Skip Links

USGS - science for a changing world

U.S. Geological Survey Open-File Report 2012–1261

Should Ground-Motion Records be Rotated to Fault-Normal/Parallel or Maximum Direction for Response History Analysis of Buildings?

By Juan C. Reyes and Erol Kalkan

Thumbnail of and link to report PDF (5.4 MB)Abstract

In the United States, regulatory seismic codes (for example, California Building Code) require at least two sets of horizontal ground-motion components for three-dimensional (3D) response history analysis (RHA) of building structures. For sites within 5 kilometers (3.1 miles) of an active fault, these records should be rotated to fault-normal and fault-parallel (FN/FP) directions, and two RHAs should be performed separately—when FN and then FP direction are aligned with transverse direction of the building axes. This approach is assumed to lead to two sets of responses that envelope the range of possible responses over all nonredundant rotation angles. The validity of this assumption is examined here using 3D computer models of single-story structures having symmetric (torsionally stiff) and asymmetric (torsionally flexible) layouts subjected to an ensemble of near-fault ground motions with and without apparent velocity pulses. In this parametric study, the elastic vibration period is varied from 0.2 to 5 seconds, and yield-strength reduction factors, R, are varied from a value that leads to linear-elastic design to 3 and 5. Further validations are performed using 3D computer models of 9-story structures having symmetric and asymmetric layouts subjected to the same ground-motion set. The influence of the ground-motion rotation angle on several engineering demand parameters (EDPs) is examined in both linear-elastic and nonlinear-inelastic domains to form benchmarks for evaluating the use of the FN/FP directions and also the maximum direction (MD). The MD ground motion is a new definition for horizontal ground motions for use in site-specific ground-motion procedures for seismic design according to provisions of the American Society of Civil Engineers/Seismic Engineering Institute (ASCE/SEI) 7-10. The results of this study have important implications for current practice, suggesting that ground motions rotated to MD or FN/FP directions do not necessarily provide the most critical EDPs in nonlinear-inelastic domain; however, they tend to produce larger EDPs than as-recorded (arbitrarily oriented) motions.

First posted January 3, 2013

  • This report is available only on the Web.

For additional information:
Contact Information, Menlo Park, Calif.
   Office—Earthquake Science Center
U.S. Geological Survey
345 Middlefield Road, MS 977
Menlo Park, CA 94025
http://earthquake.usgs.gov/

This report is presented in Portable Document Format (PDF); the latest version of Adobe Reader or similar software is required to view it. Download the latest version of Adobe Reader, free of charge.


Suggested citation:

Reyes, J.C., and Kalkan, E., 2012, Should ground-motion records be rotated to fault-normal/parallel or maximum direction for response history analysis of buildings?: U.S. Geological Survey Open-File Report 2012–1261, 81 p. (Available at http://pubs.usgs.gov/of/2012/1261/.)



Contents

Abstract

Introduction

Ground Motions Selected

Description of Structural Systems and Computer Models

Evaluation Methodology

Results

Conclusions

Acknowledgments

References Cited


Accessibility FOIA Privacy Policies and Notices

USA.gov logo U.S. Department of the Interior | U.S. Geological Survey
URL: https://pubs.usgs.gov/of/2012/1261/
Page Contact Information: Contact USGS
Page Last Modified: Saturday, January 12, 2013, 03:33:36 PM