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Response of Global Navigation Satellite System Receivers 
to Known Shaking between 0.2 and 20 Hertz 

By John Langbein, John R. Evans, Fredrick Blume, and Ingrid Johanson 

Introduction 
Over the past decade, several technological advances have allowed Global Navigation Satellite 

Systems (GNSS) receivers to have the capability to record displacements at high frequencies, with 
sampling rates approaching 100 samples per second (sps). In addition, communication and computer 
hardware and software have allowed various institutions, including the U.S. Geological Survey (USGS), 
to retrieve, process, and display position changes recorded by a network of GNSS sites with small, less 
than 1-s delays between the time that the GNSS receiver records signals from a constellation of satellites 
and the time that the position is estimated (a method known as “real-time”). These improvements in 
hardware and software have allowed the USGS to process GNSS (or a subset of the GNSS, the Global 
Positioning System, GPS) data in real-time at 1 sps with the goal of determining displacements from 
earthquakes and volcanoes in real-time. However, the current set of GNSS equipment can record at rates 
of 100 sps, which allows the possibility of using this equipment to record earthquake displacements over 
the full range of frequencies that typically are recorded by acceleration and velocity transducers. The 
advantage of using GNSS to record earthquakes is that the displacement, rather than acceleration or 
velocity, is recorded, and for large earthquakes, the GNSS sensor stays on scale and will not distort the 
observations due to clipping of the signal at its highest amplitude. The direct observation of displacement 
is advantageous in estimating the size and spatial extent of the earthquake rupture. Otherwise, when using 
velocity or acceleration sensors, the displacements are determined by numerical integration of the 
observations, which can introduce significant uncertainty in the estimated displacements. However, GNSS 
technology can, at best, resolve displacements of a few millimeters, and for most earthquakes, their 
displacements are less than 1 mm. Consequently, to be useful, GNSS data are only relevant for the large 
earthquakes with magnitudes (M) exceeding M5.5 at best. 

With the capability to record GNSS data at high-rate, at sampling rates typical for seismological 
applications, experiments are needed to quantify the response of GNSS to shaking from earthquakes. 
There have been a few studies that examine the response of GNSS to strong shaking. One of the first was 
Elosegui and others (2006), where they simulated surface waves from a distant earthquake and 
mechanically applied the shaking to a GPS antenna. They processed the 1 sps observations and compared 
the estimated displacements with the simulated displacements. They determined that the GPS could 
accurately track the simulated surface wave whose primary frequency spans from 0.01 to 0.1 Hertz (Hz), 
which spanned the frequency band of the simulation. 
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To test GNSS equipment due to shaking from a large earthquake in the near-field, Wang and 
others (2012) used a mechanical simulator or shake table with 6 degrees of freedom and studied two 
different inputs to the simulator—(1) the accelerometer record from one station that was located near the 
2010 M8.8 Maule, Chile earthquake, and (2) a 2-Hz sinusoid. Wang and others (2012) analyzed the 2-Hz 
data with spectral analysis and determined that the displacements observed by the GPS included higher 
harmonics along with the 2-Hz signal. In addition, the background spectral amplitude was greater during 
periods of 2-Hz shaking than when at rest. With the simulated M 8.8 earthquake, Wang and others (2012) 
observed decreased signal to noise for L1 and L2 carrier frequencies of the GPS signal, at times 
corresponding to high acceleration and jerk (first derivative of acceleration). 

One of the principal limitations of these experiments was that the displacements of the shake table 
itself could not be measured independently. Although with the 2-Hz sinusoidal measurements, the input 
displacements were purely translational, Wang and others (2012) analysis of the data showed that the 
shake table also included rotational motions which affect horizontal inertial sensors like accelerometers 
and seismometers at first order. 

More recently, Ebinuma and Kato (2012) used a GPS simulator to electronically test several GNSS 
receivers and obtain the receiver characteristics at three frequencies: 1, 2, and 5 Hz. The results showed 
that the amplitude of 5-Hz displacements recorded by the GPS was, depending on the receiver model, 
between 30 and 125 percent more than the displacement input to the simulator. At low frequencies, the 
GPS displacement was nearly equal to the input displacement. In addition, Ebinuma and Kato (2012) 
examined how each receiver model amplified an earthquake displacement record in the 2–8 Hz band. The 
simulated earthquake was the 2008 moment magnitude (Mw) 6.8 Iwate-Miyagi earthquake where, for the 
simulated record, acceleration peaked at 1 G. 

The study discussed here builds on the tests by Ebinuma and Kato (2012), but rather than using 
electronic simulation, the tests are setup outdoors and closer to actual field installations of GNSS 
equipment. We used a one-dimensional shake table capable of 400 mm of displacement and high 
acceleration; the shake table also is constrained by a precision linear slider to have very low tilt that would 
affect inertial sensors. In addition, the stage position can be accurately monitored independent of the 
GNSS hardware and, importantly, provides a reference to compare with the estimated displacements from 
the GNSS data. Our tests spanned a greater frequency range from 0.2 to 20 Hz and we used equipment 
from three different manufacturers covering five different combinations of receivers and antennas. In 
addition, we have been able to simulate the frequency response of the GNSS equipment using a simple, 
causal filter. The quality of the filter was tested using additional test data where a step function in 
displacement was applied to the shake table. The observed displacements from the GNSS data show an 
overshoot in displacement at the time of the step or transition of the stage. That overshoot was accurately 
predicted using the filter design derived from our sinusoidal displacement tests. 

Similar to Wang and others (2012), we also examined the GPS displacement records using 
standard spectral techniques. However, we extended their work by evaluating several models of GNSS 
receivers using a variety of input frequencies. Because our shake table was limited on acceleration and 
displacement, we did not attempt to duplicate the high shaking associated with high magnitude 
earthquakes. However, because our shake table could measure the table displacement, we could directly 
compare the measured GPS displacements with the true displacements. 
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Experimental Set-Up  
The experiment used four sites near the USGS's Albuquerque Seismic Laboratory (ASL). One site 

consisted of a shake table and various different GNSS receivers and antennas that were tested using 
different displacement signals programmed into the shake table. The antenna was attached to the shake 
table. In addition, the motion of the shake table was measured independently using both an internal 
displacement transducer and an accelerometer mounted next to the GNSS antenna on the shake table. The 
other three sites are considered reference sites for the GNSS, as the position changes (observed by the 
GNSS on the shake table) are measured relative to one of the three reference sites using processing 
software that uses double differencing (for example, Hofmann-Wellenhof and others, 1994). The test site 
is identified as SH0X, with X indexing from 1 to 6, each having different GNSS equipment. 

The closest reference site was 11 m southeast of the shake table and is identified as ASLF. The 
antenna was mounted on a tripod. The tripod was placed such that it was aligned with the direction of the 
linear, horizontal motion of the shake table. The alignment is only approximate, as it was done by bore-
sighting along the axis of the shake table to align the tripod of ASLF. The next closest site is P034, which 
is operated by UNAVCO, Inc. as part of the Plate Boundary Observatory and located about 200 m 
southwest of the shake table. The fourth site, designated ABQ0, was installed on a rooftop of a residential 
house approximately 25 km from ASL.  

The receivers were setup to track both the GPS and the GLONASS satellites at 1 sps and 50 sps. 
The exception was one receiver, a Trimble® NetRS™, which is capable of tracking only GPS satellites at a 
maximum rate of 10 sps. This model NetRS™ receiver was used for one of the shake table tests and also 
is also installed at site P034. At both sites ASLF and ABQ0, Topcon® Net-G3A™ receivers were used. 
Although the receiver at site ABQ0 was setup to record both GPS and GLONASS at 50 sps, we were not 
able to successfully convert the data records from the proprietary Topcon® format to receiver independent 
exchange (RINEX) format. 

The shake table (SH0X) provides uniaxial translation 
(http://www.rockwellautomation.com/anorad/products/precisionpositioningstages/linear/lw10.html) with 
a maximum range of 400 mm and a maximum velocity of about 800 mm/s with the payload as described. 
To obtain the response of the GNSS system to known signals, we drove the table with two different input 
sources—, one (1)being a signal that approximated a Heaviside or step displacement function with a 
specified amplitude, and the (2)other being a sinusoid with a specified frequency and acceleration or 
velocity. The translation of the shake table was measured three ways—(1) A GNSS antenna was attached 
to the stage of the shake table and those data were recorded on a GNSS receiver, (2) A Nanometrics Titan 
accelerometer was attached to the stage of the shake table and those data were recorded on a Quanterra® 
Q330 data logger at 500 sps,. And (3) the position of the stage was measured by an internal encoder using 
an optical grating, recorded on the same data logger as the accelerometer at 500 sps. The shake table was 
installed outdoors at the ASL at a place location with good sky visibility and the track of the table was 
oriented approximately to N45°W. 

The following GNSS combinations were used for SH0X: 
• SH01: A Topcon® Net-G3A™ receiver and a Topcon® GNSS Choke Ring Antenna; 
• SH02: A Trimble® NetR9™ receiver and a Trimble® GNSS Choke Ring Antenna; 
• SH03: A Trimble® NetR9™ receiver and a Trimble® Zephyr™ 2 Antenna; 
• SH04: A Trimble® NetR8°™ receiver and a Trimble® GNSS Choke Ring Antenna; 
• SH05: A Trimble® NetRS™ receiver and a Trimble® GNSS Choke Ring Antenna; and 
• SH06: A Javad GNSS® Sigma™ receiver and a Javad GNSS® Choke Ring Antenna. 
  

http://www.rockwellautomation.com/anorad/products/precisionpositioningstages/linear/lw10.html
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With these combinations, the receiver was set to record both GPS and GLONASS signals both at 1 and 50 
sps except the NetRS™, which had a maximum sampling rate of 10 sps. In addition, the 1-sps data were 
streamed over the Internet and processed in real-time (with no more than a few seconds latency) using 
GPS Solutions, Inc., software called RTNet. The position change data could be viewed from the Internet 
in real-time, which provided some quality control to the experiment. 

The signals used to test the response of the GNSS system consisted of: 
• Displacement step functions of different amplitudes as listed directly below. Ideally, the step would be 

an instantaneous translation of the stage to a new position. Instead, that translation was limited by the 
maximum velocity of 800 mm/s. Thus, the 400 mm translations took approximately 0.5 s. Over a 3-
minute interval, the stage was translated six times, such that the time-series of position changes would 
be a square wave of three cycles. Data for one experiment are shown in figure 1, where the stage was 
translated 100 mm. The data for a 3.5-minute period spanning six translations is shown in figure 1A, 
and the detail of the data spanning a 7-s interval of one translation is shown in figure 1B. The two 
lower panels show the east and north components of the estimated position change for the GPS; the 
third panel shows the estimated displacement from the GPS resolved into the direction of the shake 
table. The second from the top shows the measured displacement of stage from the shake table. The 
top panel shows the differences in the estimated displacement from GPS and the actual displacement 
of the stage. The three experiments used: 
• 400 mm translation; 
• 100 mm translation; and 
• 20 mm translation. 

• Sinusoidal signals of different frequencies and displacements were applied. Data from one experiment, 
where the stage was moved using a 1.0 Hz sinusoid, are shown in figure 2. The data for a 2.5-minute 
period spanning 2 minutes of 1.0-Hz motion are shown in figure 2A, and the detail of the data 
spanning 7 s is shown in figure 2B. We ran seven experiments with: 
• 0.2 Hz with an amplitude of 156.1 mm/s in velocity for 120 s; 
• 0.5 Hz with an amplitude of 0.125 g in acceleration for 120 s; 
• 1.0 Hz with an amplitude of 0.5 g in acceleration for 120 s; 
• 2.0 Hz with an amplitude of 0.5 g in acceleration for 120 s; 
• 5.0 Hz with an amplitude of 1.0 g in acceleration for 120 s; 
• 10.0 Hz with an amplitude of 2.0 g in acceleration for 60 s; and 
• 20.0 Hz with an amplitude of 3.0 g in acceleration for 30 s. 

Peak displacements, velocities, and accelerations are limited by the capabilities the shake table. If the 
displacement function is described by d∙cos(2∙π∙f∙t), where d is the amplitude of the displacement, f is the 
frequency of the sinusoidal, and t is time; then velocity amplitude is d∙2∙π∙f and acceleration amplitude is 
d∙( 2∙π∙f)2. The displacements ranged from 2 mm (20 Hz at 3 g) to 124 mm for the experiments using 0.2, 
0.5, and 1.0Hz sinusoids. 
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Data Processing (Global Positioning System) 
The GNSS data were processed to obtain estimates of positions using commercial software, 

RTNet, developed by GPS Solutions, Inc. This software provides a number of options which can influence 
the calculated position for each site. For this set of data, we selected the option that uses double 
differencing to obtain the change in position of one site relative to a “fixed” site (a site assumed to remain 
stationary). For nearly all data discussed here, site ASLF was selected to be fixed; the exception was the 
SH05 experiment where the receiver at site ASLF did not record at 50 sps for part of the experiment. 
Instead, site P034 was used as the fixed station. Only the L1 carrier and pseudo-range data were processed 
because the changes in the path-length, due to the ionosphere and troposphere, are common to all three 
sites. For longer baselines, it is advantageous to process both L1 and L2 signals, which can correct for 
spatial variations in both the ionosphere and troposphere. The software determined the number of integer 
ambiguities of L1 carrier wave and held them fixed. Only data from the GPS satellites were used because 
the current version of RTNet is not capable of determining and fixing integer ambiguities for GLONASS. 
For the rest of this report, we will use only GPS data and annotating accordingly as GPS rather than 
GNSS. Finally, to track the displacements, the velocity constraints provided to RTNet were set “loose” 
(100 m/s). 

For the software to obtain rapid determination of the integer ambiguities for the carrier wave, 
accurate estimates of the initial positions of each station are required. For the existing UNAVCO site 
(P034), which has been in operation for several years, the position listed on the UNAVCO(unavco.org) 
was used. However, for sites SH0X and ASLF, approximately 1 hour of data was collected at 1 sps; and, 
the RINEX files were submitted to the National Geodetic Survey (NGS) 
(http://www.ngs.noaa.gov/OPUS/), which returns an estimated position for each site. The position 
estimates of sites SH0X and ASLF were further refined by using RTNet to compute new positions of these 
sites holding site P034 “fixed” using “loose” constraints (100 mm) on the initial positions of sites SH0X 
and ASLF. 

The GPS processing resolves displacements in three directions, northward, eastward and upward. 
However, the translation of the shake table uniaxial. To compare the GPS displacements with the recorded 
displacement of the stage, this requires projecting the GPS displacements onto the direction of the shake 
table; consequently, the direction of the shake table needs to be known (appendix 1). 

Results—Graphical Analysis 
Examples of the results of these experiments are shown in figures 1 and 2. The plots for all six 

combinations of GPS receivers and antennas were remarkably similar to each other with the exception of 
the tests at the highest frequencies (≥ 5 Hz). For the step tests (fig. 1B), the rapid translation caused the 
GPS derived displacement to “overshoot” the displacement recorded for the stage of the shake table. 
Although not readily seen on the plot showing the GPS data for the translation because of the vertical 
scale, a 5 mm overshoot, or 5 percent of the total translation, becomes apparent by taking the difference 
between the GPS and the displacement data from the shake table (fig. 1B, top panel). 

Likewise, for the 1-Hz sinusoid, the GPS derived estimates of the displacements appear to 
consistently replicate the 1.0-Hz signal (fig. 2B). However, when the GPS estimates are compared to the 
displacement data from the shake table, there are differences (top panels of figures 2A and 2B)of about 2 
percent of the amplitude of the displacement. 

http://www.ngs.noaa.gov/OPUS/


 6 

Results—Numerical Analysis of Sinusoidal Data 
The analysis of the graphical data can be refined by characterizing the data from the GPS, the stage 

displacement, and the accelerometer in terms of amplitude and phase of the sinusoidal function input to 
the shake table. Specifically, the 50 or 500 sps data spanning a sinusoidal test can be fit to the following: 

                                                   d = D + A cos (2πft) + B sin (2πft) (1) 

                                                               = D + M sin (2πft - θ) 

where d represents the data (GPS, stage displacement, or accelerograph) observed at time t, D is the 
average value of the observations, d, and the terms A and B represent the sinusoidal at the driving 
frequency f. This function is fit, using least squares, for each of the three different instruments that 
measure the movement of the stage for the six experiments. With the estimates of A and B, then the 
magnitude, M, and phase, θ, can be determined. As an example, the results obtained for a 1-Hz sinusoid 
driving the shake table for SH01 are shown in table 1. 

For SH01, a 1 Hz signal was applied to the shake table for a 120-second duration having 0.5 g 
acceleration. During that interval, data from the accelerometer, the displacement of the stage, and the GPS 
were recorded. For each dataset, equation (1) was fit and the estimated coefficients are shown in table 1. 
The accelerometer recorded 5,005 mm/s2 amplitude of shaking (or 0.51 g). By dividing that amplitude by -
(2πf)2, the amplitude of the displacement is estimated to be 126.8 mm. The magnitude of the measured 
stage displacement is 124.8 mm. Similarly, the magnitude of the GPS displacements resolved along the 
axis to the shake table is 124.3 mm. The ratio in amplitude between the displacement recorded by GPS 
and that of the stage is 1.00. However, there is a phase lag of -1.1 degrees or a lag time of -3 ms (that is, 
the GPS leads the displacement of the stage—to be discussed in the next section). 

Additionally, the magnitude of the displacement of the GPS data was computed two ways—(1) 
standard least square as done with the stage displacement and accelerometer data in table 1, and (2) 
estimation of the data covariance along with the A and B terms in equation 1. Using a better error model 
for the underlying data-noise yielded a factor of 2.5 increase in the estimated error of A and B, but these 
values are much less than the amplitude of the signal. For the rest of this report, standard least squares will 
be used in preference to simultaneously fitting a data covariance and sinusoidal amplitudes because it is 
computationally much faster, and for sinusoids, does not introduce bias in the estimates. 

For each experiment (SH01 to SH06), the magnitude and the phase of the GPS were measured 
relative to the displacement of the stage for each set of sinusoids. The ratios and the phase differences for 
the different experiments are shown in tables 2 and 3. The results show that all receivers amplify the 5.0-
Hz sinusoidal by about a factor 1.5, but at frequencies less than or equal to 1.0 Hz, the gain is 1. At 10 Hz, 
both the Topcon® and Javad® receivers amplify the displacement by about 15 percent but the Trimble® 
receivers become relatively insensitive to 10 Hz (and greater). At 20 Hz, the low response from all units 
tested is due in part to the small (2 mm) amplitude of the displacement, which corresponds to the root 
mean square scatter in the GPS observations. The peak in the response of the GPS at 5 Hz, like the 
overshoot seen in the step tests, suggests that the response of the GPS is that of an under-damped system. 

A test of these sinusoidal fits is shown in figures 3 and 4 where, as an example, the stage 
displacement data for SH01 at 5 Hz have been multiplied by 1.44 and advanced by 10 degrees (or 6 ms). 
In figures 3A and 4A, the GPS data and the displacement data from the stage with no adjustments are 
shown. Examination of the expanded time view in figure 4A shows that the GPS data lag the stage 
displacement by a few milliseconds. More importantly, the amplitude of the GPS exceeds the amplitude of 
the stage displacements. When both the lag and the amplification are adjusted, the difference between the 
GPS and the stage displacements becomes negligible (figs. 3B and 4B). Although attenuating the GPS by a 
factor of 1.44 provides a close match for the sinusoidal portion of data (fig. 3B), it does change the 
amplitude of the DC (0 frequency) response as evident by a small offset at 00:35:30 UTC. 
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Model of the Response 
To test the idea of the under-damped, second-order system, the following electronic analog is 

proposed and tested using the measurements from tables 2 and 3. The low-pass filter shown in figure 5 is 
proposed as the model to test against the data. The Laplace transform of the circuit that relates the input to 
the output voltage is written as: 

                                                            (2) 

where R, L, and C are the resistance, inductance, and capacitance. The Fourier transform equivalent (s = 
jω, where ω=2πf) was coded and a grid search was performed to determine the coefficients of the filter 
that best matched the real and imaginary parts of measured response in tables 2 and 3. Because this is an 
active filter, each unit can be cascaded to produce more complex behavior. The predicted and observed 
responses for three of the six experiments are shown in figure 6. For SH01 and SH06 experiments, the 
single-stage and the two-stage filters were tested and their responses are plotted. The principal 
characteristic of all filters is amplification in the 5 to 10 Hz range along with a phase lag at the highest 
frequencies. Additionally, these models show a small phase lead at the lowest frequencies, which is 
broadly consistent with the observations. The two-stage filter provides slightly better fit to the observed 
responses for SH01 and SH06. For the Trimble® receiver response, SH02, the single-stage filter provides 
an adequate match to the observed amplification but a poor match to the phase at the highest frequencies. 
Adding additional stages did not provide any better match. The estimates of the coefficient sizes are 
shown in table 4. 

The viability of this filter is shown with examples in figures 7–10. In figures 7 and 8, three 
different adjustments to the stage displacement data are made and compared to the observed GPS 
measurements of the displacement. Approximately 2 minutes of the comparison for the SH01 experiment 
with the 5 Hz shaking is shown in figure 7, whereas an expanded time scale of 2 s of shaking at 5 Hz is 
shown in figure 8. The top plots in figures 7 and 8 are the difference between the GPS displacement and 
the measured displacement of the stage. Because the amplitude of the stage displacement is 10 mm, the 10 
mm peak-to-peak differences shown are a substantial fraction of the input displacement. However, when 
the amplitude ratio and phase lag shown in tables 2 and 3 are applied to the 5-Hz displacement data from 
the stage and compared with the observed GPS, the peak-to-peak variations in the differences are a few 
millimeters, consistent with the background noise level. However, at the time that the sinusoidal input 
signal ceases at 00:35:30, there is an offset between the GPS and the adjusted stage displacement data 
because the 1.44 amplitude ratio determined for the 5 Hz data is not applicable at other frequencies 
including DC (0 Hz).  

The application of one or two stages of filtering is shown in the bottom two plots in figures 7 and 
8. With a single stage of filtering, the difference between the GPS and the filtered stage displacement data 
indicates greater residual noise when compared to the difference obtained by rescaling and phase shifting 
stage displacement data, but is a substantial improvement over the raw differences. With a second stage of 
filtering, the differences become less, but still exceed the differences obtained by rescaling and phase 
shifting stage displacement data. Unlike the rescaling and phase shifting of the stage data, the filtering 
preserves the DC characteristics of the stage displacement data, as there are no observed offsets at 
00:35:30. 
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Filtering the stage displacement data for the step tests attenuates the observed overshoot found in 
the step tests. As an example, the data from six 400 mm step tests for experiment SH01 are shown in 
figure 9. A 10-s record spanning one 400 mm transition is shown in figure 10. In the second-from-the-top 
plots in figures 9 and 10, the difference between the GPS and the raw displacement of the stage shows an 
overshoot of approximately 5 mm (or 12 percent of the amplitude of the step). Introducing a single stage 
of filtering, shown in the third panels of figures 9 and 10, indicates that the overshoot is attenuated by a 
factor of two. With two stages of filtering, the overshoot is no longer detectable. 

The coefficients of the filters (table 4) are broadly consistent with all GPS receivers amplifying the 
5-Hz displacements. The natural frequencies of either the single-stage filter or the first stage of a cascaded 
filter cluster around the peak in sinusoidal experiments shown in figure 6. However, the natural 
frequencies of the second stage are higher than the frequencies used in these experiments. This suggests 
that the single stage of filtering represents the first-order characteristics of each GPS receiver. The second 
stage, if required, provides additional perturbation to the first stage to improve the fit of the response 
function to the observed response. At this point, it is not clear whether the second stage represents a 
physical property of the GPS response. 

The results of applying the filter for the translation experiment using the Trimble® receiver (SH02) 
are shown in figure 11 and 12. Adding a second filter in cascade, as done with SH01, did not improve the 
performance; hence, only the results of a single stage of filtering are shown in figure 11 and 12. 

Results—Power Spectral Analysis 
Power spectral analysis was applied to the data obtained from the shake table experiments and 

some of that analysis is summarized in figures 13 and 14. In particular, the analysis of the data for SH01, 
which uses the Topcon® receiver, and SH02, which uses a Trimble receiver, were compared. The results 
for the Trimble® receiver obtained here can be compared with the results from Wang and others (2012) 
even though they compute periodograms where we have used power spectra density, which has the 
advantage of averaging several segments of data. In addition, they used the older model Trimble® receiver, 
the NetRS™, where we are using the newer, NetR9™. It is advantageous to use the newer receiver 
because it is capable of 50 sps recordings instead of 10 sps. 

Comparison of the background noise level (fig. 13), when the table is at rest, indicates that both 
receivers have similar levels of noise and, for the interval between 0.1 and 25 Hz, the background noise 
approximates white noise with a standard deviation of 0.9 mm. However, the Trimble® receiver data 
indicate slightly elevated noise between 1 and 5 Hz. The noise level of the stage's displacement transducer 
is 45 dB less than the GPS corresponding to a standard deviation of 0.007 mm. Although the power 
spectrum of transducer data has many spikes, the level of the spikes is much less than the background 
noise of the GPS. 

For a 2-Hz signal, the characteristics of the two receivers differ (fig. 14). For convenience, the 
background noise level of the Trimble® receiver is replotted. Comparison of the spectra of the 2-Hz data 
from the Trimble® receiver against its background noise indicates the 2-Hz data have more noise than 
when the table is at rest. This is consistent with the observation of Wang and others (2012). In addition, 
not only does the spectrum of the Trimble® receiver data show the expected spike at 2 Hz, but there are 
significant spikes at the harmonics, which also confirms the observation of Wang and others (2012). In 
contrast, the Topcon® receiver only has a spike at a single harmonic (4 Hz) with a smaller amplitude than 
the Trimble® receiver. In addition, the baseline level of the Topcon® receiver spectra is approximately 
equal to the level when the table is at rest. 
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Discussion 
The results of the shake table tests demonstrate that the GPS equipment has a frequency dependent 

response in that the observed position changes are dependent on the frequency content of the actual 
displacement. For frequencies less that 2 Hz, the GPS provides a accurate record of the displacements. 
However, at frequencies centered at 5 Hz, the GPS provides an amplified version of the displacement. At 
higher frequencies (> 8 Hz) the displacements observed by GPS are an attenuated. With the observed, 
frequency-dependent response, a simple, causal filter has been designed that predicts, to first order, the 
amplification and phase of the observed GPS displacements that result from sinusoidal shaking. 
Furthermore, the filter has been successfully tested using the data from the step tests. In those data, the 
displacements recorded by the GPS would overshoot the true displacements just after the transition or 
step. The overshoot is diagnostic of a low-pass filter that is slightly under-damped which is incorporated 
in the filter design implemented here. 

The results of the shake table tests are broadly consistent with the observations by Ebinuma and 
Kato (2012), who used an electronic GPS simulator to mimic the motions of a shake table. The results 
presented here and by Ebinuma and Kato (2012) show that at frequencies near 5 Hz, the amplitudes of 
shaking recorded by GPS exceed the true shaking by more than 40 percent. In addition, the signal 
recorded by the GPS lags the true displacement. In detail, the results presented here, tables 2 and 3 for the 
Topcon® and Trimble® NetR8™ receivers, differ from those of Ebinuma and Kato (2012). It is not clear 
whether differences are due to experimental design—a GPS simulator as opposed to an outdoor 
experiment, variations between receivers of the same model, or different methods to extract the amplitude 
and phase between the true and observed. Although difference between software used to process the data 
might be one reason for the differences between the two studies, this is probably not the case as the data 
from the SH01 experiment also have also been were processed with TRACK and the amplitudes and 
phases from the sinusoidal displacements are within a few percent of those obtained with the GPS data 
being processed by RTNet. TRACK is an open-source computer program (http://www-
gpsg.mit.edu/~simon/gtgk) which computes differential position change from raw (RINEX) GPS data. 

However, unlike Ebinuma and Kato (2012), the sinusoidal tests performed here spanned a greater 
range in frequency such that it becomes possible to model the frequency response (fig. 6) of each receiver 
using a causal filter (fig. 5). In addition, the step-like or Heaviside tests allowed testing whether the 
instrument response model adequately predicts the observations shown in figures 7–10. The tests with the 
shake table at high frequencies do have a fundamental limit as to the maximum acceleration that the table 
can physically support. Consequently, for the 10- and 20-Hz signals, the amplitude of the displacements 
were 5 and 2 mm, respectively. Although 5 mm is readily measured by the GPS, the 2 mm could be 
difficult to distinguish from the background noise. Nonetheless, because the measurements for the 20-Hz 
data span 30 s, or equivalently 600 cycles, it is possible to measure 1 mm amplitude of the GPS 
displacement with a 0.04 mm uncertainty either by fitting a 20-Hz sinusoid or by computing the 
periodogram. 
  

http://www-gpsg.mit.edu/~simon/gtgk
http://www-gpsg.mit.edu/~simon/gtgk
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The peak in response at 5 Hz can be explained using the information provided by Ebinuma and 
Kato (2012). They summarized the operation of the tracking system for GPS carrier wave in terms of a 
electronic phase lock loop (PLL), which incorporates a third-order filter in its feedback loop to control a 
local oscillator. They state that the bandwidth of the filter, B, is related to the natural frequency, ωN, by 
B=0.7845 ωN. For both the Topcon® and the Javad®, the bandwidth is user selectable with a default of 25 
Hz. Consequently, ωN is 31.0 rad/s or 5.1 Hz, which corresponds to the peak in the response spectrum for 
both of these receivers. Because the bandwidth is user selectable, additional experiments could be run to 
test whether the value of bandwidth affects the peak in the response. 

In addition, the roll-off in the response of the GPS at the highest frequencies can be understood in 
terms of the capability of the PLL to track high-frequency displacements. If the phase difference between 
the signal and the controlled, local oscillator is to be less than 1/8 of a cycle, then from Ebinuma and Kato 
(2012) equation 4, the maximum jerk (first derivative of acceleration) is 78 g per second (g/s) when the 
tracking bandwidth is 25 Hz. For the experiments run in this study, the 10- and 20-Hz experiments had 
jerks of 126 g/s and 377 g/s, respectively, which exceeded the dynamic range of the PLL; consequently, it 
is not unexpected that the position changes measured by the GPS at these frequencies had substantial lag 
and, at 20 Hz, substantial attenuation. With the Trimble® receivers, this discussion should be applicable, 
but the PLL characteristics are not listed by Ebinuma and Kato (2012). 

Additional examination of the raw data using the program TEQC (Estey and Meertens, 1999) 
indicated no significant variations in signal–to-noise of the L1 (and L2) pseudo-range data during the 
periods of high acceleration. In contrast, Wang and others (2012) noted large decreases in pseudo-range 
signal-to-noise ratio during experiments simulating near-field shake from the 2010 Maule, Chili 
earthquake.  

The tests performed in this study could be improved in the future. Specifically, sidereal filtering 
(for example, Choi and others, 2004) could be used to improve the precision of the GPS data, but that 
would require two additional days of measurements with the equipment left in a static configuration. 
However, as demonstrated in this study, even at 20 Hz, there was more than enough signal to provide 
robust estimates of the amplitude and phase of sinusoidal displacements. 

In addition, for the high-frequency tests at 10 and 20 Hz, it would have been ideal to use larger 
displacements. However, with the shake table used here, we were limited to about 3 g acceleration. 

Finally, our short, 11-m baseline provided an ideal situation to measure with GPS small 
displacements because the many common-mode processes affect both ends of the baseline equally and are 
canceled using differential positioning. These processes, which are normally sources of uncertainty for 
GPS over baselines longer than 1 km, include variations in signal path through the ionosphere and the 
troposphere. Analyzing data from a single, GPS frequency, the noise contribution of differencing 
observations at two frequencies, which is the norm for GPS processing, is not a factor. Although we did 
install a GPS site approximately 25 km from the test site, we could not successfully retrieve a complete 
record of the data. 

Our conclusions are similar to those of Ebinuma and Kato (2012) who caution that GPS data, 
which could incorporate signals greater than 1–2 Hz, need to be treated carefully because each GPS 
receiver has a frequency-dependent response or admittance. However, with tests like the ones documented 
here, or with a GPS simulator, any GPS receivers can be calibrated and the observations can be adjusted 
using the inferred receiver response. 
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Glossary 
GLONASS Russian Global Navigation System; 
GNSS Global Navigation Satellite System. General term for various satellite navigation systems operated 
by many countries including U.S. for GPS and Russia for GLONASS 
GPS Global Positioning System. Satellite navigation constellation operated by the United States 
RINEX Receiver independent exchange file. A text based file that contains the raw measurements from 
GNSS receivers. 
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Appendix 1 
Azimuth of Shake Table 

Although the axis of the linear shake table was set up to be oriented roughly at N45°W, the actual 
azimuth needs to be measured. For instance, for the typical displacements that we observed for the 400 
mm step test, we obtained -251 mm in the east component of the GPS and 312 mm in the north 
component. When resolving the GPS position changes onto the axis of the shake table, using the position 
estimates for SH01 and ASLF sites and assuming that the axis of the shake table was oriented towards 
ASLF (N39°W), a 5° error in the actual azimuth yields a 1.6 mm error in the magnitude of the 
displacement along the axis of the shake table. 

To improve upon the estimated azimuth, the measured east and north displacements from the GPS 
for the 400 mm step test are used to compute the azimuth. With six different setups (SH01 to SH06), each 
with six 400 mm translations, these data can be used to estimate the azimuth of the shake table. The actual 
“step” is not a true step, but is a rapid translation (800 mm/s) over about 0.5 s. To estimate the final 
translation, the GPS estimates of position change from each experiment are decimated from 50 to 1 sps. In 
addition, the decimated data are further examined and any observations that have intermediate values 
which represent the transition are deleted. The resulting dataset is input to software that can 
simultaneously estimate size of the offsets and the data-covariance (Langbein, 2004, 2008). It is important 
to estimate the data covariance as the covariance better describes the underlying, temporal correlations or 
drift of high-rate GPS data; if the standard assumption of a normal distribution were made, then the 
estimates of the offset would have substantial bias. 

Table 5 lists the estimates of the east and north translations determined from the 1 sps GPS data for 
each setup. From the eastward and northward displacements, the magnitude and the azimuth of each 
translation are calculated and listed. The bottom entries in Table 1 are the average values of the east, 
north, magnitude, and azimuth of the translations. The azimuth is 128.9 degrees (east reckoned as 0 
degrees and north reckoned 90 degrees) or N38.9°W, which is within 0.1 degrees of the azimuth to ASLF. 
Importantly, the range of the estimated azimuth is 1.1 degrees which, if it were the error in azimuth, would 
change the observed translation by 0.3 mm. 

Data 
Data from this experiment can be downloaded at 

ftp://ehzftp.wr.usgs.gov/langbein/ASL_JUNE2012_DATA.tar. The tar-file has a README file which 
provides detailed information of the contents of the tar-file and specific information on the measurements 
carried out at ASL. The tar file contain: 
• README; which provides scale factors for data recorded on the Quanterra digitizer. 
• rinex.tar.gz --- rinex data from all experiments (SH01-SH06), and two nearby "fixed" sites, ASLF and 

P034 
• orbits.tar.gz --- orbits files from IGS 
• acc_data.tar.gz --- ascii dump of miniseed data from trillium accelerometer attached to shake table 
• disp_data.tar.gz --- ascii dump of miniseed data of measurement of the stage displacement (not GPS) 
• LabNotes_JLangbein_201206.pdf -- scanned copy of lab book 
• asl_pic_mov.zip --- two pictures and a movie of the set-up 
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Figure 1. Plots showing results of recorded displacement of the Global Positioning System (GPS) antenna attached 
to a shake table and the stage of the shake table. (A) 100 mm step or Heaviside function input to the shake table and 
recorded in experiment SH01, whereas (B) shows the detail of transition of the step input to the shake table and 
recorded in experiment SH01. 
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Figure 2. Plots showing results of recorded displacement of the Global Positioning System (GPS) antenna and the 
stage. (A) 1 Hertz sinusoid is input to the shake table and recorded in experiment SH01, whereas (B) shows the detail 
of the 1 Hertz sinusoid in experiment SH01. 
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Figure 3.  Plots showing (A) the displacement measured by Global Positioning System (GPS) (bottom), stage 
(middle), and the differences (top) with no adjustments for experiment SH01 at 5 Hertz, and (B) the stage 
displacements have been attenuated by 1.44 and advanced by 6 milliseconds; the time series plot shows the 
difference between the adjusted stage data and the GPS. Note scale change in difference plot between A and B. 
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Figure 4. Same as figure 3 but with an expanded time scale that covers 1 second (or 5 cycles). Note scale change in 
difference plot between A and B. 
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Figure 5. Schematic diagram of low-pass filter used to simulate the response of Global Positioning System to 
displacement. 

 

 

Figure 6. Plots showing attenuation and phase response for three Global Positioning System (GPS) receivers. The 
dots are the measured, sinusoidal response and the solid and dashed lines are the predicted response using the 
electronic analog in figure 5. The dashed lines are the predicted response using a single filter while the solid lines are 
the predicted response of two filters in cascade. 
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Figure 7.  Plots showing differences between Global Positioning System (GPS) and the stage displacement for 
experiment SH01 at 5 Hertz. The top shows the differences with no adjustments (same as fig. 3A). In the second from 
the top, the amplitude and the phase of the stage displacement have been adjusted using the ratio and phase in 
tables 2 and 3 (same as fig. 3B). In the bottom two plots, the stage displacement data have been filtered using the 
model shown in figure 6. The bottom uses two filter stages instead of one. 
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Figure 8.  Plots showing differences between Global Positioning System (GPS) and the stage displacement for 
experiment SH01 at 5 Hertz. (same as fig. 7 except with an expanded time scale). The top plot shows the differences 
with no adjustments (same as fig. 4A). In the second plot, the amplitude and the phase of the stage displacement 
have been adjusted using the ratio and phase in tables 2 and 3 (same as fig. 4B). In the bottom two plots, the stage 
displacement data have been filtered using the model shown in figure 6. The bottom plot uses two filter stages instead 
of one. 
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Figure 9.  Plots showing differences between Global Positioning System (GPS) and the stage displacement for 
experiment SH01 for the 40 centimeter step test. The top shows the observed GPS displacement spanning six steps 
with a 30-second interval between the steps. The second plot shows the differences with no adjustments (same as 
fig. 1A). In the bottom two plots, the stage displacement data have been filtered using the model shown in figure 6. 
The bottom plot uses two filter stages instead of one. Note the presence of noise in the GPS data prior to 53 minutes; 
the source is unknown. 
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Figure 10.  Plots showing differences between Global Positioning System (GPS) and the stage displacement for 
experiment SH01 for the 40 centimeter step test for a 10-second interval spanning one transition. The top plot shows 
the observed GPS displacements. The second plot from top shows the differences with no adjustments (same as fig. 
1A). In the bottom two plots, the stage displacement data have been filtered using the model shown in figure 6. The 
bottom plot uses two filter stages instead of one. 
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Figure 11. Plots showing differences between Global Positioning System (GPS) and the stage displacement for 
experiment SH02 for the 40 centimeter step test. The top plot shows the observed GPS displacement spanning six 
steps with a 30-second interval between the steps. The middle plot shows the differences with no adjustments (same 
as fig. 1A). In the bottom plot, the stage displacement data have been filtered using the model shown in figure 6. 

 

Figure 12.  Plot showing differences between Global Positioning System (GPS) and the stage displacement for 
experiment SH02 for the 40 centimeter step test for a 10-second interval spanning one transition. The top plot shows 
the observed GPS displacements. The middle plot shows the differences with no adjustments (same as fig. 1A). In 
the bottom plot, the stage displacement data have been filtered using the model shown in figure 6. 
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Figure 13. Plot showing power spectra for Global Positioning System (GPS) and the stage displacement when the 
stage was at rest. GPS data for experiments SH01 and SH02 are shown. The displacement data has been decimated 
from 500 to 100 samples per second. 

 

Figure 14. Plot showing power spectra for Global Positioning System (GPS) and the stage displacement when the 
stage was shaken at 2Hertz. GPS data for experiments SH01 and SH02 are shown with the background noise level 
from SH02 experiment shown in figure 13. 
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Table 1. Results of fitting sinusoid to shake table data driven at 1 Hertz; SH01. 
 

Component Units A 
mm 

B 
mm 

M 
mm 

Phase,  
degrees 

RMS 

Acceleration mm/s2 -1403.07 ± 0.39 -4804.74 ± 0.39 5005.41 ± 0.55 -106.28 ± 0.00 64.88 

Inferred 
displacement 
from 
accelerometer 

mm 35.54 ± 0.01 121.71 ± 0.01 126.79 ± 0.01 73.72 -- 

Stage 
displacement 

mm 33.71 ± 0.01 119.93 ± 0.00 124.58 ± 0.01 74.30 ± 0.00 0.15 

GPS 
displacement 

least squares 

mm 35.90 ± 0.02 119.04 ± 0.02 124.34 ± 0.02 73.22 ± 0.01 1.28 

GPS 
displacement 

estimate 
covariance 

mm 35.88 ± 0.05 119.05 ± 0.05 124.34 ± 0.05 73.23 ± 0.02 -- 

Eastward 
displ. 

mm -22.60 ± 0.05 -74.81 ± 0.05 78.15 ± 0.07 -106.81 ± 0.04 2.50 

Northward 
displ. 

mm 27.90 ± 0.04 92.60 ± 0.04 96.71 ± 0.06 73.23 ± 0.02 2.19 
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Table 2. Ratio of amplitude of Global Positioning System to stage displacement at different frequencies. 
 
[Italics are the amplitude ratios for Topcon® and Trimble® NetR8™ estimated by Ebunima and Kato (2012)] 
 

Exp. Receiver Antenna 
type1 

Amplitide ratios for different frequencies, Hz 

Frequency 0.2Hz 0.5Hz 1.0Hz 2.0Hz 5.0Hz 10.0Hz  20.0Hz 

Displacement of stage, mm 124.2 129.1 124.6 31.4 10.2 5.1 1.0 

SH01 Topcon 
Net-G3A 

CR 1.00 1.00 1.00 

1.00 

1.05 

1.05 

1.44 

1.31 

1.19 0.55 

SH02 Trimble 
NetR9 

CR 1.00 1.01 1.03 1.23 1.46 0.40 0.13 

SH03 Trimble 
NetR9 

Zephyr-2 0.99 0.99 1.02 1.14 1.61 0.48 0.15 

SH04 Trimble 
NetR8 

CR 1.00 1.01 1.03 

0.99 

1.25 

1.15 

1.51 

2.25 

0.47 0.16 

SH052 Trimble 
NetRS 

CR 1.00 1.01 1.04 1.23 1.47 -- -- 

SH06 Javad 
Sigma 

CR 1.00 1.00 1.00 1.04 1.38 1.13 0.65 

1Antenna types: CR is a choke ring that is paired to the brand of receiver, Zephyr-2 is a Trimble® antenna. 
2Data recorded at 10 sps rather than 50 sps, and the reference site is P034 rather than ASLF. 
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Table 3. Phase difference between Global Positioning System to stage displacement at different frequencies. 
 
[Italics are the amplitude ratios for Topcon® and Trimble® NetR8™ estimated by Ebunima and Kato (2012)] 
 

Exp. Receiver Antenna 
type1 

Phase lags for different frequencies, degrees 

Frequency 0.2Hz 0.5Hz 1.0Hz 2.0Hz 5.0Hz 10.0Hz  20.0Hz 

SH01 Topcon 
Net-G3A 

CR -0.2 -0.4 -1.1 

4.7 

-3.0 

8.6 

10 

43 

50 92 

SH02 Trimble 
NetR9 

CR -0.2 -1.2 -2.7 -3.6 44 186 268 

SH03 Trimble 
NetR9 

Zephyr-2 -0.2 -1.2 -2.3 -6.7 32 193 260 

SH04 Trimble 
NetR8 

CR -0.2 -1.2 -2.9 

4.3 

-2.2 

23 

35 

74 

190 265 

SH05B Trimble 
NetRS 

CR -0.2 -1.1 -2.7 -4.8 13 -- -- 

SH06 Javad 
Sigma 

CR -0.1 -0.4 -1.1 -2.4 10 48 70 

1Antenna types: CR is a choke ring that is paired to the brand of receiver, Zephyr-2 is a Trimble® antenna. 
2Data recorded at 10 sps rather than 50 sps, and the reference site is P034 rather than ASLF. 
 

Table 4. Estimates of filter coefficients, scaled to Hertz. 
 

Experiment Stage 1 Stage 2 

 1/[2π(LC)0.5 1/(2πRC) R/(2πL) 1/[2π(LC)0.5 1/(2πRC) R/(2πL) 

SH01 single 
stage 

8.47 8.87 8.12   ---- ---- ---- 

SH01 two-
stage 

7.75 7.78 7.72 56.5 97.6 32.8 

SH02 single-
stage 

4.59 5.07 4.16 --- ---- ---- 

SH06 single-
stage 

8.71 8.87 8.58 ---- ---- --- 

SH06 two-
stage 

7.60 7.28 7.95 49.1 100.0 24.1 
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Table 5. Global Positioning System estimates of translation from 400 millimeter (mm) step experiments.  
 
[To compare the GPS estimates of the translation, the eastward and northward positions are combined using the following: DGPS 
= East cos(α) + North sin(α), where α=128.9°] 
 

Experiment 
name 

Eastward 
Displacement 

mm 

Northward 
Displacement 

mm 
Translation 

mm 
Azimuth, degrees 

East reckon 0 
North reckon 90 

SH01 -250.34 ± 0.81 312.20 ± 0.43 400.17 ± 0.61 128.72 ± 0.10 
SH01 -250.46 ± 0.81 311.18 ± 0.37 399.45 ± 0.58 128.83 ± 0.10 
SH01 -254.23 ± 0.90 312.89 ± 0.38 403.15 ± 0.64 129.09 ± 0.10 
SH01 -248.81 ± 0.89 312.86 ± 0.37 399.74 ± 0.63 128.49 ± 0.11 
SH01 -251.66 ± 0.81 311.51 ± 0.37 400.46 ± 0.58 128.93 ± 0.10 
SH01 -251.35 ± 0.82 312.24 ± 0.43 400.84 ± 0.61 128.83 ± 0.10 
SH02 -250.82 ± 0.53 313.39 ± 0.64 401.40 ± 0.60 128.67 ± 0.08 
SH02 -250.71 ± 0.47 313.48 ± 0.71 401.40 ± 0.63 128.65 ± 0.08 
SH02 -249.21 ± 0.77 312.74 ± 0.65 399.89 ± 0.70 128.55 ± 0.10 
SH02 -247.72 ± 0.47 313.03 ± 0.69 399.19 ± 0.61 128.36 ± 0.08 
SH02 -249.48 ± 0.53 314.32 ± 0.64 401.30 ± 0.60 128.44 ± 0.08 
SH02 -251.54 ± 0.47 310.43 ± 0.94 399.55 ± 0.79 129.02 ± 0.10 
SH03 -253.23 ± 0.31 314.38 ± 0.35 403.68 ± 0.33 128.85 ± 0.05 
SH03 -251.34 ± 0.36 309.97 ± 0.35 399.06 ± 0.35 129.04 ± 0.05 
SH03 -250.72 ± 0.32 312.19 ± 0.38 400.40 ± 0.36 128.77 ± 0.05 
SH03 -251.07 ± 0.31 312.13 ± 0.35 400.58 ± 0.33 128.81 ± 0.05 
SH03 -251.40 ± 0.31 310.27 ± 0.38 399.34 ± 0.35 129.02 ± 0.05 
SH03 -248.14 ± 0.36 312.89 ± 0.35 399.34 ± 0.35 128.42 ± 0.05 
SH04 -247.68 ± 0.46 312.99 ± 0.66 399.13 ± 0.59 128.36 ± 0.08 
SH04 -251.90 ± 0.52 310.16 ± 0.67 399.57 ± 0.61 129.08 ± 0.08 
SH04 -250.77 ± 0.46 313.15 ± 0.68 401.18 ± 0.60 128.69 ± 0.08 
SH04 -251.58 ± 0.46 311.92 ± 0.65 400.73 ± 0.58 128.89 ± 0.08 
SH04 -250.69 ± 0.46 310.96 ± 0.73 399.43 ± 0.64 128.88 ± 0.08 
SH04 -249.13 ± 0.46 313.54 ± 0.67 400.47 ± 0.60 128.47 ± 0.08 
SH05 -255.27 ± 0.35 310.43 ± 0.44 401.91 ± 0.41 129.43 ± 0.06 
SH05 -252.19 ± 0.39 311.47 ± 0.41 400.77 ± 0.40 129.00 ± 0.06 
SH05 -249.04 ± 0.39 309.81 ± 0.45 397.50 ± 0.43 128.79 ± 0.06 
SH05 -253.69 ± 0.39 309.07 ± 0.41 399.85 ± 0.40 129.38 ± 0.06 
SH05 -250.98 ± 0.35 311.17 ± 0.45 399.77 ± 0.41 128.89 ± 0.06 
SH05 -251.51 ± 0.39 310.01 ± 0.45 399.20 ± 0.43 129.05 ± 0.06 
SH06 -252.60 ± 0.63 310.39 ± 0.83 400.19 ± 0.76 129.14 ± 0.10 
SH06 -250.62 ± 0.69 311.87 ± 0.83 400.09 ± 0.78 128.79 ± 0.11 
SH06 -252.37 ± 0.64 311.35 ± 0.91 400.79 ± 0.81 129.03 ± 0.11 
SH06 -252.61 ± 0.63 307.30 ± 0.81 397.80 ± 0.74 129.42 ± 0.10 
SH06 -253.44 ± 0.64 311.51 ± 0.90 401.58 ± 0.81 129.13 ± 0.11 
SH06 -250.39 ± 0.70 310.91 ± 0.83 399.20 ± 0.78 128.85 ± 0.11 
Average -251.17 ± 0.30 311.71 ± 0.24 400.26 ± 0.23 128.87 ± 0.05 
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