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Conversion Factors

Multiply By To obtain
Length
inch (in.) 2.54 centimeter (cm)
inch (in.) 25.4 millimeter (mm)
foot (ft) 0.3048 meter (m)
mile (mi) 1.609 kilometer (km)
mile, nautical (nmi) 1.852 kilometer (km)
yard (yd) 0.9144 meter (m)
Area

acre 4,047 square meter (m?)
acre 0.4047 hectare (ha)
acre 0.4047 square hectometer (hm?)
acre 0.004047 square kilometer (km?)
square foot (ft?) 929.0 square centimeter (cm?)
square foot (ft?) 0.09290 square meter (m?)
square inch (in?) 6.452 square centimeter (cm?)
section (640 acres or 1 square mile) 259.0 square hectometer (hm?)
square mile (mi?) 259.0 hectare (ha)
square mile (mi?) 2.590 square kilometer (km?)

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:
°F=(1.8x°C)+32

Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as follows:
°C=(°F-32)/1.8
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The Shallow Stratigraphy and Sand Resources Offshore
from Cat Island, Mississippi

By Jack L. Kindinger, Jennifer L. Miselis, and Noreen A. Buster

Abstract

In collaboration with the U.S. Army Corps of Engineers, scientists from the U.S. Geological
Survey (USGS) St. Petersburg Coastal and Marine Science Center collected over 487 line kilometers
(> 300 miles) of high-resolution geophysical data around Cat Island, Mississippi, to improve under-
standing of the island’s geologic evolution and identify potential sand resources for coastal restoration.
In addition, 40 vibracores were collected on and around the island, generating more than 350 samples
for grain-size analysis.

The results indicate that the geologic evolution of Cat Island has been influenced by deltaic,
lagoonal/estuarine, tidal, and oceanographic processes, resulting in a stratigraphic record that is quite
complex. The region north of the island is dominated by lagoonal/estuarine deposition, whereas the
region south of the island is dominated by deltaic and tidal deposition. In general, the veneer of modern
sediment surrounding the island is composed of newly deposited sediment and highly reworked relict
sediments. The region east of the island shows the interplay of antecedent barrier-island change with
delta development despite a significant ravinement of sediments. The data show from little to no modern
sediment east of the island, exposing relict sediments at the seafloor.

Finally, the data reveal four subaqueous sand units around the island. Two of the units are north-
west of the modern island and one is southwest. Given the dominant, westward, longshore transport
along the Mississippi and Alabama barrier islands, the geographic location of these three units suggests
that they do not contribute to the modern sediment budget of Cat Island. The last unit is directly east of
the island and represents the antecedent island platform that has supplied sand over geologic time for
creation of the spits that form the eastern shoreline. Because of its location east of the island, the ante-
cedent island unit may still supply sediment to the island today.

Introduction

Cat Island, the westernmost of the Mississippi-Alabama (MS-AL) barrier islands, is located
13 kilometers (km) (about 8.1 miles (mi)) from the Mississippi mainland (fig.1). The island is about
7.5 km (about 4.7 mi) long, east to west. Island width varies from a few meters at the west end to about
1.0 km (about 0.6 mi) mid-island. The north-south (N-S)-trending spit that forms the east beach of Cat
Island is about 5 km (about 3.1 mi) long.

Despite its relatively small footprint (1773.2 acres (ac); 717.6 hectares (ha)), several stakehold-
ers own the island. The National Park Service (NPS) purchased the west half and the southern-most tip
of the island in 2002, and this property is now part of the Gulf Islands National Seashore. The east beach
was purchased by BP Oil Company from the Boddie family in 2011 to expedite oil cleanup after the
Deepwater Horizon oil spill. The remaining portions of Cat Island are privately owned. An agreement
exists between the NPS and the private landowners to allow NPS to purchase most of the remaining part
of the island in the future. Finally, part of Cat Island is a Mississippi Gulf Management Site (GEMS)
with sensitive island habitats that include a subtidal estuarine habitat near shore with seagrass beds and
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Figure 1. The northern Gulf of Mexico showing the Mississippi-Alabama (MS-AL) barrier-island chain, from easternmost Dauphin Island to
westernmost Cat Island, which separates the Mississippi Sound from the Gulf of Mexico. The location of the study area is indicated by the red box.

mollusk reefs, and barrier-island pond/lagoon complexes with an inland, pine-oak, maritime woodland
(http://www.dmr.state.ms.us/joomlal 6/index.php/mississippi-gems/209-cat-island). With so many stake-
holders, the future management of the island and its natural resources will need to be based on sound
science. Few studies have been done on the island itself or in the surrounding nearshore marine environ-
ments, so the purpose of this investigation was to provide a geomorphic study of the island. Because of
the unique evolutionary history of the island, this investigation will also improve understanding of the
geologic processes that contributed to the present coastal system.

The MS-AL barrier-island chain’s geomorphology responds to physical processes (such as sea-
level rise or storm-related wave energy) differently than other barrier islands around the Gulf of Mexico.
The central Louisiana barrier islands have decreased in size or disappeared completely as they naturally
transgressed landward (McBride and others, 1992; McBride and Byrnes, 1997), whereas the MS-AL
barrier islands have naturally migrated westward but lost land over time due to anthropogenic causes
resulting in decreased sand supply to the system (Morton, 2008). Only portions of the MS-AL barriers
continue to migrate westward, eroding from the east end with deposition on the west end due to along-
shore transport (Byrnes and others 2012; Walstra and others, 2012; Byrnes and others, 2013). However,
dredged channels and ebb-tidal deltas have decreased the sediment supply to the islands, and for some
islands the channels have ceased westward migration permanently, resulting in island land loss and nar-
rowing (Morton, 2008).



http://www.dmr.state.ms.us/joomla16/index.php/mississippi-gems/209-cat-island

Even within the distinctive MS-AL geomorphologic regime, Cat Island itself is unique. The is-
land currently has a characteristic “T” shape, which it did not always have; it was initially thought to be
an east-west (E-W)-oriented linear island similar to other islands within the middle to late Holocene re-
gressive barrier-island chain (Saucier, 1963; Frazier, 1967; Otvos, 1978, 1981). As the St. Bernard Delta
Lobe (SBDL) of the Mississippi River encroached into the northern Gulf of Mexico around 4,000 years
ago, the littoral-transport regime changed, and the east end of Cat Island began to erode into the N-S-
trending spit that exists today (Rucker and Snowden, 1989; Otvos and Giardino, 2004). Cat Island is
also one of the more elevated barrier islands in the MS-AL chain. Rucker and Snowden (1989) reported
that the northeast-southwest-trending spit has dune elevations of 2 to 3 meters (m) (6.6 to 9.8 feet (ft)),
and lidar data collected after Hurricane Katrina reveal an island maximum elevation of ~4.5 m (15.1 ft)
along the central relict beach ridges, which is higher than most MS-AL barrier islands (Smith and oth-
ers, 2009; oral commun., Amar Nayegandhi, 2010). Finally, over historic time scales, the shorelines of
Cat Island seemed to erode in place rather than translate to the west like the other barriers in the north-
ern Gulf of Mexico (Morton, 2008).

Because of its complicated ownership status, few comprehensive geological studies have been
conducted on Cat Island and its surrounding waters, despite a unique evolutionary history. Previous
studies relied on rotary drill borings, vibracores, historic maps, and photographic data (Saucier, 1963;
Frazier, 1967; Otvos, 1970, 1979, 1981, 1985, 1986; Knowles and Rosati, 1989; Rucker and Snowden,
1989; Byrnes and others, 1991; Morton, 2008), and none have focused on the island’s subaqueous por-
tion. The exception is the work of Rose (2010), which used a high-frequency chirp system to collect
high-resolution geophysical profiles from around the island. The high-frequency system had difficulty
penetrating the submerged strata, so many questions remained regarding the geologic history and geo-
morphic change that has occurred since its initial development.

This study builds on past efforts and combines shallow-water geophysical data with data from
terrestrial and marine vibracores to provide an improved context for the geologic evolution of Cat
Island. The objectives of this report are (1) to define the geologic and sedimentologic history of Cat
Island and (2) identify potential subaqueous sand resources suitable for coastal-restoration projects, both
planned and underway, in the northern Gulf of Mexico. We used physical descriptions and grain-size
analyses from marine and terrestrial vibracores to characterize the sedimentologic history around the
island and to interpolate the stratigraphy between core sites using over 487 line kilometers (> 300 line
mi) of high-resolution chirp seismic data and high-frequency backscatter. Through the integration of
sedimentologic and geophysical data, we identified stratigraphic units that may provide suitable sand
resources and report their physical characteristics.

Coastal Setting and Regional Geology

Bordering the northern Gulf of Mexico, the 105-km (65-mi)-long MS-AL barrier chain is com-
posed of Cat, west and east Ship, Horn, Petit Bois, and Dauphin islands (from west to east), including
laterally interspersed, narrow shoal platforms and inlets. The barrier complex is backed by Mississippi
Sound, a large lagoon/estuary that ranges in width from north to south approximately 4 to 20 km (about
2.5 to 12.5 mi), with water depths of 1 to 4 m (about 3.3 to 13.1 ft; fig. 1). Several rivers flow into
Mississippi Sound (Pascagoula, Biloxi, Wolf, Jourdan, and Pearl) including the Mobile River, which
discharges into Mobile Bay east of Dauphin Island. The Mobile River drains the fourth largest riverine
basin in the U. S. (Isphording and others, 1989).



Barrier-island formation and maintenance occur via the delivery and movement of sand by
waves, tides, and currents. Oceanographic and coastal processes such as wind-driven waves and long-
shore currents are the driving forces for sediment movement along the northern Gulf Coast. Along the
Mississippi coast, there are minimal seasonal differences in average significant wave heights and wave
periods, which are about 0.6 m (~2 ft) and 4 seconds (s) respectively for winter months, and 0.4 m
(1.3 ft) and 3.5 s for summer months (Rosati and others, unpub. data, 2007). Sediment is mobilized
by the predominant seasonal SE winds that drive alongshore currents to the west (Cipriani and Stone,
2001). These typical periods of relatively low wave energy are also punctuated by the passage of tropi-
cal storms, during which time wave heights and periods increase greatly due to significantly increased
SE wind speed. The resulting strong currents produce substantial sediment transport from east to west
(Morton, 1988; Walstra and others, 2012). These studies indicate that a single hurricane may transport
the same amount of sediment as is transported by seasonal processes during a typical year.

Reduced sediment delivery from riverine systems and the dredging of navigation channels be-
tween the islands have disrupted the consistent flow of sand to the west, limiting the natural westward
migration of the islands along the coast and increasing land loss. Continued land loss prompted the
planning of restoration efforts to repair and maintain the barrier-island system because the barrier-island
chain protects the mainland from tropical storm waves (Morton, 2008; Wamsley and others, 2013). As
their name implies, barrier islands act as barriers to wave energy from low- to medium-sized storms.
Larger, more intense storms, similar to Camille (1969) and Katrina (2005), overtop these low-lying
islands and can extensively impact the island (Morton, 2008).

Holocene Coastal Setting and Cat Island Evolution

The MS-AL barrier islands formed within the last 4,500 years and are among the most dynamic,
vulnerable and topographically low islands on the Gulf Coast (Otvos and Giardino, 2004). As sea level
rose during the middle to late Holocene, a relict late Pleistocene beach ridge became the core around
which eastern Dauphin Island developed, supplied by sand from the tidal delta associated with early
Mobile Bay (Otvos and Giardino, 2004). The predominant SE-SSE wave approach generated westward-
directed net littoral drift along the new island. This process is thought to have formed a discontinuous,
shallow and narrow sand platform on top of the muddy-sandy, nearshore marine deposits that previously
lined the floor of the northern Gulf of Mexico basin (Otvos, 1985). Higher elevations eventually became
emergent, forming the MS-AL barrier islands and isolating Mississippi Sound from the Gulf. It has been
suggested that the western sector of the original barrier chain that included Cat Island extended well
into southeastern Louisiana (the Pine Island Trend), which became inactive only a few centuries after its
initiation around 4,000 to 3,800 years ago (Otvos and Giardino, 2004).

Strandplain growth ceased nearly 4,000 years ago, when the SBDL began to prograde into the
northern Gulf of Mexico to the south of Cat, Ship, and Horn Islands (Frazier, 1967; Penland and others,
1985; Twichell and others, 2011). This delta lobe greatly reduced wave energy in western Mississippi
Sound through extensive shoaling (see Otvos and Giardino, 2004, their fig. 17). This process likely
diminished westward littoral sand transport, which, in turn, limited barrier growth west of Ship Island.
Due to a limited sand supply to Cat Island from the east, reduced wave energy from the south resulting
from growth of the SBDL, and redirected wave approach from the east-southeast, the sand eroded from
the eastern strandplain margin was re-distributed by northward- and southwestward-directed littoral drift
to form two spits on the eastern end of the island; growth of the spits created the characteristic shape
of modern Cat Island (Rucker and Snowden, 1989; Otvos and Giardino, 2004). Using Morton’s 1848
shoreline (Morton, 2008), Cat Island’s estimated length was ~9.5 km (~5.9 mi); the width, including
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Middle Spit, was ~2.0 km (~1.2 mi); and the N-S spit length was ~9.5 km (~5.9 mi). As sediment supply
to the delta was reduced through sporadic flow and eventual distributary abandonment, destructional
processes began to affect the delta lobe (Penland and others, 1985). Tectonic and compactional subsid-
ence reduced the elevation of the SBDL, leading to the retreat of delta-associated coastal marshlands
and a configuration of barrier islands in the northern Gulf of Mexico similar to the one that exists today
(Penland and others, 1985; Otvos and Giardino, 2004). Using USGS lidar data from 2007 (Smith and
others, 2009), Cat Island’s length was ~7.9 km (4.9 mi); width was ~1.8 km (1.1 mi); and the length of
the N-S spit was 4.9 km (3.0 mi).

Cat Island Morphologic Changes since the Mid-1800s

Significant morphologic change to the MS-AL barrier islands has occurred since the mid-1800s
(for specific rates of land loss see Morton, 2008). Ship Island, east of Cat Island (fig. 2), has experienced
the most dramatic changes, including chronic breaching and significant shoreface erosion of the east and
west segments of the island. Relative to other MS-AL barrier islands, the subaerial morphology of Cat
Island has changed the least throughout its recent history (fig. 3). This is probably due to higher interior
elevations and the orientation of the eastern shoreline of Cat Island, which prevents breaching and over-
wash by most storm waves except along the spits that form the eastern shoreline (Morton, 2008). The
morphology of the N-S spit changed over time and is quite dynamic, demonstrating a clockwise rotation
in its shoreline position. The central E-W portion of the island is less dynamic, but island perimeter loss
has led to its narrowing over historic time scales (Morton, 2008). These changes resulted in 40 percent
land loss between 1848 and 2007, and land loss rates increased over that time period, which included
the passage of Hurricane Katrina and the post-storm recovery period (Morton, 2008).

Storms also influenced the morphology of Cat Island: Hurricane Katrina severed the southern
portion of the N-S spit along the eastern shoreline, turning the southern spit into two small shoals (Otvos
and Carter, 2008). The storm also breached the center of the N-S spit, isolating Middle Spit from the
main portion of the island (Otvos and Carter, 2008). By early 2006, the isolated barrier-spit segments
were reemerging, reintegrating and expanding (Morton, 2008). It is likely that these processes continue
today, but it is unclear whether or not Cat Island will reassume its pre-Katrina footprint.
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Figure 2. Shoreline change on Ship Island, east of Cat Island, from the mid-1800s to 2005 (modified from Morton, 2008).

5



89°10' 89°08' 89°06" 89°04'

S

i
2005 e

Cat Island

1995

L

30°14'F

1986

1966

1950

30127 1917

2 KILOMETERS -

0

I
| T | T |

0 05 1 2 MILES

1848

L

Figure 3. Shoreline change on Cat Island from the mid-1800s to 2005. In comparison to Ship Island, Cat Island
has remained relatively stable (modified from Morton, 2008).

Methods

Data in this report were acquired during multiple field activities. The geophysical data—bathym-
etry, backscatter, and seismic reflection—were collected during two cruises as part of the Barrier-Island
Monitoring (BIM) project (USGS Field Activity Numbers 10BIM04 and 10BIMOS5). Eleven terrestrial
vibracores were collected between August 4 and 6, 2010, and 29 marine vibracores were collected
between October 20 and 22, 2010, aboard the USGS research vessel (RV) G.K. Gilbert as part of the
BIM project (USGS Field Activity Numbers 10BIMO03 and 10BIMO6, respectively). The geophysical
and sedimentologic data obtained during these cruises were published in three USGS Data Series re-
ports: (1) bathymetry and backscatter (Buster and others, 2012), (2) seismic reflection (Forde and others,
2012), and (3) sedimentologic data (Buster and others, 2014). These publications contain detailed infor-
mation about data processing and analysis techniques and metadata for each data type. Data-processing
methods will only be summarized here. Readers are encouraged to seek out the above publications for
more detailed information.

Geophysical-Data Collection and Processing: Bathymetry, Backscatter, and Seismic Reflection

The USGS conducted the first Cat Island geophysical cruise from September 7 to 15, 2010,
aboard the 50-ft RV G.K. Gilbert (Buster and others, 2012). Four-hundred eighty-seven line km (> 300
line-mi) of data were acquired using an integrated suite of geophysical instruments. Seafloor mor-
phology was mapped using a 468-kilohertz (kHz) SEA (Systems Engineering and Assessment, Ltd.)
SWATHplus-H interferometric sonar and a Coda Octopus F190R Precision Attitude and Positioning
System, with depth measurements corrected for vessel motion in real time (fig. 44). Speed of sound was
measured at sonar transducer depth and from water-column profiles collected intermittently throughout
each survey day to reduce depth errors associated with speed-of-sound changes in the water column.
The seafloor texture was mapped with acoustic-backscatter data derived from a dual-frequency Klein



3900 side-scan sonar towfish (fig. 4B). Sub-seafloor stratigraphy was mapped using an EdgeTech SB-
5121 Chirp towfish towed from a pontoon sled ~1 m below the water’s surface (fig. 4C). Data were
acquired using a frequency sweep of 1-10 kHz and 0.5-8 kHz, a 43-kHz sample frequency, and a record
length of 75 milliseconds (ms). Position data were integrated into all systems using navigation infor-
mation supplied by an OmniSTAR HP (high-precision) differential global navigation satellite system.
Survey tracklines (76 line segments) were shore-parallel with a spacing of approximately 300 m, with
crossing lines collected perpendicular and oblique to shore-parallel lines (fig. 5). The total survey area
was ~100 km? (38.6 mi?) with 22 percent coverage of the seafloor. Seafloor elevation ranged from

-0.49 to -12.85 m (-1.6 to -42.2 ft) NAVDSS.

SWATHplus-H served as the acquisition software and the initial processing software for inter-
ferometric bathymetry data from the first cruise. Roll-calibration data were collected and processed
using SWATHp/us-H and Grid Processor 3.7.10 (both products of Systems Engineering and Assessment
Ltd.) (Buster and others, 2012). Processed-data files were written from this software and incorporated
roll-calibration values, equipment offsets, acquisition parameters, navigation and motion, and speed of
sound. Calibration and filtering conducted in SWATHp/us was also saved to the processed-data files,
which were imported into CARIS HIPS and SIPS, version 7.1, where the soundings were edited for out-
liers. The acquisition datum for OmniSTAR HP position and navigation was the International Terrestrial
Reference Frame (ITRF2005), and data were processed to the reference ellipsoid World Geodetic
System 84 (WGS84). The bathymetry was exported as an ASCII text file from a CARIS base surface
that was gridded with a 10 m cell size.

Side-scan-sonar (backscatter) data were imported into CARIS SIPS version 7.1.1. In CARIS,
navigation and attitude data were examined and corrected (Buster and others, 2012). After corrections

3\3

. = S
Figure 4. Photos of RV G.K. Gilbert mobilized with (A) swath bathymetry equipment, (B) a side-
scan sonar towfish, and (C) the chirp seismic towfish underway behind the RV G.K. Gilbert.
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were made, the tracklines were converted to CARIS Georeferenced Backscatter Rasters (GeoBars), and
a full mosaic was created to a common intensity histogram and exported in GeoTIFF format. In general,
low backscatter values (dark colors) have weak acoustic reflections and are finer grained material such
as muds and fine sands, whereas light colors have strong reflections and indicate coarser material on the
seafloor.

Seismic-reflection data were collected along the tracklines shown in figure 6 and were saved in
a standard SEG-Y data format (the standard Society of Exploration Geophysicists (SEG) format (Barry
and others, 1975)) during acquisition. These data were processed with Seismic Unix (SU) to produce
gain-controlled GIF images of the sub-bottom profiles included in this report. The chirp data-processing
sequence consisted of (1) removing navigation data from each shot and converting the shot to SU for-
mat, (2) applying automatic gain control, (3) generating a PostScript image of the traces, and (4) con-
verting the PostScript image to a GIF image. Shot-point navigation, start-of-line, and 1,000-shot-interval
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location files were extracted using SU software and output as ASCII text files; they were then processed
with PROJ.4.7.0 (http://trac.osgeo.org/proj/) to generate Universal Transverse Mercator (UTM) coordi-
nates (WGS84, Zone 16, meters) from latitude and longitude coordinates. The archived seismic data can
be viewed and downloaded from Forde and others (2012).

Processed seismic data were imported into OpendTect, an open-source, seismic-interpretation
software system (http.//www.opendtect.org/). Seismic data were adjusted so that the seafloor reflec-
tion from the seismic profile matched the seafloor elevation measured with the interferometric sonar.
Spatially continuous seismic stratigraphic horizons identified were digitized for each adjusted seismic
profile, making each horizon’s elevation relative to the NAVDS88 vertical datum. Volumetric calculations
were performed by exporting triangulated, three-dimensional grids of each unit’s bounding horizons.
The area, volume, and average thickness (isopach) between the upper and lower boundary for each unit
of interest were calculated using a custom script in open-source Generic Mapping Tools (GMT).



http://trac.osgeo.org/proj/
http://www.opendtect.org/

A second cruise was conducted from September 28 to October 2, 2010 aboard the 22-ft USGS
research vessel RV Streeterville; 274 line km (~170 line mi) of single-beam bathymetry data were
collected on the cruise (Buster and others, 2012). Survey tracklines (106 line segments) were primar-
ily perpendicular to shore with a spacing of approximately 500 m (1640 ft, fig. 5). Differentially cor-
rected navigation data were collected with a global positioning system (GPS) base station assembled at
the pre-existing National Geodetic Survey (NGS) Benchmark BH0O8 at Point Cadet Marina in Biloxi,
Mississippi. Depth soundings were recorded at 50 ms intervals with a Marimatech E-SEA-103 echo-
sounder system with dual 208-kHz transducers (fig. 7). The single-beam bathymetry was acquired using
HYPACK version 10 (HYPACK, Inc.).

Data processing for the second cruise began with the post-processing of navigation data to
ensure the most accurate position for each single-beam sounding. Base-station GPS data were corrected
using the time-weighted average National Geodetic Survey On-Line Positioning User Service (OPUS)
solution coordinates, and the sounding positions were adjusted to the final base-station value (WGS84
(1150) datum) (Buster and others, 2012). Corrected positions were parsed into CARIS HIPS and SIPS,
version 7.1, and merged with imported bathymetric soundings. The final processed soundings were ex-
ported from CARIS as ASCII text files.

To create a complete bathymetric grid for the survey area, single-beam and interferometric
soundings were integrated. The text files generated by each processing sequence were merged within
Esri ArcGIS version 10.0.2. To prevent the grid from generating errant values at the shallow extent of
the data, bathymetry data were merged with Experimental Advanced Airborne Research Lidar (EAARL)
elevation data collected from Cat Island by the USGS in 2007 (Smith and others, 2009) and a 50 m
(164 ft) cell grid was created for publication. The archived bathymetry and backscatter data can be
viewed and downloaded from Buster and others (2012).

Sedimentary-Data Collection and Analysis -

_w . GPS Antenna /

Twenty-nine marine vibracores were collected from
the RV G.K. Gilbert (figs. 8 and 9) (Buster and others,
2014). For each core site, the core number, location, local
water depth, and recovered core length, as well as other
relevant information, were recorded. The vibracores were
transported to the Core-Analysis Laboratory at the USGS St.
Petersburg Coastal and Marine Science Center (SPCMSC).
Each vibracore was cut into 1m (3.28 ft) sections and split
lengthwise. One-half of each core was described with
standard sediment-logging methods, photographed, and
wrapped in plastic sleeves for archival storage. The other
core half was sampled at 2-3 cm (0.79—-1.18 in) intervals
at the top, middle, and bottom of each described sediment
unit for grain-size analysis. Grain-size analyses on 367 core- - A=
sediment samples were performed using a Coulter LS 200 __MOtnsor
particle-size analyzer (https://www.beckmancoulter.com/). el
Raw grain-size data were then imported into GRADISTAT, m_.;
a free, widely available program that calculates the geo- £
metric (ip metric units) and logarithmic (in phi units, ©; Figure 7. RV Streterville mobilized with siﬁgle-
Krumbein, 1934) mean, mode, sorting, and skewness for beam bathymetry equipment.
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Figure 9. Photos of (A) marine vibracore collection aboard the RV
G.K. Gilbert and (B) terrestrial vibracore collection on Cat Island.
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each sample using the Folk and Ward (1957) method (Blott and Pye, 2001; Attp://www.kpal.co.uk/gra-
distat.html). GRADISTAT also calculates the fraction of sediment from each sample by size category
(for example, clay, coarse silt, or fine sand) based on a modified Wentworth (1922) size scale. A Visual
Basic macro script developed by the USGS was applied to calculate the average and standard deviation
for each sample set (6 runs per sample) and remove runs that varied from the set average by more than
+1.5 standard deviations. The sample average was recalculated using the remaining runs.

In addition to the marine vibracores, 11 terrestrial vibracores were collected from Cat Island.
Because the focus of this report is on subaqueous sand resources, the terrestrial data are not discussed,
although a description of the terrestrial coring methods and data-analysis techniques is reviewed in

Buster and others (2014).

Results

Throughout its geologic history, deltaic, tidal, estuarine, and oceanographic processes influenced
Cat Island and its surrounding nearshore environments, leaving a stratigraphic record that is complex.
To facilitate interpretation, analysis, and presentation of the results, the subaqueous environments are
divided into three regions: north, south, and east (fig. 10). The geologic and sedimentologic history of
each region is described in the sections below. The lithologic characteristics of sandy units identified are
shown in table 1; characteristics for all other units are shown in table 2; the lithologic symbol legend is

shown in table 3.

Geologic and Sedimentologic History North of Cat Island

The north side of Cat Island is bound to the south by the main portion of the island and extends
5.0 km (3.11 mi) north into Mississippi Sound, including a ~2-km-long (1.24 mi-long) section on the
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Table 1.

Major sandy units (and their abbreviations) identified around Cat Island, the vibracores in which they were sampled, their grain-size

characteristics, and sedimentological composition. All values are averages of the GRADISTAT output for each sample taken from all cores as-

sociated with the unit.

[Measurements are in micrometers (Lm).]

CORESWITH | g izg | SV | MEAN GRAIN-SIZE Dyg.Dsg. Dgg | SAND | MUD
MAIN SANDY UNITS UNITS (um) (um) RANGE (um) (%) (%)
B SOUTH ANTECEDENT ISLAND PLATFORM (AIP) 11,12,13,29 3198 45 Fine Sand - Medium Sand | 166.2,319.0,5818 | 96 | 34
EEES s0UTHWEST SHOAL (SWS) 148 3225 28 Medium Sand 19.4,3194,5137 | 979 | 21
SOUTHWEST TIDAL DELTA (SWTD) 13 2036 28 Fine Sand 1121,202,3785 | %2 | 48
- NORTH UPPER SAND (NUS) 19-21,23,248 2423 5.8 Fine Sand - Medium Sand 107.4, 244.9, 462.0 929 12
S0 NORTH LOWER SAND (NLS) 1921,23,25 2492 26 Fine Sand - Medium Sand | 149.9,243.3,460.1 | 975 | 25
EEEEE] EAST ANTECEDENT ISLAND PLATFORM (AP 3 2.9 83 Fine Sand - Medium Sand | 1396, 271.5,5127 | 956 | 44

Table 2. Non-sandy units (and their abbreviations) identified around Cat Island, separated by region. Columns include the vibracores in which
the unit was sampled, its grain-size characteristics, and sedimentological composition. All values are averages of the GRADISTAT output for each
sample taken from all cores associated with the unit.

[Measurements are in micrometers (Lm).]

CORESWITH | grWEAN | STANDARD | MeAN GRAIN SIZE Dyg.Dsg, Dgg | SAND | MUD | CLAY | SILT
OTHERUNITS (SOUTH AND EAST) UNITS {pm) {um) RANGE {um) (o | 8 | (o | CA
MODERN 1 (M1) 2911,13,14,16,17,27,28|  46.0 44 Medium Silt - Very Fine Sand | 2.9,84.8,291.8 | 426 | 574 | 85 | 489
MODERN 2 (M2) 11,12,15-17,27,29 1228 95 [ Very Coarse Silt - Medium Sand| 31.6, 158.4, 370.6 | 657 | 343 | 52 |29
== monerN 3(Mm3) 9,14 65 01 Very Fine Silt - Coarse Silt | 1.3,7.0,38.4 | 66 | 934 | 229 | 706
=" MODERN 4 (M4) 11,12 76 08 Very Fine Silt - Medium Silt | 13,5.4,1193 | 111 | 889 | 221 |668
MODERN 5 (M5} 12,15 355.9 75 Medium Sand 136.1,367.6,611.4| 924 | 76 | 13 | 63
- ST.BERNARD 2 - SOUTH (SB2) 9,10,14B,15-17,27,28 14.2 1.6 Very Fine Silt - Very Coarse Silt| 1.6, 18.8,1235 | 159 | 84.1 | 17.3 | 66.8
=S ST.BERNARD 2- EAST(SB2) 128 19.0 10 Fine Silt - Coarse Silt 19,247,154 | 272 | 729 | 120 | 609
I ST BERNARD 1 - SOUTH (SB1) 9,10,148,15-17,27,28 145 0.7 | Very Fine Silt - Very Coarse Silt| 16,15.2,91.3 | 144 | 856 | 163 | 693
I 57.BERNARD 1 - EAST (SB1) 128 76 01 Very Fine Silt - Medium Silt | 1.4,85,41.8 | 6.1 | 939 | 195 | 744
B TRANSITIONAL DELTA TO SHOAL (TDS) 148 %3 09 Medium Silt - Medium Sand | 48.3, 98.6, 2705 | 469 | 53.1 | 76 |455
EEEE TRANSITIONAL SHELF TO DELTA (TSD) 148,28 60.9 12 Coarse Silt - Very Fine Sand | 3.6, 116.6,3065 | 585 | 415 | 66 | 349
B TRANSITIONAL SHELF TO DELTA (TSD) i 2152 27 Fine Sand 1192,2127,4053| 960 | 40 | 10 | 30
R INNER-SHELF PLATFORM (ISP) 17,18 235.4 98 Fine to Medium Sand | 85.0, 2595, 4936 | 905 | 95 | 20 | 75
OTHER UNITS (NORTH)
LAGOONAL 1 (L1) 57, 19-26 70.7 2.9 Medium Silt - Fine Sand 12.0,100.8,256.2 | 484 | 516 | 7.7 | 439
LAGOONAL 2 (L2) 5,6,20,25,26 56.3 39 Medium Silt - Fine Sand | 3.2,108.7,299.7 | 522 | 478 | 84 | 334
E LAGOONAL 3 (L3) 22 56 0.1 Fine Silt 1.3,52,299 3.7 96.3 | 20.8 | 75.6
- LAGOONAL 4 (L4) 22,26 1.2 0.6 Fine Silt - Coarse Silt 1.4,83,141.6 16.6 | 834 | 18.7 | 647
E==] LAGOONAL5 (L5) 5 5.2 01 Fine Silt 11,42,449 | 57 | 943 | 246 | 697
== LAGOONAL 6 (L6) 57,19.248,26 186 10 Fine Silt -Very Fine Sand | 1.7,300,150.1 | 237 | 763 | 151 [ 61.2
ISLAND PLATFORM 1 (IP1) 67 2073 115 Fine to Medium Sand | 48.6, 232.1,389.0 | 87.4 | 126 | 28 | 98
ISLAND PLATFORM 2 (IP2) 6 709 5.4 Coarse Silt - Very Fine Sand | 45,141.0,3135 | 568 | 432 | 57 | 375
BB TRANSITIONAL ISLAND PLATFORM (TIP) 7 1139 83 Very Fine to Fine Sand | 86,1932,321.4 | 77.1 | 229 | 41 | 188
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Table 3. Lithology reference legend for all core description logs.

EXPLANATION OF SYMBOLS USED IN CORE LOG DESCRIPTIONS

Lithology Bedding and Deformation Physical Characteristics

Sand === Massive >'\>,\ Root mat
Muddy Sand = Laminated Y Root pieces
L
Silty or Sandy Clay or Mud #<  Mottled =5 Woody fragment
i i ~  Shell fi t
Clay or Mud =~ Inclined contact/bedding ell fragments
X— Deformed contact/bedding: concave-up ™ Large shell fragment
Sand and Clay or Mud %
— 7~ Deformed contact/bedding: concave-down Burrow fill
?f% Peat 4
- IR Deformed contact/bedding: wavy or irregular

Marine cores + Grain-size analysis sample depth (on core log) @  Grain-size analysis sample depth (on photo)

backside of the northern part of the N-S spit (fig. 11). High-resolution seismic profiles and vibracores
were interpreted to reconstruct the geologic history of Cat Island’s north side, and only a limited amount
of data can be shown in this report. Data relevant to the interpretations presented have been published as
USGS Data Series reports (see Methods section for references). In this section, the characteristics of the
seismic-stratigraphy units, their structure, and inter-unit relationships are discussed.

The Pleistocene-Holocene erosional unconformity is the basal seismic horizon identified in this
study and is found across much of the study area (fig. 12). The Pleistocene-Holocene erosional uncon-
formity formed as the relative sea-level rise flooded the region, leaving a recognizable but discontinuous
erosional ravinement surface. The ravinement horizon is distinct in that it usually caps infilled paleo-
fluvial and paleotidal channels incised into the coastal plain during the last glacial maximum (sea-level
lowstand). Below what we interpret as the ravinement, several large, incised valleys, that may have been
cut by the ancestral Pearl River (fig. 13), were identified. The ravinement dips from northeast to south-
west from a depth below sea level (bsl) of 10-14 m (38—46 ft) in the northeast and 10-21 m (38—69 ft)
in the southwest (fig. 14).

Using seismic profiles in combination with grain-size analysis, vibracore descriptions and pho-
tographs, inner-shelf platform (ISP), north lower sand (NLS), and north upper sand (NUS) units were
differentiated from the northwest area of Cat Island (figs. 12 and 15). ISP is thickest to the southern side
of Cat Island and thins to pinch out on the northern portion of the study area. The ISP is composed of
marine, muddy sand with clay-filled burrows and abundant shell hash. Overlying the ISP unit are the
NLS and NUS units. Both units are located in close proximity to, and onlap, a submerged remnant of
the Cat Island antecedent platform at the southern extent of the survey lines (see the description below),
and both the NLS and NUS units extend outside the study area at the northern extent of the study area
(figs. 16 and 17). The NLS can be identified in seismic profiles by its steep clinoforms that appear to dip
north (fig. 18). The NLS extends beyond the study area to the west and thins to the east where it eventu-
ally pinches out (fig. 16). The NLS covers an area of 22.81 km? (8.49 mi?) with an average thickness of
3.17 m (10.4 ft), ranging from 0.09 to 8.59 m (0.3 to 28.2 ft) (table 4). Average overburden is 4.26 m
(14.0 ft) with a range of 1.22 to 9.68 m (4.0 to 31.8 ft) (table 4). Sediment volume for the NLS unit is
estimated at 72 million cubic meters (M m?; 94.17 M yd®) (table 4). The unit was penetrated by cores 19,
20, 21, 23, and 24B. Grain-size analysis indicates that it is composed of greater than 90 percent fine- to

14




89°12' 89°09' 89°06' 89°03'

30°16'

3014

EXPLANATION

Elevation (m)
0

. -12.63

I 2007 Lidar land area

— Seismic lin i in
Seismic lines discussed in text 0 05 1 2 KILOMETERS

|

[

O Cores discussed in text
© Othercores
NORTH AMERICAN VERTICAL DATUM OF 1988

T T : T ]
0 0.5 1 2 MILES

These data should not be used for navigational purposes.
| | |

Figure 11.  Map of the region north of Cat Island showing the location of seismic lines discussed in the text or in figures (red lines). Cores
discussed in the text and shown in figures are represented by yellow circles. Other cores collected from this region are indicated by blue circles.
Though all cores are not discussed in the text, they did contribute to interpretations presented and more detailed information about them can be
found in Buster and others (2014).

medium-grained, light-brown sand with a mean grain size of 249 micrometers (um). Shell fragments are
found throughout the cores (fig. 15).

The NUS unit overlies the NLS and extends outside of the study area to the north, similar to
the NLS, but pinches out farther to the east than the NLS (fig. 19). The identifying seismic signature
for the NUS is low-angle clinoforms to horizontal, low-amplitude bedding. The NUS covers an area of
18.55 km? (7.162 mi?) with an average thickness of 1.75 m (5.3 ft) ranging from 0.0 to 5.99 m (0.0. to
19.7 ft). Average overburden is 2.38 m (7.8 ft) with a range of 0.59 to 5.71 m (1.9 to 18.7 ft) (table 4).
Sediment volume for the NUS unit is estimated at 32.5 M m? (42.5 M yd?®). This unit was sampled in
cores 19, 20, 21, 23, and 24B. Olive-gray, muddy sand grades downcore to light olive-brown sand with
shell fragments throughout (fig. 15). Grain-size analysis indicates a composition of greater than 90 per-
cent fine to medium sand with a mean grain size of 242.3 pum (table 4).

A unit was identified in seismic profiles north of Cat Island (fig. 20) that we interpret to be the
northern extent of the antecedent Cat Island platform (AIP) (figs. 20 and 21). The AIP northern flank has
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Figure 12.  Uninterpreted seismic profile 26 and 26a (upper panel) and the same profiles with interpretations (middle panel),
including the locations of Cores 19, 21, and 24B, and the intersection of seismic profile 72 (fig. 18). The location of the profile is
shown in figure 11. Interpreted lithologic units relative to a bathymetric profile are shown in the lower panel. Note the high lateral
geologic variability, especially the high-angle clinoforms of the north lower sand (NLS) unit. The red line indicates the Pleistocene-
Holocene ravinement surface. For more descriptive lithologies see tables 1, 2, and 3.

two younger, stacked shoal units (island platforms 1(IP1) and 2 (IP2)) identified in seismic profiles as
deposits with high-angle clinoforms, separated by a high-amplitude horizon, that sharply pinch out just
off the Cat Island marginal platform (figs. 20, 21, and 22). The north-island antecedent platform (con-
sisting of the island-platform and flanking shoal units) extends ~1 km (0.62 mi) from the modern island
shoreline to a steep bathymetric slope at a water depth of ~4 m (13.12 ft). The antecedent-platform
deposit consists of > 95 percent well-sorted, light grayish-brown, medium sand with traces of dissemi-
nated shell fragments and occasional wood fragments (fig. 21, also see south and east sections). The AIP

provides a large base for the current island development.
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Figure 13. Uninterpreted seismic profile 03 (upper panel) and the same profile with interpretations (lower panel), including the location of a
sediment-filled paleo-incised valley (dashed blue line) below the ravinement horizon (solid red line). The location of the profile is shown in figure
11. Note that the high-angle clinoforms in the north lower sand unit (NLS) appear to dip in opposite directions. For more descriptive lithologies see
tables 1, 2, and 3.

incised channels

Figure 14. Uninterpreted seismic profile 13 from the northeast side of the Cat Island study area. Location of the profile shown in figure 11. The
dashed blue lines indicate sediment-filled, incised valleys below the ravinement horizon. Note the ravinement dipping from north (N) to south (S).
This figure shows only a segment of the ravinement slope. For more descriptive lithologies see tables 1, 2, and 3.

Modern lagoonal/estuarine sediments of Mississippi Sound primarily overlie the NUS unit. These
lagoonal/estuarine deposits onlap all other units and extend across the study area (fig. 20). The deposits
are categorized into three primary stratigraphic units (L1, L2, and L6) separated by a discontinuous, low-
amplitude seismic horizon. Units L3 through L5 are localized units found near the island platform between
L1, L2, and Lé6. In seismic profiles, the lower unit (L6) is a continuous lagoonal/estuarine deposit charac-
terized by interior, discontinuous, low-amplitude horizons with areas that are acoustically transparent (figs.
12, 13, 18, 19, and 20). The L6 unit is ~1 m (~3.28 ft) thick and consists of a brownish-gray to olive-gray,
relatively soft, massive deposit of medium- to very fine-grained sand with small silt lenses. In most of the
north area the deposit grades into the upper units L1 and L2. The L1 and L2 units are acoustically transpar-
ent, more than 0.5 m thick, and consist of dark olive-gray, soft-saturated, coarse silt to very fine-grained
sand (fig. 15). In the eastern part of the north study area, there has been only lagoonal/estuarine sediment
deposition over the ravinement surface with little to no sand (fig. 23).
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Figure 16.
of the unit.

Maps showing (A) the extent of the north lower sand (NLS) unit and unit thickness and (B) the depth to the top
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1 kilometer i N : ‘ Interpreted Line 72

Figure 18. Uninterpreted seismic profile 72 (upper panel) and the same profile with interpretations (lower panel). The interpreted profile shows
units lagoonal (L1, L2, L6), north upper sand (NUS), north lower sand (NLS), inner-shelf platform (ISP), intersection location of seismic profile 03
(fig. 13), and ravinement horizon (red line). The location of the profile is shown in figure 11. Note NLS (blue) steep clinoforms appear to dip to the
north. For more descriptive lithologies see tables 1, 2, and 3.

Figure 19. Uninterpreted seismic profile 06 (upper panel) and the same profile with interpretations (lower panel). The interpreted profile shows
units lagoonal (L1, L2, L6), north upper sand (NUS), north lower sand (NLS), and other lagoonal (OL), the intersection location of seismic profile

70 (fig. 20), and the ravinement horizon (red line). Note the downlapping termination (pinch out) locations of the NLS and NUS units. For more
descriptive lithologies see tables 1, 2, and 3.
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Table 4. Areas, average thicknesses (with range of thicknesses), and average depths to top (with range of depths) for each of the sandy units

identified in the study.

[Measurements are in meters (m), feet (ft), square meters (m?), square feet (ft?), cubic meters (m?) and cubic feet (ft*).]

Average Average DepthAt:etr:: :f Unit DepthAt‘t,)etI:: :f Unit
Area Area Volume | Volume Thickness Thickness (Range of (Range of

(ANGE] (RGP | (w0t | (ENGE | (Range & | endo of | DepthtoUnio | Depthto Uit
SAND UNITS (m) (ft)
NORTH UPPER SAND (NUS) 18.6 199.7 325 1149.3 1.8(0-6.0) 59(0-19.7) 24 (06-57) 7.8 (1.9-18.7)
NORTH LOWER SAND (NLS) 22.8 2455 72.3 2554.1 32(0.1-86) | 10.5(0.3-222) 43(1.2-97) 14.0 (4.0- 31.8)
SOUTH ANTECEDENT ISLAND PLATFORM - WEST (AIP) 37 402 10.2 360.3 2.7(0-5.0) 89 (0-16.4) 2(1.2-48 7.0 (3.9-15.7)
SOUTH ANTECEDENT ISLAND PLATFORM - EAST (AIP) 11 122 37 130.6 33(0-50 10.8 (0-16.4) 23(0-53 76(0-17.3)
EAST ANTECEDENT ISLAND PLATFORM (AIP) 79 85.1 232 817.9 2.9 (0-4.4) 9.5 (0-14.4) 0(0-29 0.1(0-9.4)
SOUTHWEST SHOAL (SWS) 1.0 109 2.3 82.6 2.3(0.3-37) 75(1.0-12.1) 0.7 (0-33) 2.3 (0-109
SOUTHWEST TIDAL DELTA (SWTD) 7.8 84.1 25.2 889.6 322 (04-75) 10.6 (1.3- 24.6) 38 (1.4-63 12.3 (45-20.8)

Figure 20. Uninterpreted seismic profile 70 (upper panel) and the same profile with interpretations (lower panel). The interpreted profile shows
units lagoonal (L1, L2, L6), north upper sand (NUS), north lower sand (NLS), other lagoonal (OL), antecedent island platform (AIP), inner-shelf
platform (ISP), transitional island platform (TIP), and island platform 2 (IP2). It also shows intersections of Lines 08, 26, and 06 (figs. 22, 12, and
19, respectively) and the ravinement horizon (red line). The location of profile 70 is shown in figure 11. Note the northern extent of the AIP and ISP
units which are also seen in seismic profiles south and east of the island. For more descriptive lithologies see tables 1, 2, and 3.
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Figure 22. Uninterpreted seismic profiles 08 and 08a (upper panel) and the same profiles with interpretations (middle panel). The interpreted
profile also shows units lagoonal (L1, L2, L4, L6), north lower sand (NLS), other lagoonal (OL), antecedent island platform (AIP), and island
platforms 1 and 2 (IP1, IP2). The location of the intersection with seismic profile 70 (fig. 20) and ravinement horizon (red line) are also shown. The
location of profiles 08 and 08a are shown in figure 11. For more descriptive lithologies see tables 1, 2, and 3.
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Geologic and Sedimentologic History South of Cat Island

The region south of the main part of the island and west of the southern segment of the N-S spit
has a geologic and sedimentologic history different from that of the north. First, the southern region
was heavily influenced by the Holocene development of the St. Bernard delta lobe of the Mississippi
River (SBDL), which was a source of fine-grained, not sandy, sediments. The south side of the island
has been more exposed to the wave energy of the Gulf of Mexico over geologic time than the north side,
although not to the same extent as its Gulf Islands National Seashore counterparts to the east. Modern
wave-related processes continually modify the seafloor morphology and sedimentology south of Cat
Island through deposition of new sediment and the reworking of relict sediments. Finally, the Cat Island
Channel has incised the seafloor south of the island, removing some of the stratigraphic record (fig. 10).
Thirteen cores were collected from south of the island (fig. 24). Detailed core descriptions and grain-
size analyses for each core are provided in Buster and others (2014). In this section, the cores collected
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Figure 24. Map of the region south of Cat Island showing the location of seismic lines discussed in the text or in figures (red lines). Cores
discussed in the text and shown in figures are represented by yellow circles. Other cores collected from this region are indicated by blue circles.
Though not all cores are discussed in the text, they all contributed to interpretations presented and more detailed information can be found in
Buster and others (2014).
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from south of the island are discussed in relation to surrounding seismic stratigraphy to demonstrate
how various units relate to one another. The units identified, from oldest to youngest, are: inner-shelf
platform (ISP), southwest tidal delta (SWTD), St. Bernard delta 1 (SB1), antecedent-island platform
(AIP), southwest shoal (SWS), St. Bernard delta 2 (SB2), modern shelf (M 1-5) (fig. 25). Characteristics
of major lithologic units are summarized in tables 1, 2, and 3, and maps showing the extent and thick-
ness of sandy deposits that might be viable for coastal-restoration projects are also discussed.

Seismic profile 77a was collected south of the island and longitudinally parallel to the island
(figs. 5 and 25). Though no cores were collected along this line, interpretations from seismic profiles
on either side, where core information does exist, were extrapolated to this line, which shows many of
the units discussed and their complex, discontinuous stratigraphy. The ISP was the deepest unit south of
Cat Island sampled with vibracores and the sample was collected in the thalweg of Cat Island Channel.
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Figure 25. A non-interpreted (upper) and interpreted (lower) seismic-reflection profile from south of Cat Island shows all units identified. The
profile location is shown in figure 24. Dashed lines on the lower profile indicate interpretation through gas in the sediments. The lower right panel
demonstrates the vertical relation between units identified in separate cores by hanging the cores from bathymetric profiles. Though none of the
cores shown in the profile were collected directly on this line, their locations are projected to this line via extrapolation from other seismic lines.
For more descriptive lithologies see tables 1, 2, and 3.
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Because the channel incised the seafloor and removed overlying strata, we were able to sample nor-
mally unreachable sedimentologic units with standard 6 m (~20 ft) vibracore barrel lengths. Access to
these lower units allow for a more complete understanding of the geologic history of the northern Gulf
of Mexico and Cat Island itself. Core 28 penetrated the ISP deposit at -13 m (42.6 ft) (NAVDS8S) and

is characterized as muddy sand with ~90 percent sand and ~10 percent mud (orange; fig. 26). Seismic
lines south of the island indicate the ISP unit thins to the west (fig. 25), and seismic lines east of the
island (discussed in the next section) indicate that it slopes seaward from the mainland. Given its eleva-
tion within the stratigraphic section, its relation to other units, and its regional morphology, this unit is
interpreted to represent the inner shelf prior to development of the SBDL south of the island. The muddy
sand of the ISP is separated from deltaic deposits above it (discussed below) by a thin deposit (~30 cm)
composed of fine sand and shell hash, characteristic of a transgressive flooding surface (transitional
shelf to delta deposit (TSD)) (fig. 26). This supports a scenario in which the sea level rose before the
progradation of the delta into the study area, consistent with our interpretation.

The sandy SWTD unit southwest of Cat Island was only sampled in core 13 approximately 4 m
(13.12 ft) below the seafloor (-5.9 m (19.4 ft), NAVDSS, fig. 27). The SWTD is composed of medium
sand with sand content decreasing and silt content increasing downcore (fig. 27). Seismic data show that
the SWTD thickens to the west and rises to within about 1 m (3.28 ft) of the seafloor toward its east-
ern boundary (figs. 284 and 28B). The SWTD unit’s acoustic character consists of internal prograding
reflection surfaces that dip to the east. The overall morphology of the feature indicates that it originated
west of Cat Island (fig. 25). The combined lithology, acoustic characteristics, and morphology of the
SWTD imply that it may have been part of a larger tidal delta that existed west of Cat Island during a
lower sea level period and prior to development of the SBDL in the study area.

South of Cat Island, the SBDL is composed of two distinct deltaic units (SB1 and SB2). The
lower unit (SB1) is composed of coarse silt with locally-dense shell fragment clusters, resulting in hori-
zontal laminations that distinguish this unit from the non-laminated one above it (SB2) in the seismic
profiles (fig. 29). The upper unit (SB2) is acoustically transparent and composed of fine silt (fig. 29).
Though this lithologic description is based on the core shown in figure 29, grain-size analysis from all
cores where the SB1 and SB2 units were sampled indicates spatial variability in grain size and composi-
tion (Buster and others, 2014). This is expected due to (1) the distances between cores, which probably
vary in distance from the sediment source, and (2) the variability in deltaic depositional environments.
Regardless of spatial variability within each unit, neither SB1 nor SB2 contain more than 25 percent
sand content; therefore, isopachs for these units are not shown. The acoustic and sedimentologic charac-
teristics of these units and their extent south of the island indicate that they are delta deposits related to
Mississippi River Delta development in the northern Gulf of Mexico.

The AIP is a progradational unit identified and sampled in cores 11-13 and 29, and has a sand
content of almost 100 percent (fig. 30). The fine- to medium-grained sand in the unit’s top portion often
shows evidence of bioturbation, with mud-filled burrows that decrease in frequency downcore, suggest-
ing deposition in an intertidal environment. Seismic profiles show that the unit extends to the west and
south of Cat Island, and demonstrate that these deposits are found exclusively adjacent to the modern
island footprint. Furthermore, isopachs indicate that the AIP unit thins to the west and south, which is
morphologically consistent with the modern island platform (figs. 314 and 31B). In a few places, the
SB2 unit (light blue) onlaps the AIP unit, which progrades westward and southward (green; fig. 25). In
other places, modern sediments rest directly atop the AIP unit. The lithologic composition and distribu-
tion of the AIP unit, in addition to its stratigraphic relationship to deltaic deposits, suggest that SB2 and
AIP are contemporaneous.
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Figure 28. Maps showing (A) the extent of the southwest tidal delta (SWTD) unit and unit thickness and (B) the depth to
the top of the unit. The interpreted relict tidal delta thickens to the west, suggesting a formation process originating west of
the island. As it thins to the east, it becomes deeper beneath the seafloor surface. Note that the depth to the unit reaches a
minimum of less than 1.5 meters to the west.
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Figure 31. Maps showing (A) the southern and eastern extent of the antecedent island platform (AIP) unit and unit
thickness and (B) the depth to the top of the unit. The line close to the island’s southern shoreline shows thicknesses
measured from one seismic line collected in shallow water around the island (location show in figure 6). Note the data
gap between that line and the polygons to the south. Generally the deposits thin away from the island and to the west,
exhibit morphology consistent with the modern island platform. Thicknesses measured on the eastern side of the island
were limited by gas in the sediments and seismic-signal penetration. Therefore, the thicknesses measured closer to the
island do not thin as expected and represent a conservative estimate of the thickness of the antecedent island-platform
unit. Note that the unit intersects the seafloor (depth to unit = 0) on the east of the island except where it pinches out at
its southern edge.
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In addition to the SWTD and AIP units, there is another sandy unit (SWS) southwest of Cat
Island. The SWS deposit is younger than the SB1 deposit and overlies it before the SB1 unit pinches out
to the west in seismic profile 77a (fig. 25). Its sandy lithology and discrete structure imply that this unit
was a sandy shoal, and vibracore 14B indicates that it is composed of almost 100 percent medium sand.
This unit was also heavily bioturbated, displaying frequent mud-filled burrows. Though this unit was
only sampled in core 14B (fig. 32), its extent can be mapped between seismic lines, and the data reveal
that it is not extensive (figs. 334 and 33B).

The uppermost unit in the stratigraphic section is the modern unit (M 1-5), which includes pres-
ent seafloor sediments (yellow). Figures 25 and 29 show the modern unit (M 1-5) overlying two older
units delineated in shades of blue. These units were sampled in cores 8—10, 14B, 15-17, and 27-28.
Though it is shown as one color in the interpreted cross section, sediment composition varies spatially
and is separated into separate units based on the core descriptions (Buster and others, 2014). Transitions
in surficial sediment are shown by the variation in backscatter around the island where higher backscat-
ter (lighter colors) represents sandier sediments and lower backscatter (darker colors) represents mud-
dier sediments (fig. 34). In general, higher-backscatter sediments associated with the island platform ex-
tend farther offshore south and east of the island when compared with the north. These sediments make
up the modern island platform, which has a shallower gradient on the south side of the island than on
the north (fig. 10). Surficial seafloor grain size of the modern unit on the south side of the island ranges
from medium silt to medium sand. It is important to note that where sand exists at the seafloor surface, it
is often only a veneer over much finer grained, relict sediments (fig. 29).
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Figure 33. Maps showing (A) the extent of the southwest shoal (SWS) unit and unit thickness and (B) the depth to the
top of the unit. Though reaching a maximum thickness of almost 4 meters, the unit is relatively discrete. The top of the unit
generally intersects the seafloor, except where it pinches out at its limits.
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Figure 34. Map of acoustic backscatter from around Cat Island overlain with the grain size, in micrometers (um), of the surface sediment from
all marine vibracores. The red line indicates a transition from higher backscatter (lighter color, larger grain sizes) to lower backscatter (darker
color, smaller grain sizes). Note that the Cat Island Channel (location shown in figure 8) shows lower backscatter and smaller grain sizes,
consistent with its incision into finer grained, relict sediments.
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Geologic and Sedimentologic History East of Cat Island

Unlike the south side of Cat Island, where the AIP and SBDL deposits are covered by modern or
reworked sediment, relict sediments east of the island are exposed at the seafloor. The backscatter mo-
saic for the east side confirms the exposure (fig. 34), showing a transition from sandy sediments at the
seafloor to the north (lighter colors) to finer grained sediments at the seafloor to the south (darker col-
ors). The transition in backscatter intensity in the mosaic corresponds to a transition from ravined AIP to
SBDL deposits in the seismic profiles.

Because the eastern end of Cat Island has transformed, giving the island its distinct shape (see
Coastal Setting and Regional Geology section for description), the stratigraphic record east of Cat Island
is the least complete when compared to its northern and southern counterparts. Acoustic penetration into
the subsurface also decreased significantly because of persistent gas presence in the sediments south of
the area and increased signal attenuation in the sediments toward the north. Regardless, the geology and
sedimentology to the east of the island are important because they provide insight into the intersection
of processes that influenced the late Holocene evolution of Cat Island.

Seismic profiles 44 and 44a located east of Cat Island, clearly show what we interpret to be
the end of the AIP, slightly south of the southern extent of Middle Spit (figs. 35 and 36). Where the
old platform meets units to the south, the island platform’s internal structure is characterized by steep
clinoforms. North of the platform edge, the island-platform unit is almost acoustically transparent, often
indicative of homogeneous sandy sediments. However, in several seismic profiles there are discrete,
chaotic, discontinuous reflections present (fig. 36).

The lithologic characteristics of the AIP unit in the eastern area were determined from Core 3
(fig. 36); the core description is shown in figure 37. The sediment is predominantly fine- to medium-
grained sand, with a mud content generally less than 5 percent. There is a 1- m (3.28 ft) thick layer,
approximately 3 m (~9.8 ft) below the seafloor, in which bedding alternates between sand and mud
(fig. 37). Because terrestrial cores were collected on the island (Buster and others, 2014), we compared
a photo of one terrestrial core with the core sample from the AIP unit (figs. 35 and 38). Given the simi-
larity between the two cores, it seems likely that the unit exposed at the seafloor northeast of the mod-
ern island is the ravined AIP unit, the destruction of which likely supplied sand for development of the
N-S spit that serves as the eastern shoreline of the island. Connecting the extent of the AIP, as observed
in the data from the north, south, and east of the modern island, begins to show what the shape and ori-
entation of the island might have been as the SBDL built into the northern Gulf of Mexico (fig. 31).

South of the AIP edge, the acoustic signature of the sediment changes drastically (fig. 36). The
seismic profile shows a horizontally laminated unit below an almost acoustically transparent unit, simi-
lar to the characteristics of the interpreted SBDL deposits (SB1 and SB2, respectively) observed on the
south side of the island. Correlating delta-associated units from the south to the east side of the island
was difficult using acoustic data alone because the presence of gas in the sediments masks the acoustic
signature and because the shallow waters between the south and east sides of the island (crossing the
submerged southern end of the N-S spit) were inaccessible. What did help confirm the correlation was
a comparison of cores that sampled delta deposits from the south side with apparent delta deposits on
the east side (fig. 39). The interpreted SBDL units are shown in shades of blue, the lighter blue corre-
sponding to the acoustically transparent unit identified in the seismic profile (SB2) and the darker blue
corresponding to the horizontally laminated unit below it (SB1). In cores 8 and 1, the grain size of SB2
is classified as coarse silt, and subtle compositional differences exist between each core. The lower
delta deposits (SB1) are texturally similar between the south and east cores, lending more support to
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Figure 35. Map of the region east of Cat Island showing the location of seismic lines discussed in the text or in figures (red lines). Cores
discussed in the text and shown in figures are represented by yellow circles. Other cores collected from this region are indicated by blue circles.
Though all cores are not discussed in the text, they did contribute to interpretations, and detailed information about them can be found in Buster
and others (2014). The green square represents the location of the terrestrial vibracore compared to marine core 3 in figure 38. The blue line
indicates the extent of a discrete region of anomalous reflection surfaces observed in the seismic data (fig. 36) and discussed in the text.

the interpretation (fig. 39).Upon examination of all cores where SB1 and SB2 were sampled on the east
side, there is spatial variability in the size classification and composition of the SBDL deposits, similar
to the south side of the island. This subtle variability is attributed to differences in the sample distance
from the sediment source and in the characteristics of underlying deposits. Furthermore, the SB2 depos-
its east of the island (core 01) are classified as coarse silt, whereas SB2 deposits found south of the is-
land (core 08) seem to be slightly finer (fine to medium silt). This is likely due to the fact that the eastern
deposits have been ravined, winnowing finer particles. Regardless of the subtle spatial differences, the
sedimentologic and acoustic signatures on the south and east sides of the island are similar enough that
we can extrapolate our interpretation of delta deposits eastward.
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extensive east of the island. Although no cores shown in the profile were collected directly on this line, their locations are projected to this line via
extrapolation from other seismic lines. For more descriptive lithologies see tables 1, 2, and 3.

An anomalous region was identified in the deltaic depositional units on eastern seismic profiles
that was not observed in profiles from the south. On line 44, a section of the profile is characterized
by steeply dipping clinoforms that truncate at the seafloor (fig. 36). The truncation indicates that what
remains is only a portion of the feature that existed previously. Seismic profiles collected oblique to the
shoreline that cross this unit show that the clinoforms are more gradual and dip to the southeast, imply-
ing that their geometry (apparent dip) in figure 36 is related to the survey trackline orientation relative
to the feature, not to its depositional environment. The extent of the feature is fairly discrete (fig. 35),
indicating that it may be related to a localized phenomenon, such as an ephemeral breach (as with a tidal
channel), in a previous iteration of the island that may have incised into the delta deposits, rather than a
regional process.
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Figure 38. A comparison between a marine core collected east of Cat Island (left) with a terrestrial core
collected from the youngest beach-ridge complex (right). The similarity provides further evidence that the
sandy unit at the seafloor surface east of the island represents a ravined antecedent island platform.
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Discussion

Geophysical and sedimentological data from around Cat Island reveal that its geologic history
was shaped by a combination of deltaic, tidal, lagoonal/estuarine, and oceanographic processes in addi-
tion to relative sea-level rise. Information about past sea-level fluctuations is not apparent from our data,
with the exception of the lowstand associated with the last glacial maximum. During the most recent
low sea level period, the MS-AL continental shelf was subaerially exposed, allowing streams and rivers
to incise the shelf (Kindinger, 1988, 1989; Winn and others, 1998). Despite the varied success of acous-
tic penetration across the survey area, this lowstand surface is visible in some seismic profiles (figs. 13
and 14). Given the geographic location of the study area, it is likely that observed incisions are related
to the ancestral Pearl River and its minor tributaries (Kindinger, 1988, 1989). During the subsequent rise
in sea level, the incised channels were infilled, typically with poorly sorted, coarse-grained to silty fine
sand. As sea level continued to rise, the filled channels may have been ravined and capped by a coarser
transgressive lag. Though not observed in every seismic line collected around Cat Island, the data show
a regionally identifiable ravinement surface (fig. 14), indicative of the influence of sea-level rise in the
island’s geologic history.

Stratigraphic units comprised of deltaic deposits have been identified south and east of Cat
Island and are related to the growth of the Mississippi River Delta (Miselis and others, 2013). The
SBDL, one of many lobes associated with the Mississippi River Delta, is the only delta lobe thought
to have encroached into this area of the northern Gulf of Mexico (Fisk, 1952; Frazier, 1967; Penland
and others, 1985; Roberts, 1997). The relation between the SBDL and the Chandeleur Islands in south-
eastern Louisiana (fig. 1) is well documented (Penland and others, 1985; Twichell and others, 2009).
Otvos and Giardino (2004) suggested that SBDL development also played a large role in the MS-AL
barriers formation, especially at the western end of the chain, but their study did not include shallow-
water geophysical data to support their speculations. Only recently have geophysical data confirmed the
presence of SBDL sediments south of Ship Island (Twichell and others, 2011). The acoustic signature of
delta deposits in our data is similar to that of delta deposits identified south of Ship Island and beneath
the Chandeleur Islands, indicating that the fine-grained sediments that dominate the stratigraphic record
south of Cat Island are SBDL deposits (Miselis and others, 2013).

Satellite imagery of the Mississippi barrier islands’ modern configuration shows tidal-inlet-
related shoals interspersed between the islands. It seems likely that similar features existed between the
islands when the barrier-island chain started to develop ~4,600 to 4,400 years ago (Otvos and Giardino,
2004) or even earlier, when a sandy platform extended from south of Mobile Bay to southeastern
Louisiana (Otvos, 1981; Otvos and Giardino, 2004). Data from north and south of the island indicate
a similar configuration existed in the past. In the south, a sandy unit, in some places less than 1.5 m
(4.9 ft) below the seafloor, was interpreted as a tidal delta (fig. 28, SWTD). The morphology and thick-
ness of the SWTD suggest it is an ebb-tidal shoal that formed offshore from an inlet west of Cat Island.
The precise origin of the sandy units to the island’s north (NUS and NLS) is less clear. Though the mor-
phology and thickness of those units do not necessarily evoke tidal-delta deposits, their location relative
to the tidal delta identified to the south indicates that the three units may have been a part of the same
ebb- and flood-tide delta complex (figs. 16, 17, and 28). This seems even more likely when the AIP
unit’s footprint, as inferred from data north, south, and east of Cat Island, is considered (figs. 40 and 41).

Since the middle to late Holocene, lagoonal/estuarine depositional processes associated with
sea-level rise and the formation of Mississippi Sound have influenced the geologic evolution north of
Cat Island. The area evolved as a series of stacked stratigraphic units overlying inner-shelf deposits and
the ravinement surface, respectively (fig. 12). High-energy conditions are represented by high-angle
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clinoforms with high-amplitude seismic facies, such as those associated with beaches, overwash, inlets,
and beach ridges. Given the angle of the clinoforms, our results indicate that the NLS unit was deposited
in shallow water under energetic conditions. However, in some places within the unit, high-angle clino-
forms seem to dip in opposite directions (fig. 13), which may be typical of the low-lying barrier islands
in the northern Gulf of Mexico that are battered on their northern shorelines during seasonal storms and
on their southern shorelines during tropical storms (Stone and others, 2004). Further investigation into
this observation may be warranted.

As sea level rose and water depth increased, less-energetic conditions ensued. The NUS unit
exemplifies this energy decrease with its low-angle horizons and lower amplitude seismic signatures
(fig. 19). The sandy character of the unit indicates that back-barrier sand-transport processes such as
moderate overwash, shoal/bar migration, or flood-tide delta development dominated over less-energetic
lagoonal/estuarine depositional processes (fig. 20).

The modern lagoonal/estuarine deposits of Mississippi Sound represent the least-energetic con-
ditions north-northeast of Cat Island. Water depth increased to protect the seafloor from wave activity
generated by all but major seasonal and extreme storms. The seismic facies of these lagoonal/estuarine
units are characterized by interior, discontinuous, low-amplitude horizontal horizons with areas that are
acoustically transparent (figs. 14 and 23). The fine-grained lithology observed in these units is consistent
with modern, low-energy Mississippi Sound sediments.

The influence of changing oceanographic conditions on the evolution of Cat Island is best
demonstrated on the island’s east side. Our results support the existence of a much more E-W linear
footprint for Cat Island, before the development of the SBDL, as suggested by previous studies (Rucker
and Snowden, 1989; Otvos and Giardino, 2004). In figure 41, we present our interpretation of what the
island footprint may have looked like as the SBDL began to influence oceanographic conditions around
the island. Bathymetry data show no suggestion of this feature east of the island (fig. 10). However, the
seismic data reveal ravined stratigraphic units in its place. A comparison of a marine vibracore col-
lected from within the AIP footprint bears a striking resemblance to a terrestrial core collected from the
youngest beach-ridge complex on the island (fig. 38). As the SBDL prograded into the northern Gulf of
Mexico, Cat Island became more and more sheltered from waves propagating from the south or south-
east; additionally, growth of the delta may have limited the sand supply from the east (Morton, 2008).
This combination of changing oceanographic processes and sediment supply caused a transformation
of the Cat Island platform from its more E-W linear shape to the distinct “T” shape it has today. As
conditions changed, waves and currents reworked the AIP sediments at the east end of the island and
transported them north and south to create the dynamic N-S spit that serves as the island’s eastern shore-
line. Given the lack of sand supplied from the barriers east of Cat Island (Morton, 2008; Byrnes and
Berlinghoff, 2012; Walstra and others, 2012) and the fact that these relict sediments supplied sand to the
island over geologic time, it is reasonable to hypothesize that continued ravinement of this unit may be
the only source of sand to Cat Island in the future, however inadequate it might be.

Despite the variety of influences on the geologic evolution of Cat Island, the stratigraphic re-
cord around the island is dominated by fine-grained sediment. We have identified four sandy units that
could be considered suitable sand resources for coastal restoration (fig. 40). Suitable sand resources are
defined here as (1) surficial deposits with greater than 60 percent sand and thicknesses greater than 2 m
(6.6 ft) or (2) buried deposits that are < 18.3 m (< 60 ft) below sea level, have <2 m (< 6.6 ft) of over-
burden, with greater than 60 percent sand, and a thickness 22 m (2 6.6 ft) (Kindinger and others, 2001).
The first and most extensive is the AIP unit, which is greater than 95 percent sand and approximately
5 m (16.4 ft) thick at its maximum. The AIP unit was identified in seismic profiles north, south, and
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east of the island (figs. 31, 40, and 42). This unit represents the footprint of Cat Island before the island
was transformed by changing oceanographic conditions that resulted from delta growth. This unit is, on
average, less than 2 m (6.6 ft) below the seafloor on the south side of the island and at the seafloor east
of the island (fig. 31B). Over geologic and historic timescales, our data and previous work indicate that
this unit has been a sand source for Cat Island (Rucker and Snowden, 1989; Otvos and Giardino, 2004).
The observed exposure at the seafloor east of the island, coupled with the predominance of westward-
directed longshore transport, indicates that this unit may be part of a modern littoral transport. As it may
be the only current sediment supply to the island, it is necessary to further explore the role of the AIP in
Cat Island’s sediment budget. This would require analysis of repetitive beach and nearshore surveys and
an incident wave climate assessment.

The other three units identified are all toward the western edge of the study area and not exposed
at the seafloor. It is unlikely they play a role in Cat Island’s modern littoral sand budget, which makes
them more suitable resources for coastal restoration. Two of the sand units are northwest of the island
and one overlies the other (NUS and NLS). On average, the upper unit is ~2 m (6.6 ft) below the sea-
floor, > 90 percent sand, and a little over 3 m (9.8 ft) in thickness (fig. 17, table 4). Despite meeting the
criteria for sand content and thickness for suitable resources, like the upper unit, the lower unit is farther
below the seafloor (~4 m; ~13 ft) (fig. 16). Both units are extensive and because they often appear to
be stacked in the seismic profiles, in combination the deposits represent a significant volume (~100 M
m?®; ~130.8 M yd?). The final unit lies to the southwest of Cat Island and has been interpreted to be a
tidal-delta deposit (SWTD). It meets the suitable-resource criteria with > 95 percent sand and an aver-
age thickness of >3 m (>9.8 ft) (figs. 28, 30, table 4). Data coverage was limited to the west, so the true
volume is expected to exceed estimates from this study (25.2 M m?3; 32.96 M yd?®).The unit also thickens
to the west and rises toward the seafloor, so even though the average depth to the unit is almost 4 m
(~13 ft), on the western edge it decreases to a minimum of ~1.4 m (~4.6 ft) below the seafloor (table 4).
Expanding data coverage to the west will provide a better picture of the feature’s morphology and en-
able a more refined sand volume estimate.

Conclusions

Geophysical and sedimentological data collected from around Cat Island, Mississippi, have
elucidated the complex stratigraphy that surrounds the island. The complexity relates to the many
influences on the geologic evolution of the island, such as fluvial, deltaic, lagoonal/estuarine, tidal, and
oceanographic processes that occurred as sea level rose during the Holocene. A ravinement surface
mapped throughout the study area provides regional evidence of sea-level rise and fluvial processes. The
interplay between sea-level rise and lagoonal/estuarine depositional processes was found on the island’s
northern side. Strata on the south side are dominated by deltaic sediments deposited during the progra-
dation of the SBDL into the northern Gulf of Mexico, but also show the influence of tidal processes that
existed west of the modern island. The island’s eastern side has the least complete geologic record due
to oceanographic processes that ravined relict deposits, transforming the east end of Cat Island into its
modern shape. While the study area around Cat Island is not rich in sandy deposits, three suitable sandy
stratigraphic units were identified in the western portion of the study area. These resources are prob-
ably not involved in present littoral transport and, with further investigation, may serve as suitable sand
resources for regional coastal-restoration projects.
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	Figure 1. The northern Gulf of Mexico showing the Mississippi-Alabama (MS-AL) barrier-island chain, from easternmost Dauphin Island to westernmost Cat Island, which separates the Mississippi Sound from the Gulf of Mexico. The location of the study area is
	Figure 2. Shoreline change on Ship Island, east of Cat Island, from the mid-1800s to 2005 (modified from Morton, 2008).
	Figure 3. Shoreline change on Cat Island from the mid-1800s to 2005. In comparison to Ship Island, Cat Island has remained relatively stable (modified from Morton, 2008).
	Figure 4. Photos of RV G.K. Gilbert mobilized with (A) swath bathymetry equipment, (B) a side-scan sonar towfish, and (C) the chirp seismic towfish underway behind the RV G.K. Gilbert.
	Figure 5. Geophysical tracklines for swath bathymetry and side-scan sonar (black) and for single-beam bathymetry (gray) around Cat Island from two cruises in 2010.
	Figure 6. Seismic-reflection tracklines around Cat Island collected in 2010.
	Figure 7. RV Streeterville mobilized with single-beam bathymetry equipment.
	Figure 8. Location of marine vibracores (red) and terrestrial vibracores (yellow) collected from Cat Island and surrounding waters in 2010 overlain on a grid of the bathymetry. Note the location of Cat Island Channel south of the island and Raccoon Spit o
	Figure 9. Photos of (A) marine vibracore collection aboard the RV G.K. Gilbert and (B) terrestrial vibracore collection on Cat Island.
	Figure 10. Detailed map of the bathymetry data collected around Cat Island showing the distinct morphology of each region (north, south, east) discussed in the text. Note that the southern shoreface is more gradual in slope than that to the north or east 
	Figure 11. Map of the region north of Cat Island showing the location of seismic lines discussed in the text or in figures (red lines). Cores discussed in the text and shown in figures are represented by yellow circles. Other cores collected from this reg
	Figure 12. Uninterpreted seismic profile 26 and 26a (upper panel) and the same profiles with interpretations (middle panel), including the locations of Cores 19, 21, and 24B, and the intersection of seismic profile 72 (fig. 18). The location of the profil
	Figure 13. Uninterpreted seismic profile 03 (upper panel) and the same profile with interpretations (lower panel), including the location of a sediment-filled paleo-incised valley (dashed blue line) below the ravinement horizon (solid red line). The locat
	Figure 14. Uninterpreted seismic profile 13 from the northeast side of the Cat Island study area. Location of the profile shown in figure 11. The dashed blue lines indicate sediment-filled, incised valleys below the ravinement horizon. Note the ravinement
	Figure 15. Downcore analysis for marine vibracore 19 (location shown in figure 11) coupled with a core photograph (center right) and relevant seismic profile (lower right; location shown in figure 11). Red circles on the core photo indicate grain-size sam
	Figure 16. Maps showing (A) the extent of the north lower sand (NLS) unit and unit thickness and (B) the depth to the top of the unit.
	Figure 17. Maps showing (A) the extent of the north upper sand (NUS) unit and unit thickness and (B) the depth to the top of the unit. 
	Figure 18. Uninterpreted seismic profile 72 (upper panel) and the same profile with interpretations (lower panel). The interpreted profile shows units lagoonal (L1, L2, L6), north upper sand (NUS), north lower sand (NLS), inner-shelf platform (ISP), inter
	Figure 19. Uninterpreted seismic profile 06 (upper panel) and the same profile with interpretations (lower panel). The interpreted profile shows units lagoonal (L1, L2, L6), north upper sand (NUS), north lower sand (NLS), and other lagoonal (OL), the inte
	Figure 20. Uninterpreted seismic profile 70 (upper panel) and the same profile with interpretations (lower panel). The interpreted profile shows units lagoonal (L1, L2, L6), north upper sand (NUS), north lower sand (NLS), other lagoonal (OL), antecedent i
	Figure 21. Downcore analysis for marine vibracore 7 (location shown in figure 11) coupled with a core photograph (lower right) and relevant seismic profile (center right; location shown in figure 11). Red circles on the core photo indicate grain-size samp
	Figure 22. Uninterpreted seismic profiles 08 and 08a (upper panel) and the same profiles with interpretations (middle panel). The interpreted profile also shows units lagoonal (L1, L2, L4, L6), north lower sand (NLS), other lagoonal (OL), antecedent islan
	Figure 23. Downcore analysis for marine vibracore 5 (location shown in figure 11) coupled with a core photograph (center right) and relevant seismic profile (lower right; location shown in figure 11). Red circles on the core photo indicate grain-size samp
	Figure 24. Map of the region south of Cat Island showing the location of seismic lines discussed in the text or in figures (red lines). Cores discussed in the text and shown in figures are represented by yellow circles. Other cores collected from this reg
	Figure 25. A non-interpreted (upper) and interpreted (lower) seismic-reflection profile from south of Cat Island shows all units identified. The profile location is shown in figure 24. Dashed lines on the lower profile indicate interpretation through gas 
	Figure 26. Downcore analysis for marine vibracore 28 (location shown in figure 24) coupled with a core photograph (center right) and relevant seismic profile (lower right; location shown in figure 24). Red circles on the core photo indicate grain-size sam
	Figure 27. Downcore analysis for marine vibracore 13 (location shown in figure 24) coupled with a core photograph (far lower right) and relevant seismic profile (center lower right; location shown in figure 24). Red circles on the core photo indicate grai
	Figure 28. Maps showing (A) the extent of the southwest tidal delta (SWTD) unit and unit thickness and (B) the depth to the top of the unit. The interpreted relict tidal delta thickens to the west, suggesting a formation process originating west of the is
	Figure 29. Downcore analysis for marine vibracore 15 (location shown in figure 24) coupled with a core photograph (center right) and relevant seismic profile (lower right; location shown in figure 24). Red circles on the core photo indicate grain-size sam
	Figure 30. Downcore analysis for marine vibracore 29 (location shown in figure 24) coupled with a core photograph (center right) and relevant seismic profile (lower right; location shown in figure 24). Red circles on the core photo indicate grain-size sam
	Figure 31. Maps showing (A) the southern and eastern extent of the antecedent island platform (AIP) unit and unit thickness  and (B) the depth to the top of the unit. The line close to the island’s southern shoreline shows thicknesses measured from one se
	Figure 32. Downcore analysis for marine vibracore 14B (location shown in figure 24) coupled with a core photograph (center right) and relevant seismic profile (lower right; location shown in figure 24). Red circles on the core photo indicate grain-size sa
	Figure 33. Maps showing (A) the extent of the southwest shoal (SWS) unit and unit thickness and (B) the depth to the top of the unit. Though reaching a maximum thickness of almost 4 meters, the unit is relatively discrete. The top of the unit generally in
	Figure 34. Map of acoustic backscatter from around Cat Island overlain with the grain size, in micrometers (mm), of the surface sediment from all marine vibracores. The red line indicates a transition from higher backscatter (lighter color, larger grain s
	Figure 35. Map of the region east of Cat Island showing the location of seismic lines discussed in the text or in figures (red lines). Cores discussed in the text and shown in figures are represented by yellow circles. Other cores collected from this regi
	Figure 36. A non-interpreted (upper) and interpreted (lower) seismic-reflection profile from east of Cat Island that shows all units identified. The profile location is shown in figure 35. Dashed lines on the lower profile indicate interpretation through 
	Figure 37. Downcore analysis for marine vibracore 3 (location shown in figure 35) coupled with a core photograph (far lower right) and relevant seismic profile (center lower right; location shown in figure 35). Red circles on the core photo indicate grain
	Figure 38. A comparison between a marine core collected east of Cat Island (left) with a terrestrial core collected from the youngest beach-ridge complex (right). The similarity provides further evidence that the sandy unit at the seafloor surface east of
	Figure 39. Comparison of the downcore analysis for core 8 (south) and core 1 (east) demonstrating the grain size and compositional similarities between deltaic sediments (St. Bernard delta 1 (SB1-dark blue) and St. Bernard delta 2 (SB2-light blue)) identi
	Figure 40. Map of the sand units’ extent identified in this study. Line colors correspond to unit colors in table 1. For area, volumes, thicknesses, and depths to units, see table 4. The shapes of the units outlined are not necessarily representative of t
	Figure 41. Map depicting the interpreted extent of the antecedent island-platform unit north, south, and east of Cat Island. Gray polygons indicate the source locations of seismic data that support this interpretation. The solid line indicates the extent 
	Figure 42. Seismic profile 51 from south of Cat Island coupled with corresponding seismic profile 70 north of Cat Island. The uninterpreted profiles are shown in the upper panels and the interpretations are shown in the middle panels. For descriptions of 
	Table 1. Major sandy units (and their abbreviations) identified around Cat Island, the vibracores in which they were sampled, their grain-size characteristics, and sedimentological composition. All values are averages of the GRADISTAT output for each samp
	Table 2. Non-sandy units (and their abbreviations) identified around Cat Island, separated by region. Columns include the vibracores in which the unit was sampled, its grain-size characteristics, and sedimentological composition. All values are averages o
	Table 3. Lithology reference legend for all core description logs.
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