






# Streamflow, Water Quality, and Constituent Loads and Yields, Scituate Reservoir Drainage Area, Rhode Island, Water Year 2012



Prepared in cooperation with the Providence Water Supply Board

Open-File Report 2013–1274 Version 1.1, July 2014

## **U.S. Department of the Interior** SALLY JEWELL, Secretary

#### U.S. Geological Survey

Suzette M. Kimball, Acting Director

U.S. Geological Survey, Reston, Virginia First release: 2013

Revised: July 2014 (ver. 1.1)

For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS.

For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod

To order this and other USGS information products, visit http://store.usgs.gov

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner.

#### Suggested citation:

Smith, K.P., 2014, Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2012 (ver. 1.1, July 2014): U.S. Geological Survey Open-File Report 2013–1274, 30 p., http://dx.doi.org/10.3133/of/20131274.

### **Contents**

| Abstract | <u> </u>                                                                                                                                                                                                                                                                                                                                      | ′   |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Introduc | tion                                                                                                                                                                                                                                                                                                                                          | 1   |
|          | low Data Collection and Estimation                                                                                                                                                                                                                                                                                                            |     |
|          | uality Data Collection and Analysis                                                                                                                                                                                                                                                                                                           |     |
| Dat      | a Collected by the U.S. Geological Survey                                                                                                                                                                                                                                                                                                     | 3   |
| Dat      | a Collected by the Providence Water Supply Board                                                                                                                                                                                                                                                                                              |     |
|          | ng Daily, Monthly, and Annual Loads and Yields                                                                                                                                                                                                                                                                                                |     |
| Streamfl | low                                                                                                                                                                                                                                                                                                                                           | 8   |
| Water Q  | uality and Constituent Loads and Yields                                                                                                                                                                                                                                                                                                       | 9   |
| Soc      | dium and Chloride Loads and Yields Estimated from Specific-Conductance Monitoring  Data                                                                                                                                                                                                                                                       |     |
| Phy      | sical and Chemical Properties and Daily Loads and Yields Estimated from Data Collected by the Providence Water Supply Board                                                                                                                                                                                                                   | .15 |
|          | Physical and Chemical Properties                                                                                                                                                                                                                                                                                                              | .15 |
|          | Constituent Concentrations and Daily Loads and Yields                                                                                                                                                                                                                                                                                         | .15 |
|          | Bacteria                                                                                                                                                                                                                                                                                                                                      | .15 |
|          | Chloride                                                                                                                                                                                                                                                                                                                                      | .20 |
|          | Nutrients                                                                                                                                                                                                                                                                                                                                     | .20 |
| Referen  | ces Cited                                                                                                                                                                                                                                                                                                                                     | .20 |
| Figur    | es                                                                                                                                                                                                                                                                                                                                            |     |
| 1.       | Map showing locations of tributary-reservoir subbasins and streamgage- and water-quality-monitoring stations in the Scituate Reservoir drainage area, Rhode Island.                                                                                                                                                                           | 2   |
| 2.       | Graph showing flow-duration curve and streamflow values on the dates (represented by points) when water-quality samples were collected for the U.S. Geological Survey continuous streamgage on Peeptoad Brook at North Scituate (01115098) for water year 2012                                                                                |     |
| 3.       | Graph showing measured daily mean streamflow for October 1, 2011, through September 30, 2012, and mean daily streamflow for October 1, 1994, through September 30, 2011, for the U.S. Geological Survey continuous-record streamgage on the Ponaganset River at South Foster (01115187) in the Scituate Reservoir drainage area. Bhode Island | ç   |

#### **Tables**

| 1. | Providence Water Supply Board water-quality sampling stations, water-quality samples, and available streamflow and continuous monitoring stations by tributary reservoir subbasin, in the Scituate Reservoir drainage area, Rhode Island, October 1, 2011, through September 30, 2012 | 4  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2. | Measured or estimated annual mean streamflow for tributary streams in the Scituate Reservoir drainage area, Rhode Island, October 1, 2011, through September 30, 2012                                                                                                                 | 6  |
| 3. | Regression equation coefficients used to estimate concentrations of chloride and sodium from values of specific conductance for each U.S. Geological Survey monitoring station in the Scituate Reservoir drainage area, Rhode Island, October 1, 2011, through September 30, 2012     | 7  |
| 4. | Daily loads of bacteria, chloride, nitrite, nitrate, and orthophosphate by tributary reservoir subbasin in the Scituate Reservoir drainage area, Rhode Island, October 1, 2011, through September 30, 2012                                                                            | 22 |
| 5. | Monthly mean concentrations of chloride and sodium estimated from continuous measurements of specific conductance in the Scituate Reservoir drainage area, Rhode Island, October 1, 2011, through September 30, 2012                                                                  | 10 |
| 6. | Annual mean chloride and sodium concentrations, loads, and yields by sampling station in the Scituate Reservoir drainage area, Rhode Island, October 1, 2011, through September 30, 2012                                                                                              | 12 |
| 7. | Monthly estimated chloride and sodium loads by sampling station in the Scituate Reservoir drainage area, Rhode Island, October 1, 2011, through September 30, 2012                                                                                                                    | 13 |
| 8. | Median values for water-quality data collected at Providence Water Supply Board stations by tributary reservoir subbasin in the Scituate Reservoir drainage area, Rhode Island, October 1, 2011, through September 30, 2012                                                           | 16 |
| 9. | Median daily loads and yields of bacteria, chloride, nitrite, nitrate, and orthophosphate, by tributary reservoir subbasin, in the Scituate Reservoir drainage area, Rhode Island, October 1, 2011, through September 30, 2012                                                        | 18 |

#### **Conversion Factors, Datum, and Abbreviations**

| Multiply                                            | Ву        | To obtain                                                |
|-----------------------------------------------------|-----------|----------------------------------------------------------|
|                                                     | Area      |                                                          |
| square mile (mi <sup>2</sup> )                      | 2.590     | square kilometer (km²)                                   |
|                                                     | Flow rate |                                                          |
| cubic foot per second (ft <sup>3</sup> /s)          | 0.02832   | cubic meter per second (m³/s)                            |
| cubic foot per second per square mile [(ft³/s)/mi²] | 0.01093   | cubic meter per second per square kilometer [(m³/s)/km²] |
|                                                     | Mass      |                                                          |
| ton, short (2,000 lb)                               | 907.2     | kilogram (kg)                                            |

Vertical coordinate information is referenced to the North American Vertical Datum of 1988 (NAVD 88).

Horizontal coordinate information is referenced to North American Datum of 1983 (NAD 83).

Specific conductance is given in microsiemens per centimeter at 25 degrees Celsius ( $\mu$ S/cm at 25 °C).

Concentrations of chemical constituents in water are given either in milligrams per liter (mg/L) or colony forming units per 100 milliliters (CFU/100mL).

Loads of chemical constituents in water are given either in grams or kilograms (or millions of colony forming units for bacteria) per day, month, or year, and yields are given in grams or kilograms (or millions of colony forming units for bacteria) per day, month, or year per square mile.

#### **Abbreviations**

CFU colony forming units

E. coli Escherichia coli

MOVE.1 Maintenance of Variance Extension type 1

NWIS National Water Information System

NTU nephelometric turbidity units

PCU platinum cobalt units

PWSB Providence Water Supply Board

RIDEM Rhode Island Department of Environmental Management

USGS U.S. Geological Survey

WY water year

#### THIS PAGE INTENTIONALLY LEFT BLANK

## Streamflow, Water Quality, and Constituent Loads and Yields, Scituate Reservoir Drainage Area, Rhode Island, Water Year 2012

By Kirk P. Smith

#### **Abstract**

Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2012 (October 1, 2011, through September 30, 2012), for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey (USGS) or the Providence Water Supply Board (PWSB). Streamflow was measured or estimated by the USGS following standard methods at 23 streamgages; 14 of these streamgages were equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Waterquality samples were collected at 37 sampling stations by the PWSB and at 14 continuous-record streamgages by the USGS during WY 2012 as part of a long-term sampling program; all stations were in the Scituate Reservoir drainage area. Waterquality data collected by the PWSB were summarized by using values of central tendency and used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2012.

The largest tributary to the reservoir (the Ponaganset River, which was monitored by the USGS) contributed a mean streamflow of about 26 cubic feet per second (ft³/s) to the reservoir during WY 2012. For the same time period, annual mean¹ streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.40 to about 17 ft³/s. Together, tributaries (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,100,000 kilograms (kg) of sodium and 1,900,000 kg of chloride to the Scituate Reservoir during WY 2012; sodium and chloride yields for the tributaries ranged from 8,700 to 51,000 kilograms per square mile (kg/mi²) and from 14,000 to 87,000 kg/mi², respectively.

At the stations where water-quality samples were collected by the PWSB, the median of the median chloride

concentrations was 19 milligrams per liter (mg/L), median nitrite concentration was 0.002 mg/L as nitrogen (N), median nitrate concentration was less than 0.01 mg/L as N, median orthophosphate concentration was 0.06 mg/L as phosphorus, and median concentrations of total coliform and *Escherichia coli (E. coli)* bacteria were 43 and 16 colony forming units per 100 milliliters (CFU/100mL), respectively. The medians of the median daily loads (and yields) of chloride, nitrite, nitrate, orthophosphate, and total coliform and *E. coli* bacteria were 200 kilograms per day (kg/d) (71 kilograms per day per square mile (kg/d/mi²)); 15 grams per day (g/d) (5.4 grams per day per square mile (g/d/mi²)); 100 g/d (38 g/d/mi²); 500 g/d (260 g/d/mi²); 4,300 million colony forming units per day (CFUx10<sup>6</sup>/d) (1,500 CFUx10<sup>6</sup>/d/mi²); and 1,000 CFUx10<sup>6</sup>/d (360 CFUx10<sup>6</sup>/d/mi²), respectively.

#### Introduction

The Scituate Reservoir is the primary source of drinking water for more than 60 percent of the population of Rhode Island. It covers about 94 square miles (mi²) in parts of the towns of Cranston, Foster, Glocester, Johnston, and Scituate, Rhode Island (fig. 1). Information about the water quality of the reservoir and its tributaries is important for management of the water supply and for the protection of human health. The Providence Water Supply Board (PWSB), the agency responsible for the management and distribution of the Scituate Reservoir water supply, has been monitoring and assessing water quality in the reservoir and reservoir drainage area for more than 60 years.

Since 1993, the U.S. Geological Survey (USGS) has been cooperating with the PWSB and the Rhode Island Department of Environmental Management (RIDEM) to measure streamflow in tributaries to the Scituate Reservoir. Since 2009, streamflow has been continuously measured at 14 streamgages in the drainage area and periodically measured at 9 additional streamgages on tributaries in the drainage area. At the 9 partial-record streamgages, daily mean streamflow has been estimated by using methods developed by the USGS (Hirsch, 1982). The USGS also has been continuously measuring

<sup>&</sup>lt;sup>1</sup> The arithmetic mean of the individual daily mean discharges for the year noted or for the designated period.

#### 2 Streamflow, Water Quality, and Constituent Loads and Yields, Scituate Reservoir Drainage Area, R.I., WY 2012

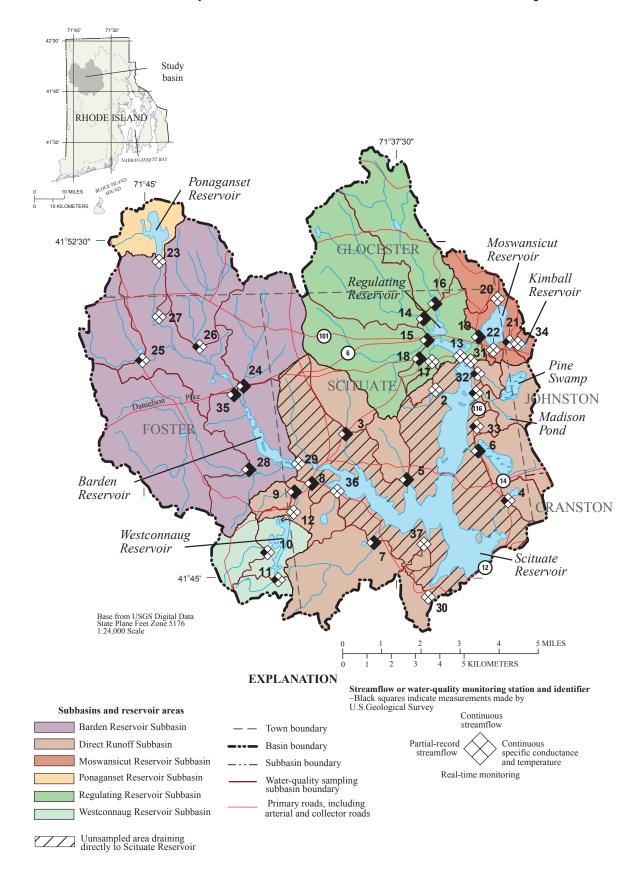



Figure 1. Locations of tributary-reservoir subbasins and streamgage- and water-quality-monitoring stations in the Scituate Reservoir drainage area, Rhode Island.

specific conductance at 14 monitoring stations since 2009. Equations that relate specific conductance to concentrations of sodium and chloride in streamwater were developed as part of a previous USGS/PWSB cooperative study (Nimiroski and Waldron, 2002). These equations, updated here and used together with measured (or estimated) streamflows, allow for nearly continuous estimation of sodium and chloride loads to the reservoir.

Currently (2012), the PWSB regularly collects water-quality samples from 37 tributaries, either monthly or quarterly. Water-quality results are summarized by station number and constituent or parameter in annual reports published by the PWSB. In addition, the USGS has published reports that have compiled and tabulated streamflow (measured or estimated by the USGS) and water-quality data (collected by the PWSB) (Breault and others, 2000; Nimiroski and others, 2008; Breault, 2010; Breault and Campbell, 2010a,b,c,d; Breault and Smith, 2010; Smith and Breault, 2011; Smith, 2013).

This report presents data on streamflow, water quality, and loads and yields of selected constituents for water year (WY) 2012² in the Scituate Reservoir drainage area. These data were collected as parts of studies done by the USGS in cooperation with the PWSB and the RIDEM. A summary of measured and estimated streamflows is presented for the 14 continuous-record and 9 partial-record streamgages in the drainage area. Estimated monthly and annual loads (and yields) of sodium and chloride are presented for the 14 streamgages at which specific conductance is continuously monitored by the USGS. Summary statistics for water-quality data collected by the PWSB for 37 sampling stations during WY 2012 also are presented, and these data were used to calculate loads and yields of selected water-quality constituents (table 1).

## Streamflow Data Collection and Estimation

Streamflow and water-quality data were collected by the USGS or the PWSB (table 1). Streamflow was measured or estimated by the USGS at 23 streamgages. Measured and estimated streamflows are necessary to estimate water volume and water-quality constituent loads and yields from tributary basins. Stream stage is measured every 10 minutes at most continuous-record streamgages. Streamflow is computed with a stage-discharge relation (known as a rating), which is developed on the basis of periodic manual measurements of streamflow. Daily mean streamflow at a streamgage is calculated by dividing the total volume of water that passes the streamgage each day by 86,400, the number of seconds in a day. Periodic manual streamflow measurements at partial-record streamgages are used concurrently with continuous-record measurements from streamgages in hydrologically

similar drainage areas to estimate a continuous record at the partial-record streamgage. Specifically, continuous streamflow records for the nine partial-record sites in the Scituate Reservoir drainage area were estimated by using the Maintenance of Variance Extension type 1 (MOVE.1) method, as described by Ries and Friesz (2000); data needed to estimate streamflows at partial-record sites were retrieved from the USGS National Water Information System (NWIS; http://waterdata.usgs.gov/nwis/). The upper and lower 90-percent confidence limits for the estimated mean annual streamflows, as described by Tasker and Driver (1988), are presented in table 2. These data indicate that there is a 90-percent chance that the estimated mean annual streamflow is somewhere between the upper and lower 90-percent confidence limits.

Continuous-record streamgages were operated and maintained by the USGS during WY 2012 in cooperation with RIDEM (USGS streamgage 01115098) and the PWSB (fig. 1, table 1). Streamflow data for these streamgages were collected at 10 or 15-minute intervals (near-real-time streamflow data), were updated at 1-hour intervals on the World Wide Web, and are available through the NWIS Web Interface (NWIS Web; U.S. Geological Survey, 2007). Error associated with measured streamflows was generally within about 15 percent (U.S. Geological Survey, unpublished data); upper and lower 90-percent confidence limits calculated by methods described by the National Institute of Standards and Technology/SEmiconductor MAnufacturing TECHnology (2012) are shown in table 2.

## Water-Quality Data Collection and Analysis

Water-quality data were collected by the USGS or the PWSB. Concentrations of sodium and chloride were estimated by the USGS from continuous or partial records of specific conductance from 14 of the 23 streamgages. Water-quality samples were collected monthly or quarterly at 37 sampling stations in the Scituate Reservoir drainage area by the PWSB during WY 2012 as part of a long-term sampling program. Daily loads of bacteria, chloride, nitrite, nitrate, and orthophosphate were calculated for 23 streamgages where both streamflow data and water-quality samples were collected. Yields were calculated by dividing load by drainage area.

#### Data Collected by the U.S. Geological Survey

Water quality was monitored in a periodic water-quality sampling program that included measurements by automatic specific-conductance probes. The USGS collected and analyzed the specific conductance data. Specific conductance was measured by the USGS at 10- or 15-minute intervals at the 14 continuous-record streamgages (fig. 1). Measurements were made by using an instream probe and standard USGS

<sup>&</sup>lt;sup>2</sup> October 1, 2011, through September 30, 2012.

#### 4 Streamflow, Water Quality, and Constituent Loads and Yields, Scituate Reservoir Drainage Area, R.I., WY 2012

**Table 1.** Providence Water Supply Board water-quality sampling stations, water-quality samples, and available streamflow and continuous monitoring stations by tributary reservoir subbasin, in the Scituate Reservoir drainage area, Rhode Island, October 1, 2011, through September 30, 2012.

[PWSB, Providence Water Supply Board; USGS, U.S. Geological Survey; mi², square miles; QW, water quality; M, monthly; Q, quarterly; Y, yes; N, no; Na, sodium; Cl, chloride; --, none; alternate station names given in parentheses for stations where different historical names were used for the same sampling location by Providence Water Supply Board; not all samples were analyzed for all water-quality properties or constituents]

|                           |                           |                                                                                                    |                           | Water-qual                              | ity samples                                  | Deiby                                    |                                       |
|---------------------------|---------------------------|----------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------|----------------------------------------------|------------------------------------------|---------------------------------------|
| PWSB<br>station<br>number | USGS<br>station<br>number | Station name                                                                                       | Drainage<br>area<br>(mi²) | Frequency of<br>QW sample<br>collection | Number of<br>samples<br>collected by<br>PWSB | Daily<br>estimated<br>Na and Cl<br>loads | Estimated<br>streamflow<br>calculated |
|                           |                           | Barden Res                                                                                         | ervoir Subba              | asin                                    |                                              |                                          |                                       |
| 24                        | 01115190                  | Dolly Cole Brook                                                                                   | 4.90                      | M                                       | 12                                           | Y                                        | N                                     |
| 25                        | 01115200                  | Shippee Brook                                                                                      | 2.35                      | Q                                       | 4                                            | N                                        | Y                                     |
| 26                        | 01115185                  | Windsor Brook                                                                                      | 4.32                      | Q                                       | 4                                            | N                                        | Y                                     |
| 27                        | 011151845                 | Unnamed Tributary to Ponaganset River<br>(Unnamed Brook B, Unnamed Brook<br>west of Windsor Brook) | 0.10                      | Q                                       | 3                                            | N                                        | N                                     |
| 28                        | 01115265                  | Barden Reservoir (Hemlock Brook)                                                                   | 8.72                      | M                                       | 12                                           | Y                                        | N                                     |
| 29                        | 01115271                  | Ponaganset River (Barden Stream)                                                                   | 33.0                      | M                                       | 11                                           | N                                        | N                                     |
| 35                        | 01115187                  | Ponaganset River                                                                                   | 14.0                      | M                                       | 12                                           | Y                                        | N                                     |
|                           |                           | Direct Ru                                                                                          | noff Subbas               | in                                      |                                              |                                          |                                       |
| 1                         | 01115180                  | Brandy Brook                                                                                       | 1.57                      | M                                       | 12                                           | N                                        | Y                                     |
| 2                         | 01115181                  | Unnamed Tributary 2 to Scituate Reservoir<br>(Unnamed Brook north of Bullhead<br>Brook)            | 0.29                      | Q                                       | 3                                            | N                                        | N                                     |
| 3                         | 01115280                  | Cork Brook                                                                                         | 1.79                      | M                                       | 12                                           | Y                                        | N                                     |
| 4                         | 01115400                  | Kent Brook (Betty Pond Stream)                                                                     | 0.85                      | M                                       | 11                                           | N                                        | Y                                     |
| 5                         | 01115184                  | Spruce Brook                                                                                       | 1.22                      | Q                                       | 3                                            | Y                                        | N                                     |
| 6                         | 01115183                  | Quonapaug Brook                                                                                    | 1.96                      | M                                       | 11                                           | Y                                        | N                                     |
| 7                         | 01115297                  | Wilbur Hollow Brook                                                                                | 4.32                      | M                                       | 12                                           | Y                                        | N                                     |
| 8                         | 01115276                  | Westconnaug Brook (Westconnaug Reservoir)                                                          | 5.18                      | M                                       | 12                                           | Y                                        | N                                     |
| 9                         | 01115275                  | Bear Tree Brook                                                                                    | 0.62                      | Q                                       | 4                                            | Y                                        | N                                     |
| 30                        | 01115350                  | Unnamed Tributary 4 to Scituate Reservoir (Coventry Brook, Knight Brook)                           | 0.78                      | Q                                       | 4                                            | N                                        | N                                     |
| 31                        | 01115177                  | Toad Pond                                                                                          | 0.04                      | Q                                       | 1                                            | N                                        | N                                     |
| 32                        | 01115178                  | Unnamed Tributary 1 to Scituate Reservoir (Pine Swamp Brook)                                       | 0.45                      | Q                                       | 4                                            | N                                        | Y                                     |
| 33                        | 01115182                  | Unnamed Tributary 3 to Scituate Reservoir (Hall's Estate Brook)                                    | 0.28                      | Q                                       | 4                                            | N                                        | Y                                     |
| 36                        |                           | Outflow from King Pond                                                                             | 0.77                      | Q                                       | 4                                            | N                                        | N                                     |
| 37                        |                           | Fire Tower Stream                                                                                  | 0.05                      | Q                                       | 3                                            | N                                        | N                                     |
|                           |                           | Moswansicut                                                                                        | Reservoir Su              | bbasin                                  |                                              |                                          |                                       |
| 19                        | 01115170                  | Moswansicut Reservoir (Moswansicut Stream North, Moswansicut Pond)                                 | 3.25                      | M                                       | 11                                           | Y                                        | N                                     |

**Table 1.** Providence Water Supply Board water-quality sampling stations, water-quality samples, and available streamflow and continuous monitoring stations by tributary reservoir subbasin, in the Scituate Reservoir drainage area, Rhode Island, October 1, 2011, through September 30, 2012.—Continued

[PWSB, Providence Water Supply Board; USGS, U.S. Geological Survey; mi², square miles; QW, water quality; M, monthly; Q, quarterly; Y, yes; N, no; Na, sodium; Cl, chloride; --, none; alternate station names given in parentheses for stations where different historical names were used for the same sampling location by Providence Water Supply Board; not all samples were analyzed for all water-quality properties or constituents]

|                           |                           |                                                                                                 |                           | Water-qual                        | ity samples                                  | Dail.                                    |                                       |
|---------------------------|---------------------------|-------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------|----------------------------------------------|------------------------------------------|---------------------------------------|
| PWSB<br>station<br>number | USGS<br>station<br>number | Station name                                                                                    | Drainage<br>area<br>(mi²) | Frequency of QW sample collection | Number of<br>samples<br>collected by<br>PWSB | Daily<br>estimated<br>Na and Cl<br>loads | Estimated<br>streamflow<br>calculated |
| 20                        | 01115160                  | Unnamed Tributary 1 to Moswansicut<br>Reservoir (Blanchard Brook)                               | 1.18                      | M                                 | 9                                            | N                                        | N                                     |
| 21                        | 01115165                  | Unnamed Tributary 2 to Moswansicut Reservoir (Brook from Kimball Reservoir)                     | 0.29                      | Q                                 | 3                                            | N                                        | Y                                     |
| 22                        | 01115167                  | Moswansicut Reservoir (Moswansicut Stream South)                                                | 0.30                      | M                                 | 11                                           | N                                        | N                                     |
| 34                        | 01115164                  | Kimball Stream                                                                                  | 0.27                      | Q                                 | 4                                            | N                                        | N                                     |
|                           |                           | Ponaganset R                                                                                    | eservoir Sub              | basin                             |                                              |                                          |                                       |
| 23                        | 011151843                 | Ponaganset Reservoir                                                                            | 1.92                      | M                                 | 11                                           | N                                        | N                                     |
|                           |                           | Regulating Re                                                                                   | eservoir Sub              | basin                             |                                              |                                          |                                       |
| 13                        | 01115176                  | Regulating Reservoir                                                                            | 22.1                      | M                                 | 11                                           | N                                        | N                                     |
| 14                        | 01115110                  | Huntinghouse Brook                                                                              | 6.23                      | M                                 | 10                                           | Y                                        | N                                     |
| 15                        | 01115114                  | Rush Brook                                                                                      | 4.70                      | M                                 | 12                                           | Y                                        | N                                     |
| 16                        | 01115098                  | Peeptoad Brook (Harrisdale Brook)                                                               | 4.96                      | M                                 | 12                                           | Y                                        | N                                     |
| 17                        | 01115119                  | Dexter Pond (Paine Pond)                                                                        | 0.22                      | Q                                 | 2                                            | N                                        | N                                     |
| 18                        | 01115120                  | Unnamed Tributary to Regulating Reservoir (Unnamed Brook A)                                     | 0.28                      | Q                                 | 3                                            | Y                                        | N                                     |
|                           |                           | Westconnaug                                                                                     | Reservoir Su              | bbasin                            |                                              |                                          |                                       |
| 10                        | 01115274                  | Westconnaug Brook                                                                               | 1.48                      | M                                 | 12                                           | N                                        | Y                                     |
| 11                        | 01115273                  | Unnamed Tributary to Westconnaug<br>Reservoir (Unnamed Brook south of<br>Westconnaug Reservoir) | 0.72                      | Q                                 | 3                                            | N                                        | Y                                     |
| 12                        | 011152745                 | Unnamed Tributary to Westconnaug Brook<br>(Unnamed Brook north of Westconnaug<br>reservoir)     | 0.16                      | Q                                 | 3                                            | N                                        | N                                     |

6

Table 2. Measured or estimated annual mean streamflow for tributary streams in the Scituate Reservoir drainage area, Rhode Island, October 1, 2011, through September 30, 2012.

[PWSB, Providence Water Supply Board; USGS, U.S. Geological Survey; ft<sup>3</sup>/s, cubic feet per second; ft<sup>3</sup>/s/mi<sup>2</sup>, cubic feet per second per square mile; alternate station names given in parentheses for stations where different historical names were used for the same sampling location by the Providence Water Supply Board]

| PWSB<br>station<br>number | USGS<br>station<br>number | Station name                                                                              | Annual<br>mean<br>streamflow<br>(ft³/s) | Upper<br>90-percent<br>confidence<br>interval<br>(ft³/s) | Lower<br>90-percent<br>confidence<br>interval<br>(ft³/s) | Annual<br>mean<br>streamflow<br>(ft³/s/mi²) |
|---------------------------|---------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------|----------------------------------------------------------|---------------------------------------------|
|                           |                           | Barden Reservoir Subbasi                                                                  | n                                       |                                                          |                                                          |                                             |
| 24                        | 01115190                  | Dolly Cole Brook                                                                          | 9.2                                     | 10                                                       | 8.1                                                      | 1.9                                         |
| 25                        | 01115200                  | Shippee Brook                                                                             | 5.2                                     | 18                                                       | 1.5                                                      | 2.2                                         |
| 26                        | 01115185                  | Windsor Brook                                                                             | 7.9                                     | 32                                                       | 1.9                                                      | 1.8                                         |
| 28                        | 01115265                  | Barden Reservoir (Hemlock Brook)                                                          | 17                                      | 19                                                       | 15                                                       | 2.0                                         |
| 35                        | 01115187                  | Ponaganset River                                                                          | 26                                      | 29                                                       | 24                                                       | 1.9                                         |
|                           |                           | Direct Runoff Subbasin                                                                    |                                         |                                                          |                                                          |                                             |
| 1                         | 01115180                  | Brandy Brook                                                                              | 2.4                                     | 4.3                                                      | 1.3                                                      | 1.5                                         |
| 3                         | 01115280                  | Cork Brook                                                                                | 3.4                                     | 3.9                                                      | 2.9                                                      | 1.9                                         |
| 4                         | 01115400                  | Kent Brook (Betty Pond Stream)                                                            | 1.5                                     | 7.4                                                      | 0.32                                                     | 1.8                                         |
| 5                         | 01115184                  | Spruce Brook                                                                              | 2.5                                     | 2.7                                                      | 2.4                                                      | 2.1                                         |
| 6                         | 01115183                  | Quonapaug Brook                                                                           | 3.7                                     | 4.0                                                      | 3.4                                                      | 1.9                                         |
| 7                         | 01115297                  | Wilbur Hollow Brook                                                                       | 7.7                                     | 8.3                                                      | 7.0                                                      | 1.8                                         |
| 8                         | 01115276                  | Westconnaug Brook (Westconnaug Reservoir)                                                 | 7.7                                     | 8.1                                                      | 7.4                                                      | 1.5                                         |
| 9                         | 01115275                  | Bear Tree Brook                                                                           | 1.4                                     | 1.4                                                      | 1.3                                                      | 2.2                                         |
| 32                        | 01115178                  | Unnamed Tributary 1 to Scituate Reservoir (Pine Swamp Brook)                              | 0.59                                    | 1.2                                                      | 0.30                                                     | 1.3                                         |
| 33                        | 01115182                  | Unnamed Tributary 3 to Scituate Reservoir (Hall's Estate Brook)                           | 0.40                                    | 1.1                                                      | 0.14                                                     | 1.4                                         |
|                           |                           | Moswansicut Reservoir Subb                                                                | asin                                    |                                                          |                                                          |                                             |
| 19                        | 01115170                  | Moswansicut Reservoir (Moswansicut Stream North, Moswansicut Pond)                        | 5.8                                     | 6.2                                                      | 5.3                                                      | 1.8                                         |
| 21                        | 01115165                  | Unnamed Tributary 2 to Moswansicut Reservoir (Blanchard Brook)                            | 0.64                                    | 1.4                                                      | 0.29                                                     | 2.2                                         |
|                           |                           | Regulating Reservoir Subba                                                                | sin                                     |                                                          |                                                          |                                             |
| 14                        | 01115110                  | Huntinghouse Brook                                                                        | 12                                      | 14                                                       | 10                                                       | 1.9                                         |
| 15                        | 01115114                  | Rush Brook                                                                                | 8.5                                     | 9.6                                                      | 7.3                                                      | 1.8                                         |
| 16                        | 01115098                  | Peeptoad Brook (Harrisdale Brook)                                                         | 11                                      | 13                                                       | 9.3                                                      | 2.2                                         |
| 18                        | 01115120                  | Unnamed Tributary to Regulating Reservoir (Unnamed Brook A)                               | 0.57                                    | 0.65                                                     | 0.50                                                     | 2.0                                         |
|                           |                           | Westconnaug Reservoir Subb                                                                | asin                                    |                                                          |                                                          |                                             |
| 10                        | 01115274                  | Westconnaug Brook                                                                         | 2.2                                     | 3.8                                                      | 1.2                                                      | 1.5                                         |
| 11                        | 01115273                  | Unnamed Tributary to Westconnaug Reservoir (Unnamed Brook south of Westconnaug Reservoir) | 1.2                                     | 2.1                                                      | 0.73                                                     | 1.7                                         |

methods for continuous streamwater-quality monitoring (Wagner and others, 2006).

Concentrations of sodium and chloride were estimated from continuous or periodic measurements of specific conductance by using equations that were developed by the USGS for this purpose (equations 1 and 2). These regression equations were developed by the MOVE.1 method (also known as the line of organic correlation; Helsel and Hirsch, 2002) on the basis of concurrent measurements of specific conductance along with sodium and chloride concentrations measured in water-quality samples collected by the USGS from tributaries in the Scituate Reservoir drainage area (U.S. Geological Survey, 2001):

$$C_{Cl} = (Spc^m) \times b \text{ and}$$
 (1)

$$C_{Na} = \left(Spc^{m}\right) \times b \quad , \tag{2}$$

where

C<sub>Cl</sub> is the chloride concentration, in milligrams per liter;

 $C_{Na}$  is the sodium concentration,

in milligrams per liter; Spc is the specific conductance,

in microsiemens per centimeter;

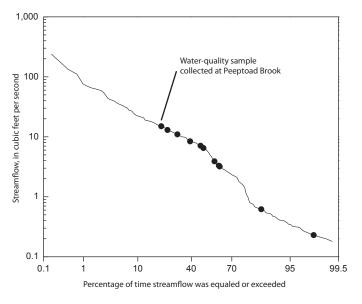
is the slope from the MOVE.1 analysis (table 3); and

b is the intercept from the MOVE.1 analysis (table 3).

MOVE.1 was chosen for regression analysis to maintain variance (Hirsch and Gilroy, 1984). Some missing values of specific conductance were estimated. In these cases, values of specific conductance were estimated by proportional distribution between recorded values.

## Data Collected by the Providence Water Supply Board

Water-quality samples were collected at fixed stations on 37 tributaries by the PWSB. Sampling was done monthly at 19 stations and quarterly at another 18 stations (table 1) during WY 2012. Water-quality samples were not collected during specific weather conditions; instead, a strictly periodic water-quality sampling schedule was followed so that water-quality samples would be representative of various weather conditions. However, sometimes samples could not be collected because tributaries at the sampling stations were dry or frozen. When possible, water-quality samples were collected by dipping the sample bottle into the tributary at the center of flow


**Table 3.** Regression equation coefficients used to estimate concentrations of chloride and sodium from values of specific conductance for each U.S. Geological Survey monitoring station in the Scituate Reservoir drainage area, Rhode Island, October 1, 2011, through September 30, 2012.

| PWSB. Providence | Water Supply Board: | USGS, U.S. O | Geological Survey: | RMSE, root mean square error] |  |
|------------------|---------------------|--------------|--------------------|-------------------------------|--|
|                  |                     |              |                    |                               |  |

| PWSB           | USGS           |           | Chloride |       |           | Sodium |       |
|----------------|----------------|-----------|----------|-------|-----------|--------|-------|
| station number | station number | Intercept | Slope    | RMSE  | Intercept | Slope  | RMSE  |
| 24             | 01115190       | 0.133     | 1.101    | 0.030 | 0.107     | 1.043  | 0.035 |
| 28             | 01115265       | 0.133     | 1.101    | 0.030 | 0.107     | 1.043  | 0.035 |
| 35             | 01115187       | 0.133     | 1.101    | 0.030 | 0.107     | 1.043  | 0.035 |
| 3              | 01115280       | 0.133     | 1.101    | 0.030 | 0.107     | 1.043  | 0.035 |
| 5              | 01115184       | 0.077     | 1.190    | 0.037 | 0.076     | 1.081  | 0.037 |
| 6              | 01115183       | 0.133     | 1.101    | 0.030 | 0.107     | 1.043  | 0.035 |
| 7              | 01115297       | 0.077     | 1.190    | 0.037 | 0.076     | 1.081  | 0.037 |
| 8              | 01115276       | 0.133     | 1.101    | 0.030 | 0.107     | 1.043  | 0.035 |
| 9              | 01115275       | 0.133     | 1.101    | 0.030 | 0.107     | 1.043  | 0.035 |
| 19             | 01115170       | 0.133     | 1.101    | 0.030 | 0.107     | 1.043  | 0.035 |
| 14             | 01115110       | 0.077     | 1.190    | 0.037 | 0.076     | 1.081  | 0.037 |
| 15             | 01115114       | 0.133     | 1.101    | 0.030 | 0.107     | 1.043  | 0.035 |
| 16             | 01115098       | 0.133     | 1.101    | 0.030 | 0.107     | 1.043  | 0.035 |
| 18             | 01115120       | 0.133     | 1.101    | 0.030 | 0.107     | 1.043  | 0.035 |

(Richard Blodgett, PWSB, written commun., 2005). Samples were transported on ice to the PWSB water-quality laboratory at the P.J. Holton Water Purification Plant in Scituate, R.I. Water-quality properties and constituent concentrations were measured by using unfiltered water samples. These water-quality properties included pH, temperature, acidity, alkalinity, color, turbidity, and concentrations of chloride, nitrite, nitrate, orthophosphate, and bacteria (*Escherichia coli (E. coli*) and total coliform). More information on sample-collection, analytical, and quality-control procedures can be found in the Providence Water Supply Board Quality Assurance Program Manual (Providence Water Supply Board Water Quality Laboratory, 2012).

Water-quality samples were collected by the PWSB during a wide range of flow conditions. The daily mean flow-duration curve for the Peeptoad Brook at North Scituate (USGS streamgage 01115098) for WY 2012 is shown in figure 2. The curve represents the percentage of time that each flow was exceeded at this station. The flows at this station on days when water-quality samples were collected are represented by the plotted points superimposed on the curve. Samples were collected at flow durations ranging from the 20th percentile to the 98th percentile; this range indicates that the water-quality samples collected in WY 2012 represented a wide range of flow conditions during that water year.



**Figure 2.** Flow-duration curve and streamflow values on the dates (represented by points) when water-quality samples were collected for the U.S. Geological Survey continuous streamgage on Peeptoad Brook at North Scituate (01115098) for water year 2012.

## Estimating Daily, Monthly, and Annual Loads and Yields

Daily, monthly, and annual sodium and chloride loads in kilograms were estimated for all streamgages for which continuous-streamflow and specific-conductance data were available for WY 2012. Daily flow-weighted concentrations of sodium and chloride were calculated by multiplying instantaneous flows by concurrent concentrations of sodium and chloride (estimated from measurements of specific conductance) for each day and dividing by the total flow for that day. Daily sodium and chloride loads were estimated by multiplying daily flow-weighted concentrations of sodium and chloride in milligrams per liter by daily discharge (in liters per day). Daily data was added to estimate monthly or annual loads.

Daily loads of water-quality constituents (in samples collected by the PWSB) were calculated for all sampling dates during WY 2012 (table 4, at back of report) for which periodic or continuous-streamflow data were available (table 1). These loads were calculated by multiplying constituent concentrations in milligrams or colony forming units (CFU) per liter in single samples by the daily discharge (in liters per day) for the day on which each sample was collected. The flows, which in some cases were estimates, were assumed to be representative of the flow at the time of the sample collection. Loads in grams or kilograms (or millions of CFUs for bacteria) per day and yields in grams or kilograms (or millions of CFUs for bacteria) per day per square mile were calculated for bacteria, chloride, nitrite, nitrate, and orthophosphate from this waterquality data. Censored data (or concentrations reported as less than method detection limits) were replaced with concentrations equal to one-half the method detection limit.

#### **Streamflow**

Monitoring streamflow is necessary to measure the volume of water and estimate constituent loads to the Scituate Reservoir. The Ponaganset River is the largest monitored tributary to the Scituate Reservoir. Mean annual streamflow at the streamgage on the Ponaganset River (USGS streamgage 01115187) for the entire time period of its operation (mean of the annual mean streamflows for the period of record, WY 1994-2011) prior to WY 2011 was about 30 ft<sup>3</sup>/s (http://waterdata.usgs.gov/nwis). During WY 2012, annual mean streamflow was 26 ft<sup>3</sup>/s (fig. 3). Mean annual streamflow in Peeptoad Brook at the other longterm continuous-record streamgage in the Scituate Reservoir drainage area (streamgage 01115098) for its period of record (WY 1994-2011) prior to WY 2012 was about 11 ft<sup>3</sup>/s (http://waterdata.usgs.gov/nwis). Annual mean streamflow in Peeptoad Brook during WY 2012 also was 11 ft<sup>3</sup>/s (table 2).

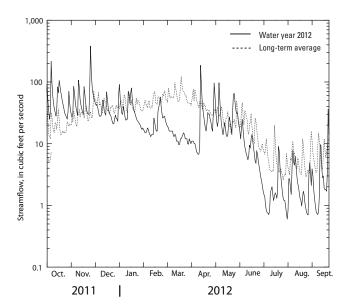



Figure 3. Measured daily mean streamflow for October 1, 2011, through September 30, 2012, and mean daily streamflow for October 1, 1994, through September 30, 2011, for the U.S. Geological Survey continuous-record streamgage on the Ponaganset River at South Foster (01115187) in the Scituate Reservoir drainage area, Rhode Island.

## Water Quality and Constituent Loads and Yields

Water-quality conditions in the Scituate Reservoir drainage area are described by summary statistics for water-quality properties, constituent concentrations, and estimated constituent loads and yields. Loads and yields characterize the rates at which masses of constituents are transferred to the reservoir by tributaries. In the case of loads, tributaries with high flows tend to have high loads because the greater volume of water can carry more of the constituent to the reservoir per unit time. Yields represent the constituent load per unit drainage area and are calculated by dividing the load estimated for a streamgage by the drainage area to the monitoring station. Yields are useful for comparison among streamgages that have different drainage areas because the effects of basin size and therefore total streamflow volume are attenuated. Yields also are useful for examining potential differences among basin properties that may contribute to reservoir quality.

Summary statistics include means and medians. For some purposes, median values are more appropriate because they are less likely to be affected by high or low concentrations (or outliers). Medians are especially important to use for summarizing a relatively limited number of values. In contrast, continuously monitored streamflow and sodium and chloride loads (estimated from measurements of specific conductance), which include a large number of values, are better summarized in terms of means because a large dataset is more resistant to

the effects of outliers. Mean values also are particularly appropriate for characterizing loads because outlier values, which typically represent large flows, are important to include in estimates of constituent masses delivered to receiving waters.

#### Sodium and Chloride Loads and Yields Estimated from Specific-Conductance Monitoring Data

Sodium and chloride are constituents of special concern in the Scituate Reservoir drainage area; they are major constituents of road salt used for deicing, and several major roadways cross the drainage basin. State Routes 12 and 14 cut across the main body of the reservoir, and State Route 116 parallels the eastern limb (fig. 1). Nimiroski and Waldron (2002) previously indicated that tributaries in basins with state-maintained roads had substantially higher concentrations of sodium and chloride than tributaries in basins with low road density, presumably because of deicing activities. In addition, sodium is a constituent of potential concern for human health; some persons on restricted diets might need to limit their intake of sodium.

Estimated monthly mean<sup>3</sup> sodium concentrations in tributaries of the Scituate Reservoir drainage area ranged from 0.0 to 37.6 mg/L, and estimated monthly mean chloride concentrations ranged from 0.0 to 64.8 mg/L (table 5). The highest monthly mean concentrations of sodium and chloride were measured in Bear Tree Brook (PWSB station 9) in August 2012 (37.6 and 64.8 mg/L, respectively; table 5). The highest annual mean<sup>4</sup> concentrations of sodium and chloride also were measured in Bear Tree Brook, 26.6 and 45.9 mg/L, respectively (table 6). These high concentrations are the result of residual sodium and chloride leaching from a formerly uncovered salt storage pile to groundwater (Nimiroski and Waldron, 2002) and relatively small surface-water flows.

During WY 2012, the Scituate Reservoir received about 1,100,000 kg (about 1,200 tons) of sodium and 1,900,000 kg (about 2,100 tons) of chloride from tributaries that were equipped with instrumentation capable of continuously monitoring specific conductance. The highest sodium and chloride loads in the watershed during WY 2012 (210,000 kg and 330,000 kg, respectively) were measured at the Ponaganset River station (PWSB station 35; table 6). Monthly estimated sodium and chloride loads were highest in the months of October, November, and December (table 7). The maximum monthly loads of sodium and chloride at each station accounted for 13–20 percent of the annual load for each constituent at the respective stations. The highest annual sodium and chloride yields were 51,000 and 87,000 kg/mi²,

<sup>&</sup>lt;sup>3</sup> Monthly mean concentrations were calculated by dividing the total monthly load by the total discharge for the month.

<sup>&</sup>lt;sup>4</sup> Annual mean concentrations were calculated by dividing the total annual load by the total discharge for the year.

Monthly mean concentrations of chloride and sodium estimated from continuous measurements of specific conductance in the Scituate Reservoir drainage area, Rhode Island, October 1, 2011, through September 30, 2012. Table 5.

[PWSB, Providence Water Supply Board; USGS, U.S. Geological Survey; Cl, chloride; mg/L, milligrams per liter; Na, sodium; monthly mean concentrations were calculated by dividing the monthly load by the total discharge for the month; alternate station names given in parentheses for stations where different historical names were used for the same sampling location by Providence Water Supply Board]

| PWSB    | SSS       |                                                                    | Oct     | October                        | Nove       | November | December | nber   | January | iary   | February | uary   | March  | 당      |
|---------|-----------|--------------------------------------------------------------------|---------|--------------------------------|------------|----------|----------|--------|---------|--------|----------|--------|--------|--------|
| station | station   | Station name                                                       | 5       | Na                             | 5          | Na       | 5        | Na     | 5       | Na     | 5        | Na     | 5      | Na     |
| number  | number    |                                                                    | (mg/L)  | (mg/L)                         | (mg/L)     | (mg/L)   | (mg/L)   | (mg/L) | (mg/L)  | (mg/L) | (mg/L)   | (mg/L) | (mg/L) | (mg/L) |
|         |           |                                                                    | Barde   | Barden Reservoir Subbasin      | ir Subbas  | in       |          |        |         |        |          |        |        |        |
| 24      | 01115190  | Dolly Cole Brook                                                   | 18.2    | 11.3                           | 17.7       | 11.0     | 15.6     | 9.78   | 16.7    | 10.4   | 18.3     | 11.4   | 19.6   | 12.1   |
| 28      | 01115265  | Barden Reservoir (Hemlock Brook)                                   | 13.8    | 8.70                           | 14.1       | 8.85     | 11.3     | 7.2    | 14.1    | 8.85   | 17.8     | 11.0   | 17.2   | 10.7   |
| 35      | 01115187  | Ponaganset River                                                   | 14.3    | 8.99                           | 14.1       | 8.87     | 12.0     | 7.59   | 14.1    | 8.86   | 15.5     | 69.6   | 16.4   | 10.3   |
|         |           |                                                                    | Dire    | Direct Runoff Subbasin         | Subbasin   |          |          |        |         |        |          |        |        |        |
| 3       | 01115280  | Cork Brook                                                         | 22.1    | 13.6                           | 23.4       | 14.3     | 18.8     | 11.6   | 22.5    | 13.8   | 25.1     | 15.3   | 28.3   | 17.2   |
| 5       | 01115184  | Spruce Brook                                                       | 15.2    | 9.22                           | 13.8       | 8.42     | 12.1     | 7.45   | 13.8    | 8.42   | 14.6     | 8.88   | 15.7   | 9.48   |
| 9       | 01115183  | Quonapaug Brook                                                    | 29.8    | 18.0                           | 28.0       | 17.0     | 22.7     | 13.9   | 27.6    | 16.7   | 29.6     | 17.9   | 33.4   | 20.1   |
| 7       | 01115297  | Wilbur Hollow Brook                                                | 9.18    | 5.83                           | 9.72       | 6.13     | 7.31     | 4.73   | 8.40    | 5.37   | 9.18     | 5.83   | 8.80   | 5.60   |
| 8       | 01115276  | Westconnaug Brook (Westconnaug Reservoir)                          | 17.2    | 10.7                           | 17.3       | 10.7     | 15.9     | 9.93   | 17.3    | 10.8   | 19.2     | 11.9   | 19.1   | 11.8   |
| 6       | 01115275  | Bear Tree Brook                                                    | 41.8    | 24.8                           | 43.0       | 25.5     | 38.8     | 23.1   | 44.2    | 26.2   | 49.6     | 29.2   | 48.2   | 28.4   |
|         |           |                                                                    | Moswan  | Moswansicut Reservoir Subbasin | rvoir Sub  | basin    |          |        |         |        |          |        |        |        |
| 19      | 01115170  | Moswansicut Reservoir (Moswansicut Stream North, Moswansicut Pond) | 33.9    | 20.4                           | 31.7       | 19.1     | 31.8     | 19.2   | 33.6    | 20.2   | 33.7     | 20.3   | 34.3   | 20.6   |
|         |           |                                                                    | Regular | Regulating Reservoir Subbasin  | oir Subb   | asin     |          |        |         |        |          |        |        |        |
| 14      | 01115110  | Huntinghouse Brook                                                 | 8.66    | 5.52                           | 8.57       | 5.47     | 7.40     | 4.78   | 8.10    | 5.19   | 9.90     | 6.24   | 87.6   | 6.17   |
| 15      | 011151114 | Regulating Reservoir (Rush Brook)                                  | 23.9    | 14.6                           | 24.9       | 15.2     | 19.1     | 11.8   | 23.8    | 14.6   | 31.7     | 19.1   | 33.7   | 20.3   |
| 16      | 01115098  | Peeptoad Brook (Harrisdale Brook)                                  | 32.2    | 19.4                           | 28.3       | 17.2     | 22.4     | 13.8   | 26.2    | 15.9   | 27.8     | 16.9   | 30.7   | 18.5   |
| 18      | 01115120  | Unnamed Tributary to Regulating Reservoir (Unnamed Brook A)        | 37.1    | 22.2                           | 37.8       | 22.6     | 29.4     | 17.7   | 35.7    | 21.3   | 40.3     | 24.0   | 45.1   | 26.7   |
|         |           |                                                                    | Scit    | Scituate Reservoir Basin       | voir Basii | u        |          |        |         |        |          |        |        |        |
|         |           | Average                                                            | 22.7    | 13.8                           | 22.3       | 13.6     | 18.9     | 11.6   | 21.9    | 13.3   | 24.4     | 14.8   | 25.7   | 15.6   |

Monthly mean concentrations of chloride and sodium estimated from continuous measurements of specific conductance in the Scituate Reservoir drainage area, Rhode Island, October 1, 2011, through September 30, 2012.—Continued Table 5.

[PWSB, Providence Water Supply Board; USGS, U.S. Geological Survey; Cl, chloride; mg/L, milligrams per liter; Na, sodium; monthly mean concentrations were calculated by dividing the monthly load by the total discharge for the month; alternate station names given in parentheses for stations where different historical names were used for the same sampling location by Providence Water Supply Board]

| <b>PWSB</b> | SDSO      |                                                                       | Ā       | April                                 | 2          | May           | 亨      | June   | ゔ      | July   | Auç    | August | Septe  | September |
|-------------|-----------|-----------------------------------------------------------------------|---------|---------------------------------------|------------|---------------|--------|--------|--------|--------|--------|--------|--------|-----------|
| station     | n station | Station name                                                          | 5       | Na                                    | <u>5</u>   | Na            | 5      | Na     | 5      | Na     | 5      | Na     | 5      | Na        |
| number      | r number  |                                                                       | (mg/L)  | (mg/L)                                | (mg/L)     | (mg/L) (mg/L) | (mg/L)    |
|             |           |                                                                       | Barde   | Barden Reservoir Subbasin             | oir Subba  | sin           |        |        |        |        |        |        |        |           |
| 24          | 01115190  | Dolly Cole Brook                                                      | 18.3    | 11.4                                  | 17.5       | 10.9          | 18.7   | 11.6   | 22.2   | 13.6   | 25.7   | 15.6   | 27.1   | 16.5      |
| 28          | 01115265  | Barden Reservoir (Hemlock Brook)                                      | 14.8    | 9.28                                  | 13.9       | 8.77          | 16.9   | 10.5   | 24.7   | 15.1   | 29.5   | 17.8   | 28.9   | 17.5      |
| 35          | 01115187  | Ponaganset River                                                      | 14.9    | 9.37                                  | 14.8       | 9.28          | 14.7   | 9.20   | 17.7   | 11.0   | 19.4   | 12.0   | 17.6   | 11.0      |
|             |           |                                                                       | Dire    | Direct Runoff Subbasin                | Subbasi    | _             |        |        |        |        |        |        |        |           |
| 3           | 01115280  | Cork Brook                                                            | 23.2    | 14.2                                  | 23.2       | 14.2          | 25.2   | 15.4   | 24.0   | 14.7   | 36.1   | 21.6   | 35.8   | 21.4      |
| 5           | 01115184  | Spruce Brook                                                          | 13.8    | 8.40                                  | 12.7       | 7.83          | 14.6   | 8.9    | 17.5   | 10.5   | 21.3   | 12.5   | 20.2   | 11.9      |
| 9           | 01115183  | Quonapaug Brook                                                       | 28.9    | 17.5                                  | 30.2       | 18.3          | 32.2   | 19.4   | 41.2   | 24.5   | 42.2   | 25.0   | 39.9   | 23.7      |
| 7           | 01115297  | Wilbur Hollow Brook                                                   | 89.8    | 5.53                                  | 7.67       | 4.95          | 8.22   | 5.27   | 11.5   | 7.17   | 13.5   | 8.27   | 12.6   | 7.74      |
| ~           | 01115276  | Westconnaug Brook (Westconnaug Reservoir)                             | 19.5    | 12.1                                  | 16.3       | 10.2          | 19.0   | 11.8   | 27.0   | 16.4   | 30.4   | 18.4   | 28.4   | 17.2      |
| 6           | 01115275  | Bear Tree Brook                                                       | 46.4    | 27.4                                  | 42.3       | 25.1          | 47.2   | 27.9   | 55.5   | 32.4   | 8.49   | 37.6   | 54.4   | 31.8      |
|             |           |                                                                       | Moswans | <b>Moswansicut Reservoir Subbasin</b> | ervoir Sub | basin         |        |        |        |        |        |        |        |           |
| 19          | 01115170  | Moswansicut Reservoir (Moswansicut Stream<br>North, Moswansicut Pond) | 35.0    | 21.0                                  | 35.9       | 21.5          | 36.4   | 21.8   | 39.5   | 23.5   | 39.6   | 23.6   | 37.4   | 22.4      |
|             |           |                                                                       | Regulat | Regulating Reservoir Subbasin         | voir Subk  | asin          |        |        |        |        |        |        |        |           |
| 14          | 011151110 | Huntinghouse Brook                                                    | 5.9     | 3.86                                  | 6.54       | 4.27          | 9.54   | 6.02   | 13.0   | 8.00   | 14.1   | 8.59   | 14.2   | 8.64      |
| 15          | 011151114 | Regulating Reservoir (Rush Brook)                                     | 23.4    | 14.3                                  | 22.8       | 14.0          | 27.6   | 16.7   | 34.0   | 20.4   | 44.9   | 26.5   | 40.0   | 23.8      |
| 16          | 01115098  | Peeptoad Brook (Harrisdale Brook)                                     | 28.1    | 17.0                                  | 26.7       | 16.2          | 29.5   | 17.8   | 33.0   | 19.8   | 33.1   | 19.9   | 32.5   | 19.6      |
| 18          | 01115120  | Unnamed Tributary to Regulating Reservoir (Unnamed Brook A)           | 24.4    | 14.8                                  | 26.4       | 16.0          | 35.2   | 21.1   | 23.9   | 14.6   | 0.00   | 0.00   | 31.3   | 18.9      |
|             |           |                                                                       | Scitu   | Scituate Reservoir Basin              | rvoir Bas  | .u            |        |        |        |        |        |        |        |           |
|             |           | Average                                                               | 21.8    | 13.3                                  | 21.2       | 13.0          | 23.9   | 14.5   | 27.5   | 16.5   | 29.6   | 17.7   | 30.0   | 18.0      |
|             |           |                                                                       |         |                                       |            |               |        |        |        |        |        |        |        |           |

Table 6. Annual mean chloride and sodium concentrations, loads, and yields by sampling station in the Scituate Reservoir drainage area, Rhode Island, October 1, 2011, through September 30, 2012.

[PWSB, Providence Water Supply Board; USGS, U.S. Geological Survey; mg/L, milligrams per liter; kg, kilograms; kg/mi², kilograms per square mile; Cl, chloride; Na, sodium; annual mean concentrations were calculated by dividing the annual load by the total discharge for the year; alternate station names given in parentheses for stations where different historical names were used for the same sampling location by Providence Water Supply Board]

| PWSB                                                                                                                                                                                                                                                                                                                                                                                                                                  | USGS     |                                                                        | Conce      | ntration | Lo        | oad       | Yie      | eld      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------|------------|----------|-----------|-----------|----------|----------|
| station                                                                                                                                                                                                                                                                                                                                                                                                                               | station  | Station name                                                           | CI         | Na       | CI        | Na        | CI       | Na       |
| number                                                                                                                                                                                                                                                                                                                                                                                                                                | number   |                                                                        | (mg/L)     | (mg/L)   | (kg)      | (kg)      | (kg/mi²) | (kg/mi²) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | Barden Reserv                                                          | oir Subba  | sin      |           |           |          |          |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                    | 01115190 | Dolly Cole Brook                                                       | 17.6       | 11.0     | 140,000   | 89,000    | 29,000   | 18,000   |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                    | 01115265 | Barden Reservoir (Hemlock Brook)                                       | 14.4       | 9.02     | 220,000   | 140,000   | 25,000   | 16,000   |
| 35                                                                                                                                                                                                                                                                                                                                                                                                                                    | 01115187 | Ponaganset River                                                       | 14.2       | 8.95     | 330,000   | 210,000   | 24,000   | 15,000   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | Direct Runof                                                           | f Subbasiı | n        |           |           |          |          |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                     | 01115280 | Cork Brook                                                             | 22.8       | 14.0     | 69,000    | 42,000    | 38,000   | 24,000   |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                     | 01115184 | Spruce Brook                                                           | 14.2       | 8.64     | 32,000    | 19,000    | 26,000   | 16,000   |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                     | 01115183 | Quonapaug Brook                                                        | 28.8       | 17.5     | 95,000    | 57,000    | 48,000   | 29,000   |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                     | 01115297 | Wilbur Hollow Brook                                                    | 8.72       | 5.55     | 59,000    | 38,000    | 14,000   | 8,700    |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                     | 01115276 | Westconnaug Brook (Westconnaug Reservoir)                              | 18.5       | 11.5     | 130,000   | 79,000    | 25,000   | 15,000   |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                     | 01115275 | Bear Tree Brook                                                        | 45.0       | 26.6     | 54,000    | 32,000    | 87,000   | 51,000   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | Moswansicut Res                                                        | ervoir Sul | basin    |           |           |          |          |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                    | 01115170 | Moswansicut Reservoir, (Moswansicut<br>Stream North, Moswansicut Pond) | 33.8       | 20.3     | 170,000   | 100,000   | 53,000   | 32,000   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | Regulating Rese                                                        | rvoir Subb | pasin    |           |           |          |          |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                    | 01115110 | Huntinghouse Brook                                                     | 8.14       | 5.20     | 87,000    | 55,000    | 14,000   | 8,900    |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                    | 01115114 | Rush Brook                                                             | 24.6       | 15.0     | 190,000   | 110,000   | 39,000   | 24,000   |
| station number         station number           24         01115190           28         01115265           35         01115187           3         01115280           5         01115182           6         01115183           7         01115297           8         01115275           9         01115275           19         01115170           14         01115112           15         01115112           16         01115098 | 01115098 | Peeptoad Brook (Harrisdale Brook)                                      | 27.5       | 16.7     | 270,000   | 160,000   | 53,000   | 32,000   |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                    | 01115120 | Unnamed Tributary to Regulating Reservoir (Unnamed Brook A)            | 34.3       | 20.5     | 18,000    | 10,000    | 63,000   | 37,000   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | Scituate Rese                                                          | ervoir Bas | in       |           |           |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                                                                        | Ave        | erage    | To        | otal      | Ave      | rage     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                                                                        | 22.3       | 13.6     | 1,900,000 | 1,100,000 | 38,000   | 23,000   |

[PWSB, Providence Water Supply Board; USGS, U.S. Geological Survey; Cl, chloride; Na, sodium; kg, kilogram; alternate station names given in parentheses for stations where different historical names were used for the same sampling location by Providence Water Supply Board] Table 7. Monthly estimated chloride and sodium loads by sampling station in the Scituate Reservoir drainage area, Rhode Island, October 1, 2011, through September 30, 2012.

| PWSB    | NSGS     |                                                             | 0ctober | per     | November        | mber                           | December | nber    | January | ıary    | Febr    | February | March   | rch    |
|---------|----------|-------------------------------------------------------------|---------|---------|-----------------|--------------------------------|----------|---------|---------|---------|---------|----------|---------|--------|
| Station | ••       | Station name                                                | 5       | Na      | 5               | Na                             | 5        | Na      | 5       | Na      | 5       | Na       | 5       | Na     |
| number  | r number |                                                             | (kg)    | (kg)    | (kg)            | (kg)                           | (kg)     | (kg)    | (kg)    | (kg)    | (kg)    | (kg)     | (kg)    | (kg)   |
|         |          |                                                             |         |         | Barden Re       | Barden Reservoir Subbasin      | oasin    |         |         |         |         |          |         |        |
| 24      | 01115190 | Dolly Cole Brook                                            | 27,000  | 17,000  | 25,000          | 15,000                         | 24,000   | 15,000  | 16,000  | 10,000  | 7,700   | 4,800    | 9,700   | 6,000  |
| 28      | 01115265 | Barden Reservoir (Hemlock                                   | 36,000  | 23,000  | 29,000          | 19,000                         | 35,000   | 22,000  | 25,000  | 16,000  | 13,000  | 7,900    | 17,000  | 11,000 |
| 35      | 01115187 | Ро                                                          | 55,000  | 34,000  | 48.000          | 30,000                         | 52,000   | 33,000  | 41,000  | 26.000  | 21,000  | 13,000   | 26,000  | 16.000 |
|         |          | )                                                           |         |         | Direct Ru       | Direct Runoff Subbasin         | sin      |         |         |         |         |          |         |        |
| 3       | 01115280 | Cork Brook                                                  | 9,800   | 6,000   | 9,200           | 5,600                          | 12,000   | 7,400   | 6,900   | 4,200   | 2,800   | 1,700    | 4,400   | 2,700  |
| 5       | 01115184 | Spruce Brook                                                | 4,300   | 2,600   | 4,100           | 2,500                          | 4,500    | 2,800   | 3,600   | 2,200   | 2,700   | 1,700    | 2,900   | 1,800  |
| 9       | 01115183 | Quonapaug Brook                                             | 16,000  | 9,700   | 13,000          | 8,000                          | 13,000   | 8,200   | 11,000  | 6,700   | 7,100   | 4,300    | 8,100   | 4,800  |
| 7       | 01115297 | Wilbur Hollow Brook                                         | 8,500   | 5,400   | 9,300           | 5,900                          | 8,600    | 5,600   | 6,900   | 4,400   | 4,400   | 2,800    | 4,500   | 2,900  |
| ∞       | 01115276 | Westconnaug Brook (Westconnaug                              | 16,000  | 9,800   | 14,000          | 8,500                          | 15,000   | 9,400   | 13,000  | 8,200   | 11,000  | 6,900    | 11,000  | 6,700  |
| 6       | 01115275 | Be                                                          | 6,400   | 3,800   | 6,700           | 4,000                          | 7,400    | 4,400   | 6,400   | 3,800   | 5,100   | 3,000    | 4,900   | 2,900  |
|         |          |                                                             |         | M       | swansicut       | Moswansicut Reservoir Subbasin | ubbasin  |         |         |         |         |          |         |        |
| 19      | 01115170 | Moswansicut Reservoir                                       | 25,000  | 15,000  | 24,000          | 14,000                         | 31,000   | 19,000  | 20,000  | 12,000  | 10,000  | 6,100    | 11,000  | 6,700  |
|         |          | (Moswansicut Stream North,<br>Moswansicut Pond)             |         |         |                 |                                |          |         |         |         |         |          |         |        |
|         |          |                                                             |         | 8       | egulating R     | Regulating Reservoir Subbasin  | bbasin   |         |         |         |         |          |         |        |
| 14      | 01115110 | Huntinghouse Brook                                          | 16,000  | 6,900   | 14,000          | 8,700                          | 16,000   | 10,000  | 9,500   | 6,100   | 5,400   | 3,400    | 7,700   | 4,900  |
| 15      | 01115114 | Regulating Reservoir (Rush Brook)                           | 31,000  | 19,000  | 27,000          | 16,000                         | 25,000   | 15,000  | 21,000  | 13,000  | 12,000  | 7,300    | 19,000  | 11,000 |
| 16      | 01115098 | Peeptoad Brook (Harrisdale Brook)                           | 52,000  | 32,000  | 49,000          | 29,000                         | 47,000   | 29,000  | 28,000  | 17,000  | 15,000  | 9,400    | 13,000  | 7,800  |
| 18      | 01115120 | Unnamed Tributary to Regulating Reservoir (Unnamed Brook A) | 2,700   | 1,600   | 2,900           | 1,700                          | 2,800    | 1,700   | 2,400   | 1,500   | 1,600   | 950      | 2,000   | 1,200  |
|         |          |                                                             |         |         | Scituate F      | Scituate Reservoir Basin       | asin     |         |         |         |         |          |         |        |
|         |          | Total                                                       | 310,000 | 190,000 | 280,000 170,000 | 170,000                        | 290,000  | 180,000 | 210,000 | 130,000 | 120,000 | 73,000   | 140,000 | 86,000 |
|         |          |                                                             |         |         |                 |                                |          |         |         |         |         |          |         |        |

Table 7. Monthly estimated chloride and sodium loads by sampling station, in the Scituate Reservoir drainage area, Rhode Island, October 1, 2011, through September 30, 2012.—Continued

[PWSB, Providence Water Supply Board; USGS, U.S. Geological Survey; Cl, chloride; Na, sodium; kg, kilogram; alternate station names given in parentheses for stations where different historical names were used for the same sampling location by Providence Water Supply Board]

| PWSB    | SSO       |                                                                    | April   | =      | May         | ay                             | June    | 9      | July   | λl     | August | ust    | September | nber   |
|---------|-----------|--------------------------------------------------------------------|---------|--------|-------------|--------------------------------|---------|--------|--------|--------|--------|--------|-----------|--------|
| Station | ••        | Station name                                                       | 5       | Na     | 5           | Na                             | IJ      | Na     | 5      | Na     | 5      | Na     | 5         | Na     |
| number  | r number  |                                                                    | (kg)    | (kg)   | (kg)        | (kg)                           | (kg)    | (kg)   | (kg)   | (kg)   | (kg)   | (kg)   | (kg)      | (kg)   |
|         |           |                                                                    |         |        | Barden Res  | arden Reservoir Subbasin       | asin    |        |        |        |        |        |           |        |
| 24      | 011115190 | Dolly Cole Brook                                                   | 9,900   | 6,200  | 13,000      | 7,900                          | 8,000   | 5,000  | 2,200  | 1,300  | 800    | 490    | 810       | 500    |
| 28      | 01115265  | Barden Reservoir (Hemlock                                          | 18,000  | 11,000 | 22,000      | 14,000                         | 13,000  | 8,200  | 3,200  | 1,900  | 3,300  | 2,000  | 3,900     | 2,300  |
|         |           | Brook)                                                             |         |        |             |                                |         |        |        |        |        |        |           |        |
| 35      | 01115187  | Ponaganset River                                                   | 25,000  | 16,000 | 32,000      | 20,000                         | 21,000  | 13,000 | 3,700  | 2,300  | 3,400  | 2,100  | 5,200     | 3,200  |
|         |           |                                                                    |         |        | Direct Ru   | Direct Runoff Subbasin         | sin     |        |        |        |        |        |           |        |
| 3       | 01115280  | Cork Brook                                                         | 5,900   | 3,600  | 9,200       | 5,600                          | 4,600   | 2,800  | 1,400  | 098    | 770    | 460    | 1,900     | 1,200  |
| 5       | 01115184  | Spruce Brook                                                       | 2,200   | 1,300  | 2,900       | 1,800                          | 1,900   | 1,100  | 1,100  | 029    | 730    | 430    | 096       | 570    |
| 9       | 01115183  | Quonapaug Brook                                                    | 6,500   | 3,900  | 8,500       | 5,100                          | 5,000   | 3,000  | 2,000  | 1,200  | 1,600  | 950    | 2,500     | 1,500  |
| 7       | 01115297  | Wilbur Hollow Brook                                                | 4,500   | 2,800  | 5,200       | 3,300                          | 3,400   | 2,200  | 950    | 590    | 540    | 330    | 2,500     | 1,600  |
| ∞       | 01115276  | Westconnaug Brook (Westconnaug Reservoir)                          | 9,200   | 5,700  | 12,000      | 7,500                          | 9,500   | 5,900  | 6,300  | 3,800  | 5,300  | 3,200  | 5,300     | 3,200  |
| 6       | 01115275  | Bear Tree Brook                                                    | 3,800   | 2,200  | 4,100       | 2,400                          | 3,400   | 2,000  | 2,100  | 1,300  | 1,700  | 086    | 2,000     | 1,200  |
|         |           |                                                                    |         | M      | oswansicut  | Moswansicut Reservoir Subbasin | ubbasin |        |        |        |        |        |           |        |
| 19      | 01115170  | Moswansicut Reservoir (Moswansicut Stream North, Moswansicut Pond) | 13,000  | 7,700  | 23,000      | 14,000                         | 8,300   | 5,000  | 2,300  | 1,400  | 2,400  | 1,400  | 3,000     | 1,800  |
|         |           | ,                                                                  |         | 8      | egulating R | Regulating Reservoir Subbasin  | bbasin  |        |        |        |        |        |           |        |
| 14      | 011151110 | Huntinghouse Brook                                                 | 5,200   | 3,400  | 7,300       | 4,800                          | 4,300   | 2,700  | 930    | 570    | 340    | 210    | 810       | 490    |
| 15      | 01115114  | Regulating Reservoir (Rush Brook)                                  | 16,000  | 6,800  | 19,000      | 12,000                         | 6,900   | 6,000  | 2,700  | 1,600  | 800    | 470    | 3,000     | 1,800  |
| 16      | 01115098  | Peeptoad Brook (Harrisdale Brook)                                  | 22,000  | 13,000 | 23,000      | 14,000                         | 9,300   | 5,600  | 3,300  | 2,000  | 1,400  | 810    | 1,400     | 830    |
| 18      | 01115120  | Unnamed Tributary to Regulating Reservoir (Unnamed Brook A)        | 810     | 490    | 1,500       | 920                            | 640     | 380    | 110    | 69     | 0      | 0      | 100       | 09     |
|         |           |                                                                    |         |        | Scituate F  | Scituate Reservoir Basin       | ısin    |        |        |        |        |        |           |        |
|         |           | Total                                                              | 140,000 | 87,000 | 180,000     | 110,000                        | 100,000 | 63,000 | 32,000 | 20,000 | 23,000 | 14,000 | 33,000    | 20,000 |
|         |           |                                                                    |         |        |             |                                |         |        |        |        |        |        |           |        |

respectively, and were measured at Bear Tree Brook (PWSB station 9; table 6).

Uncertainties associated with measuring streamflow and specific conductance and with sodium and chloride sample collection, preservation, and analysis produce uncertainties in load and yield estimates. The load and yield estimates presented in the text and tables are the most likely values for sodium and chloride coming from tributaries or their drainage basins. It may be best to discuss loads and yields in terms of a range within which the true values lie; however, the most probable values of loads and yields are presented for ease of discussion and presentation. The range within which the true values lie depends on the uncertainties in individual measurements of streamflow and concentration, which are difficult to quantify with available information. The uncertainties associated with estimating streamflow are commonly assumed to affect load and yield calculations more than the errors associated with measuring specific conductance and (or) chemical analysis. The most probable values of loads and yields presented in the tables and text are sufficient for planning-level analysis of water quality in tributaries and their drainage basins.

#### Physical and Chemical Properties and Daily Loads and Yields Estimated from Data Collected by the Providence Water Supply Board

#### Physical and Chemical Properties

Physical and chemical properties including pH, turbidity, alkalinity, specific conductance, and color were routinely measured to characterize water quality from each basin (table 8). Specifically, pH is a measure of the acidity of the water, color can be an indirect measure of the amount of organic carbon dissolved in the water column, turbidity is an indirect measure of suspended particles, and alkalinity is a measure of the acid-neutralizing capacity of water.

The median pH in tributaries in the Scituate Reservoir drainage area ranged from 5.7 to 6.9; the median of the medians for all stations was 6.3. Median values of color ranged from 15 to 120 platinum cobalt units (PCU); the median for all stations was 48 PCU. Median values of turbidity ranged from 0.28 to 2.1 nephelometric turbidity units (NTU); the median for all stations was 0.72 NTU. Median alkalinity values in tributaries were low, ranging from 2.5 to 12 mg/L as CaCO<sub>3</sub>; the median for all stations was 6.0 mg/L as CaCO<sub>3</sub> (table 8).

## Constituent Concentrations and Daily Loads and Yields

Fecal indicator bacteria, chloride, and nutrients such as phosphorus and nitrogen are commonly detected in natural water; at elevated concentrations, these constituents can render

water unfit for the intended use. Fecal indicator bacteria, which are found in the intestines of warm-blooded animals. may indicate impairment from sewage contamination or from livestock or wildlife that defecate in or near the stream margin. Chloride originates in tributary streamwater from precipitation, weathering, or human activities such as waste disposal, use of septic systems, and road deicing. Sources of nutrients in tributary streamwater include atmospheric deposition, leaching of naturally occurring organic material, discharge of groundwater that is enriched with nutrients from septic-system leachate, and runoff contaminated with fertilizer or animal waste. The ultimate intended use of water in the tributaries is drinking water, which must meet specific water-quality standards. For this reason, the PWSB and the USGS closely monitor concentrations of these constituents in tributaries. Median concentrations, loads, and yields of water-quality constituents are given in tables 8 and 9.

#### Bacteria

Median concentrations of total coliform and *E. coli* bacteria were above the detection limit (3 CFU/100 mL) at nearly all sites (table 8). Total coliform bacteria concentrations were in most cases equal to or greater than *E. coli* concentrations (as expected because total coliform is more inclusive); the median concentrations for all sites in the drainage basin were equal to 43 CFU/100 mL for total coliform bacteria and 16 CFU/100 mL for *E. coli* bacteria. Median concentrations of total coliform bacteria were highest at Unnamed Tributary 2 to Scituate Reservoir (PWSB station 2; table 8), Cork Brook (PWSB station 3; table 8), and at Toad Pond (PWSB station 31; table 8) at more than 2,400 CFU/100 mL. Median concentrations of *E. coli* bacteria were highest at Toad Pond (PWSB station 31; table 8) at more than 2,400 CFU/100 mL.

Median concentrations of fecal indicator bacteria were lowest at sampling stations Westconnaug Brook (PWSB station 8) and Ponaganset Reservoir (PWSB station 23). Median concentrations of E. coli bacteria also were low at Ponaganset River (PWSB station 35), Westconnaug Brook (PWSB station 8), Fire Tower Stream (PWSB station 37), Ponaganset Reservoir (PWSB station 23), and Regulating Reservoir (PWSB station 13). Median daily loads and yields of total coliform and E. coli bacteria varied by about three orders of magnitude; the highest median daily yield of total coliform bacteria was at Shippee Brook (PWSB station 25; table 9), and the highest median daily yield of E. coli bacteria was at Unnamed Tributary 1 to Scituate Reservoir (PWSB station 32; table 9). Although relatively high for sampling stations in the Scituate Reservoir Subbasin, median daily bacteria yields at Unnamed Tributary 1 are low to moderate compared to yields of indicator bacteria in sewage-contaminated streamwater or streamwater affected by stormwater runoff in an urban environment (Breault and others, 2002). The median daily loads of total coliform bacteria for all subbasins in the Scituate Reservoir drainage area ranged from 40 to 65,000 CFUx10<sup>6</sup>/d, and

[Water-quality data are from samples collected and analyzed by Providence Water Supply Board (PWSB); USGS, U.S. Geological Survey; PCU, platinum cobalt units; NTU, nephelometric turbidity units; CEU/100mL, colony forming units per 100 milliliters; E.coli, Escherichia coli; mg/L, milligrams per liter; CaCO<sub>3</sub>, calcium carbonate; N, nitrogen; P, phosphorus; <, less than; >, greater than; --, no data; Table 8. Median values for water-quality data collected at Providence Water Supply Board stations by tributary reservoir subbasin in the Scituate Reservoir drainage area, Rhode Island, October 1, 2011, through September 30, 2012.

|              |                          | •                                                                                            | _       | Properties | S                      |                               |             | Const                           | Constituents  |                |                |                     |
|--------------|--------------------------|----------------------------------------------------------------------------------------------|---------|------------|------------------------|-------------------------------|-------------|---------------------------------|---------------|----------------|----------------|---------------------|
| PWSB station | USGS sta-<br>tion number | Station name                                                                                 | Hd      | Color      | Turbid-<br>ity         | Total<br>coliform<br>bacteria | E. coli     | Alkalinity                      | Chlo-<br>ride | Nitrite        | Nitrate        | Orthophos-<br>phate |
|              |                          |                                                                                              | (Units) | (PCU)      | (NTN)                  | (CFU/100mL)                   | (CFU/100mL) | (mg/L as<br>CaCO <sub>3</sub> ) | (mg/L)        | (mg/L as<br>N) | (mg/L<br>as N) | (mg/L as P)         |
|              |                          |                                                                                              |         | Barden R   | Reservoir S            | Subbasin                      |             | in                              |               |                |                |                     |
| 24           | 01115190                 | Dolly Cole Brook                                                                             | 6.3     | 89         | 0.72                   | 49                            | 7.0         | 6.3                             | 24            | 0.002          | 0.01           | 90.0                |
| 25           | 01115200                 | Shippee Brook                                                                                | 6.1     | 09         | 0.75                   | 130                           | 22          | 4.2                             | 11            | 0.002          | 0.01           | 0.08                |
| 26           | 01115185                 | Windsor Brook                                                                                | 6.3     | 32         | 0.72                   | 23                            | 23          | 4.2                             | 20            | 0.001          | 0.02           | 0.09                |
| 27           | 011151845                | Unnamed Tributary to Ponaganset River (Unnamed Brook B, Unnamed Brook west of Windsor Brook) | 0.9     | 25         | 0.31                   | 93                            | 23          | 3.9                             | 41            | 0.001          | 0.01           | 0.11                |
| 28           | 01115265                 | Barden Reservoir (Hemlock Brook)                                                             | 6.1     | 93         | 09.0                   | 43                            | 18          | 5.3                             | 18            | 0.003          | <0.01          | 0.05                |
| 29           | 01115271                 | Ponaganset River (Barden Stream)                                                             | 6.2     | 50         | 0.67                   | 23                            | 9.0         | 5.0                             | 17            | 0.002          | <0.01          | 90.0                |
| 35           | 01115187                 | Ponaganset River                                                                             | 6.1     | 50         | 0.73                   | 16                            | <3.0        | 4.6                             | 19            | 0.002          | 0.01           | 0.05                |
|              |                          |                                                                                              |         | Direct     | Direct Runoff Subbasin | basin                         |             |                                 |               |                |                |                     |
| -            | 01115180                 | Brandy Brook                                                                                 | 9.9     | 78         | 1.8                    | 79                            | 19          | 10                              | 12            | 0.003          | 0.01           | 0.05                |
| 7            | 01115181                 | Unnamed Tributary #2 to Scituate Reservoir (Unnamed Brook north of Bullhead                  | 6.3     | 27         | 0.45                   | >2400                         | 23          | 3.3                             | 13            | 0.001          | <0.01          | 60.0                |
|              |                          | Brook)                                                                                       |         |            |                        |                               |             |                                 |               |                |                |                     |
| 3            | 01115280                 | Cork Brook                                                                                   | 9.9     | 40         | 0.48                   | >2400                         | 23          | 7.1                             | 28            | 0.002          | 0.02           | 90.0                |
| 4            | 01115400                 | Kent Brook (Betty Pond Stream)                                                               | 6.4     | 34         | 09.0                   | 15                            | 4.0         | 7.0                             | 5.8           | 0.002          | <0.01          | 0.05                |
| 5            | 01115184                 | Spruce Brook                                                                                 | 6.4     | 38         | 0.59                   | 43                            | 5.0         | 3.6                             | 30            | 0.003          | 90.0           | 0.11                |
| 9            | 01115183                 | Quonapaug Brook                                                                              | 6.5     | 95         | 1.5                    | 93                            | 93          | 8.8                             | 35            | 0.003          | 0.01           | 0.04                |
| 7            | 01115297                 | Wilbur Hollow Brook                                                                          | 6.3     | 80         | 0.70                   | 68                            | 9.0         | 5.7                             | 12            | 0.002          | 0.008          | 90.0                |
| ∞            | 01115276                 | Westconnaug Brook (Westconnaug Reservoir)                                                    | 6.3     | 23         | 0.44                   | <3.0                          | <3.0        | 4.2                             | 12            | 0.001          | <0.01          | 0.08                |
| 6            | 01115275                 | Bear Tree Brook                                                                              | 6.7     | 35         | 0.47                   | 33                            | 3.3         | 10                              | 44            | 0.002          | 0.045          | 0.11                |
| 30           | 01115350                 | Unnamed Tributary #4 to Scituate Reservoir (Coventry Brook, Knight Brook)                    | 6.2     | 28         | 0.71                   | 130                           | 12          | 4.8                             | 19            | 0.002          | 0.02           | 0.09                |
| 31           | 1115177                  | Toad Pond                                                                                    | 5.9     | 100        | 2.1                    | >2400                         | >2400       | 8.9                             | 2.4           | 900.0          | 0.11           | 0.15                |
| 32           | 01115178                 | Unnamed Tributary #1 to Scituate Reservoir (Pine Swamp Brook)                                | 6.5     | 9          | 1.4                    | 1200                          | 550         | 4.2                             | 13            | 0.003          | <0.01          | 90.0                |
| 33           | 01115182                 | Unnamed Tributary #3 to Scituate Reservoir (Hall's Estate Brook)                             | 6.2     | 34         | 69.0                   | 16                            | 16          | 6.7                             | 13            | 0.001          | 0.01           | 0.13                |
| 36           | 1                        | Outflow from King Pond                                                                       | 9.9     | 24         | 0.47                   | 7.5                           | 3.5         | 5.4                             | 5.1           | 0.001          | <0.01          | 90.0                |
| 37           | 1                        | Fire Tower Stream                                                                            | 5.8     | 30         | 0.34                   | 23                            | <3.0        | 2.5                             | 6.2           | 0.001          | 0.03           | 0.05                |

Median values for water-quality data collected at Providence Water Supply Board stations by tributary reservoir subbasin in the Scituate Reservoir drainage area, Rhode Island, October 1, 2011, through September 30, 2012.—Continued

[Water-quality data are from samples collected and analyzed by Providence Water Supply Board (PWSB); USGS, U.S. Geological Survey; PCU, platinum cobalt units; NTU, nephelometric turbidity units; CFU/100mL, colony forming units per 100 milliliters; *E.coli*; *Escherichia coli*; mg/L, milligrams per liter; CaCO<sub>3</sub>, calcium carbonate; N, nitrogen; P, phosphorus; < less than; >, greater than; --, no data; alternate station names given in parentheses for stations where different historical names were used for the same sampling location by Providence Water Supply Board]

|              |                          |                                                                                       |         | Properties |                               |                                |             | Const                           | Constituents  |                |                |                     |
|--------------|--------------------------|---------------------------------------------------------------------------------------|---------|------------|-------------------------------|--------------------------------|-------------|---------------------------------|---------------|----------------|----------------|---------------------|
| PWSB station | USGS sta-<br>tion number | Station name                                                                          | 핊       | Color      | Turbid-<br>ity                | Total<br>coliform<br>bacteria  | E. coli     | Alkalinity                      | Chlo-<br>ride | Nitrite        | Nitrate        | Orthophos-<br>phate |
|              |                          |                                                                                       | (Units) | (PCU)      | (NTU)                         | (CFU/100mL)                    | (CFU/100mL) | (mg/L as<br>CaCO <sub>3</sub> ) | (mg/L)        | (mg/L as<br>N) | (mg/L<br>as N) | (mg/L as P)         |
|              |                          |                                                                                       | Mo      | swansicu   | t Reservoi                    | Moswansicut Reservoir Subbasin |             | •                               |               |                |                |                     |
| 19           | 01115170                 | Moswansicut Reservoir (Moswansicut<br>Stream North, Moswansicut Pond)                 | 9.9     | 25         | 1.1                           | 23                             | 4.0         | 8.9                             | 34            | 0.002          | <0.01          | 0.04                |
| 20           | 01115160                 | Unnamed Tributary #1 to Moswansicut<br>Reservoir (Blanchard Brook)                    | 6.2     | 95         | 0.73                          | 23                             | 9.0         | 6.1                             | 50            | 0.003          | <0.01          | 0.04                |
| 21           | 01115165                 | Unnamed Tributary #2 to Moswansicut Reservoir (Brook from Kimball Reservoir)          | 6.7     | 55         | 1.5                           | 43                             | 23          | 9.2                             | 30            | 0.002          | 0.02           | 0.04                |
| 22           | 01115167                 | Moswansicut Reservoir (Moswansicut<br>Stream South)                                   | 6.5     | 38         | 1.3                           | 75                             | 23          | 12                              | 31            | 0.002          | 0.05           | 0.04                |
| 34           | 01115164                 | Kimball Stream                                                                        | 6.3     | 48         | 0.91                          | 23                             | 5.8         | 11                              | 34            | 0.003          | <0.01          | 0.12                |
|              |                          |                                                                                       | Po      | naganset   | Ponaganset Reservoir Subbasin | Subbasin                       |             |                                 |               |                |                |                     |
| 23           | 011151843                | Ponaganset Reservoir                                                                  | 6.1     | 15         | 0.51                          | 4.0                            | <3.0        | 3.2                             | 12            | 0.001          | <0.01          | 0.03                |
|              |                          |                                                                                       | Re      | gulating   | Regulating Reservoir Subbasin | Subbasin                       |             |                                 |               |                |                |                     |
| 13           | 01115176                 | Regulating Reservoir                                                                  | 6.9     | 42         | 0.83                          | 23                             | 1.5         | 9.1                             | 27            | 0.002          | 0.005          | 0.05                |
| 14           | 01115110                 | Huntinghouse Brook                                                                    | 6.4     | 53         | 0.80                          | 23                             | 23          | 6.7                             | 8.6           | 0.001          | 0.008          | 0.09                |
| 15           | 01115114                 | Rush Brook                                                                            | 8.9     | 58         | 1.0                           | 460                            | 330         | 8.6                             | 29            | 0.002          | 0.01           | 90.0                |
| 16           | 01115098                 | Peeptoad Brook (Harrisdale Brook)                                                     | 9.9     | 38         | 0.91                          | 59                             | 22          | 10                              | 29            | 0.002          | 0.01           | 90.0                |
| 17           | 01115119                 | Dexter Pond (Paine Pond)                                                              | 6.1     | 48         | 0.64                          | 120                            | 22          | 0.9                             | 30            | 0.002          | <0.01          | 0.11                |
| 18           | 01115120                 | Unnamed Tributary to Regulating Reservoir (Unnamed Brook A)                           | 6.4     | 82         | 1.3                           | 240                            | 43          | 8.8                             | 41            | 0.002          | 0.02           | 0.32                |
|              |                          |                                                                                       | Wes     | stconnau   | g Reservoi                    | Westconnaug Reservoir Subbasin |             |                                 |               |                |                |                     |
| 10           | 01115274                 | Westconnaug Brook                                                                     | 5.8     | 34         | 0.28                          | 33                             | 12          | 4.3                             | 18            | 0.001          | <0.01          | 0.07                |
| 11           | 01115273                 | Unnamed Tributary to Westconnaug Reservoir (Unnamed Brook south of Westcon-           | 5.7     | 120        | 1.1                           | 75                             | 43          | 4.                              | 49            | 0.003          | <0.01          | 0.08                |
| ,            | 1                        | naug reservon)                                                                        | (       | (          |                               | ;                              |             |                                 | 1             | 0              | (              | ,                   |
| 12           | 011152745                | Unnamed Irrbutary to Westconnaug Brook (Unnamed Brook north of Westconnaug reservoir) | 0.9     | 82         | 0.81                          | 43                             | 4.0         | 4.<br>2.                        | 7.2           | 0.002          | 0.02           | 0.12                |
|              |                          |                                                                                       |         | Scituate   | Scituate Reservoir Basin      | Basin                          |             |                                 |               |                |                |                     |
|              |                          | Minimum                                                                               | 5.7     | 15         | 0.28                          | <3.0                           | <3.0        | 2.5                             | 2.4           | 0.001          | <0.01          | 0.03                |
|              |                          | Median                                                                                | 6.3     | 48         | 0.72                          | 43                             | 16          | 0.9                             | 19            | 0.002          | <0.01          | 90.0                |
|              |                          | Maximum                                                                               | 6.9     | 120        | 2.1                           | >2400                          | >2400       | 12                              | 50            | 900.0          | 0.11           | 0.32                |

Median daily loads and yields of bacteria, chloride, nitrite, nitrate, and orthophosphate, by tributary reservoir subbasin, in the Scituate Reservoir drainage area, Rhode Island, October 1, 2011, through September 30, 2012. Table 9.

[Water-quality data are from samples collected and analyzed by Providence Water Supply Board (PWSB); USGS, U.S. Geological Survey; CFUx106/d; millions of colony forming units per day; E. coli, Escherichia coli; N, nitrogen; P, phosphorus; kg/d, kilograms per day; kg/d/mi², kilograms per day per square mile; g/d, grams per day; g/d/mi², grams per day per square mile; alternate station names given in parentheses for stations where different historical names were used for the same sampling location by Providence Water Supply Board]

| 400     81     17     3.4     150       210     87     35     15     210       310     72     26     6.1     290       310     36     27     3.1     94       900     64     58     4.1     420       64     41     14     8.9     60       100     56     9.7     5.4     90       23     27     5.8     6.8     36       200     160     8.3     6.8     380 | 17 3.4<br>35 15<br>26 6.1<br>27 3.1<br>58 4.1<br>14 8.9<br>9.7 5.4<br>5.8 6.8<br>8.3 6.8 | 17 3.4<br>35 15<br>26 6.1<br>27 3.1<br>58 4.1<br>14 8.9<br>9.7 5.4<br>5.8 6.8<br>8.3 6.8<br>8.3 6.8      | 3.4<br>15<br>6.1<br>3.1<br>4.1<br>8.9<br>8.9<br>8.6<br>8.6<br>8.6<br>4.9<br>4.9 | 3.4<br>1.5<br>6.1<br>3.1<br>4.1<br>8.9<br>8.9<br>8.8<br>8.8<br>8.8<br>8.8<br>1.2<br>1.2<br>4.9<br>4.6<br>6.5<br>7.7<br>8.8<br>8.9<br>8.9<br>8.9<br>8.8<br>8.8<br>8.8<br>8.8<br>8.8<br>8.8 | 3.4<br>15<br>6.1<br>3.1<br>4.1<br>6.8<br>6.8<br>6.8<br>6.8<br>6.8<br>7.7<br>5.7<br>5.7                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 87 35 1<br>72 26<br>36 27<br>64 58<br>41 14<br>56 9.7<br>27 5.8<br>160 8.3                                                                                                                                                                                                                                                                                     | 35 1<br>26 27<br>27 58<br>14 9.7 9.7 5.8 8.3                                             | 35 1<br>26 27<br>27 58<br>14 14 9.7 5.8 8.3 24 1                                                         | 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                         | 7.88.6                                                                                                                                                                                    |                                                                                                                                                                                                                                 | 15<br>6.1<br>3.1<br>4.1<br>4.1<br>6.8<br>6.8<br>6.8<br>6.8<br>7.7<br>5.7<br>5.7<br>5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 72 36 2<br>36 2<br>64 5<br>41 1<br>56 2<br>27 160                                                                                                                                                                                                                                                                                                              |                                                                                          |                                                                                                          | 26<br>27<br>58<br>14<br>14<br>9.7<br>5.8<br>8.3<br>8.3<br>22<br>24              | 66 4 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                  |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.1<br>3.1<br>4.1<br>8.9<br>6.8<br>6.8<br>6.8<br>6.8<br>6.8<br>6.8<br>6.8<br>6.8                                  | 6.1<br>3.1<br>4.1<br>4.9<br>6.8<br>6.8<br>6.8<br>6.8<br>6.8<br>6.8<br>6.8<br>6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                | 36<br>64<br>41<br>41<br>56<br>27<br>160<br>100                                           | 56<br>11<br>12<br>13<br>14<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15 |                                                                                 |                                                                                                                                                                                           | 27<br>58<br>14<br>14<br>9.7<br>8.3<br>8.3<br>8.3<br>8.3<br>8.3<br>2.4<br>2.5<br>2.5<br>2.8<br>3.6<br>3.6<br>3.6<br>3.6<br>3.6<br>3.6<br>3.7<br>3.7<br>3.8<br>3.8<br>3.6<br>3.7<br>3.7<br>3.7<br>3.7<br>3.7<br>3.7<br>3.7<br>3.7 | F & & & & & & & & & & & & & & & & & & &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7: 8: £i                                                                                                          | 7: % £ 6 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 90 90 90 90 90 90 90 90 90 90 90 90 90 9                                                                                                                                                                                                                                                                                                                       |                                                                                          |                                                                                                          |                                                                                 | 56 44 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                 | 56<br>41<br>160<br>100<br>27<br>100<br>27<br>130<br>37                                                                                                                                                                          | 64 5<br>64 5<br>64 5<br>64 5<br>160 2<br>100 2<br>130 2<br>130 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 64 5<br>64 5<br>64 5<br>64 5<br>64 5<br>160 2<br>100 2<br>130 2<br>130 37                                         | 64 5<br>56 27<br>100 2<br>130 23<br>130 24<br>130 24<br>130 24<br>130 24<br>130 24<br>130 24<br>131 24<br>13 |
| - <u>ĕ</u>                                                                                                                                                                                                                                                                                                                                                     |                                                                                          | 900<br>64<br>100<br>23<br>200 1<br>200 1<br>180                                                          | 900<br>64<br>100<br>23<br>200 1<br>200 1<br>180<br>330                          | 900<br>64<br>100<br>23<br>200 1<br>200 1<br>180<br>330<br>83 1                                                                                                                            | 900<br>64<br>100<br>23<br>200 1<br>200 1<br>180<br>330<br>83 1                                                                                                                                                                  | 900<br>64<br>100<br>23<br>200<br>1<br>80<br>180<br>83<br>1<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 900<br>64<br>100<br>23<br>23<br>100<br>180<br>180<br>83<br>11<br>16                                               | 900<br>64<br>1100<br>230<br>1180<br>83 1<br>16<br>230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2,000 1,100 540 570 2,000 2,000 2,000 2,000 2,000 330 270                                                                                                                                                                                                                                                                                                      | 2,000 1,100<br>54 64<br>330 2,100<br>54 64<br>330 2,70<br>4,100 2,100                    | 2,000 1,100 54 64 330 270 4,100 2,100 1,600 360                                                          | 2,000 1,100 54 64 330 270 4,100 2,100 1,600 360 390 74                          | 2,000 1,100 54 64 330 270 4,100 2,100 1,600 360 390 74 50 80                                                                                                                              | 1,600 28,000 13,000 24,000 2,100 360 360 360 360 360 360 360 360 360 3                                                                                                                                                          | 1,600 28,000 1,100 430 270 2,000 1,100 54 64 330 270 4,100 2,100 1,600 360 390 74 50 80 13,000 28,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Unrect Funort Subbasin 430 270 2,000 1,100 54 64 330 270 4,100 2,100 1,600 360 390 74 50 80 13,000 28,000 230 800 | 2,000 1,100 2,000 1,100 54 64 330 270 4,100 2,100 1,600 360 390 74 50 80 13,000 28,000 230 800 230 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |                                                                                                          |                                                                                 |                                                                                                                                                                                           | -                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .te.                                                                                                                                                                                                                                                                                                                                                           |                                                                                          |                                                                                                          | ·                                                                               |                                                                                                                                                                                           | •                                                                                                                                                                                                                               | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,600<br>590<br>3,000<br>4,700<br>1,900<br>85<br>1,500<br>89                                                      | 1,600<br>590<br>3,000<br>4,700<br>1,900<br>85<br>1,500<br>89<br>800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                |                                                                                          | ·                                                                                                        | ·                                                                               |                                                                                                                                                                                           |                                                                                                                                                                                                                                 | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Kent Brook 500<br>Spruce Brook 3,600                                                                                                                                                                                                                                                                                                                           |                                                                                          |                                                                                                          |                                                                                 |                                                                                                                                                                                           | r (                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                |                                                                                          | 01115184 Spruce Bro<br>01115183 Quonapaug<br>01115297 Wilbur Hol                                         |                                                                                 |                                                                                                                                                                                           | S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                           | Sp<br>Qu<br>Wii<br>Wii<br>Un<br>Un                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sp. Out.                                                                                                          | 01115184 Spruce Bro 01115297 Wilbur Hol 01115276 Westconna 01115275 Bear Tree I 01115178 Unnamed T to Scitute (Pine Sv 01115182 Unnamed T to Scitute (Hall's I (Moswansia (Moswansia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                | 115183 Quonapaug Brook                                                                   |                                                                                                          |                                                                                 |                                                                                                                                                                                           |                                                                                                                                                                                                                                 | O William Will | W W W W W W W W W W W W W W W W W W W                                                                             | Wi W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Table 9. Median daily loads and yields of bacteria, chloride, nitrite, nitrate, and orthophosphate, by tributary reservoir subbasin, in the Scituate Reservoir drainage area, Rhode Island, October 1, 2011, through September 30, 2012.—Continued

[Water-quality data are from samples collected and analyzed by Providence Water Supply Board (PWSB); USGS, U.S. Geological Survey; CFUx106/d; millions of colony forming units per day; *Escherichia coli*; N, nitrogen; P, phosphorus; kg/d, kilograms per day; kg/d/mi², kilograms per day per square mile; g/d, grams per day; g/d/mi², grams per day per square mile; alternate station names given in parentheses for stations where different historical names were used for the same sampling location by Providence Water Supply Board]

| PWSB | 3 USGS   | Otation name                                          | Total colifo             | Total coliform bacteria    | E.                       | E. Coli                          | Chl    | Chloride   | 2 🙂   | Nitrite<br>(as N) | Ni<br>(a | Nitrate<br>(as N) | Ortho<br>phate | Orthophos-<br>phate (as P) |
|------|----------|-------------------------------------------------------|--------------------------|----------------------------|--------------------------|----------------------------------|--------|------------|-------|-------------------|----------|-------------------|----------------|----------------------------|
|      |          |                                                       | (CFUx10 <sup>6</sup> /d) | (CFUx10 <sup>6</sup> /mi²) | (CFUx10 <sup>6</sup> /d) | $(CFUx10^6/d)$ $(CFUx10^6/mi^2)$ | (kg/d) | (kg/d/mi²) | (p/b) | (g/d) (g/d/mi²)   | (p/b)    | (g/d/mi²)         | (p/b)          | (g/d/mi²)                  |
|      |          |                                                       |                          |                            | Regulating Re            | Regulating Reservoir Subbasin    | c      |            |       |                   |          |                   |                |                            |
| 14   | 01115110 | 01115110 Huntinghouse Brook                           | 4,300                    | 069                        | 3,600                    | 580                              | 210    | 34         | 32    | 5.1               | 190      | 30                | 2,100          | 340                        |
| 15   | 01115115 | 01115115 Regulating Reservoir (Rush Brook)            | 8,800                    | 1,900                      | 4,400                    | 940                              | 310    | 99         | 25    | 5.3               | 120      | 24                | 710            | 150                        |
| 16   | 01115098 | 01115098 Peeptoad Brook<br>(Harrisdale Brook)         | 7,400                    | 1,500                      | 5,300                    | 1,100                            | 410    | 82         | 23    | 4.6               | 160      | 32                | 1,100          | 230                        |
| 18   | 01115120 | 01115120 Unnamed Tributary to<br>Regulating Reservoir | 350                      | 1,300                      | 63                       | 230                              | 34     | 120        | 1.5   | 5.4               | 7.6      | 27                | 220            | 790                        |
|      |          | (Unnamed Brook A)                                     |                          |                            |                          |                                  |        |            |       |                   |          |                   |                |                            |
|      |          |                                                       |                          | >                          | Vestconnaug F            | Westconnaug Reservoir Subbasin   | sin    |            |       |                   |          |                   |                |                            |
| 10   | 01115274 | 01115274 Westconnaug Brook                            | 1,400                    | 940                        | 180                      | 120                              | 80     | 54         | 4.1   | 2.8               | 18       | 12                | 200            | 140                        |
| =    | 01115273 | $\Box$                                                | 3,200                    | 4,400                      | 3,200                    | 4,400                            | 340    | 470        | 15    | 21                | 50       | 69                | 200            | 069                        |
|      |          | to Westconnaug<br>Reservoir (Unnamed                  |                          |                            |                          |                                  |        |            |       |                   |          |                   |                |                            |
|      |          | Brook south of                                        |                          |                            |                          |                                  |        |            |       |                   |          |                   |                |                            |
|      |          | Reservoir)                                            |                          |                            |                          |                                  |        |            |       |                   |          |                   |                |                            |
|      |          |                                                       |                          |                            | Scituate Re              | Scituate Reservoir Basin         |        |            |       |                   |          |                   |                |                            |
|      |          | Minimum                                               | 40                       | 85                         | 50                       | 64                               | 16     | 27         | 1.5   | 2.8               | 6.4      | 11                | 74             | 68                         |
|      |          | Median                                                | 4,300                    | 1,500                      | 1,000                    | 360                              | 200    | 71         | 15    | 5.4               | 100      | 38                | 500            | 260                        |
|      |          | Maximum                                               | 65,000                   | 28,000                     | 13,000                   | 28,000                           | 006    | 470        | 58    | 21                | 420      | 310               | 4,500          | 1,000                      |

yields ranged from 85 to greater than 28,000 CFUx10<sup>6</sup>/d/mi<sup>2</sup>; *E coli* loads ranged from 50 to 13,000 CFUx10<sup>6</sup>/d, and yields ranged from 64 to 28,000 CFUx10<sup>6</sup>/d/mi<sup>2</sup> (table 9). These median daily loads were substantially lower than the values in the previous water year, when the median daily loads of total coliform bacteria ranged from 570 to 290,000 CFUx10<sup>6</sup>/d, and loads of *E coli* bacteria ranged from 70 to 160,000 CFUx10<sup>6</sup>/d (Smith, 2013).

#### Chloride

The highest median chloride concentration (50 mg/L) was measured in the Moswansicut Reservoir Subbasin at Unnamed Tributary 1 to Moswansicut Reservoir (PWSB station 20; table 8). Median daily chloride loads and yields estimated from samples collected by the PWSB varied among monitoring stations in the drainage area (table 9); the median daily chloride yield for the overall drainage area was about 71 kg/d/mi<sup>2</sup>. Ponaganset River (PWSB station 35) had the largest median daily chloride load (900 kg/d), which coincidentally also was the average daily load during the water year estimated on the basis of continuous records of flow and concentrations of chloride estimated from records of specific conductance. The largest median daily chloride yield (470 kg/d/mi<sup>2</sup>) was determined for Unnamed Tributary to Westconnaug Reservoir (PWSB station 11). The annual mean yields of chloride and sodium for the drainage areas above the 14 USGS continuous-record streamgages, which represent nearly 66 percent of the Scituate watershed, were 82 kg/d/mi<sup>2</sup> and 50 kg/d/mi<sup>2</sup>, respectively.

#### Nutrients

Median concentrations of nitrite and nitrate (table 8) were 0.002 and less than 0.01 mg/L as nitrogen (N), respectively. The highest median concentrations of nitrite (0.006 mg/L) and nitrate (0.11 mg/L) were measured in a single sample collected at Toad Pond (PWSB station 31) in October 2011. The median concentration of orthophosphate for the entire study area (table 8) was 0.06 mg/L as P. The maximum median concentration of orthophosphate (0.32 mg/L as P) was measured in Unnamed Tributary to Regulating Reservoir (PWSB station 18). Median daily nutrient loads from the Ponaganset River (PWSB station 35) into the Scituate Reservoir—nitrite (58 g/d), nitrate (420 g/d), and orthophosphate (1,500 g/d)—were among the largest for all the sampled stations. However, median daily orthophosphate loads for WY 2012 were large at several stations including Shippee Brook (PWSB station 25; 2,400 g/d), Windsor Brook (PWSB station 26; 4,500 g/d), Westconnaug Brook (PWSB station 8; 1,600 g/d), and Hunting House Brook (PWSB station 14; 2,100 g/d). The largest median daily yield for nitrite (21 g/d/mi<sup>2</sup>) was determined for Unnamed Tributary to Westconnaug Reservoir (PWSB station 11). The largest median daily yield for nitrate (310 g/d/mi<sup>2</sup>) was determined for Spruce Brook (PWSB station 5), and the largest median daily

yields for orthophosphate (1,000 g/d/mi²) were determined for Shippee Brook and Windsor Brook (table 9). The median daily yields for orthophosphate for Unnamed Tributary to Regulating Reservoir (PWSB station number 18; 790 g/d/mi²) and Unnamed Tributary to Regulating Reservoir (PWSB station 18; 690 g/d/mi²) also were high compared to yields at the other stations in the monitoring network.

#### **References Cited**

- Breault, R.F., 2010, Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2002: U.S. Geological Survey Open-File Report 2009–1041, 25 p.
- Breault, R.F., and Campbell, J.P., 2010a, Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2003: U.S. Geological Survey Open-File Report 2010–1043, 24 p.
- Breault, R.F., and Campbell, J.P., 2010b, Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2004: U.S. Geological Survey Open-File Report 2010–1044, 24 p.
- Breault, R.F., and Campbell, J.P., 2010c, Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2005: U.S. Geological Survey Open-File Report 2010–1045, 24 p.
- Breault, R.F., and Campbell, J.P., 2010d, Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2006: U.S. Geological Survey Open-File Report 2010–1046, 25 p.
- Breault, R.F., and Smith, K.P., 2010, Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2009: U.S. Geological Survey Open-File Report 2010–1275, 24 p.
- Breault, R.F., Waldron, M.C., Barlow, L.K., and Dickerman, D.C., 2000, Water-quality conditions in relation to drainage basin characteristics in the Scituate Reservoir Basin, Rhode Island, 1982–95: U.S. Geological Survey Water-Resources Investigations Report 00–4086, 46 p.
- Breault, R.F., Sorenson, J.R., and Weiskel, P.K., 2002, Streamflow, water quality, and contaminant loads in the lower Charles River watershed, Massachusetts, 1999–2000: U.S. Geological Survey Water-Resources Investigations Report 02–4137, 131 p.
- Helsel D.R., and Hirsch, R.M., 2002, Statistical methods in water resources—Hydrologic analysis and interpretation: Techniques of Water-Resources Investigations of the U.S. Geological Survey, book 4, chap. A3, 510 p.

- Hirsch, R.M., 1982, A comparison of four streamflow record extension techniques: Water Resources Research, v. 18, no. 4, p. 1081–1088.
- Hirsch, R.M., and Gilroy, E.J., 1984, Methods of fitting a straight line to data—Examples in water resources: Water Resources Bulletin, v. 20, no. 5, p. 705–711.
- National Institute of Standards and Technology/SEmiconductor MAnufacturing TECHnology, 2012, NIST/SEMATECH e-Handbook of Statistical Methods: U.S. Department of Commerce, accessed April 17, 2013, at http://www.itl.nist.gov/div898/handbook/.
- Nimiroski, M.T., and Waldron, M.C., 2002, Sources of sodium and chloride in the Scituate Reservoir drainage basin, Rhode Island: U.S. Geological Survey Water-Resources Investigations Report 02–4149, 16 p.
- Nimiroski, M.T., DeSimone, L.A., and Waldron, M.C., 2008, Water-quality conditions and constituent loads, 1996–2002, and water-quality trends, 1983–2002, in the Scituate Reservoir drainage area, Rhode Island: U.S. Geological Survey Scientific Investigations Report 2008–5060, 55 p.
- Providence Water Supply Board Water Quality Laboratory, 2012, Quality Assurance Program Manual: Providence Water Supply Board, variously paged.
- Ries, K.G., III, and Friesz, P.J., 2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water-Resources Investigations Report 00–4136, 81 p.

- Smith, K.P., and Breault, R.F., 2011, Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2010: U.S. Geological Survey Open-File Report 2011–1076, 26 p.
- Smith, K.P., 2013, Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2011: U.S. Geological Survey Open-File Report 2013–1127, 32 p.
- Tasker, G.D., and Driver, N.E., 1988, Nationwide regression models for predicting urban runoff water quality at unmonitored sites: Water Resources Bulletin, v. 24, no. 5, p. 1090–1101.
- U.S. Geological Survey, 2001, National Water Information System data available on the World Wide Web (Water Data for the Nation): U.S. Geological Survey, accessed November 10, 2010, at http://waterdata.usgs.gov/nwis/.
- U.S. Geological Survey, 2007, Water-resources data for the United States, Water Year 2006: U.S. Geological Survey Water-Data Report WDR-US-2006, accessed November 5, 2009, at http://wdr.water.usgs.gov/.
- Wagner, R.J., Boulger, R.W., Jr., Oblinger, C.J., and Smith, B.A., 2006, Guidelines and standard procedures for continuous water-quality monitors—Station operation, record computation, and data reporting: U.S. Geological Survey Techniques and Methods, book 1, chap. D3, 51 p., 8 attachments, accessed April 10, 2006, at http://pubs.water.usgs.gov/tm1d3.

**Table 4.** Daily loads of bacteria, chloride, nitrite, nitrate, and orthophosphate by tributary reservoir subbasin in the Scituate Reservoir drainage area, Rhode Island, October 1, 2011, through September 30, 2012.

ing units per day, E. coli, Escherichia coli, kg/d, kilograms per day; g/d, grams per day; N, nitrogen; P, phosphorus; <, less than; >, greater than; --, data not available; shaded areas indicate values that were [Water-quality data are from samples collected and analyzed by Providence Water Supply Board (PWSB); USGS, U.S. Geological Survey; ft3/s, cubic feet per second; CFU×106/d; millions of colony formcalculated with concentration data censored at half the detection level, alternate station names given in parentheses for stations where different historical names were used for the same sampling location by Providence Water Supply Board]

| PWSB station number | USGS<br>station<br>number | Station name     | Date     | Daily mean<br>streamflow<br>(ft³/s) | Total coliform<br>bacteria<br>(CFUx10 <sup>6</sup> /d) | E. coli<br>(CFUx10 <sup>6</sup> /d) | Chloride<br>(kg/d) | Nitrite<br>(g/d as N) | Nitrate<br>(g/d as N) | Orthophos-<br>phate<br>(g/d as P) |
|---------------------|---------------------------|------------------|----------|-------------------------------------|--------------------------------------------------------|-------------------------------------|--------------------|-----------------------|-----------------------|-----------------------------------|
|                     |                           |                  |          | Barden Reservoir Subbasin           | ir Subbasin                                            |                                     |                    |                       |                       |                                   |
| 24                  | 011115190                 | Dolly Cole Brook | 10/07/11 | 6.6                                 | 18,000                                                 | 10,000                              | 490                | 48                    | 120                   | 1,700                             |
|                     |                           |                  | 11/04/11 | 17                                  | 62,000                                                 | 6,600                               | 920                | 42                    | 210                   | 2,900                             |
|                     |                           |                  | 12/02/11 | 18                                  | 10,000                                                 | 099                                 | 810                | 88                    | 220                   | 880                               |
|                     |                           |                  | 01/06/12 | 7.1                                 | 069                                                    | 069                                 | 520                | 17                    | 170                   | 3,000                             |
|                     |                           |                  | 02/03/12 | 8.4                                 | 820                                                    | 820                                 | 1,000              | 410                   | 3,300                 | 100                               |
|                     |                           |                  | 03/20/12 | 5.2                                 | 2,900                                                  | 510                                 | 300                | 13                    | 64                    | 250                               |
|                     |                           |                  | 04/06/12 | 3.2                                 | 120                                                    | 120                                 | 210                | 16                    | 230                   | 470                               |
|                     |                           |                  | 05/04/12 | 8.7                                 | 1,900                                                  | 1,900                               | 510                | 43                    | 2,100                 | 1,700                             |
|                     |                           |                  | 06/01/12 | 2.6                                 | 4,800                                                  | 2,700                               | 170                | 13                    | 32                    | 320                               |
|                     |                           |                  | 07/18/12 | 1.1                                 | 110,000                                                | 130                                 | 53                 | 8.1                   | 27                    | 400                               |
|                     |                           |                  | 08/03/12 | 0.42                                | 9,200                                                  | 1,000                               | 21                 | 3.1                   | 10                    | 41                                |
|                     |                           |                  | 09/07/12 | 0.48                                | 5,400                                                  | 290                                 | 32                 | 2.3                   | 12                    | 59                                |
|                     |                           |                  |          | 3                                   |                                                        | 6                                   | •                  | •                     |                       |                                   |
| 25                  | 01115200                  | Shippee Brook    | 10/21/11 | 21                                  | 130,000                                                | 22,000                              | 1,100              | 100                   | 520                   | 4,700                             |
|                     |                           |                  | 01/27/12 | 14                                  | 200                                                    | 200                                 | 400                | 29                    | 340                   | 4,700                             |
|                     |                           |                  | 04/20/12 | 0.48                                | 270                                                    | 17                                  | 11                 | 2.3                   | 81                    | 70                                |
|                     |                           |                  | 07/20/12 | 0.49                                | 130,000                                                | 8,400                               | 7.4                | 2.4                   | 12                    | 09                                |
| 20                  | 011115105                 | Wisedoon Davol   | 11/10/01 | ,                                   | 000 01                                                 | 10000                               | 000 0              | Ç                     | 000                   | 0000                              |
| 707                 | 0111110                   | Willusol Dioor   | 10/21/11 | CC                                  | 10,000                                                 | 10,000                              | 7,000              | 047                   | 900                   | 0,000                             |
|                     |                           |                  | 01/27/12 | 21                                  | 4,600                                                  | 4,600                               | 280                | 51                    | 510                   | 9,200                             |
|                     |                           |                  | 04/20/12 | 69.0                                | 390                                                    | 390                                 | 35                 | 1.7                   | 34                    | 100                               |
|                     |                           |                  | 07/20/12 | 0.72                                | 930,000                                                | 5,300                               | 33                 | 1.8                   | 70                    | 110                               |

Daily loads of bacteria, chloride, nitrite, nitrate, and orthophosphate by tributary reservoir subbasin in the Scituate Reservoir drainage area, Rhode Island, October 1, 2011, through September 30, 2012.—Continued

[Water-quality data are from samples collected and analyzed by Providence Water Supply Board (PWSB); USGS, U.S. Geological Survey; ft<sup>3</sup>/s, cubic feet per second; CFU×10%/d; millions of colony forming units per day; E. coli, Escherichia coli; kg/d, kilograms per day; g/d, grams per day; N, nitrogen; P, phosphorus; <, less than; >, greater than; --, data not available; shaded areas indicate values that were calculated with concentration data censored at half the detection level; alternate station names given in parentheses for stations where different historical names were used for the same sampling location by Providence Water Supply Board]

| PWSB station number | USGS<br>station<br>number | Station name                     | Date     | Daily mean<br>streamflow<br>(ft³/s) | Total coliform bacteria (CFUx10 <sup>6</sup> /d) | E. coli<br>(CFUx10 <sup>6</sup> /d) | Chloride<br>(kg/d) | Nitrite<br>(g/d as N) | Nitrate<br>(g/d as N) | Orthophos-<br>phate<br>(g/d as P) |
|---------------------|---------------------------|----------------------------------|----------|-------------------------------------|--------------------------------------------------|-------------------------------------|--------------------|-----------------------|-----------------------|-----------------------------------|
|                     |                           |                                  | Barder   | n Reservoir Sub                     | Barden Reservoir Subbasin—Continued              | þ                                   |                    |                       |                       |                                   |
| 28                  | 01115265                  | Barden Reservoir (Hemlock Brook) | 10/11/11 | 7.9                                 | 14,000                                           | 1,700                               | 330                | 77                    | 76                    | 7,500                             |
|                     |                           |                                  | 11/08/11 | 15                                  | 16,000                                           | 16,000                              | 290                | 110                   | 180                   | 5,900                             |
|                     |                           |                                  | 12/13/11 | 27                                  | 6,900                                            | 6,900                               | 1,000              | ;                     | 330                   | 5,900                             |
|                     |                           |                                  | 01/10/12 | 9.5                                 | 5,300                                            | 2,100                               | 440                | 46                    | 230                   | 1,900                             |
|                     |                           |                                  | 02/14/12 | 7.4                                 | 720                                              | 270                                 | 230                | 91                    | 91                    | 910                               |
|                     |                           |                                  | 03/13/12 | 11                                  | 2,400                                            | 400                                 | 360                | 160                   | 130                   | 810                               |
|                     |                           |                                  | 04/10/12 | 5.5                                 | 32,000                                           | 5,800                               | 290                | 27                    | 29                    | 400                               |
|                     |                           |                                  | 05/08/12 | 8.6                                 | 6,000                                            | 6,000                               | 610                | 21                    | 110                   | 110                               |
|                     |                           |                                  | 06/12/12 | 6.3                                 | 6,000                                            | 1,400                               | 35                 | 15                    | 77                    | 1,700                             |
|                     |                           |                                  | 07/10/12 | 1.0                                 | 16,000                                           | 490                                 | 09                 | 12                    | 12                    | 120                               |
|                     |                           |                                  | 08/17/12 | 3.3                                 | 210,000                                          | 16,000                              | 250                | 24                    | 81                    | 400                               |
|                     |                           |                                  | 09/11/12 | 1.4                                 | 25,000                                           | 1,400                               | 110                | 10                    | 34                    | 17                                |
|                     |                           |                                  |          |                                     |                                                  |                                     |                    |                       |                       |                                   |
| 35                  | 01115187                  | Ponaganset River                 | 10/07/11 | 26                                  | 150,000                                          | 950                                 | 1,200              | 130                   | 320                   | 6,400                             |
|                     |                           |                                  | 11/04/11 | 42                                  | 24,000                                           | 24,000                              | 2,400              | 100                   | 1,000                 | 5,100                             |
|                     |                           |                                  | 12/02/11 | 45                                  | 6,900                                            | 1,700                               | 1,100              | 220                   | 550                   | 4,400                             |
|                     |                           |                                  | 01/06/12 | 21                                  | 2,100                                            | 770                                 | 930                | 51                    | 510                   | 1,500                             |
|                     |                           |                                  | 02/03/12 | 26                                  | 950                                              | 950                                 | 098                | 64                    | 640                   | 1,300                             |
|                     |                           |                                  | 03/20/12 | 14                                  | 510                                              | 510                                 | 069                | 34                    | 170                   | 089                               |
|                     |                           |                                  | 04/06/12 | 12                                  | 440                                              | 440                                 | 380                | 29                    | 880                   | 1,500                             |
|                     |                           |                                  | 05/04/12 | 30                                  | 1,100                                            | 1,100                               | 1,600              | 150                   | 11,000                | 37,000                            |
|                     |                           |                                  | 06/01/12 | 14                                  | 7,900                                            | 7,900                               | 940                | 89                    | 170                   | 1,700                             |
|                     |                           |                                  | 07/18/12 | 0.81                                | 100,000                                          | 5,900                               | 36                 | 5.9                   | 10                    | 180                               |
|                     |                           |                                  | 08/03/12 | 1.6                                 | 35,000                                           | 780                                 | 75                 | 12                    | 39                    | 390                               |
|                     |                           |                                  | 09/07/12 | 3.3                                 | 210,000                                          | 11,000                              | 120                | 16                    | 81                    | 480                               |

Table 4. Daily loads of bacteria, chloride, nitrite, nitrate, and orthophosphate by tributary reservoir subbasin in the Scituate Reservoir drainage area, Rhode Island, October 1, 2011, through September 30, 2012.—Continued

ing units per day; E. coli, Escherichia coli; kg/d, kilograms per day; g/d, grams per day; N, nitrogen; P, phosphorus; <, less than; >, greater than; --, data not available; shaded areas indicate values that were calculated with concentration data censored at half the detection level; alternate station names given in parentheses for stations where different historical names were used for the same sampling location by [Water-quality data are from samples collected and analyzed by Providence Water Supply Board (PWSB); USGS, U.S. Geological Survey; ft3/s, cubic feet per second; CFU×10%d; millions of colony form-Providence Water Supply Board]

| PWSB station number | USGS<br>station<br>number | Station name | Date     | Daily mean<br>streamflow<br>(ft³/s) | Total coliform<br>bacteria<br>(CFUx10 <sup>6</sup> /d) | E. coli<br>(CFUx10 <sup>6</sup> /d) | Chloride<br>(kg/d) | Nitrite<br>(g/d as N) | Nitrate<br>(g/d as N) | Orthophos-<br>phate<br>(g/d as P) |
|---------------------|---------------------------|--------------|----------|-------------------------------------|--------------------------------------------------------|-------------------------------------|--------------------|-----------------------|-----------------------|-----------------------------------|
|                     |                           |              |          | Direct Runoff Subbasin              | Subbasin                                               |                                     |                    |                       |                       |                                   |
| -                   | 01115180                  | Brandy Brook | 10/04/11 | 4.8                                 | 54,000                                                 | 54,000                              | 120                | 24                    | 59                    | 590                               |
|                     |                           |              | 11/01/11 | 4.9                                 | 11,000                                                 | 11,000                              | 140                | 24                    | 09                    | 3,200                             |
|                     |                           |              | 12/06/11 | 3.2                                 | 120                                                    | 120                                 | 190                | 23                    | 160                   | 39                                |
|                     |                           |              | 01/03/12 | 2.8                                 | 1,600                                                  | 270                                 | 160                | 14                    | 34                    | 410                               |
|                     |                           |              | 02/07/12 | 2.6                                 | 76                                                     | 76                                  | 29                 | 6.5                   | 190                   | 520                               |
|                     |                           |              | 03/19/12 | 1.9                                 | 420                                                    | 190                                 | 61                 | 14                    | 23                    | 23                                |
|                     |                           |              | 04/03/12 | 1.7                                 | 98,000                                                 | 1,100                               | 55                 | 8.1                   | 41                    | 20                                |
|                     |                           |              | 05/01/12 | 2.8                                 | 4,500                                                  | 4,500                               | 61                 | 21                    | 70                    | 280                               |
|                     |                           |              | 06/05/12 | 2.6                                 | 2,800                                                  | 580                                 | 80                 | 19                    | 130                   | 260                               |
|                     |                           |              | 07/03/12 | 99.0                                | 21,000                                                 | 81                                  | 17                 | 4.8                   | 99                    | 48                                |
|                     |                           |              | 08/07/12 | 0.23                                | 17,000                                                 | 220                                 | 6.4                | 1.7                   | 5.6                   | 95                                |
|                     |                           |              | 09/04/12 | 0.71                                | 730,000                                                | 35,000                              | 23                 | 5.2                   | 17                    | 190                               |
| "                   | 011115280                 | Cort Brook   | 10/06/11 | , ,                                 | 000 69                                                 | 000 69                              | 180                | 17                    | 95                    | 1 100                             |
| )                   |                           |              | 11/03/11 | 4 4                                 | 2,500                                                  | 1 000                               | 330                | , , ,                 | 95                    | 1,100                             |
|                     |                           |              | 12/01/11 | 5.7                                 | 3,200                                                  | 3,200                               | 29                 | 28                    | 140                   | 70                                |
|                     |                           |              | 01/05/12 | 3.0                                 | 34,000                                                 | 34,000                              | 38                 | 7.3                   | 150                   | 099                               |
|                     |                           |              | 02/02/12 | 2.2                                 | 220                                                    | 220                                 | 130                | 5.4                   | 160                   | 430                               |
|                     |                           |              | 03/01/12 | 5.1                                 | 200                                                    | 500                                 | 380                | 25                    | 250                   | 620                               |
|                     |                           |              | 04/05/12 | 1.0                                 | 37                                                     | 37                                  | 69                 | 2.4                   | 12                    | 120                               |
|                     |                           |              | 05/15/12 | 5.4                                 | 3,000                                                  | 3,000                               | 150                | 26                    | 260                   | 530                               |
|                     |                           |              | 06/07/12 | 5.1                                 | 2,900                                                  | 2,900                               | 330                | 12                    | 120                   | 500                               |
|                     |                           |              | 07/05/12 | 0.36                                | 1,500                                                  | 44                                  | 24                 | 1.8                   | 53                    | 35                                |
|                     |                           |              | 08/02/12 | 0.23                                | 11,000                                                 | 340                                 | 19                 | 0.56                  | 111                   | 39                                |
|                     |                           |              | 09/12/12 | 0.81                                | 57,000                                                 | 4,000                               | 62                 | 2.0                   | 59                    | 160                               |

Daily loads of bacteria, chloride, nitrite, nitrate, and orthophosphate by tributary reservoir subbasin in the Scituate Reservoir drainage area, Rhode Island, October 1, 2011, through September 30, 2012.—Continued

[Water-quality data are from samples collected and analyzed by Providence Water Supply Board (PWSB); USGS, U.S. Geological Survey; ft<sup>3</sup>/s, cubic feet per second; CFU×10%/d; millions of colony forming units per day; E. coli, Escherichia coli; kg/d, kilograms per day; g/d, grams per day; N, nitrogen; P, phosphorus; <, less than; >, greater than; --, data not available; shaded areas indicate values that were calculated with concentration data censored at half the detection level; alternate station names given in parentheses for stations where different historical names were used for the same sampling location by Providence Water Supply Board]

| PWSB station | USGS<br>station | Station name    | Date     | Daily mean streamflow (ff <sup>3</sup> /s) | Total coliform bacteria (CEIIx10 <sup>6</sup> /d) | E. coli<br>(CFUx10 <sup>6</sup> /d) | Chloride<br>(kg/d) | Nitrite<br>(g/d as N) | Nitrate<br>(g/d as N) | Orthophos-<br>phate<br>(a/d as P) |
|--------------|-----------------|-----------------|----------|--------------------------------------------|---------------------------------------------------|-------------------------------------|--------------------|-----------------------|-----------------------|-----------------------------------|
|              |                 |                 | Dire     | ct Runoff Subba                            | Direct Runoff Subbasin—Continued                  |                                     |                    |                       |                       |                                   |
| 4            | 01115400        | Kent Brook      | 10/04/11 | 3.6                                        | 2,000                                             | 130                                 | 40                 | 35                    | 44                    | 700                               |
|              |                 |                 | 11/01/11 | 4.5                                        | 2,500                                             | 2,500                               | 31                 | 33                    | 55                    | 8,300                             |
|              |                 |                 | 12/06/11 | 1.5                                        | 54                                                | 54                                  | 26                 | 7.1                   | 36                    | 18                                |
|              |                 |                 | 01/03/12 | 1.2                                        | 44                                                | 44                                  | 52                 | 8.8                   | 88                    | 180                               |
|              |                 |                 | 02/07/12 | 06.0                                       | 33                                                | 33                                  | 20                 | 2.2                   | 130                   | 88                                |
|              |                 |                 | 03/19/12 | 0.62                                       | 23                                                | 23                                  | 9.2                | 4.5                   | 7.6                   | 45                                |
|              |                 |                 | 04/03/12 | 0.51                                       | 110                                               | 110                                 | 7.0                | 2.5                   | 13                    | 6.3                               |
|              |                 |                 | 05/01/12 | 06.0                                       | 500                                               | 500                                 | 10                 | 2.2                   | 11                    | 530                               |
|              |                 |                 | 06/05/12 | 2.7                                        | 066                                               | 260                                 | 38                 | 46                    | 130                   | 330                               |
|              |                 |                 | 07/03/12 | 0.18                                       | 6,800                                             | 45                                  | 11                 | 0.45                  | 2.3                   | 2.3                               |
|              |                 |                 | 08/07/12 | 0.01                                       | 540                                               | 32                                  | <0.01              | <0.01                 | 0.16                  | 1.9                               |
|              |                 |                 |          |                                            |                                                   |                                     |                    |                       |                       |                                   |
| 5            | 01115184        | Spruce Brook    | 10/18/11 | 2.6                                        | 1,500                                             | 570                                 | 200                | 19                    | 380                   | 700                               |
|              |                 |                 | 01/17/12 | 3.4                                        | 3,600                                             | 330                                 | 250                | 8.3                   | 1,000                 | 580                               |
|              |                 |                 | 07/17/12 | 0.25                                       | 21,000                                            | 31                                  | 14                 | 1.8                   | 18                    | 260                               |
|              |                 |                 |          |                                            |                                                   |                                     |                    |                       |                       |                                   |
| 9            | 01115183        | Quonapaug Brook | 10/04/11 | 8.7                                        | >510,000                                          | 45,000                              | 009                | 43                    | 110                   | 2,300                             |
|              |                 |                 | 11/01/11 | 6.8                                        | 16,000                                            | 5,000                               | 910                | 92                    | 110                   | 7,200                             |
|              |                 |                 | 12/06/11 | 4.9                                        | 11,000                                            | 11,000                              | 180                | 24                    | 120                   | 09                                |
|              |                 |                 | 01/03/12 | 4.1                                        | 4,300                                             | 1,500                               | 200                | 30                    | 009                   | 1,500                             |
|              |                 |                 | 02/07/12 | 3.8                                        | 7,000                                             | 4,000                               | 320                | 19                    | 999                   | 280                               |
|              |                 |                 | 03/19/12 | 2.4                                        | 1,400                                             | 1,400                               | 58                 | 12                    | 29                    | 530                               |
|              |                 |                 | 04/03/12 | 2.0                                        | 7,300                                             | 7,300                               | 190                | 4.9                   | 86                    | 24                                |
|              |                 |                 | 05/01/12 | 4.2                                        | 2,400                                             | 2,400                               | 280                | 41                    | 100                   | 410                               |
|              |                 |                 | 06/05/12 | 3.8                                        | 43,000                                            | 22,000                              | 390                | 65                    | 93                    | 280                               |
|              |                 |                 | 07/03/12 | 0.56                                       | 45,000                                            | 4,100                               | 52                 | 8.2                   | 89                    | 8.9                               |
|              |                 |                 | 08/07/12 | 0.13                                       | 38,000                                            | 2,500                               | 15                 | 1.9                   | 1.6                   | 45                                |

Table 4. Daily loads of bacteria, chloride, nitrite, nitrate, and orthophosphate by tributary reservoir subbasin in the Scituate Reservoir drainage area, Rhode Island, October 1, 2011, through September 30, 2012.—Continued

ing units per day; E. coli, Escherichia coli; kg/d, kilograms per day; g/d, grams per day; N, nitrogen; P, phosphorus; <, less than; >, greater than; --, data not available; shaded areas indicate values that were calculated with concentration data censored at half the detection level; alternate station names given in parentheses for stations where different historical names were used for the same sampling location by [Water-quality data are from samples collected and analyzed by Providence Water Supply Board (PWSB); USGS, U.S. Geological Survey; ft3/s, cubic feet per second; CFU×10%d; millions of colony form-Providence Water Supply Board]

| PWSB<br>station<br>number | USGS<br>station<br>number | Station name        | Date     | Daily mean<br>streamflow<br>(ft³/s) | Total coliform<br>bacteria<br>(CFUx10 <sup>6</sup> /d) | <i>E. coli</i><br>(CFUx10 <sup>6</sup> /d) | Chloride<br>(kg/d) | Nitrite<br>(g/d as N) | Nitrate<br>(g/d as N) | Orthophos-<br>phate<br>(g/d as P) |
|---------------------------|---------------------------|---------------------|----------|-------------------------------------|--------------------------------------------------------|--------------------------------------------|--------------------|-----------------------|-----------------------|-----------------------------------|
|                           |                           |                     | Dire     | ct Runoff Subba                     | Direct Runoff Subbasin—Continued                       |                                            |                    |                       |                       |                                   |
| 7                         | 01115297                  | Wilbur Hollow Brook | 10/06/11 | 8.8                                 | 000,66                                                 | 000,66                                     | 200                | 65                    | 110                   | 15,000                            |
|                           |                           |                     | 11/03/11 | 14                                  | 51,000                                                 | 32,000                                     | 66                 | 89                    | 170                   | 6,500                             |
|                           |                           |                     | 12/01/11 | 15                                  | 10,000                                                 | 3,300                                      | 520                | 110                   | 180                   | 2,200                             |
|                           |                           |                     | 01/05/12 | 7.2                                 | 700                                                    | 260                                        | 260                | 18                    | 180                   | 1,600                             |
|                           |                           |                     | 02/02/12 | 8.9                                 | 870                                                    | 870                                        | 640                | 22                    | 2,400                 | 440                               |
|                           |                           |                     | 03/01/12 | 11                                  | 1,100                                                  | 1,100                                      | 099                | 81                    | 270                   | 1,300                             |
|                           |                           |                     | 04/05/12 | 4.4                                 | 750                                                    | 750                                        | 100                | 11                    | 54                    | 220                               |
|                           |                           |                     | 05/15/12 | 7.2                                 | 4,100                                                  | 1,600                                      | 160                | 35                    | 530                   | 1,100                             |
|                           |                           |                     | 06/07/12 | 9.8                                 | 50,000                                                 | 1,500                                      | 640                | 21                    | 840                   | 630                               |
|                           |                           |                     | 07/05/12 | 1.3                                 | 6,600                                                  | 320                                        | 31                 | 13                    | 16                    | 95                                |
|                           |                           |                     | 08/02/12 | 0.84                                | 64,000                                                 | 2,100                                      | 69                 | 2.1                   | 41                    | 140                               |
|                           |                           |                     | 09/12/12 | 86.0                                | 120,000                                                | 2,400                                      | 19                 | 7.2                   | 12                    | 290                               |
|                           |                           |                     |          |                                     |                                                        |                                            |                    |                       |                       |                                   |
| ∞                         | 01115276                  | Westconnaug Brook   | 10/14/11 | 12                                  | 440                                                    | 440                                        | 390                | 29                    | 150                   | 5,000                             |
|                           |                           |                     | 11/15/11 | 10                                  | 2,200                                                  | 2,200                                      | 350                | 24                    | 2,200                 | 1,500                             |
|                           |                           |                     | 12/09/11 | 23                                  | 5,100                                                  | 840                                        | 610                | 99                    | 280                   | 7,300                             |
|                           |                           |                     | 01/13/12 | 11                                  | 400                                                    | 400                                        | 300                | 27                    | 270                   | 2,200                             |
|                           |                           |                     | 02/10/12 | 8.7                                 | 320                                                    | 320                                        | 210                | 21                    | 110                   | 3,400                             |
|                           |                           |                     | 03/09/12 | 9.6                                 | 350                                                    | 350                                        | 460                | 47                    | 470                   | 120                               |
|                           |                           |                     | 04/30/12 | 7.8                                 | 290                                                    | 290                                        | 240                | 19                    | 95                    | 380                               |
|                           |                           |                     | 05/17/12 | 12                                  | 440                                                    | 440                                        | 550                | 29                    | 290                   | 880                               |
|                           |                           |                     | 06/08/12 | 10                                  | 370                                                    | 370                                        | 450                | 24                    | 120                   | 1,700                             |
|                           |                           |                     | 07/13/12 | 2.2                                 | 16,000                                                 | 3,800                                      | 50                 | 5.4                   | 27                    | 430                               |
|                           |                           |                     | 08/10/12 | 2.9                                 | 310,000                                                | 350                                        | 99                 | 7.1                   | 35                    | 920                               |
|                           |                           |                     | 09/14/12 | 2.0                                 | 68,000                                                 | 240                                        | 44                 | 4.9                   | 24                    | 1,900                             |

**Table 4.** Daily loads of bacteria, chloride, nitrite, nitrate, and orthophosphate by tributary reservoir subbasin in the Scituate Reservoir drainage area, Rhode Island, October 1, 2011, through September 30, 2012.—Continued

[Water-quality data are from samples collected and analyzed by Providence Water Supply Board (PWSB); USGS, U.S. Geological Survey; ft<sup>3</sup>/s, cubic feet per second; CFU×10%/d; millions of colony forming units per day; E. coli, Escherichia coli; kg/d, kilograms per day; g/d, grams per day; N, nitrogen; P, phosphorus; <, less than; >, greater than; --, data not available; shaded areas indicate values that were calculated with concentration data censored at half the detection level; alternate station names given in parentheses for stations where different historical names were used for the same sampling location by Providence Water Supply Board]

| PWSB station number | USGS<br>station<br>number | Station name                       | Date     | Daily mean<br>streamflow<br>(ft³/s) | Total coliform<br>bacteria<br>(CFUx10 <sup>6</sup> /d) | <i>E. coli</i><br>(CFUx10 <sup>6</sup> /d) | Chloride<br>(kg/d) | Nitrite<br>(g/d as N) | Nitrate<br>(g/d as N) | Orthophos-<br>phate<br>(g/d as P) |
|---------------------|---------------------------|------------------------------------|----------|-------------------------------------|--------------------------------------------------------|--------------------------------------------|--------------------|-----------------------|-----------------------|-----------------------------------|
|                     |                           |                                    | Dire     | t Runoff Subba                      | Direct Runoff Subbasin—Continued                       |                                            |                    |                       |                       |                                   |
| 6                   | 01115275                  | Bear Tree Brook                    | 10/18/11 | 1.4                                 | 1,500                                                  | 1,500                                      | 150                | 3.4                   | 210                   | 450                               |
|                     |                           |                                    | 01/17/12 | 1.9                                 | 420                                                    | 70                                         | 98                 | 9.3                   | 140                   | 086                               |
|                     |                           |                                    | 04/17/12 | 0.75                                | 420                                                    | 28                                         | 79                 | 3.7                   | 9.2                   | 18                                |
|                     |                           |                                    | 07/17/12 | 0.24                                | 16,000                                                 | 29                                         | 42                 | 1.2                   | 120                   | 53                                |
| ć                   |                           |                                    |          |                                     | 000                                                    |                                            | ,                  | 7                     | ć                     | 9                                 |
| 32                  | 01115178                  | Unnamed Iributary 1 to Scituate    | 10/20/11 | 2.5                                 | >150,000                                               | 000,89                                     | 61                 | 31                    | 31                    | 430                               |
|                     |                           | Reservoir (Pine Swamp Brook)       | 01/19/12 | 0.70                                | 26                                                     | 26                                         | 24                 | 1.7                   | 8.6                   | 69                                |
|                     |                           |                                    | 04/19/12 | 0.18                                | 40                                                     | 18                                         | 6.7                | 0.45                  | 2.2                   | 8.9                               |
|                     |                           |                                    | 07/19/12 | 0.33                                | 500,000                                                | 25,000                                     | 8.9                | 3.3                   | 4.1                   | 520                               |
|                     |                           |                                    |          |                                     |                                                        |                                            |                    |                       |                       |                                   |
| 33                  | 01115182                  | Unnamed Tributary 3 to Scituate    | 10/26/11 | 0.41                                | 230                                                    | 230                                        | 20                 | 1.0                   | 10                    | 170                               |
|                     |                           | Reservoir (Hall's Estate Brook)    | 01/25/12 | 1.0                                 | 220                                                    | 220                                        | 34                 | 2.4                   | 120                   | 069                               |
|                     |                           |                                    | 04/25/12 | 0.79                                | 130                                                    | 29                                         | 24                 | 1.9                   | 19                    | 150                               |
|                     |                           |                                    | 07/30/12 | 0.10                                | 11,000                                                 | 250                                        | 2.8                | 0.25                  | 1.3                   | 18                                |
|                     |                           |                                    | Mo       | Moswansicut Reservoir Subbasin      | rvoir Subbasin                                         |                                            |                    |                       |                       |                                   |
| 19                  | 011115170                 | Moswansicut Reservoir (Moswansicut | 10/13/11 | 6.3                                 | 14,000                                                 | 230                                        | 360                | 15                    | 77                    | 770                               |
|                     |                           | Stream North, Moswansicut Pond)    | 11/10/11 | 7.8                                 | 4,400                                                  | 4,400                                      | 350                | 38                    | 95                    | 1,500                             |
|                     |                           |                                    | 12/08/11 | 37                                  | 190,000                                                | 10,000                                     | 3,300              | 360                   | 3,600                 | 24,000                            |
|                     |                           |                                    | 01/31/12 | 7.2                                 | 700                                                    | 260                                        | 610                | 35                    | 180                   | 700                               |
|                     |                           |                                    | 02/16/12 | 4.0                                 | 150                                                    | 150                                        | 210                | 29                    | 200                   | 49                                |
|                     |                           |                                    | 03/08/12 | 5.2                                 | 510                                                    | 510                                        | 230                | 13                    | 130                   | 510                               |
|                     |                           |                                    | 04/12/12 | 1.9                                 | 70                                                     | 70                                         | 160                | 9.3                   | 23                    | 190                               |
|                     |                           |                                    | 05/10/12 | 20                                  | 11,000                                                 | 11,000                                     | 1,600              | 86                    | 240                   | 086                               |
|                     |                           |                                    | 06/18/12 | 1.6                                 | 59                                                     | 59                                         | 130                | 3.9                   | 78                    | 78                                |
|                     |                           |                                    | 07/12/12 | 0.51                                | 75,000                                                 | 62                                         | 45                 | 1.2                   | 6.2                   | 120                               |
|                     |                           |                                    | 08/16/12 | 1.3                                 | 150,000                                                | 6,400                                      | 120                | 3.2                   | 16                    | 95                                |

Table 4. Daily loads of bacteria, chloride, nitrite, nitrate, and orthophosphate by tributary reservoir subbasin in the Scituate Reservoir drainage area, Rhode Island, October 1, 2011, through September 30, 2012.—Continued

ing units per day, E. coli, Escherichia coli; kg/d, kilograms per day; g/d, grams per day; N, nitrogen; P, phosphorus; <, less than; -, greater than; -, data not available; shaded areas indicate values that were calculated with concentration data censored at half the detection level; alternate station names given in parentheses for stations where different historical names were used for the same sampling location by [Water-quality data are from samples collected and analyzed by Providence Water Supply Board (PWSB); USGS, U.S. Geological Survey; ft3/s, cubic feet per second; CFU×10%d; millions of colony form-Providence Water Supply Board]

| PWSB<br>station<br>number | USGS<br>station<br>number | Station name                       | Date     | Daily mean<br>streamflow<br>(ft³/s) | Total coliform<br>bacteria<br>(CFUx10 <sup>6</sup> /d) | E. coli<br>(CFUx10º/d) | Chloride<br>(kg/d) | Nitrite<br>(g/d as N) | Nitrate<br>(g/d as N) | Orthophos-<br>phate<br>(g/d as P) |
|---------------------------|---------------------------|------------------------------------|----------|-------------------------------------|--------------------------------------------------------|------------------------|--------------------|-----------------------|-----------------------|-----------------------------------|
|                           |                           |                                    | Moswans  | icut Reservoir S                    | Moswansicut Reservoir Subbasin—Continued               | nued                   |                    |                       |                       |                                   |
| 21                        | 01115165                  | Unnamed Tributary 2 to Moswansicut | 10/17/11 | 0.79                                | 440                                                    | 440                    | 58                 | 3.9                   | 39                    | 310                               |
|                           |                           | Reservoir (Brook from Kimball      | 01/23/12 | 92.0                                | 800                                                    | 28                     | 57                 | 7.4                   | 110                   | 74                                |
|                           |                           | Reservoir)                         | 04/16/12 | 0.23                                | 530                                                    | 130                    | 16                 | 1.1                   | 2.8                   | 2.8                               |
|                           |                           |                                    | Re       | Regulating Reservoir Subbasin       | voir Subbasin                                          |                        |                    |                       |                       |                                   |
| 14                        | 011151110                 | Huntinghouse Brook                 | 10/03/11 | 11                                  | >650,000                                               | 12,000                 | 75                 | 54                    | 270                   | 1,900                             |
|                           |                           |                                    | 11/07/11 | 11                                  | 25,000                                                 | 12,000                 | 220                | 27                    | 270                   | 3,500                             |
|                           |                           |                                    | 12/05/11 | 15                                  | 8,400                                                  | 8,400                  | 290                | 37                    | 180                   | 8,800                             |
|                           |                           |                                    | 01/30/12 | 17                                  | 2,900                                                  | 2,900                  | 2,800              | 42                    | 210                   | 2,100                             |
|                           |                           |                                    | 02/15/12 | 6.5                                 | 640                                                    | 640                    | 130                | 16                    | 160                   | 2,400                             |
|                           |                           |                                    | 03/16/12 | 7.8                                 | 290                                                    | 290                    | 200                | 38                    | 190                   | 2,100                             |
|                           |                           |                                    | 04/02/12 | 8.9                                 | 1,500                                                  | 1,500                  | 430                | 17                    | 83                    | 1,000                             |
|                           |                           |                                    | 05/07/12 | 7.7                                 | 4,300                                                  | 4,300                  | 180                | 19                    | 190                   | 940                               |
|                           |                           |                                    | 06/04/12 | 17                                  | 190,000                                                | 190,000                | 1,100              | 210                   | 210                   | 2,100                             |
|                           |                           |                                    | 08/06/12 | 0.14                                | 21,000                                                 | 310                    | 14                 | 89.0                  | 1.7                   | 28                                |
|                           |                           |                                    |          |                                     |                                                        |                        |                    |                       |                       |                                   |
| 15                        | 01115114                  | Rush Brook                         | 10/03/11 | 0.6                                 | 100,000                                                | 100,000                | 320                | 88                    | 110                   | 2,400                             |
|                           |                           |                                    | 11/07/11 | 7.4                                 | 430,000                                                | 430,000                | 300                | 36                    | 180                   | 3,100                             |
|                           |                           |                                    | 12/05/11 | 7.7                                 | 87,000                                                 | 87,000                 | 570                | 380                   | 190                   | 940                               |
|                           |                           |                                    | 01/30/12 | 10                                  | 5,600                                                  | 2,200                  | 089                | 46                    | 120                   | 1,200                             |
|                           |                           |                                    | 02/15/12 | 4.7                                 | 2,600                                                  | 2,600                  | 210                | 11                    | 110                   | 1,100                             |
|                           |                           |                                    | 03/16/12 | 4.9                                 | 180                                                    | 180                    | 450                | 24                    | 120                   | 480                               |
|                           |                           |                                    | 04/02/12 | 6.3                                 | 6,600                                                  | 1,400                  | 800                | 15                    | 77                    | 460                               |
|                           |                           |                                    | 05/07/12 | 5.2                                 | 2,900                                                  | 2,900                  | 210                | 25                    | 130                   | 130                               |
|                           |                           |                                    | 06/04/12 | 16                                  | 940,000                                                | 940,000                | 2,000              | 160                   | 390                   | 1,600                             |
|                           |                           |                                    | 07/02/12 | 1.0                                 | 11,000                                                 | 11,000                 | 91                 | 7.3                   | 24                    | 150                               |
|                           |                           |                                    | 08/06/12 | 0.12                                | 32,000                                                 | 5,900                  | 2.6                | 0.88                  | 1.5                   | 32                                |
|                           |                           |                                    | 09/17/12 | 0.02                                | 1,100                                                  | 86                     | 2.1                | <0.01                 | 0.24                  | 4.4                               |

Daily loads of bacteria, chloride, nitrite, nitrate, and orthophosphate by tributary reservoir subbasin in the Scituate Reservoir drainage area, Rhode Island, October 1, 2011, through September 30, 2012.—Continued

[Water-quality data are from samples collected and analyzed by Providence Water Supply Board (PWSB); USGS, U.S. Geological Survey; ft<sup>3</sup>/s, cubic feet per second; CFU×10%/d; millions of colony forming units per day; E. coli, Escherichia coli; kg/d, kilograms per day; g/d, grams per day; N, nitrogen; P, phosphorus; <, less than; >, greater than; --, data not available; shaded areas indicate values that were calculated with concentration data censored at half the detection level; alternate station names given in parentheses for stations where different historical names were used for the same sampling location by Providence Water Supply Board]

| PWSB station number | USGS<br>station<br>number | Station name                               | Date      | Daily mean<br>streamflow<br>(ft³/s) | Total coliform bacteria (CFUx10 <sup>6</sup> /d) | E. coli<br>(CFUx10 <sup>6</sup> /d) | Chloride<br>(kg/d) | Nitrite<br>(g/d as N) | Nitrate<br>(g/d as N) | Orthophos-<br>phate<br>(g/d as P) |
|---------------------|---------------------------|--------------------------------------------|-----------|-------------------------------------|--------------------------------------------------|-------------------------------------|--------------------|-----------------------|-----------------------|-----------------------------------|
|                     |                           |                                            | Regulatir | ng Reservoir Su                     | Regulating Reservoir Subbasin—Continued          | pei                                 |                    |                       |                       |                                   |
| 16                  | 01115098                  | 01115098 Peeptoad Brook (Harrisdale Brook) | 10/03/11  | 8.4                                 | 19,000                                           | 19,000                              | 009                | 41                    | 100                   | 4,100                             |
|                     |                           |                                            | 11/07/11  | 13                                  | 7,300                                            | 7,300                               | 950                | 640                   | 320                   | 2,900                             |
|                     |                           |                                            | 12/05/11  | 15                                  | 28,000                                           | 3,300                               | 1,000              | 73                    | 370                   | 2,200                             |
|                     |                           |                                            | 01/31/12  | 13                                  | 7,300                                            | 7,300                               | 840                | 64                    | 160                   | 1,900                             |
|                     |                           |                                            | 02/15/12  | 6.5                                 | 240                                              | 240                                 | 130                | 16                    | 160                   | 2,400                             |
|                     |                           |                                            | 03/16/12  | 3.2                                 | 120                                              | 120                                 | 240                | 16                    | 160                   | 470                               |
|                     |                           |                                            | 04/02/12  | 3.3                                 | 120                                              | 120                                 | 310                | 8.1                   | 40                    | 650                               |
|                     |                           |                                            | 05/07/12  | 7.1                                 | 7,500                                            | 7,500                               | 200                | 35                    | 170                   | 170                               |
|                     |                           |                                            | 06/04/12  | 11                                  | 300,000                                          | 300,000                             | 1,100              | 27                    | 540                   | 1,600                             |
|                     |                           |                                            | 07/02/12  | 3.9                                 | 260,000                                          | 19,000                              | 270                | 19                    | 95                    | 290                               |
|                     |                           |                                            | 08/06/12  | 0.62                                | 18,000                                           | 76                                  | 42                 | 3.0                   | 9.7                   | 45                                |
|                     |                           |                                            | 09/17/12  | 0.23                                | 6,200                                            | 110                                 | 16                 | 0.56                  | 2.8                   | 73                                |
|                     |                           |                                            |           |                                     |                                                  |                                     |                    |                       |                       |                                   |
| 18                  | 011115120                 | Unnamed Tributary to Regulating            | 10/17/11  | 0.31                                | 3,500                                            | 1,100                               | 34                 | 1.5                   | 9.7                   | 89                                |
|                     |                           | Reservoir (Unnamed Brook A)                | 01/23/12  | 0.77                                | 75                                               | 28                                  | <i>L</i> 9         | 1.9                   | 150                   | 009                               |
|                     |                           |                                            | 04/16/12  | 90.0                                | 350                                              | 63                                  | 0.9                | 0.44                  | 2.9                   | 220                               |

Table 4. Daily loads of bacteria, chloride, nitrite, nitrate, and orthophosphate by tributary reservoir subbasin in the Scituate Reservoir drainage area, Rhode Island, October 1, 2011, through September 30, 2012.—Continued

[Water-quality data are from samples collected and analyzed by Providence Water Supply Board (PWSB); USGS, U.S. Geological Survey; ft3/s, cubic feet per second; CFU×10%/d; millions of colony forming units per day; E. coli, Escherichia coli; kg/d, kilograms per day; g/d, grams per day; N, nitrogen; P, phosphorus; S, less than; S, greater than; S, greater than; A ata not available; shaded areas indicate values that were calculated with concentration data censored at half the detection level; alternate station names given in parentheses for stations where different historical names were used for the same sampling location by Providence Water Supply Board]

| PWSR IIS   | NGS.              |                                   |           | Daily mean            | Total coliform                          |                                            |                    |                       |                       | Orthonhos-          |
|------------|-------------------|-----------------------------------|-----------|-----------------------|-----------------------------------------|--------------------------------------------|--------------------|-----------------------|-----------------------|---------------------|
| sta<br>nur | station<br>number | Station name                      | Date      | streamflow<br>(ft³/s) | bacteria<br>(CFUx10 <sup>6</sup> /d)    | <i>E. coli</i><br>(CFUx10 <sup>6</sup> /d) | Chloride<br>(kg/d) | Nitrite<br>(g/d as N) | Nitrate<br>(g/d as N) | phate<br>(g/d as P) |
|            |                   |                                   | Regulatir | ng Reservoir Su       | Regulating Reservoir Subbasin—Continued | pei                                        |                    |                       |                       |                     |
| 01111      | 01115274          | Westconnaug Brook                 | 10/11/11  | 2.0                   | 12,000                                  | 190                                        | 110                | 4.8                   | 24                    | 720                 |
|            |                   |                                   | 11/08/11  | 2.8                   | 3,000                                   | 3,000                                      | 130                | 6.9                   | 69                    | 830                 |
|            |                   |                                   | 12/13/11  | 4.3                   | 160                                     | 160                                        | 240                | 1                     | 620                   | 730                 |
|            |                   |                                   | 01/10/12  | 1.9                   | 180                                     | 89                                         | 92                 | 4.5                   | 23                    | 320                 |
|            |                   |                                   | 02/14/12  | 1.7                   | 62                                      | 62                                         | 140                | 4.1                   | 21                    | 099                 |
|            |                   |                                   | 03/13/12  | 1.7                   | 086                                     | 086                                        | 140                | 13                    | 42                    | 85                  |
|            |                   |                                   | 04/10/12  | 0.74                  | 4,400                                   | 1,700                                      | 32                 | 1.8                   | 6                     | 73                  |
|            |                   |                                   | 05/08/12  | 1.3                   | 710                                     | 46                                         | 84                 | 3.1                   | 15                    | 31                  |
|            |                   |                                   | 06/12/12  | 0.58                  | 130                                     | 21                                         | 23                 | 7.0                   | 7                     | 068                 |
|            |                   |                                   | 07/10/12  | 0.05                  | 1,800                                   | 24                                         | 1.4                | 0.24                  | -                     | 10                  |
|            |                   |                                   | 08/17/12  | 0.38                  | 39,000                                  | 1,800                                      | 14                 | 1.8                   | 9.2                   | 28                  |
|            |                   |                                   | 09/11/12  | 0.21                  | 33,000                                  | 1,500                                      | 7.4                | 0.51                  | 5.1                   | 5.1                 |
|            | 0                 |                                   | 0         | ţ                     | 6                                       | ,                                          | 0                  | 9                     |                       | 6                   |
| 0111       | 01115273          | Unnamed Iributary to Westconnaug  | 10/25/11  | 1.7                   | 3,100                                   | 160                                        | 200                | 12                    | 120                   | 330                 |
|            |                   | Reservoir (Unnamed Brook south of | 01/24/12  | 3.0                   | 3,200                                   | 3,200                                      | 340                | 15                    | 37                    | 730                 |
|            |                   | westconnang reservon)             | 04/24/12  | 4.1                   | 240,000                                 | 24,000                                     | 490                | 30                    | 50                    | 500                 |

Prepared by the Pembroke Publishing Service Center.

For more information concerning this report, contact:

Office Chief
U.S. Geological Survey
New England Water Science Center
Massachusetts-Rhode Island Office
10 Bearfoot Road
Northborough, MA 01532
dc\_ma@usgs.gov

or visit our Web site at: http://ma.water.usgs.gov