Skip Links

USGS - science for a changing world

Open-File Report 2014–1185

Prepared in cooperation with the Bureau of Reclamation

Water-Quality Modeling of Klamath Straits Drain Recirculation, a Klamath River Wetland, and 2011 Conditions for the Link River to Keno Dam Reach of the Klamath River, Oregon

By Annett B. Sullivan, I. Ertugrul Sogutlugil, Michael L. Deas, and Stewart A. Rounds

Thumbnail of and link to report PDF (2.9 MB)Significant Findings

The upper Klamath River and adjacent Lost River are interconnected basins in south-central Oregon and northern California. Both basins have impaired water quality with Total Maximum Daily Loads (TMDLs) in progress or approved. In cooperation with the Bureau of Reclamation, the U.S. Geological Survey (USGS) and Watercourse Engineering, Inc., have conducted modeling and research to inform management of these basins for multiple purposes, including agriculture, endangered species protection, wildlife refuges, and adjacent and downstream water users. A water-quality and hydrodynamic model (CE-QUAL-W2) of the Link River to Keno Dam reach of the Klamath River for 2006–09 is one of the tools used in this work. The model can simulate stage, flow, water velocity, ice cover, water temperature, specific conductance, suspended sediment, nutrients, organic matter in bed sediment and the water column, three algal groups, three macrophyte groups, dissolved oxygen, and pH.

This report documents two model scenarios and a test of the existing model applied to year 2011, which had exceptional water quality. The first scenario examined the water-quality effects of recirculating Klamath Straits Drain flows into the Ady Canal, to conserve water and to decrease flows from the Klamath Straits Drain to the Klamath River. The second scenario explicitly incorporated a 2.73×106 m2 (675 acre) off-channel connected wetland into the CE-QUAL-W2 framework, with the wetland operating from May 1 through October 31. The wetland represented a managed treatment feature to decrease organic matter loads and process nutrients. Finally, the summer of 2011 showed substantially higher dissolved-oxygen concentrations in the Link-Keno reach than in other recent years, so the Link-Keno model (originally developed for 2006–09) was run with 2011 data as a test of model parameters and rates and to develop insights regarding the reasons for the improved water-quality conditions.

First posted October 24, 2014

For additional information, contact:
Director, Oregon Water Science Center
U.S. Geological Survey
2130 SW 5th Avenue
Portland, Oregon 97201
http://or.water.usgs.gov/

Part or all of this report is presented in Portable Document Format (PDF). For best results viewing and printing PDF documents, it is recommended that you download the documents to your computer and open them with Adobe Reader. PDF documents opened from your browser may not display or print as intended. Download the latest version of Adobe Reader, free of charge. More information about viewing, downloading, and printing report files can be found here.


Suggested citation:

Sullivan, A.B., Sogutlugil, I.E., Deas, M.L., and Rounds, S.A., 2014, Water-quality modeling of Klamath Straits Drain recirculation, a Klamath River wetland, and 2011 conditions for the Link River to Keno Dam reach of the Klamath River, Oregon: U.S. Geological Survey Open-File Report 2014–1185, 75 p., https://dx.doi.org/10.3133/ofr20141185.

ISSN 2331-1258 (online)



Contents

Significant Findings

Introduction

Model Description

Purpose and Scope

Scenario 11. Klamath Straits Drain Recirculation

Scenario 12. Wetlands Model Extension

Link-Keno Model Test with Year 2011

Acknowledgments

Supplementary Material

References Cited

Appendix A—Recirculation Scenario Results


Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo USA.gov logo U.S. Department of the Interior | U.S. Geological Survey
URL: http://pubsdata.usgs.gov/pubs/of/2014/1185/index.html
Page Contact Information: GS Pubs Web Contact
Page Last Modified: Wednesday, 07-Dec-2016 19:39:27 EST