings up a small exclamation point with a dropdown arrow
that gives suggestions to correct errors (fig. 2), but be careful,
the suggestions are based on the currently loaded references
and might not always have the correct solution!

Another invaluable tool when working through a code
conversion is the MSVS Object Browser. Once the ArcObjects
SDK is installed, the Object Browser has access to every class
object, interface, and property or method that can be accessed
programmatically in your customization. This is especially
helpful when an error description in the code informs you that
a particular method is not associated with the object that it is
referencing, or that a previously recognized class type is not
defined and needs an object reference. By using the Object
Browser’s search function, you can search for the method and
see which objects support it; this generally helps you find the
correct object reference and fix the error (fig. 3).

http://help.arcgis.com/en/sdk/10.0/arcobjects_net/conceptualhelp/index.html#/Building_add_ins_for_ArcGIS_Desktop/0001000000w2000000/
http://help.arcgis.com/en/sdk/10.0/arcobjects_net/conceptualhelp/index.html#/Building_add_ins_for_ArcGIS_Desktop/0001000000w2000000/

Automation in ArcGIS 10   85

Figure 1.  Use the “Find All References” command to identify all instances of a particular code object.

Figure 2.  Context-sensitive error suggestions can be helpful to quickly correct errors. In this case, MSVS recognizes that in
order for the “IMxDocument” interface to work properly, a reference to ‘ESRI.ArcGIS.ArcMAPUI’ must be added to the code.
Unfortunately, not all reference errors are recognized automatically and will require the user to search the Help or Object
Browser for a solution.

86   Digital Mapping Techniques ‘10

Figure 3.  The Error List shows that “IFeatureClass” is not defined. Search the Object Browser for interfaces that are not
recognized by the context-sensitive error handling. A search for “IFeatureClass” returns information about its functions, and
a reference to its parent member “ESRI.ArcGIS.Geodatabase”, to which a reference must be added for the interface to be
accessible by the current project.

Fixing Some Common Errors

Errors in code that has been imported from VBA to
VB.NET are inevitable, with varying levels of complexity
when it comes to identifying and correcting their causes. In the
process of unifying the SDK for ArcGIS, Esri has necessarily
updated and changed some components within ArcObjects,
which will in turn create errors in your code where before
there were none. While this paper is not intended to be a
comprehensive troubleshooting guide, it does discuss some
very common errors that have simple solutions, which may
be helpful to anyone making the transition from VBA to
VB.NET.

Before trying to correct your code, remember that
Add-ins and VB.NET are fundamentally different from VBA
customizations in many ways but that the most important thing
to do when converting code is to determine which object class

references your project will need. In VBA, objects could be
referenced implicitly; that is, every object that VBA could pos-
sibly access was exposed and could be called without adding
references to specific classes of ArcObjects. In VB.NET (and
others), object class references are always explicit and you
will need to expose the object classes you plan to use in your
project. These references must be assigned to your project
in two ways: (1) at the project level and (2) in the code. It is
important to understand the need for both sets of references.
At the project level, the references are needed for the MSVS
code editor to give context-sensitive help and debugging
and to properly register the Add-in within the application
framework when it is built (compiled). In the code, “Imports”
statements provide hooks for the editing environment so that
functions within each imported class are available implicitly
within the current project, eliminating the need for additional
syntax to make them explicit:

Automation in ArcGIS 10   87

With an “Imports” statement placed before the first “Class” statement:

	 Imports ESRI.ArcGIS.Carto

… dimensioning can be done implicitly:

	 Dim pFeatureLayer As IFeatureLayer

… instead of explicitly:

	 Dim pFeatureLayer As ESRI.ArcGIS.Carto.IFeatureLayer

One of the most common errors that will appear in the converted code for a button or tool is the reference that most VBA
projects use to hook into the open, currently active ArcMap document. Typically dimensioned as “pMxDoc” or similar, this
reference was set to be equal to “ThisDocument.” Since VBA was integrated into the application framework, this and other
references to the active or open application window or document were coded without an explicit object reference. The fix for
this is very easy. Simply change “ThisDocument” to “My.ArcMap.Document” and your project will have the correct, explicit
reference to the parent application and its currently active document:

	 Dim pMxDoc As IMxDocument
	 Set pMxDoc = ThisDocument
	

…becomes:
	
	 Dim pMxDoc As IMxDocument = My.ArcMap.Document

Also note the slight change in syntax between the old and new references: the “Set” statement has been dropped and the lines are
combined into one statement that simultaneously defines and assigns a value to the object “pMxDoc.” This is due to a minor but
important change in the syntax of assigning values to variables, which leads us to the next most common error: “Set” statements.

In VBA and VB6, many objects had a default property. This required that the “Set” statement be used in order to differenti-
ate between the definition of the object reference and the default property of the object. With the removal of default properties of
objects in VB.NET, the use of “Set” statements has become obsolete, and so too the need for a separate line to “set” a reference
to an instance of an object. In most cases, simply going through your code and deleting all instances of the “Set” keyword
should correct most errors, but some will persist in situations where the default property was used. This will require the removal
of the “Set” statement as well as the addition of an explicit property keyword:

	 Dim lbl1 As Label, lbl2 As Label
	 lbl1 = “Label 1”	 ‘ Assign value to lbl1’s default property (Caption)
	 lbl2 = lbl1		 ‘ Replaces lbl2’s default property with lbl1’s
	 Set lbl2 = lbl1	 ‘ Replace lbl2 with an object reference to lbl1

…becomes:

	 Dim lbl1, lbl2 As New Label	 ‘ Both become type Label
	 lbl1.Text = “Label 1”	 ‘ EXPLICITY define the Text property
	 lbl2.Text = lbl1.Text	 ‘ Copy Text property from lbl1 to lbl2
	 lbl2 = lbl1			 ‘ Copy object reference, “Set” not required

In a way, the object reference itself is now the default property, with all other properties becoming explicit.
The previous example also highlights another common source of errors; those brought about by the elimination of default

properties. When converting from VBA, since default properties were allowed, your code probably contains at least a few of
these errors. You might also find that some properties have changed name or been eliminated. See the following examples:

	 In VBA, this code worked:

	 ‘--- Define the unique identifier for geofeature layers
pGFL_UID = “{E156D7E5-22AF-11D3-9F99-00C04F6BC78E}”

… but in VB.NET, a warning is issued about type conversion:

“Runtime errors might occur when converting ‘String’ to ‘ESRI.ArcGIS.esriSystem.UID’.”

… because the object “pGFL_UID” needs its “Value” property set explicitly:

	 pGFL_UID.Value = “{E156D7E5-22AF-11D3-9F99-00C04F6BC78E}”

88   Digital Mapping Techniques ‘10

In VBA, the “Caption” property was a default property for several objects related to the construction of user forms. This prop-
erty has been eliminated and replaced by the “Text” property. Labels on forms that were defined, even explicitly, will need to be
corrected:

	 lbl1 = “Label 1”			 ‘ Throws an error...
	 lbl1.Caption = “Label 1”	 ‘ So does this...
	 lbl1.Text = “Label 1”		 ‘ This one works!

In the same vein, you may get a warning that there is an object “passed by reference before it has been assigned a value. A null
reference exception could result at runtime.” To avoid this error, you can set an object reference equal to “Nothing” until it is
time to define it properly in your code:

	 Dim m_pEnumGxObject As IEnumGxObject		 ‘ Gives a warning

… whereas:

	 Dim m_pEnumGxObject As IEnumGxObject = Nothing	‘ No warning!

This type of error rarely results in the code not functioning correctly. It is merely good practice to get in the habit of assigning
object references explicitly in your code.

New Methods of Error Handling

With the potential for the number of errors being high in the initial conversion, it is very helpful not only to use the MSVS
Error List to help find errors and correct them but also to update the error handling in your code. In VBA, it was common to use
the “On Error GoTo …” statement to catch errors in code. This code construct is no longer supported, so you will need to update
your error handling. The “Try…Catch…Finally” construct is now the preferred method for error handling. It has the advantage
of being able to deal with unhandled (unexpected) errors while also allowing you to decide what errors to handle explicitly with
customized error messages and actions:

Public Sub Example()

 Try
 ‘ Code to try and set a value for pObject goes here, then check it

If pObject Is Nothing Then
 ‘ Handle this object definition error explicitly
 ‘ Pass this message to the “Catch” statement
Throw New Exception(“Error defining pObject.”)
Else : End If

	 ‘ If all is well with pObject, code continues here...

 Catch ex As Exception	 ‘ This catches all errors
	 ‘ If the exception was handled, displays message you created

MsgBox(“An exception has occurred: “ & ex.Message)
 Finally
	 ‘ Put more code here to execute after error is handled
 End Try

	 End Sub

This is a very simple example of an extremely powerful code construct. For additional information regarding the “Try…Catch…
Finally” statement, see the MSVS help.

http://msdn.microsoft.com/en-us/library/fk6t46tz.aspx

Automation in ArcGIS 10   89

Implementing User Forms Within an Add-in

Many customizations to ArcGIS require a user form to
get input from, or display information to, the user. User forms
in .NET have some very different behavior than they did in
VBA. One major problem when upgrading VBA user forms
to .NET is that, unlike code modules, a form’s design/layout
module is not importable and will need to be reconstructed in
MSVS. But, since much of the functionality and code has to
be “rewired” anyway, redesigning the form is just a necessary
inconvenience. Depending on the complexity of the form that
is being upgraded, or if your customization uses several linked
forms, recreating the functionality and behavior can be tricky
in .NET. In these cases, see the Help and Resources section
below; there are many Web resources for help in making
the switch if you are facing a more complicated scenario.
However, there are several basic behavioral and code-related
issues with forms in .NET that are important to understand in
order to make it easier to use a form in your Add-in.

The most significant difference between user forms in
VBA and .NET is that in VBA the form object was implicitly
referenced throughout the project; that is, once the form was
created in the VBA project, it could be called upon without
further dimensioning or instantiation. As with other objects in
.NET, the form object must be instantiated and defined explic-
itly in order to function correctly. Because of this change,
the way in which forms are handled and referenced across
the project is also quite a bit different, especially if there are
multiple forms that must interact with one another. MSVS
help has an excellent article on using forms in VB.NET, how
to use multiple forms, and how to upgrade form-calling syntax
used in VBA and VB6 (see http://msdn.microsoft.com/en-us/
library/aa289529(VS.71).aspx).

User forms in VBA were “modal” by default. Modal
forms are displayed to the user with the execution of code
following the call effectively paused until the form is hidden
or closed. A form within an Add-in created in .NET has much
more flexibility in its use, display options, and behavior. If
your application’s form must be modal as it would have been
in VBA, you will need to be specific when displaying the form
using the “FormName.ShowDialog” construct. Another useful
option in the form properties is the “FormName.TopMost”
switch. This option allows the form to ride above all other
forms, while giving the user the ability to access other parts of
the application without closing the form. A common example
of a form of this type is a Find and Replace tool window. More
information about displaying forms in Add-ins and VB.NET
can be found in the MSVS help topic Form Class.

Conclusion
It is my hope that this article will be helpful to those

beginning the transition from VBA to the new Add-in model
for customizing ArcGIS. By adopting the Add-in model, Esri
has greatly expanded the ability of users to customize their
products with tools and user interfaces that were not previ-
ously available. While this article focuses on the VB.NET
approach, there are many resources for developing in all the
major languages available from Esri and Microsoft. Below,
I provide some links to the most important online resources,
but do not forget that a little creative Web searching can also
provide answers to your questions. Chances are, someone
has had the same problem or asked the same question you are
currently pondering!

http://msdn.microsoft.com/en-us/library/aa289529(VS.71).aspx
http://msdn.microsoft.com/en-us/library/aa289529(VS.71).aspx
http://msdn.microsoft.com/en-us/library/system.windows.forms.form.aspx

90   Digital Mapping Techniques ‘10

Help and Resources for Customizing ArcGIS 10
These resources will aid in converting VB6/VBA code to VB.NET (or other languages), as well as help you create custom-

izations to ArcGIS 10 using add-ins. I have also included links to legacy topics. Much of the information stored on the legacy
sites can still be quite useful:

ArcGIS 10 Web Help:
- Searchable help for all aspects of the ArcGIS 10 software package.
http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html

Esri Resource Center:

- ArcGIS 9.3 (and later) resources for developers. Includes information on configuring the user interface, using Python for
geoprocessing, writing add-ins for ArcGIS Desktop, and the use of the comprehensive ArcObjects library for developing custom
software and extensions.

http://resources.arcgis.com/content/arcgisdesktop/10.0/customizing

- ArcObjects .NET API Code Gallery – successor to ArcScripts.
http://resources.arcgis.com/gallery/file/arcobjects-net-api

Esri Support Center:
- Search for help with solutions to automation problems. User can create a free Esri Global Account and post questions,

watch threads, and post solutions to others’ problems. The Global Account also provides access to free webinars and other
exclusive training materials relating to ArcGIS. Highly recommended!

http://support.esri.com

MS Visual Studio Help (2008):
- Links to topics relating to all things MSVS.
http://msdn.microsoft.com/en-us/library/52f3sw5c(VS.90).aspx

Legacy Help Sites (ArcGIS 9.3 and earlier)

Esri Developer Network:
- Home page for licensing developer tools, resource center, and developer community pages. Links to version 9.2 and prior

development resources still available here.
http://edn.esri.com

- Code Exchange – find code samples and documentation for ArcGIS 9.2 and earlier.
http://edn.esri.com/index.cfm?fa=codeExch.gateway

Getting started with VBA:
- “Getting started with VBA” in the ArcGIS 9.3 Desktop Help.
http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?TopicName=Getting_started_with_VBA

- “Sample VBA Code” in the ArcGIS 9.3 Desktop Help.
http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?TopicName=Sample_VBA_code

- “Customizing ArcGIS [9.3] Desktop with VBA”.
http://resources.esri.com/help/9.3/arcgisdesktop/com/vba_start.htm

Esri ArcScripts:
- Home page for user community script posting and exchange. This site has been closed to new postings since April 2010,

but all content is still searchable and downloadable. Many useful scripts for version 9.3.1 and earlier. Search with keyword
“Wunderlich” to find my scripts from the DMT’09 presentation.

http://arcscripts.esri.com

http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html
http://resources.arcgis.com/content/arcgisdesktop/10.0/customizing
http://resources.arcgis.com/gallery/file/arcobjects-net-api
http://support.esri.com
http://msdn.microsoft.com/en-us/library/52f3sw5c(VS.90).aspx
http://edn.esri.com
http://edn.esri.com/index.cfm?fa=codeExch.gateway
http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?TopicName=Getting_started_with_VBA
http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?TopicName=Sample_VBA_code
http://resources.esri.com/help/9.3/arcgisdesktop/com/vba_start.htm
http://arcscripts.esri.com

Automation in ArcGIS 10   91

Acknowledgments
Support by Dr. Robert D. Hatcher, Jr. (University of Ten-

nessee Science Alliance Centers of Excellence) and the USGS
National Cooperative Geologic Mapping Program, through
Grant Number G10AC00001, is greatly appreciated.

References

ArcGIS Resource Center, 2011a, A quick tour of Python:
Desktop Help 10.0, accessed at http://help.arcgis.com/en/
arcgisdesktop/10.0/help/index.html#//002z00000023000000.
htm.

ArcGIS Resource Center, 2011b, Building add-ins for ArcGIS
Desktop: ArcObjects SDK 10 Microsoft .NET Framework,
accessed at http://help.arcgis.com/en/sdk/10.0/arcobjects_
net/conceptualhelp/index.html#/Building_add_ins_for_
ArcGIS_Desktop/0001000000w2000000/.

ArcGIS Resource Center, 2011c, ArcObjects SDK 10 system
requirements: ArcGIS SDKs 10, accessed at
http://resources.arcgis.com/content/arcgissdks/10.0/system-
requirements.

Wunderlich, A.L., 2010, Improving ArcGIS workflow:
Automation using Visual Basic for Applications (VBA),
in Soller, D.R., ed., Digital Mapping Techniques ‘09—
Workshop Proceedings: U.S. Geological Survey Open-
File Report 2010–1335, p. 21-26, http://pubs.usgs.gov/
of/2010/1335.

http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#//002z00000023000000.htm
http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#//002z00000023000000.htm
http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#//002z00000023000000.htm
http://help.arcgis.com/en/sdk/10.0/arcobjects_net/conceptualhelp/index.html#/Building_add_ins_for_ArcGIS_Desktop/0001000000w2000000/
http://help.arcgis.com/en/sdk/10.0/arcobjects_net/conceptualhelp/index.html#/Building_add_ins_for_ArcGIS_Desktop/0001000000w2000000/
http://help.arcgis.com/en/sdk/10.0/arcobjects_net/conceptualhelp/index.html#/Building_add_ins_for_ArcGIS_Desktop/0001000000w2000000/
http://resources.arcgis.com/content/arcgissdks/10.0/system-requirements
http://resources.arcgis.com/content/arcgissdks/10.0/system-requirements
http://pubs.usgs.gov/of/2010/1335
http://pubs.usgs.gov/of/2010/1335

