EXPLANATION OF MATERIAL CLASSES

Materials are listed based on quality of match with reference spectra; class may contain one or more minerals. Classification errors can occur due to the influence of other materials in the spectral library of minerals, vegetation, water, and other materials (Clark and others, 2007). Minerals with similar spectra or spectral interference can be misclassified, resulting in mineral classes that have small areal extent or are not visible in the map. This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials in Afghanistan; carbonates, phyllosilicates, sulfates, altered minerals, and other materials: U.S. Geological Survey Scientific Investigations Map 3152–A, one sheet, scale 1:1,100,000.

DATA SOURCES

The map shows the spatial distribution of carbonates, phyllosilicates, sulfates, altered minerals, and other materials in Afghanistan; carbonates, phyllosilicates, sulfates, altered minerals, and other materials: U.S. Geological Survey Scientific Investigations Map 3152–A, one sheet, scale 1:1,100,000.

REFERENCES CITED


Kokaly, R.F., King, T.V.V., and Livo, K.E., 2008, Airborne hyperspectral survey of Afghanistan 2007; flight designation of "Not classified" was assigned to the pixel when there was no match with reference spectra. Further, some map classes consist of several minerals having similar spectra, such as "Epidote or chlorite." A materials in a spectral library of minerals, vegetation, water, and other materials (Clark and others, 2007). Minerals with similar spectra or spectral interference can be misclassified, resulting in mineral classes that have small areal extent or are not visible in the map. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials (Clark and others, 2007). Minerals with similar spectra or spectral interference can be misclassified, resulting in mineral classes that have small areal extent or are not visible in the map. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials (Clark and others, 2007). Minerals with similar spectra or spectral interference can be misclassified, resulting in mineral classes that have small areal extent or are not visible in the map. This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials in Afghanistan; carbonates, phyllosilicates, sulfates, altered minerals, and other materials: U.S. Geological Survey Scientific Investigations Map 3152–A, one sheet, scale 1:1,100,000.

Figure 1. Map of the entire country showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials in Afghanistan; carbonates, phyllosilicates, sulfates, altered minerals, and other materials: U.S. Geological Survey Scientific Investigations Map 3152–A, one sheet, scale 1:1,100,000.