Skip Links

USGS - science for a changing world

Open-File Report 2013–1254

Petrologic and Isotopic Data from the Cretaceous (Campanian) Blackhawk Formation and Star Point Sandstone (Mesaverde Group), Wasatch Plateau, Utah

By Neil S. Fishman, Christine E. Turner, and Fred Peterson

Thumbnail of and link to report PDF (2.34 MB)Abstract

The presence of discrete minerals associated with coal—whether (1) detrital or authigenic constituents of the coals or in thin mudstone or siltstone units interbedded with coals, or (2) authigenic phases that formed along cleats—might influence its utilization as an energy resource. The build-up of sintered ash deposits on the surfaces of heat exchangers in coal-fired power plants, due to the alteration of minerals during combustion of the coal, can seriously affect the functioning of the boiler and enhance corrosion of combustion equipment. In particular, the presence of sodium in coals has been considered a key factor in the fouling of boilers; however, other elements (such as calcium or magnesium) and the amount of discrete minerals burned with coal can also play a significant role in the inefficiency of and damage to boilers.

Previous studies of the quality of coals in the Cretaceous (Campanian) Blackhawk Formation of the Wasatch Plateau, Utah, revealed that the sodium content of the coals varied across the region. To better understand the origin and distribution of sodium in these coals, petrologic studies were undertaken within a sedimentological framework to evaluate the timing and geochemical constraints on the emplacement of sodium-bearing minerals, particularly analcime, which previously had been identified in coals in the Blackhawk Formation. Further, the study was broadened to include not just coals in the Blackhawk Formation from various localities across the Wasatch Plateau, but also sandstones interbedded with the coals as well as sandstones in the underlying Star Point Sandstone. The alteration history of the sandstones in both formations was considered a key component of this study because it records the nature and timing of fluids passing through them and the associated precipitation of sodium-bearing minerals; thus, the alteration history could place constraints on the distribution and timing of sodium mineralization in the interbedded or overlying Blackhawk coals. Although some preliminary results were previously presented at scientific meetings, the petrologic and geochemical data have not been fully compiled and reported. The purpose of this report is to present the methods of data acquisition and the results of petrologic and isotopic analyses on coal and sandstone samples from the Blackhawk Formation as well as sandstones of the underlying Star Point Sandstone.

First posted November 22, 2013

For additional information contact:
Director, Central Energy Resources Science Center
U.S. Geological Survey
Box 25046, MS-939
Denver Federal Center
Denver, CO 80225-0046
http://energy.usgs.gov/

Part or all of this report is presented in Portable Document Format (PDF). For best results viewing and printing PDF documents, it is recommended that you download the documents to your computer and open them with Adobe Reader. PDF documents opened from your browser may not display or print as intended. Download the latest version of Adobe Reader, free of charge.


Suggested citation:

Fishman, N.S., Turner, C.E., and Peterson, Fred, 2013, Petrologic and isotopic data from the Cretaceous (Campanian) Blackhawk Formation and Star Point Sandstone (Mesaverde Group), Wasatch Plateau, Utah: U.S. Geological Survey Open-File Report 2013–1254, 15 p., 1 plate, http://dx.doi.org/10.3133/ofr20131254.

ISSN 2331-1258 (online)



Contents

Introduction

Methods and Results

Acknowledgments

References


Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo USA.gov logo U.S. Department of the Interior | U.S. Geological Survey
URL: http://pubsdata.usgs.gov/pubs/of/2013/1254/index.html
Page Contact Information: GS Pubs Web Contact
Page Last Modified: Wednesday, 19-Feb-2014 15:36:45 EST