Scenarios_Grid

Metadata also available as - [Outline] - [Parseable text] - [XML]

Frequently-anticipated questions:


What does this data set describe?

Title: Scenarios_Grid
Abstract:
The U.S. Geological Survey has developed a method for estimating the mobility and potential alongshore transport of heavier-than-water sand and oil agglomerates (tarballs or surface residual balls, SRBs). During the Deepwater Horizon spill, some oil that reached the surf zone of the northern Gulf of Mexico mixed with suspended sediment and sank to form sub-tidal mats. If not removed, these mats can break apart to form SRBs and subsequently re-oil the beach. A method was developed for estimating SRB mobilization and alongshore movement. A representative suite of wave conditions was identified from buoy data for April, 2010, until August, 2012, and used to drive a numerical model of the spatially-variant alongshore currents. Potential mobilization of SRBs was estimated by comparing combined wave- and current-induced shear stress from the model to critical stress values for several sized SRBs. Potential alongshore flux of SRBs was also estimated to identify regions more or less likely to have SRBs deposited under each scenario. This methodology was developed to explain SRB movement and redistribution in the alongshore, interpret observed re-oiling events, and thus inform re-oiling mitigation efforts.
Supplemental_Information:
This data layer is a subset of USGS Open-File Report 2012-1234, Hydrodynamic and Sediment Transport Model Application for OSAT3 Guidance. It presents the model grid over which hydrodynamic scenario calculations were conducted.
  1. How should this data set be cited?

    Dalyander, P. Soupy , Long, Joseph W. , Plant, Nathaniel G. , and Thompson, David, 2012, Scenarios_Grid: Open-File Report (OFR) 2012-1234, U.S. Geological Survey, Coastal and Marine Geology Program, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL.

    Online Links:

    This is part of the following larger work.

    Plant, Nathaniel G. , Long, Joseph W. , Dalyander, P.Soupy, and Thompson, David, 2012, Hydrodynamic and Sediment Transport Model Application for OSAT3 Guidance: Open-File Report (OFR) 2012-1234, U.S. Geological Survey, Coastal and Marine Geology Program, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL.

    Online Links:

  2. What geographic area does the data set cover?

    West_Bounding_Coordinate: -88.724419
    East_Bounding_Coordinate: -85.410772
    North_Bounding_Coordinate: 30.696090
    South_Bounding_Coordinate: 29.395074

  3. What does it look like?

    model_bathymetry.jpg (JPEG)
    Graphic showing the numerical model domain over which analysis is conducted.

  4. Does the data set describe conditions during a particular time period?

    Beginning_Date: 01-Apr-2010
    Ending_Date: 01-Aug-2012
    Currentness_Reference: ground condition

  5. What is the general form of this data set?

    Geospatial_Data_Presentation_Form: vector digital data

  6. How does the data set represent geographic features?

    1. How are geographic features stored in the data set?

      Indirect_Spatial_Reference: Gulf of Mexico
      This is a Vector data set. It contains the following vector data types (SDTS terminology):
      • G-polygon (846851)

    2. What coordinate system is used to represent geographic features?

      Horizontal positions are specified in geographic coordinates, that is, latitude and longitude. Latitudes are given to the nearest 0.000001. Longitudes are given to the nearest 0.000001. Latitude and longitude values are specified in Decimal degrees.

      The horizontal datum used is D_WGS_1984.
      The ellipsoid used is WGS_1984.
      The semi-major axis of the ellipsoid used is 6378137.000000.
      The flattening of the ellipsoid used is 1/298.257224.

      Vertical_Coordinate_System_Definition:
      Altitude_System_Definition:
      Altitude_Datum_Name: North American Vertical Datum of 1988
      Altitude_Resolution: 0.01 m
      Altitude_Distance_Units: meters
      Altitude_Encoding_Method:
      Explicit elevation coordinate included with horizontal coordinates

  7. How does the data set describe geographic features?

    Scenarios_Grid
    Model grid used in hydrodynamic calculations of wave scenarios. (Source: USGS)

    FID
    Internal feature number. (Source: ESRI)

    Sequential unique whole numbers that are automatically generated.

    Shape
    Feature geometry. (Source: ESRI)

    Coordinates defining the features.

    ModelGrid
    Model grid domain (in this case, the model grid used for wave scenario calculations.) (Source: USGS)

    Keyword indicating which model grid this layer contains.


Who produced the data set?

  1. Who are the originators of the data set? (may include formal authors, digital compilers, and editors)

  2. Who also contributed to the data set?

  3. To whom should users address questions about the data?

    P. Soupy Dalyander
    U.S. Geological Survey
    Oceanographer
    384 Woods Hole Road
    Woods Hole, MA 02543-1598
    USA

    (508) 548-8700 x2290 (voice)
    (508) 457-2310 (FAX)
    sdalyander@usgs.gov


Why was the data set created?

This GIS layer contains the model grid used for calculation of waves and currents in the wave climate scenarios used to investigate hydrodynamic variability in the northern Gulf of Mexico. This data layer is intended to illustrate the complete model grid over which calculations were performed. The analysis results, which are contained in other data layers, are only presented at those locations where model output exist (e.g., "wet" grid cells, as opposed to "dry" grid cells in the model representing land).


How was the data set created?

  1. From what previous works were the data drawn?

  2. How were the data generated, processed, and modified?

    Date: 2012 (process 1 of 2)
    The Deltares Delft3D numerical model suite (version 4.00.01) was used to create this model grid. Within the Delft3D model, grid cell locations are used in UTM coordinates. The coordinates were exported in latitude and longitude format from the Delft3D model into Mathworks .mat format.

    Person who carried out this activity:

    Joseph W. Long
    U.S. Geological Survey
    Oceanographer
    600 4th Street S
    St. Petersburg, FL 33701
    USA

    (727) 803-8747 x3024 (voice)
    (727) 803-2032 (FAX)
    jwlong@usgs.gov

    Data sources used in this process:
    • NOAA WW3

    Data sources produced in this process:

    • DELFT3D

    Date: 2012 (process 2 of 2)
    Export the latitude and longitude for each grid cell from MATLAB format into an ArcGIS polygon shapefile using the Mathworks MATLAB Mapping Toolbox (v2012A). The shapefile is written with the "shapewrite" command. Because MATLAB does not assign a projection, the projection corresponding to the projection associated with the bathymetry used in the numerical models is added in ArcCatalog 9.3. The file was then quality checked in ArcMap to insure values were properly exported to the shapefile from MATLAB.

    Person who carried out this activity:

    P. Soupy Dalyander
    U.S. Geological Survey
    Oceanographer
    384 Woods Hole Road
    Woods Hole, MA 02540
    USA

    (508) 548-8700 x2290 (voice)
    (508) 457-2310 (FAX)
    sdalyander@usgs.gov

    Data sources used in this process:
    • DELFT3D

  3. What similar or related data should the user be aware of?


How reliable are the data; what problems remain in the data set?

  1. How well have the observations been checked?

    This data layer contains the grid over which hydrodynamic wave scenario results were calculated. Within the Delft3D model, these coordinates are in UTM, which have been converted into latitude and longitude for this data layer.

  2. How accurate are the geographic locations?

    This layer contains the model grid over which hydrodynamic wave scenario results were calculated. The native grid used in the Delft3D model is in UTM coordinates, which have been converted to latitude and longitude, therefore there may be slight differences in values as a result of loss of significant figures.

  3. How accurate are the heights or depths?

  4. Where are the gaps in the data? What is missing?

    This layer contains the complete model grid (including wet and dry, e.g., land, grid cells) used for calculation of wave scenario hydrodynamic results.

  5. How consistent are the relationships among the observations, including topology?

    No duplicate features are present. All polygons are closed, and all lines intersect where intended. No undershoots or overshoots are present.


How can someone get a copy of the data set?

Are there legal restrictions on access or use of the data?

Access_Constraints: None
Use_Constraints:
Public domain data from the U.S. Government are freely redistributable with proper metadata and source attribution. Please recognize the U.S. Geological Survey as the originator of the dataset.

  1. Who distributes the data set? (Distributor 1 of 1)

    P. Soupy Dalyander
    U.S. Geological Survey
    Oceanographer
    384 Woods Hole Road
    Woods Hole, MA 02543-1598
    USA

    (508) 548-8700 x2290 (voice)
    (508) 457-2310 (FAX)
    sdalyander@usgs.gov

  2. What's the catalog number I need to order this data set?

    Scenarios_Grid: Layer containing the model grid used in the calculation of hydrodynamic results for the wave scenarios.

  3. What legal disclaimers am I supposed to read?

    Neither the U.S. Government, the Department of the Interior, nor the USGS, nor any of their employees, contractors, or subcontractors, make any warranty, express or implied, nor assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, nor represent that its use would not infringe on privately owned rights. The act of distribution shall not constitute any such warranty, and no responsibility is assumed by the USGS in the use of these data or related materials.

    Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

  4. How can I download or order the data?

  5. What hardware or software do I need in order to use the data set?

    These data are available in Environmental Systems Research Institute (ESRI) shapefile format. The user must have ArcGIS or ArcView 3.0 or greater software to read and process the data file. In lieu of ArcView or ArcGIS, the user may utilize another GIS application package capable of importing the data. A free data viewer, ArcExplorer, capable of displaying the data is available from ESRI at www.esri.com.


Who wrote the metadata?

Dates:
Last modified: 11-Dec-2012
Metadata author:
U.S. Geological Survey
c/o P. Soupy Dalyander
Oceanographer
384 Woods Hole Role
Woods Hole, MA 02543-1598
USA

(508) 548-8700 x2290 (voice)
(508) 457-2310 (FAX)
sdalyander@usgs.gov

Metadata standard:
FGDC Content Standards for Digital Geospatial Metadata (FGDC-STD-001-1998)
Metadata extensions used:


Generated by mp version 2.8.25 on Tue Dec 11 16:37:14 2012