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Computing Maximum-Likelihood Estimates for Parameters 
of the National Descriptive Model of Mercury in Fish 

By David I. Donato 

1 Introduction 
The National Descriptive Model of Mercury in Fish Tissue (NDMMF) is a statistical model 

(Wente, 2004) used to predict the concentration in fish tissue of methylmercury, a potent neurotoxin and 
a known health hazard for humans and wildlife. The utility of the NDMMF derives from its power to 
explain much of the observed variation in fish-tissue methylmercury concentrations as (1) variation by 
geographic location, (2) variation over time, and (3) variation by species and fish length due to 
bioaccumulation. Because it is based on a national database of methylmercury observations, this model 
has the potential to be used locally throughout the conterminous United States and in parts of Canada 
for planning ongoing sampling of methylmercury in fish, and for preparing public health warnings (fish 
consumption advisories) identifying specific species and sizes of fish from particular locations known or 
likely to be high in methylmercury content (Hearn and others, 2006). 

The NDMMF may be expressed formally as follows: 
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and where 
 

• ijkC  is the observed methylmercury concentration for the ith sample from sampling event j  with 
species/cut combination (or type) k , 

• n  is the number of sampling events and m  is the number of species/cut combinations, 
• ijklength  is the length in inches of the fish for the ith sample from sampling event j  with 

species/cut combination (or type) k , 
• some of the { }ijkC  may be left censored, and 
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• ijk  is a random variable specifying the error for the ith sample from sampling event j  with 
species/cut combination (or type) k . 

 
The term sampling event as it applies to the NDMMF means the collection of samples from a 

particular location (such as a lake or part of a stream) at one particular time. The term species/cut in this 
context refers to the combination of a particular species of fish and a type of laboratory treatment 
(Wente, 2004). In this publication, the notations “ ln( )a ”  or “ [ ]ln a ” are used for the natural logarithm 
of a  and are equivalent to “ log ( )e a ”. 

Before the NDMMF can be used to predict methylmercury concentrations in fish tissue, its 
parameters (the sets of values { }j  and { }k ) must be estimated on the basis of a dataset of 
observations, ordinarily for thousands of sampling events and hundreds of species/cut combinations. 
Among many statistical approaches that might be used to compute a set of parameters for this model in 
order to fit the parameters to the observed data, two widely used methods are those of least-squares and 
maximum-likelihood estimation (Cramér, 1946; Miller and Miller, 2004). Because some observations 
are left censored (that is, some are at or below some detection limit), the method of maximum-
likelihood estimation is more suitable for estimating parameters for the NDMMF because it makes 
better use of the information provided by censored observations than the method of least-squares 
estimation (Helsel, 2004). 

Computing the maximum-likelihood estimates of the parameters for the NDMMF requires 
substantial computer-processor time and memory because the NDMMF defines an unusually large 
number of parameters and variables (tens of thousands). Consequently, the task of fitting the parameters 
of the NDMMF to a growing database of fish-tissue mercury observations now strains or exceeds the 
computational capabilities of readibly available statistical software packages and computer 
workstations. This report addresses this problem by deriving and presenting the mathematical and 
statistical results required to enable the development of custom computer software capable of fitting the 
parameters of the NDMMF more quickly and using less computer memory than general-purpose 
statistical software. 

The detailed mathematical explanation of the application of the method of maximum likelihood 
to the NDMMF in this publication includes the derivation of the mathematical expressions used in 
computing maximum-likelihood estimates of the parameters of the NDMMF. These details are included 
in order to do the following: 

 
1. Provide mathematical and computational expressions suitable for use in 

implementing custom software for fitting parameters to the NDMMF in the 
maximum-likelihood sense; and 

2. Present the derivation of maximum-likelihood-estimation (MLE) expressions for the 
current NDMMF in sufficient detail to facilitate future derivation of revised MLE 
expressions in case the NDMMF is revised. 
 

To aid understanding of the derivation of the MLE expressions for the NDMMF, this publication 
first presents in section 2 the derivation of MLE expressions for a much simpler but structurally 
similar model.1 Then section 3 derives and presents the mathematical MLE expressions for the 

                                                           
  1This report uses the symbols α and β differently than the seminal report on the NDMMF (Wente, 2004) in order to clarify 
and emphasize the structural similarity between a simple linear statistical model and the NDMMF. The linear model 
described in section 2 illustrates concepts in a simple setting; these concepts are then applied to the more complex NDMMF 
in section 3. 
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NDMMF. Finally, section 4 discusses the actual computation of maximum-likelihood estimates for 
NDMMF parameters using the results of section 3. 

2 Maximum-Likelihood Estimates for a Linear Model 
This section applies the method of maximum-likelihood estimation to a particular linear 

statistical model involving left-censored data. The derivation of maximum-likelihood estimates for this 
simple model illustrates the basic techniques and principles to be applied in the following section for the 
more complicated model—the NDMMF. 

2.1 A Linear Model 

The particular linear statistical model used for illustration in this section is: 

 y a bx= + +  , (2) 

where 
 

• ~ (0, )N  , 
• some observed values of y may be left censored and, thus, known only to be at or 

below a detection limit that may differ from observation to observation,2  
• y is the response variable, 
• x is the independent variable, and 
• a, b, and σ are the unknown parameters to be estimated. 

 

2.2 The Likelihood Function for the Linear Model 

In general, a likelihood function is the joint probability or probability density of a set of 
observations (that is, of a sample of observed values of the independent and response variables) 
construed as a function of the unknown parameters of a statistical model; in general, finding the 
maximum-likelihood estimates of the unknown parameters means finding a set of values for the 
unknown parameters that maximizes this joint probability (or probability density) of the observations 
under the model. Like least-squares estimation, maximum-likelihood estimation fits the values of the 
parameters of a statistical model to a set of observed values of independent variables and response 
variables (Cramér, 1946; Miller and Miller, 2004). 

For this particular linear model, the likelihood function ( , , )a b   is the joint probability density 
of the uncensored observations multiplied by the joint probability of the censored observations, with this 
entire product regarded as a function of the unknown parameters a, b, and σ. Thus, the likelihood 
function for this linear model is: 

 
( )1

2 22
1

2

1

( )1( , , ) exp  { | , , , }
2

n m
i i

j j j
i j

y a bx
a b P y D a b x 

= =

  − +
= − ⋅ ≤      

∏ ∏ , (3) 

where 

                                                           
  2That is, if jy  is a left-censored observation and jD  is its associated detection limit, then 

 j jy D≤ . 
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• { | , , , }j j jP y D a b x≤  is the probability that jy  is less than or equal to jD  given 

particular values for a, b, σ, and jx , 
• jD  is the detection limit for censored observation j, 
• n is the number of uncensored observations, and 
• m is the number of left-censored observations. 

 
The likelihood function is an application of the general multiplicative formula of probability 

theory. The general multiplicative formula states that when each member of a set of observations is 
independently drawn from a population with a known probability distribution, then the joint probability 
(or joint probability density) of the set of observations is the product of the probabilities (or probability 
densities) of the individual observations (Chung, 1974; Wilks, 1962). The likelihood function 
“ ( , , )”a b   defined here follows this principle in that it is the product of probability densities for all n 
uncensored observations and of probabilities for all m censored observations. 

To understand the first repetitive product on the right-hand side of equation 3, first recall that the 
probability density function (PDF) of a normal distribution3 is 

 
2

1
, 2 22

1 ( )( ) exp
2

wf w 




 −= − 
 

, (4) 

where w is the independent variable and μ and σ are the mean and standard deviation of the normal 
distribution, respectively (Miller and Miller, 2004). 

Then observe that equation 2 can be rewritten as 

 ( )y a bx− + =    (5) 

to emphasize that the difference between the observed response y and the predictor ( )a bx+  is 
equivalent to the error term  . Since   is a normally distributed random variable with 0 = , equation 5 
indicates that ( )y a bx− + is also a stochastic quantity following the normal probability distribution with 
a mean of zero. Therefore, 

 ( )( ) 0 ( )y a bx y a bx− + − = − +   (6) 

can be substituted for ( )w −  in equation 4 to express the probability density for each uncensored 
observation ( , )i ix y  as a function of the unknown parameters ( , , )a b  . The probability density thus 
derived, 

 
( )1

2 22

2( )1 exp
2

i iy a bx


 − +
− 

  
, (7) 

has the properties required for the likelihood function. This probability density tends to be relatively 
large when the error term ( )2( )i iy a bx− +  is near zero, and it tends to be relatively small when the error 
term is further from zero. This means that choices of ( , , )a b  that produce small error terms (errors of 
estimation near zero) also produce higher values of the likelihood function. Intuitively, higher likelihood 
corresponds to a "better" fit of the model to the data. 

                                                           
  3Although it is conventional to use the variable x in expressing the PDF and cumulative distribution function (CDF) of the 
normal distribution, w is used here to avoid confusion with the specific censored observations{ }ix . 
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To understand the second repetitive product on the right-hand side of equation 3, consider what 
it means for an observation to be left censored. An observation is left censored if we know that its 
value lies somewhere on the real number line (or perhaps on the nonnegative side of the real number 
line) at or below a particular value jD , generally referred to as the detection limit4 (Helsel, 2004). 
Thus, for the m left-censored observations, the multiplicative contribution of observation j to the 
likelihood is the probability that observation j is at or below the detection limit jD . Since ~ (0, )N  , 
we can express the contribution of left-censored observations to the likelihood in terms of the 
cumulative distribution function (CDF) of the normal distribution. Let 0,F   denote the CDF of a normal 
distribution with mean μ = 0 and standard deviation σ.  

 
2

1
0, 2 22

1 ( 0)( ) exp
2

A
wF A dw −∞

 −= − 
 

⌠

⌡

 (8) 

denotes the probability of observing a value less than or equal to some specific value A. 
 
 Since 

 ( )j j j j j j j jy D a bx D D a bx≤ → + + ≤ → ≤ − +  , (9) 

then 
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Thus, equation 3 can be rewritten as follows: 
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⌠
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∏ ∏  (11) 

For many physical measurements, values are constrained to be nonnegative. Laboratory 
measurements of concentrations of chemicals in samples of organic material are an example of 
nonnegative values that may be subject to detection limits. A measurement that is both below a 
detection limit and also constrained to be nonnegative can be described as interval censored. An 
observation is interval censored if we know that its value lies in an interval on the real number line 
between an upper and a lower limit. The term left censored is, however, widely applied to censored 
observations of concentrations; therefore, when the term left censored is applied to concentrations, the 
restriction to nonnegative values is implicit. When the response variable jy  for the linear model 
represents a concentration value, its multiplicative contribution to the likelihood differs from that of an 
unconstrained left-censored observation. To determine the contribution to likelihood when jy  is 

                                                           
  4A detection limit is both a lower bound and an upper bound. It is a lower bound for meaningful point measures. When a 
measurement procedure (such as a laboratory analysis of a chemical concentration) cannot provide a measurement below a 
certain value, that value is the detection limit. In such a case, a measurement below the detection limit has no meaning as a 
point value, but it does still provide quantitative information that can be used in statistical analysis: the measurement conveys 
the information that a value has been observed that is less than or equal to the detection limit. The detection limit is also the 
upper bound for the unknown value that could not be measured as a point value. A measurement at or below the detection 
limit is referred to as a left-censored observation. 
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constrained to be nonnegative, this constraint on jy  must be used to find the constraint on the error term 
 . As 

 0 0 ( )j j j j jy a bx a bx≥ → + + ≥ → ≥ − +  , (12) 

then in the case of censored concentrations, 

 
( ) 2

1
2 22
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2

j j

j
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j j j
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⌠
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 (13) 

is the contribution to the likelihood for each observation. 
For simplicity, the following two subsections on the linear model treat censored observations as 

general left-censored observations that may potentially have negative values. 

2.3 The Log-Likelihood Function for the Linear Model 

Since the logarithm function is defined for all positive real numbers and is monotone increasing 
on the positive side of the real line, the logarithm of the likelihood function, or the log-likelihood 
function, will be maximized by the same parameter set as the likelihood function. For some models, a 
third option of minimizing the negative log-likelihood function will find the same parameter set and 
may prove to be either analytically or computationally easier than either of the other two equivalent 
methods of maximum-likelihood estimation for the model. Because of this equivalence of optimization 
problems, we can choose to solve whichever is easiest. In general, numerical solutions for maximum-
likelihood problems tend to use either the positive or negative log-likelihood function—especially for 
models (like the NDMMF) that involve large numbers of parameters—because machine computations 
involving logarithms are less prone to the problems of overflow, underflow, and loss of precision. 

For the linear model with some left-censored observations, the log-likelihood function is the 
following: 

 ( ) ( ) ( )0,2
1 12

21 1ln ( , , ) ln ( ) ln ( )  .
2(2 )

n m

i i j jn
n i j

a b y a bx F D a bx


  = =

 
   = − − + + − +   

∑ ∑  (14) 

Equation 14 is derived from equations 8 and 11. Notice that the natural logarithm of an indexed 
product is an indexed sum. The log-likelihood function is easier to use than the likelihood function itself 
in finding the optimal parameter set for the linear model. 

2.4 Maximizing the Likelihood and Log-Likelihood Functions for the Linear Model 

In order to maximize the log-likelihood function (and the likelihood function as well), we must 
find the ordered triple ˆ ˆˆ( , , )a b  , if it exists, defined so that for any ordered triple ( , , )a b ′ ′ ′ it will be 
true that ( ) ( )ˆ ˆˆln ( , , ) ln ( , , )a b a b ≥ ′ ′ ′  , or equivalently, ˆ ˆˆ( , , ) ( , , )a b a b ≥ ′ ′ ′  . 

If a maximizing ordered triple ˆ ˆˆ( , , )a b  exists, it will satisfy the three simultaneous conditions 
determined by equating to zero (0) each of the three partial derivatives of the log-likelihood function 
with respect to a, b, and 2  (Miller and Miller, 2004). The three simultaneous equations that must be 
satisfied by ˆ ˆˆ( , , )a b  are: 
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n m j j

i i
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In each of equations 15 and 16, the contribution to the partial derivative of the log-likelihood 
function from uncensored observations equals the contribution from the left-censored observations. 
Equation 17 showing the partial derivative of the log-likelihood function with respect to 2  could be 
replaced by an equation involving the partial derivative with respect to σ; either choice is acceptable 
analytically, but the equation involving the partial derivative with respect to 2  is preferable for 
computation. 

In equation 17, the expression 
 

 ( )( )0,2 ( )j j
d F D a bx

d 
− +   

 
denotes the derivative of the normal CDF with respect to 2  evaluated at the point ( )j jD a bx− + ;  
in this expression, the normal CDF is construed as a function of 2 . Thus, 

 ( )
( ) 2

1
0, 2 22

1( ) exp
2

j jD a bx

j j
wF D a bx dw 

− +

−∞

 
− + = − 

 

⌠

⌡

  (18) 

where the variable of integration is denoted as w in order to avoid notational confusion with the 
observed values of the independent variable jx . (Please see equation 4.) In solving the system of 
equations 15, 16, and 17 for a,b, and σ, this expression for the derivative of the normal CDF with 
respect to 2  must be evaluated numerically. The Newton-Raphson Method (also known as Newton’s 
Method) may be used to solve this system of three simultaneous equations numerically. The Newton-
Raphson Method for finding maximum-likelihood parameters is described in section 4.1 (Weisstein, 
1999). 

3 Maximum-Likelihood Estimates for the National Descriptive Model of 
Mercury in Fish 
The methods used in section 2 to estimate the three unknown parameters of a simple linear 

model in the maximum-likelihood sense may now be specialized and applied to estimate the 1n m+ +  
parameters of the NDMMF in the maximum-likelihood sense. Comparison of the linear model (as 
follows) 
 y a bx= + +   
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with the NDMMF (as follows) 

 
1 1

n m

ijk j j k k ijk
j k

y v g 
= =

= + +∑ ∑   

 
shows some structural similarity between the the linear model and the NDMMF but significant 
dissimilarity as well. In particular, although the NDMMF is structurally linear, it is effectively nonlinear 
because the covariate term ln( 1)k ijkg length= +  is a nonlinear function of the physically measured 
covariate (fish length) and because the response variable ln( 1)ijk ijky C= +  is a nonlinear function of the 
measured response ijkC . 

Before discussing the fitting of the parameters of the NDMMF, it is instructive to consider how 
the NDMMF—once its parameters have been determined—is used to estimate or predict a fish-tissue 
methylmercury concentration. The simple linear model can be used to compute a response y from a 
value for the single independent variable x along with values for the two parameters ( , )a b . In 
comparison, the NDMMF also requires three items of data in order to compute an estimate of a fish-
tissue methylmercury concentration: the α parameter associated with a particular sampling event, the β 
parameter associated with a particular species/cut combination, and a fish length (in inches). The linear 
model and the NDMMF are similar in that any single estimate makes use of exactly two parameters. An 
estimate made with the linear model makes use of the parameters a and b, while an estimate made with 
the NDMMF makes use of exactly one j  and exactly one k  because, except for the selected event j 
and the selected species/cut k, the indicator variables “ jv ” and “ kg ” are zero for all other sampling 
events and for all other species/cut combinations, respectively. Although NDMMF model parameters 
are used only two at a time for prediction, all parameters are involved in fitting the NDMMF to 
observed data in the maximum-likelihood sense. This is shown by the equations and systems of 
equations for maximizing the likelihood and log-likelihood functions of the NDMMF presented below. 

3.1 Contributions to the Likelihood from Censored Observations 

As previously explained in section 2.2, the term left censored is applied to observations known 
to be at or below some detection limit kD . In some cases, an observation described as left censored may 
be subject to additional constraints, such as the restriction of chemical concentrations to be nonnegative. 
The related term interval censored refers to an observation known to fall in an interval on the real 
number line between a lower limit and an upper limit. Left censoring is a special case of interval 
censoring with an implicit (rather than explicit) lower limit for the censoring interval. The implicit lower 
limit may depend on either, or both, of the form of the statistical model and the physical characteristics 
of the observed data. The response variable y for the linear model considered in section 2 is an example 
of a response constrained neither by the form of the model nor by the physical characteristics of the 
observations; this response variable y can assume any value on the real number line, so this model’s 
implied lower limit5

 for a left-censored observation is −∞ . In contrast to the simple linear model, the 
response variable for the NDMMF is implicitly constrained both by the form of the model and by the 
physical characteristics of chemical concentrations. The functional form of the NDMMF response 
variable ln( 1)ijk ijky C= +  constrains the measured value ijkC  to be strictly greater than 1−  in order that 
the argument of the ln function also be strictly greater than zero (as it must be in order for the logarithm 
function to be defined for the argument). Ignoring for the moment that the concentration ijkC  must be 

                                                           
  5As this example illustrates, the interval applied in interval censoring may be an improper interval. 
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nonnegative, left censoring for the NDMMF is equivalent to interval censoring with 1 ijk kC D− < ≤ . 
(The detection limit is designated here by kD  because it can vary from observation to observation.) 

For the sake of generality, and also because a number of studies have estimated NDMMF 
parameters assuming interval censoring with 1 ijk kC D− < ≤ , the likelihood and log-likelihood functions 
for the NDMMF are expressed in the following subsections in terms of this least restrictive form of 
interval censoring. These generalized expressions can be readily specialized by constraining 
concentrations to be nonnegative, as explained in the final paragraph of section 3.2 below. 

The likelihood function for the NDMMF presented in the following section 3.2 depends in part 
on the probabilities of the censored observations. Determining the probability of a censored observation 
requires that the upper and lower limits for measured concentrations be used in finding the 
corresponding upper and lower limits on the stochastic error term ijk . The upper and lower limits for 

ijk determine the probability of a censored observation as the integral of the PDF of the error term ijk
from the minimum error value to the maximum error value; or, equivalently, as the CDF of the error 
term evaluated at its upper limit minus the CDF of the error term evaluated at its lower limit, as shown 
below in equation 21 in section 3.2. 

Throughout the remainder of section 3, let U
cD  denote the upper limit for a censored 

concentration and let LD  denote the lower limit.6 The upper and lower limits for the error term ijk can 
be determined from the upper and lower bounds U

cD  and LD  for censored concentrations as follows: 
 
Finding the upper bound for ijk : 
 
 ln( 1) 1 1  ijk ijky y

ijk ijk ijk ijky C e C C e= + → = + → = − . 
 
Therefore 
 
 ( )1 1 ln 1  .ijk ijky yU U U U

ijk c c c ijk cC D e D e D y D≤ → − ≤ → ≤ + → ≤ +
 

Substituting c c c c ijkv g + +   for ijky  in the inequality above results in 
 
 ( ) ( )ln 1 ln 1 ( ) .U U

c c c c ijk c ijk c c c c cv g D D v g   + + ≤ + → ≤ + − + 
 

 
Taking the natural logarithm of both sides of the inequality is valid (preserves the inequality) because 
the natural logarithm function is monotone increasing over its entire domain. 
 
Finding the lower bound for ijk : 
 
 ( )  1   1 ln 1        .ijk ijky y

ijk L L L ijk LC D e D e D y D≥ → − ≥ → ≥ + → ≥ +
 

 
So, therefore, substituting c c c c ijkv g + +   for ijky  as before results in 
 
 ( ) ( )ln 1 ln 1 ( ) .c c c c ijk L ijk L c c c cv g D D v g   + + ≥ + → ≥ + − + 

 
                                                           
  6 This notation indicates that the upper censoring limit may vary from observation to observation; however, the lower limit 
is the same for all censored observations. 
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3.2 The Likelihood Function for the National Descriptive Model of Mercury in Fish 

In its general form, the NDMMF does not necessarily restrict the form of the various random 
error terms{ }ijk . For purposes of determining the likelihood function for the NDMMF, however, the 
model will be restricted by the simplifying assumption that all members of the set of random error terms 
{ }ijk are independently and identically distributed as normal variates with mean 0 =  and standard 
deviation σ (where σ is an unknown parameter of the NDMMF), as follows:  

 
 { } are i.i.d. with ~ (0, ) for all { }ijk ijk N ijk  . 

With this simplifying assumption about the error terms, the likelihood function for the NDMMF 
may be expressed as: 

 ({ },{ }, ) ·j k u cP P   = , (19) 

where 

 

2
1
2 2

1

y = y ,

,

,
,

( )1 exp ,
2

ln( 1), and

the number of uncensored observations.                                                     

un
u u u u u

u
u

u j

u k

u ijk

u

u ijk

u j

y v gP

g length
n

v v

 
 

 

 

=

 − −
= − 

 

=

=

= +

=

=

∏

 (20) 

and 

 

( ) [ ]( )

( )

1

0, 0,
1

t

{ |{ },{ }, },

ln 1 ln 1 ,

,

,
,

ln 1 ,

 he number of censored observations,

 the upper detection limit 

c

c

n
U

c L ijk c j k
c
n

U
c c c c c L c c c c

c

c j

c k

c j

c ijk

c
U
c

P P D C D

F D v g F D v g

v v

g length

n
D

 

  

   

 

 

=

=

= ≤ ≤

 = + − − + − − 

=

=
=

= +

−

=




=



∏

∏

for the censored observation , and
 the lower limit for the censoring interval for the censored observation .L

c
D c=

 (21) 

In equation groups 20 and 21, each index u or c identifies a particular uncensored or censored 
observation, respectively, which is associated with exactly one event j and exactly one species/cut k. 
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In the derivation of the log-likelihood function, it is convenient to express uP  in the following 
alternative but equivalent form: 

 [ ]
2

2
2

1

1 1exp  .
2(2 )

u

nu
u

n

u u u u u un
u

P y v g 
  =

  
= − − −    

∑  (22) 

The likelihood function for the NDMMF is the product of two composite factors contributing to 
the likelihood: a contribution from uncensored observations and another contribution from censored 
observations. The contribution uP  from uncensored observations is a product of probability densities, 
and the contribution cP  for censored observations is a product of probabilities. Each factor in the 
indexed product uP  is the probability density for a particular observation of an uncensored mercury 
concentration and fish length in association with a specific event j and a specific species/cut k for any 
given values of the parameters{ }j , { }k , and σ. Each factor in the indexed product cP  is the 
probability that a censored mercury concentration was in the range of possible values below the 
detection limit U

cD  and simultaneously above the lower censoring limit LD  for any given values of the 
parameters. 

Equation 21 can be readily specialized for two different interpretations of censored observations 
of concentrations. Case 1: As stated previously in the first paragraph of section 3.1, the functional form 
of the NDMMF requires that 1ijkC > − ; this is equivalent to requiring that the lower limit of the 
censoring interval, LD , approach (but not reach) 1−  from above. As 1LD → −  , the term 

0, (ln[ 1] )L c c c cF D v g  + − −  in equation 21 approaches 0, ( ) 0F  −∞ =  because as 1 0LD + → , then
ln[ 1]LD + → −∞ . Therefore, when 1LD → − , the term 0, (ln[ 1] )L c c c cF D v g  + − −  can be dropped 
from equation 21. Case 2: If ijkC  is constrained to be nonnegative, then 0LD =  and
ln[ 1] ln[1] 0.LD + = =  In this latter case, the second term in equation 21 becomes 0, ( ).c c c cF v g  − −  

3.3 The Log-Likelihood Function for the National Descriptive Model of Mercury in Fish 

As explained previously for the linear model presented in section 2.1, the likelihood function 
will be maximized by the same parameter set that maximizes the log-likelihood function.7 In this sense, 
the problem of maximizing the likelihood is equivalent to the problem of maximizing the log-likelihood. 
For the NDMMF, as for many maximum-likelihood estimation problems, it is advantageous both 
analytically and computationally to work with the log-likelihood function rather that the likelihood 
function. 

For the NDMMF, the log-likelihood function is: 

 

( )

[ ]2
2

12

0, 0,
1

ln ({ },{ }, ) ln( ) ln( )

1 1ln
2

(2 )

ln (ln[ 1] ) (ln[ 1] )  .

u

u
u

c

j k u c

n

u u u u un
un

n
U
c c c c c L c c c c

c

P P

y v g

F D v g F D v g 

  

 


 

   

=

=

= +

    = − − −     

 + + − − − + − − 

∑

∑



 (23) 

                                                           
  7Although a maximizing parameter set can be found for reasonably consistent datasets, there are datasets for which a 
maximizing parameter set may not exist or may be difficult to compute using conventional fixed-precision machine numbers. 
This potential problem is beyond the scope of this publication. 
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3.4 Maximizing the Likelihood and Log-Likelihood Functions for the National Descriptive Model 
of Mercury in Fish 

To maximize the likelihood and log-likelihood functions for the NDMMF, it is necessary to 
determine a collection of 1n m+ +  parameters ˆˆ ˆ{{ },{ }, }j k    such that 

 ˆˆ ˆ({ },{ }, ) ({ },{ }, )j k j k     ′ ′ ′≥    (24) 

for every ordered ( )1n m+ + -tuple of parameters ({ },{ }, )j k  ′ ′ ′  or equivalently such that 

 ˆˆ ˆln ({ },{ }, ) ln ({ },{ }, )j k j k     ′ ′ ′   ≥       (25) 

for every ordered ( )1n m+ + -tuple of parameters ({ } , ),{ }j k  ′ ′ ′ . 
 

If a maximum for the likelihood and log-likelihood functions exists, it will satisfy the 1n m+ +
simultaneous conditions determined by equating to zero each of the 1n m+ + partial derivatives of the 
log-likelihood function with respect to each of the n j ’s, the m k ’s, and 2  (Miller and Miller, 2004). 
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The partial derivatives of the log-likelihood function have three forms, as shown below: 
1. For the j ’s: 

 

( )

( )2
1

0, 0,

1 0, 0,

ln ( { },{ }, )

1

(ln[ 1] ) (ln[ 1] )

(ln[ 1] ) (ln[ 1] )

0 .

u

c

j k
j

n

u u u u u
u

Un
c c c c c L c c c c

U
c c c c c c L c c c c

y v g

f D v g f D v g
F D v g F D v g

 

 

  


 


   

   

=

=

∂   = ∂

− −

 − + − − + + − − +
+ − − − + −  − 

=

∑

∑



  (26) 

The summations in the jth equation implied by equation 26 only pick up values for the 
observations for event j . 

2. For the k ’s: 

 

( )
( )2

1

0, 0,

1 0, 0,

ln ( { },{ }, )

1

(ln[ 1] ) (ln[ 1] )

(ln[ 1] ) (ln[ 1

0 .

] )

u

c

j k
k

n

u u u u u u
u

Un
c c c c c L c c c c

cU
c c c c c c L c c c c

y v g g

f D v g f D v g
g

F D v g F D v g
 

 

  


 


   

   

=

=

∂   = ∂

− −

− + − − + + − −
+

+ − − − + − −

  
  

=

∑

∑



 (27) 

The summations in the kth equation implied by equation 27 only pick up values for the observations 
involving species/cut k . 

3. For 2  : 

 

( )2

2
2 4

1

0, 0,2

1 0, 0,

ln ( { },{ }, )

1 ( )
2 2

(ln[ 1] ) (ln[ 1] )
0 .

(ln[ 1] ) (ln[ 1] )

u

c

j k

n
u

u u u u
u

U
n c c c c c L c c c c

U
c c c c c c L c c c c

n y v g

d F D v g F D v g
d

F D v g F D v g

 

 

  


 
 

   


   

=

=

∂   = ∂

− + − −



 

+ − − − + − − 
+ =

+ − − − + − − 

∑

∑



 (28) 

The summations in equation 28 pick up values from all observations for all sampling events and for all 
species/cut combinations. 
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4 Numerical Computation of Parameter Estimates for the National 
Descriptive Model of Mercury in Fish 
The simple linear model of section 2 illustrates in principle what is involved in computing 

maximum-likelihood estimates of the parameters for a statistical model. Equations 15, 16, and 17 
constitute a system of three simultaneous equations in the unknown parameters ( , , )a b  . The three 
parameters can be determined by solving the system of three equations. In principle, model parameters 
for the NDMMF are computed as they are for the linear model, by solving a system of simultaneous 
equations. The computational problem and task for the NDMMF is, however, on a very different scale 
from that of the linear model. Equations 26, 27, and 28 imply a system of 1n m+ +  equations in as 
many unknown parameters with n equaling the number of sampling events and m equaling the number 
of species/cut combinations. In practical cases, this means that finding the maximum-likelihood 
estimates of the parameters of the NDMMF requires solving a system of tens of thousands of equations 
in as many unknowns. 

Since there is no analytical solution for the system of 1n m+ +  equations, the system of 
equations must in practice be solved numerically. A numerical solution will be computationally feasible 
only if the system of equations converges from an initial set of parameter estimates to a solution within 
a reasonably small number of iterations. The Newton-Raphson Method is an obvious choice for this 
problem because it generally offers relatively rapid convergence in finding the zeroes of functions. 

4.1 Newton-Raphson Iteration 

The Newton-Raphson Method (also called Newton’s Method) is a well-known numerical 
algorithm for finding the zero or root of a function or equation (Weisstein, 1999). The zero or root of a 
function of a real variable is the value of the independent variable at which the value of the function is 
equal to zero. The Newton-Raphson Method requires that the function be continuous and differentiable. 
In essence, the Newton-Raphson Method makes use of a few low-order terms of the Taylor Series 
representation of the function within a neighborhood of a root in order to find that root. If the function 
has few or no points of inflection in the neighborhood and is otherwise well behaved within the 
neighborhood of the root, the Newton-Raphson Method tends to converge rapidly to an acceptably 
precise solution within a few iterations. 

Computing maximum-likelihood estimates of the numerous parameters of the NDMMF requires 
that the Newton-Raphson Method be applied repeatedly to each equation in the system of 1n m+ +
equations implied by equations 26, 27, and 28. A single pass through all 1n m+ + equations, in order to 
find a parameter for each equation through a separate Newton-Raphson iteration for each equation, does 
not suffice to determine the values of all parameters because of the dependencies among the equations 
in the system of 1n m+ + equations. In the n equations implied by equation 26, the u  and c  
parameters depend on the current values of the u  and c  parameters. Similarly, in the m equations 
implied by equation 27, the u  and c  parameters depend on the current values of the u  and c  
parameters. In equation 28, the value of 2  depends on the values of all of the   and   parameters. 
Thus, as each successive Newton-Raphson iteration determines a value for one parameter, the values of 
many other parameters are affected and must be corrected through another pass. Multiple passes through 
the 1n m+ + equations (applying the Newton-Raphson Method to each equation in sequence during each 
pass) are required in order to achieve convergence to the overall collection of parameter values that 
solves the system of 1n m+ + equations and, thereby, computes the set of parameters that maximizes the 
likelihood and log-likelihood functions. 
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Despite the abundance of opportunity during this computation for the dependencies among the 
parameters to prevent convergence towards an overall solution, experience shows that convergence does 
in fact take place in practice when the starting set of initial parameter estimates is sufficiently close to 
the maximum-likelihood estimates and the data meet minimal requirements for consistency and 
completeness. Experience also shows that when the starting estimates of parameters used in a Newton-
Raphson iteration are those determined by ordinary least-squares estimation, these estimates are usually 
sufficiently close to the maximum-likelihood estimates to enable convergence of the multiple-pass, 
sequential Newton-Raphson iteration described in this section. 

5 Summary 
This report explains how the method of maximum-likelihood estimation (MLE) can be applied 

to find the parameters of the National Descriptive Model of Mercury in Fish (NDMMF), a statistical 
model used to predict the concentration of methylmercury in fish tissue. Computing the parameters for 
the NDMMF in the maximum-likelihood sense is a complicated procedure because the NDMMF often 
involves a large number of parameters (tens of thousands) and because the NDMMF makes use of the 
information provided by left-censored observations of methylmercury concentrations. Because of the 
large number of parameters and because of the additional computation required to make use of left-
censored observations, the task of computing parameters for the NDMMF strains or exceeds the 
computational capabilities of readily available statistical software packages and computer workstations. 
Consequently, researchers and practitioners need custom software to fit NDMMF parameters in the 
MLE sense more quickly using less computer memory. 

The two main purposes of this publication are the following: 
 

1. To provide mathematical and computational expressions suitable for use in 
implementing custom software for fitting parameters to the NDMMF in the 
maximum-likelihood sense; and 

2. To present the derivation of maximum-likelihood estimation (MLE) expressions for 
the current NDMMF in sufficient detail to facilitate derivation of revised MLE 
expressions for any future revisions of the NDMMF. 
 

As an aid to understanding, this publication illustrates the mathematics of maximum-likelihood 
parameter estimation for a simple linear model before deriving the mathematical results for the more 
complex NDMMF. Finally, this publication explains in general terms how the Newton-Raphson Method 
can be used in computations to find the set of best-fit parameters for the NDMMF in the maximum-
likelihood sense. 
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Appendix 
This publication includes the source code for custom software to compute the best-fit parameters 

for the National Descriptive Model of Mercury in Fish (NDMMF) in the maximum-likelihood sense. 
The source code is provided as a plain-text (ASCII) file of C code. This C code is based directly on the 
mathematical expressions presented in this publication, with obvious correspondences between key 
variable names in the C code and the terms and symbols used in this report. The software is provided 
subject to the disclaimer contained within the source-code file. 
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