Skip Links

USGS - science for a changing world

Open-File Report 2013–1250

Prepared in cooperation with the National Park Service and the Great Northern Landscape Conservation Cooperative

MODIS Phenology Image Service ArcMap Toolbox

By Colin Talbert, Tim Kern, Jeff Morisette, Don Brown, and Kevin James

Thumbnail of and link to report PDF (637 kB)Abstract

Seasonal change is important to consider when managing conservation areas at landscape scales. The study of such patterns throughout the year is referred to as phenology. Recurring life-cycle events that are initiated and driven by environmental factors include animal migration and plant flowering. Phenological events capture public attention, such as fall color change in deciduous forests, the first flowering in spring, and for those with allergies, the start of the pollen season. These events can affect our daily lives, provide clues to help understand and manage ecosystems, and provide evidence of how climate variability can affect the natural cycle of plants and animals. Phenological observations can be gathered at a range of scales, from plots smaller than an acre to landscapes of hundreds to thousands of acres. Linking these observations to diverse disciplines such as evolutionary biology or climate sciences can help further research in species and ecosystem responses to climate change scenarios at appropriate scales.

A cooperative study between the National Park Service (NPS), the U.S. Geological Survey (USGS), and the National Aeronautics and Space Administration (NASA) has been exploring how satellite information can be used to summarize phenological patterns observed at the park or landscape scale and how those summaries can be presented to both park managers and visitors. This study specifically addressed seasonal changes in plants, including the onset of growth, photosynthesis in the spring, and the senescence of deciduous vegetation in the fall. The primary objective of the work is to demonstrate that seasonality even in protected areas changes considerably across years. A major challenge is to decouple natural variability from possible trends—directional change that can lead to a permanent and radically different ecosystem state. Trends can be either a gradual degradation of the landscape (often from external influences) or steady improvement (by implementing long-term conservation plans). In either case, it is important to first grasp the magnitude of natural variation so that it is not confused with actual trends.

This work used existing and freely available remote sensing data, specifically the NASA-funded 250-meter (m) spatial resolution land-surface phenology product for North America. This product is calculated from an annual record of vegetation health observed by NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. The land-surface phenology product is, in essence, a method to summarize all the observations throughout a year into a few key, ecologically relevant “metrics”.

First posted November 13, 2013

For additional information contact:
Director, Fort Collins Science Center
U.S. Geological Survey
2150 Centre Ave., Bldg. C
Fort Collins, CO 80526-8118

Part or all of this report is presented in Portable Document Format (PDF). For best results viewing and printing PDF documents, it is recommended that you download the documents to your computer and open them with Adobe Reader. PDF documents opened from your browser may not display or print as intended. Download the latest version of Adobe Reader, free of charge.

Suggested citation:

Talbert, Colin; Kern, Tim; Morisette, Jeff; Brown, Don; and James, Kevin, 2013, MODIS phenology image service ArcMap toolbox: U.S. Geological Survey Open-File Report 2013–1250, 6 p.,


MODIS Phenology Introduction

The Challenge of Using Big Data

MODIS Phenology ArcMap Toolbox

Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo logo U.S. Department of the Interior | U.S. Geological Survey
Page Contact Information: GS Pubs Web Contact
Page Last Modified: Wednesday, 13-Nov-2013 14:24:25 EST