Hydroxides, fine-grained (1,631,108)
Goethite, medium-grained (2,786,286)
Goethite, fine-grained (1,350,112)
Ferrihydrite (140)
Iron hydroxide (252,380)
Hematite, coarse-grained (130)
Siderite (140)
Magnetite (140)
Pyrite (140)
Alumina (140)
Mica (140)
Quartz (140)

data from digital files from Afghanistan Information
U.S. GEOLOGICAL SURVEY
HYPERSPECTRAL SURFACE MATERIALS MAP OF QUADRANGLE 3468, CHAK-E WARDAK-SIYAHGIRD (509) AND KABUL (510) QUADRANGLES, AFGHANISTAN,
SHOWING IRON-BEARING MINERALS AND OTHER MATERIALS
by
Trude V.V. King, Todd M. Hoefen, Raymond F. Kokaly, Keith E. Livo, Stuart A. Giles, and Michaela R. Johnson
2013

Suggested citation: King, T.V.V., Hoefen, T.M., Kokaly, R.F., Livo, K.E., Giles, S.A., and Johnson, M.R., 2013, Hyperspectral surface materials map of quadrangle 3468, Chak-e Wardak-Siyahgird (509) and Kabul (510) quadrangles, Afghanistan, showing iron-bearing minerals and other materials: U.S. Geological Survey Open-File Report 2013–1191–B, 1 sheet, scale 1:250,000, contains an additional mineral classification (Fe2+Fe3+ type 3). Mapping from the previously published version (King and others, 2011) by refining the classification procedures, thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A method for processing hyperspectral data was tested, and areas that were previously classified using the same method were remapped. Classifications were cross-verified with mineralogy. Other minerals were identified as occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated from the above minerals. Some minerals can only be identified through the use of a spectral library of minerals, vegetation, water, and other materials (Clark and others, 2007). Minerals were identified in the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification empirically adjusted using ground-based reflectance sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 µm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, using ground-based reflectance for processing procedures is presented in King and others (2011) and University of Alaska Fairbanks, Alaska. The spectra used in the classification process are from Clark and others (2007), and all other minerals are from the Spectral Library of Minerals, Vegetation, Water, and Other Materials (Clark and others, 2007). The scale of the data is 1:250,000, and all symbols shown may be present on this map. Other symbols shown include urban areas (1,143), roads (1,207), wet soils (181), and green vegetation (2,871,426).