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1  Introduction 
Climate change is likely to have many effects on natu-

ral ecosystems in the Southeast U.S. The National Climate 
Assessment Southeast Technical Report (SETR) indicates that 
natural ecosystems in the Southeast are likely to be affected 
by warming temperatures, ocean acidification, sea-level rise, 
and changes in rainfall and evapotranspiration (Ingram and 
others, 2013). To better assess how these climate changes 
could affect multiple sectors, including ecosystems, climato-
logists have created several downscaled climate projections (or 
downscaled datasets) that contain information from the global 
climate models (GCMs) translated to regional or local scales. 
The process of creating these downscaled datasets, known 
as downscaling, can be carried out using a broad range of 
statistical or numerical modeling techniques. The rapid pro-
liferation of techniques that can be used for downscaling and 
the number of downscaled datasets produced in recent years 
present many challenges for scientists and decisionmakers 
in assessing the impact or vulnerability of a given species or 
ecosystem to climate change. Given the number of available 
downscaled datasets, how do these model outputs compare 
to each other? Which variables are available, and are certain 
downscaled datasets more appropriate for assessing vulner-
ability of a particular species? Given the desire to use these 
datasets for impact and vulnerability assessments and the lack 
of comparison between these datasets, the goal of this report 
is to synthesize the information available in these down-
scaled datasets and provide guidance to scientists and natural 
resource managers with specific interests in ecological model-
ing and conservation planning related to climate change in the 

Southeast U.S. This report enables the Southeast Climate Science 
Center (SECSC) to address an important strategic goal of providing  
scientific information and guidance that will enable resource mana-
gers and other participants in Landscape Conservation Cooperatives
to make science-based climate change adaptation decisions.

1.1  Motivation and Goals

Downscaling allows for the exploration of how regional 
climate change might be experienced in the context of local 
and regional areas. Although downscaling is potentially useful 
for ecological modeling and conservation planning/manage-
ment decisions, there is no current literature that evaluates 
available downscaled datasets with regard to these same appli-
cations. In addition, there is no current literature that offers a 
comparison of the structure of these downscaled datasets with 
regard to the needs of ecologists in the Southeast U.S. The 
goals of this report are twofold. First, this report will synthe-
size available literature and information about six downscaled 
datasets that cover the Southeast U.S. Second, this report will 
use the synthesis of available literature and the evaluation of 
downscaled datasets to make recommendations regarding the 
use of downscaled climate data and future work needed to 
make these datasets more useful for ecological modeling and 
decisionmaking. The remainder of this chapter focuses on a 
discussion of the aspects of global and regional climate and 
climate modeling. Chapter 2 focuses on the different kinds of 
downscaling techniques. Chapter 3 focuses on the differences 
between six downscaled datasets and the information needed 
for ecosystem modeling in the Southeast U.S. Chapter 4 pres-
ents the results of an initial evaluation of the six downscaled 
datasets. Finally, Chapter 5 presents the conclusions and 
recommendations from this report. 

1.2  Aspects of Global and Regional Climate

Climate is defined as the average weather in a particular 
location. Climate includes the descriptions of the mean, vari-
ability, and other high order statistics of relevant variables, 
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such as temperature, precipitation, and wind. The climate 
system is an interactive system with five main components: 
the atmosphere, hydrosphere (oceans), cryosphere (ice sheets, 
snow fields, glaciers, sea ice, and permafrost), land surface 
(vegetation and soils), and the biosphere (marine and ter-
restrial biota). The world’s oceans are the main drivers of the 
climate system, while the general circulation of the atmo-
sphere is the mechanism by which most of the energy received 
from the sun or stored in the oceans is redistributed around 
the planet. Atmospheric motions carry heat from the tropics 
to polar regionsas well as water vapor from oceans into inland 
areas. This general circulation is formed by the uneven heating 
of the Earth’s spherical, tilted, and rotating surface area by 
the sun and helps maintain the balance of energy in the global 
climate as it responds to temperature and humidity gradients 
by transporting energy and moisture in the atmosphere (Hart-
mann, 1994).

The climate of a terrestrial area depends on its latitude, 
altitude, prevailing wind direction, and nearby water bod-
ies or mountains in addition to the general circulation of the 
atmosphere. The climate of the Southeast is warm and wet 
compared to the rest of the continental United States (Karl and 
others, 2009) due to its location near the Gulf of Mexico and 
the Atlantic Ocean. Temperatures typically are warmer equa-
torward, with a steeper meridional temperature gradient in the 
winter than in the summer. The average annual temperature of 
the Southeast has not changed significantly over the entire past 
century as a whole, but there has been a 2 degrees Fahrenheit 
(°F) (1.1 degrees Celsius (°C)) increase in annual average 
temperature between 1970 and 2008 with the greatest increase 
in temperature occurring during the winter season (Karl and 
others, 2009). The number of days with freezing temperatures 
increases northward with the Florida Keys reaching freezing 
temperatures less than once per year and northern Virginia 
having freezing temperatures 150 days per year (Mac and 
others, 1998). The number of days with below-freezing tem-
peratures has decreased by 4 to 7 days per year for most of the 
Southeast since the mid-1970s (Karl and others, 2009). More 
recently, and Misra and Michael (2013) have shown that the 
observed temperature trends in the Southeast are affected by 
land-cover and land-use changes (e.g., irrigation or urbaniza-
tion). The National Climate Assessment contains further infor-
mation regarding the climate of the Southeast U.S. (accessed 
August 13, 2014, at http://www.globalchange.gov/ncadac). 

1.3  The Basics of Climate Modeling

1.3.1  Modeling Basics
A global climate model (GCM) is a numerical model 

that uses known physical laws and relations to simulate the 
general climate patterns of the planet. The underlying model-
ing principles of GCMs are similar to (and takes their roots 
from) models used in weather forecasting. Although GCMs 
can be broken down into several components (atmosphere, 
land, ocean), each component works by dividing the “model” 

of the earth into a grid of some resolution and solving a series 
of equations at each grid point and time. For all GCMs the 
basic framework of the atmospheric component involves solv-
ing the equations that describe the conservation of momentum, 
energy, and mass for a fluid (in addition to a water vapor con-
servation equation for air) and which are affected by the gen-
eral circulation of the atmosphere (Hartmann, 1994). GCMs 
focus on time scales of seasons to centuries and currently 
have spatial scales of 100–300 kilometers (km) and many 
vertical layers to represent the atmosphere. Figure 1.1 shows 
a schematic of physical processes in the modeling environ-
ment. This schematic shows the grid that covers the globe in 
a GCM. The grid spacing and processes simulated in a GCM 
allow the model to simulate the general circulation of the 
atmosphere and ocean (Hartmann, 1994); however, multiple 
physical processes occur between the grid points of a GCM 
(e.g., clouds, precipitation, sea ice processes, thunderstorms, 
etc.). These processes are represented using parameterizations. 
Parameterization is a statistical representation of the effects 
of the sub-grid scale processes on the grid scale (or resolved 
processes) of the GCM. Thus, parameterizations are used 
so that important physical processes that cannot be directly 
simulated through numerical computation can still be incorpo-
rated into the model. Among the processes that typically are 
parameterized in a GCM are precipitation, clouds, atmospheric 
and surface radiation, land surface processes, turbulent fluxes 
and exchanges at interfaces of land-ocean-air, and friction, 
which are difficult to simulate accurately at the GCM scale 
(Hartmann, 1994). Clouds and rainfall are an example of some 
of the processes that are parameterized because the processes 
that create clouds and rainfall occur at less than 1 km spatial 
resolution, and the GCM simulates processes at 100 km or 
more.

Due to advances in computing power, the number of pro-
cesses included in GCMs continues to increase (Figure 1.2). 
Until the early 1990s, climate models incorporated primarily 
atmosphere and land surface processes. More recent climate 
models, however, incorporate atmosphere, land surface, and 
ocean processes. In addition, these models have begun to 
include more complex representations of atmospheric aero-
sols, the carbon cycle, and dynamic vegetation. Dynamic 
vegetation allows the vegetation to change in the modeling 
environment as the rest of the modeled climate changes, which 
is an improvement over older climate models where the veg-
etation is held constant to a specific reference period.

1.3.2  Emissions Scenarios
To project future changes to the climate, scenarios must 

be developed that prescribe possible forced changes to the 
earth’s energy balance, and thus its climate. These “forc-
ings” could originate from natural (e.g., volcanic eruptions 
or changes in the sun’s energy output) or manmade (e.g., 
combustion of fossil fuels) sources. Emissions scenarios are 
“what-if” scenarios that specify future trajectories of important 
greenhouse gasses such as carbon dioxide. The scenarios may 
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also include the amount and type of land-use and land-cover 
changes that could take place in the future. In the past, emis-
sion scenarios developed by the Intergovernmental Panel on 
Climate Change (IPCC) for the periodic Assessment Reports 
(AR) have been based on assumptions on economic and 
population growth as well as technology development and 
other factors (IPCC, 2009). But it is important to recognize 
that no scenario is assumed to be more likely than any other. 
The downscaled projections evaluated in this report are based 
on a set of IPCC scenarios developed for the third and fourth 
assessment reports. The scenarios, listed from highest to low-
est emissions are A1FI, A1B, A2, and B1. The A1FI scenario 
depicts the highest amounts of carbon emissions with energy 
use coming from the burning of fossil fuels. This is also the 
scenario that has most closely approached recent observed 
emissions. The A1B is similar to the A1FI scenario except that 
not all energy comes from the burning of fossil fuels. The A2 
scenario is considered to be “business as usual” where popu-
lation growth and emissions keep increasing at the current 
rate. The B1 scenario assumes new efficient technologies are 
spread quickly and are massively used so that less greenhouse 
gasses are emitted. Emissions scenarios are used as one way to 
account for uncertainty about future human activities. The sce-
narios listed above are part of the Special Report on Emissions 
Scenarios (SRES) produced by the IPCC for use in GCMs for 
the IPCC Fourth Assessment Report. For the Fifth Assessment 
Report, the IPCC has produced new Representative Concen-
tration Pathways (RCPs) as inputs for climate modeling. The 
SRES scenarios and RCPs were constructed differently from 
each other. The SRES scenarios were constructed by making 
different assumptions for future greenhouse gas pollution, land 
use, and other driving forces. In contrast, the RCPs focus on 
different pathways of radiative forcing, with the conceptual-
ization that there are multiple socioeconomic and technologi-
cal development scenarios that can lead to the same amount of 
radiative forcing applied to the climate (http://www.wmo.int/
pages/themes/climate/emission_scenarios.php). It is impor-
tant, however, to note that the resulting emissions and radia-
tive forcing from the SRES scenarios and RCPs are similar 
through the middle of the century. In addition, the similarities 
between the SRES scenarios and RCPs lead to similar results 
from the GCMs used in the Fourth and Fifth IPCC Assessment 
Reports (Knutti and Sedláček, 2012). Therefore, although this 
report focuses on SRES, the analyses, results, and recommen-
dations of this report should still be applicable to the RCPs 
in the Fifth Assessment Report. Before continuing to discuss 
downscaling, it is also important to discuss the different 
sources of uncertainty in climate modelling.

1.3.3  Uncertainty in Climate Modeling

One of the most important aspects of climate modeling 
and downscaling is the uncertainty that arises between the out-
put from the model and what will actually be observed in the 
future. Several different kinds of uncertainty are represented in 

climate modeling and downscaling. These types of uncertainty 
include:

•	 Natural uncertainty 

•	 Scientific uncertainty 

•	 Scenario uncertainty 
Natural uncertainty is related to the natural climatic fluctua-
tions that arise in absence of human influence. For example, 
the El Niño Southern Oscillation and the North Atlantic 
Oscillation change from year to year (or on multiyear time 
scales of less than a decade) and both have an impact on the 
temperatures and precipitation in the Southeast. Some of 
these natural fluctuations are external to the climate system, 
such as solar variability. Other natural fluctuations, such as 
volcanic activity, are internal to the climate system. Scientific 
uncertainty, also known as model, response, or structural 
uncertainty, is related to how well the physical processes 
of climate are understood and to how those processes are 
represented in individual models. For instance, although we 
know the climate system is sensitive to emissions, there is 
still a question of exactly how sensitive the climate system is 
to emissions. In addition, the ability to simulate the climate 
system is still limited, particularly at local and regional scales. 
Although there are many physical processes included now 
in a GCM, our understanding of how these processes affect 
the climate system is still incomplete. Given this, how these 
processes are represented in GCMs may vary, and in turn the 
simulated response to the same amount of radiative forcing 
may be different. For reference, radiative forcing is defined 
as “a change in the balance between incoming solar radiation 
and outgoing infrared (i.e., thermal) radiation” (U.S. Envi-
ronmental Protection Agency, 2013). Scenario uncertainty, 
also known as human uncertainty, is a source of uncertainty 
related to human activities, particularly what future emissions 
may be from human activities. All three of these sources of 
uncertainty are present in all climate projections; however, the 
peak in each of these sources of uncertainty happens at differ-
ent times in a projection for different variables. Hawkins and 
Sutton (2009) point out that for the first decade of a projec-
tion, natural uncertainty is the largest source of uncertainty for 
temperature. Hawkins and Sutton (2009) and Hayhoe (2012) 
also point out that scientific uncertainty is largest for the third 
decade into the projection, and human uncertainty is largest 
for the ninth decade into the projection for temperature. In the 
case of precipitation, Hawkins and Sutton (2011) show that 
natural uncertainty is the largest source for the first decade. 
However, Hawkins and Sutton (2011) and Hayhoe (2012) 
also show that scientific uncertainty is the largest source of 
uncertainty for both the third and ninth decades of a projec-
tion for precipitation. This comparison points out that the 
major sources of uncertainty for different time periods in the 
larger scale projections can be different for different variables 
of interest. Multiple GCMs and emissions scenarios are used 
in each dataset in order to capture these different forms of 

http://www.wmo.int/pages/themes/climate/emission_scenarios.php
http://www.wmo.int/pages/themes/climate/emission_scenarios.php
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uncertainty. From this, it is possible to quantify the uncertainty 
by comparing a variable from multiple GCMs.

Although the projections from GCMs reflect the three 
main sources of uncertainty, an additional source of uncer-
tainty is referred to by Hayhoe (2012) as scale uncertainty. 
Changes on a global scale affect locations in different regions 
in different ways because the characteristics of each region 
are different. Downscaling, aside from what is previously 
described, is also used to address uncertainty that is related to 
the dynamics of a region of interest.

2  Downscaling
Most GCMs successfully capture large-scale atmospheric 

patterns and global and continental temperature responses to 
changes in greenhouse gas emissions. In that sense the models 
can be used to better understand how human actions (i.e., 
greenhouse gas emissions) can alter the Earth’s climate. Com-
putational constraints limit the scale at which GCMs operate, 
which is usually too coarse to aid decisionmakers that are con-
cerned with local or regional adaptations to climate change. 
Downscaling is used to address this limitation by translating 
the coarse-scale GCM output to the regional or local scale. 
However, it is important to note that downscaling does not 
resolve scientific uncertainty or some finescale processes (such 
as clouds).

The common definition of downscaling is described by 
Benestad and Chen (2008) as “the process of making the link 
between the state of some variable representing the large space 
and the state of some variable representing a much smaller 
space.” While numerous techniques have been used that could 
fall under this definition, all can be broken down into two 
basic groups. The first of these groups is dynamic or numeri-
cal downscaling, and the second group is empirical statistical 
downscaling (ESD; also referred to as statistical downscaling 
or empirical downscaling).

2.1  Dynamic Downscaling

Dynamic downscaling, also known as numerical 
downscaling, employs methods similar to those discussed 
previously for GCMs. This process usually refers to the use 
of limited area models (LAMs; e.g., Giorgi, 1990; Frogner 
and others, 2006; Tudor and Termonia, 2010). LAMs are high 
resolution models for a limited area that are one-way nested 
at their lateral boundaries with a GCM. That is, the GCM 
provides input for the boundaries of the LAM, but the LAM 
does not return any information to the GCM. LAMs that are 
used for climate-scale time periods (i.e., a season or longer) 
are commonly referred to as regional climate models (RCMs; 
Wang and others, 2004; Laprise, 2008). Because these models 
cover only a portion of the Earth, they require input at the 
area boundaries from a GCM for variables such as surface 
pressure, wind circulation, air temperature and humidity, and 

sea-surface temperature. The spatial resolution of RCMs and 
LAMs is on the order of tens of kilometers, but can be as fine 
as a few kilometers if grids are nested into a coarser RCM 
simulation. Dynamic downscaling techniques simulate most 
physics in the climate system (similar to weather models and 
GCMs) and are capable of producing simulations that are 
physically consistent throughout the region being modeled. 
There are also several drawbacks associated with dynamic 
downscaling techniques.

•	 Computationally expensive—Given the calculations 
involved over the desired region (that is, the region 
to be modeled), a tremendous amount of computing 
resources and time are required for computation. This 
can limit the number of GCMs and emissions scenarios 
that are considered for climate change applications. 
It can take months using a supercomputer to run one 
RCM over an area the size of the Southeast U.S. to 
downscale climate projection that covers a couple of 
decades.

•	 Systematic errors—Errors in the dataset are intro-
duced by inaccuracy in the models, such as how pre-
cipitation and other metrics are parameterized. RCMs 
and LAMs inherit the systematic errors of the GCM 
that is being downscaled in addition to having their 
own systematic errors. In most cases, such errors can 
be accounted for with bias correction of the RCM or 
LAM output so that the dataset has the same statistical 
properties as observations over the same time and area.

•	 Parameterization schemes—Approximations of pro-
cesses that occur at a finer resolution than the model 
represents are created on the basis of present climate 
and, therefore, may not be valid in future climates 
(Benestad and others, 2008).

2.1.2  Statistical Downscaling

Statistical downscaling, or more formally, empirical sta-
tistical downscaling (ESD), refers to a group of downscaling 
techniques that use statistical methods and observed climate 
data to build the relation between regional/local and global 
scales. Many techniques can be defined as statistical down-
scaling techniques, but the techniques themselves generally 
fall into one of three categories:

•	 Transfer functions or regression methods typically 
are the simplest ESD techniques used to determine the 
relation between large area and site-specific surface 
climate data or large-scale upper air data and local 
surface climate data. These techniques include linear 
and multiple linear regression, canonical correlation 
analysis, principal components analysis (or empirical 
orthogonal functions), artificial neural networks, and 
kriging (Barrow, 2002; Wilby and others, 2004; e.g., 
Heyen and others, 1996; Busuioc and others, 2001 and 
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2006; Widmann and others, 2003; Benestad, 2007; 
Ghosh and Mujumdar, 2008; Hoar and Nychka, 2008). 
Statistical downscaling approaches typically are less 
computationally demanding than dynamic downscal-
ing approaches and, as a result, can downscale a large 
number of GCMs relatively easily. However, these 
approaches require a large amount of observation data 
to establish statistical relations that may only be valid 
within the historical period used for calibration (Bar-
row, 2002).

•	 Weather typing techniques function similarly to 
transfer functions; however, weather typing focuses on 
determining the relation between atmospheric circula-
tion types and local weather patterns. These circulation 
types or weather classes can be determined objectively 
through cluster analysis (e.g., Corte-Real and oth-
ers, 1999; Huth, 2000; Kidson, 2000; Hewitson and 
Crane, 2002 and 2006) or subjectively through various 
published schemes (e.g., Bardossy and Caspary, 1990; 
Jones and others, 1993). Weather type techniques 
include analog methods, self-organizing maps, and 
Monte Carlo techniques (Wilby and others, 2004; e.g., 
Hughes and others, 1993; Conway and Jones, 1998; 
Zorita and Von Storch, 1999; Timbal and McAvaney, 
2001). Although these types of techniques are founded 
on links between large-scale climate and local weather 
conditions, the scenarios that are produced are rela-
tively insensitive to future climate forcing (that is, 
using only large-scale circulation may not account for 
all projected local changes; Barrow, 2002).

•	 Weather generator techniques replicate the statistical 
attributes of a local climate, but do not replicate the 
observed sequences of events (Wilks and Wilby, 1999; 
Wilby and others, 2004). Most commonly, these gener-
ators make use of Markov chains (e.g., Richardson and 
Wright, 1984; Baigorria and Jones, 2010) or the prob-
ability of dry and wet spells of various lengths (e.g., 
Racsko and others, 1991). Unlike the other statistical 
techniques, the parameters of a weather generator can 
be altered in accordance with scenarios of future cli-
mate change for both the mean and variability. Weather 
generators, however, are typically designed for use at 
independent, individual locations (Barrow, 2003). 

Regardless of the category of statistical downscaling 
technique, several advantages and attractive features are 
shared by all statistical techniques (Von Storch and others, 
2000; Varis and others, 2004). 

•	 Statistical downscaling techniques are less computa-
tionally expensive than dynamic downscaling tech-
niques, potentially allowing for analysis of many more 
model runs compared to dynamic downscaling.

•	 They are based on standard and accepted statistical 
procedures.

•	 Statistical techniques may be flexibly crafted for spe-
cific purposes.

•	 ESD techniques are able to incorporate historical cli-
mate information for the desired region.

There are also several disadvantages to using statistical 
techniques for downscaling (Goodess and others, 2001; Varis 
and others, 2004). 

•	 Statistical downscaling techniques assume that the sta-
tistical relations will be unchanged in a future climate. 
This is related to issues of stationarity in statistical 
modeling. Stationarity implies that the statistical 
properties of a variable will be the same in time. It 
is not necessarily true that each variable will have 
similar statistical properties through time. The assump-
tion of stationarity also implies that the error of the 
statistical process will be the same during current and 
future history. 

•	 They require a long (> 20 years) and reliable data 
series to allow the statistical relations to be robust. 
Therefore, a number of meteorological and oceanic 
variables (which are likely relevant to terrestrial and 
aquatic ecology) cannot be statistically downscaled 
simply because the corresponding observations of 
these variables are either not available or not observed 
for a long enough period of time.

•	 Like dynamic downscaling techniques, statistical tech-
niques are also affected by the errors used in GCM.

Given the numerous variety of techniques and their asso-
ciated advantages and disadvantages, the question remains, 
Why use downscaled datasets over the original GCM out-
put datasets? Many of the processes that have the strongest 
influence on ecosystems especially in the Southeast occur at 
resolutions finer than those of GCMs. This means that because 
the processes are parameterized in GCMs, they cannot provide 
an indication of local and regional scale patterns. For example, 
a GCM cannot provide detailed information regarding changes 
in precipitation over a state park compared to surrounding 
areas, but it can provide information regarding the change in 
average total precipitation for a season in a regional domain 
of interest. This is because a GCM is designed to capture 
larger scale patterns such as the location and strength of the 
jet stream. As such, a GCM is appropriate use for projections 
of larger scale patterns. However, the fact that a GCM must 
parameterize processes that occur at grid scales finer than the 
GCM resolution (e.g., rainfall and clouds) means that it is not 
appropriate to use GCM data for local guidance as in the state 
park example. In a coarse GCM, local areas known to receive 
more precipitation get spatially averaged with areas known 
to receive less precipitation—all of this is averaged together 
into a single point in the GCM. Downscaling incorporates 
information regarding local variations in climate that are not 
represented in the GCMs. This process allows downscaling to 
better represent the influence of processes such as clouds and 
precipitation and as a result gives more confidence regarding 
local changes than a GCM can provide.
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2.3  Bias Correction 

In addition to the downscaling techniques themselves, an 
additional important component known as bias correction is 
applied in a downscaling process. Bias correction is a process 
that removes or reduces the biases that occur in GCM and 
RCMs and are inherited by the downscaled data. The first kind 
of bias removed is systematic bias. This type of bias is when 
the mean of the GCM data or downscaled data differs some-
what consistently from the observed mean for a given variable. 
For example, given the average temperature over a historical 
30-year period projected by the GCM may be 2–3 °C warmer 
or colder than the observed average temperature for the same 
period over a region. A second kind of bias is associated with 
the internal variability of a model (Palmer and Weisheimer, 
2011). This bias is associated with the lack of representation 
of processes that occur at grid scales finer than the resolution 
of the GCM. This can lead to an over or underrepresentation 
of how a variable of interest (temperature, precipitation) varies 
from year to year. For instance, an underrepresentation of the 
variability of precipitation can lead to fewer wet periods and 
fewer dry periods, while an overrepresentation may produce 
too many wet or dry periods. 

Bias is determined for GCMs and downscaled data using 
hindcast simulations. A hindcast simulation is when a GCM 
is run for a historical period. The resulting GCM and down-
scaled data for a variable are compared to the observed data 
for the same variable for this historical period, which allows 
for the assessment of model biases.

 Bias is removed from climate model data in multiple 
ways. One of the most simple ways of removing bias is to add 
the difference between the projection and a hindcast simula-
tion to the observed climatology of an area. The change in 
temperature, computed as the difference between the projected 
value and the hindcast simulation, is added to the observed 
climatology to determine a bias corrected projection. It is also 
common to use the anomalies (or departures) from a reference 
period to investigate how a variable will change over a given 
time period. Differences from the mean are commonly used 
for temperature change, while ratios are more commonly used 
for precipitation change (IPCC-TGCIA, 1999). This reference 
period should be a time period that 

•	 Is representative of the recent average climate in the 
study region

•	 Encompasses a range of climate variations, which ide-
ally, include historically warm and cool (wet and dry) 
periods

•	 Covers a time period where data are available

•	 Is consistent, or able to be compared, with reference 
periods used in other impact assessments.

The reference period used most often by climatologists 
is 1961–1990. This period was defined by the World Meteo-
rological Organization and has been used in previous IPCC 
Assessment Reports. However, a 30-year time period may not 
be long enough to account for natural climatic variability on 
a multidecadal timescale, which could influence long-term 
impacts (IPCC-TGCIA, 1999). 

Another way to remove bias is a simple normalization 
technique. For this technique, the mean and standard deviation 
of the model of the current climate are replaced with the mean 
and standard deviation of observed historical data. The biases 
from the current climate are assumed to be the same for the 
model of the future climate by this technique. There are also 
bias correction techniques that use quantile based mapping. 
Watanabe and others (2012) compared several bias correc-
tion techniques for both temperature and precipitation. They 
found negligible differences between the bias-corrected data 
and observations for historical data; however, there were large 
differences in future simulations that were based on the bias 
correction method used.

3  Downscaled Datasets and 
Ecosystems in the Southeast

Numerous downscaled datasets (both statistical and 
dynamic) are now available. This section includes basic infor-
mation for six available datasets (e.g., who created it, where 
the dataset can be found, associated publications) and an 
analysis of metadata. These datasets are all accessible online, 
but there are important basic differences in the metadata for 
each product. Metadata in this case refers to the characteris-
tics of each dataset. For reference, what we have defined as 
metadata information in this synthesis includes: 

•	 Type of downscaling technique used

•	 GCMs and emissions scenarios used

•	 Spatial resolution and domain covered

•	 Temporal resolution and time period

•	 Available output variables (temperature,  
precipitation, etc.).

Our survey is not exhaustive, but includes the most 
widely used, peer reviewed, and publicly available down-
scaled datasets. These six downscaled datasets also represent 
a range of downscaling techniques used to create them. Half 
of these datasets were created using statistical downscaling 
techniques, while the remaining three datasets were created 
using dynamic downscaling approaches.
1.	 CLAREnCE10 (COAPS Land-Atmospheric Regional 

Ensemble Climate Change Experiment)—The Center 
for Ocean Atmospheric Prediction Studies (COAPS) at 
Florida State University – Accessible at http://elnino.
coaps.fsu.edu/thredds/catalog.html (Lydia Stefanova, 
written commun., 2013; Misra and others, 2011; Ste-
fanova, Misra, Chan, and others, 2012; Stefanova, Misra, 
and Smith, 2012)

2.	 SERAP (Southeast Regional Assessment 
Project)—Texas Technical University – Accessible 
through the U.S. Geological Survey (USGS) Center for 

http://elnino.coaps.fsu.edu/thredds/catalog.html
http://elnino.coaps.fsu.edu/thredds/catalog.html
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Integrated Data Analytics (CIDA) GeoData Portal http://
cida.usgs.gov/gdp/ (Dalton and Jones, 2010; Stoner and 
others, 2012)

3.	 BCSD (Bias Corrected Spatial Disaggregation)—Santa 
Clara University/U.S. Department of Energy – Accessible 
through the USGS CIDA GeoData Portal http://cida.usgs.
gov/gdp/ (Maurer and others, 2007)

4.	 Hostetler Datasets—U.S. Geological Survey/Oregon 
State University – Accessible through the USGS CIDA 
GeoData Portal http://cida.usgs.gov/gdp/ (Hostetler and 
others, 2011)

5.	 NARCCAP (North American Regional Climate 
Change Assessment Program)—National Center for 
Atmospheric Research (NCAR), National Oceanic and 
Atmospheric Administration (NOAA), National Sci-
ence Foundation (NSF), U.S. Environmental Protection 
Agency (EPA), Department of Energy (DOE) – Acces-
sible at http://www.narccap.ucar.edu/ (Mearns and others, 
2009)

6.	 CCR (Center for Climatic Research)—The Center 
for Climatic Research, Wisconsin Initiative for Climate 
Change Impacts (WICCI) – Accessible through the Center 
for Climatic Research and the USGS CIDA GeoData 
Portal http://cida.usgs.gov/gdp/ (Lorenz, 2014)

In this section we will detail the differences between these 
downscaled datasets with regard to what we have defined as 
the metadata for each dataset. Throughout this section we will 
refer often to Table 3.1, which compares the metadata for each 
of these datasets, and accompany this discussion with other 
figures to clarify the differences between these datasets. The 
first set of differences we consider are the downscaling tech-
niques, GCMs, and emissions scenarios used to create these 
datasets.

3.1  Downscaling Techniques, GCMs, and 
Emission Scenarios

Considering the differences presented in Tables 3.1 and 
3.2, it is apparent that the computational expense of dynamic 
downscaling limits the number of GCMs and emissions 
scenarios that can be considered in the creation of a dataset. 
However, because dynamic downscaling considers the full 
physics of the atmosphere and ocean, there are many more 
climate variables available or derivable from these datasets. In 
contrast, the statistical techniques are much less computation-
ally expensive than dynamic techniques. As such, statistical 
techniques are able to consider many more GCMs and emis-
sions scenarios that are available, but the number of available 
variables for these datasets is limited to those for which a 
robust model can be derived. 

 The limitation in the number of variables statistically 
downscaled is related to the use of observational data in 

building statistical relations between global and regional/
local scales. Although each GCM used has multiple variables 
available, not all the same variables have long observational 
records across the United States. For example, observational 
records of temperature in the U.S. can be longer than 100 years. 
However, in some regions there are less than 20 years of 
observations of solar radiation, which is a key component for 
estimating evapotranspiration. As such, the resulting number 
of variables that can be statistically downscaled are limited to 
those with long observation records. As mentioned previously, 
stationarity implies that a variable will have similar statistical 
properties through time. For example, a non-stationary vari-
able may have a period where the standard deviation or mean 
is very different from another period. As such, incorporating a 
long observational record allows statistical downscaling tech-
niques to account for issues with stationarity during the his-
torical periods. Using a period of 10 years to build the statisti-
cal relations involved risks chosing one period that may have 
a different mean or standard deviation compared to another 
period. Therefore, long observational records are important 
to account for stationarity during this historical record. CCR, 
BCSD, and SERAP datasets are limited to temperature and 
precipitation at either daily or monthly time scales. 

While each of these datasets is classified as being created 
with either statistical or dynamic downscaling techniques, 
as mentioned previously there are several kinds of statistical 
and dynamic downscaling techniques, and the technique used 
to create each downscaled dataset may have impacts on the 
utility of the guidance produced. For example, SERAP uses 
a modified statistical asynchronous regression between each 
GCM used and the local scale. The Bias Corrected Spatial 
Disaggregation technique is used to create the BCSD dataset. 
For the CCR dataset, a combination of linear and logistic 
regression with a potential model are applied to downscale 
temperatures and precipitation (Lorenz, 2014). All of these 
techniques fall into a category of statistical downscaling tech-
niques known as transfer functions (Varis and others, 2004). 
These types of statistical techniques are among the most 
simple of techniques and can produce an ensemble of high 
resolution climate scenarios very easily. However, as noted 
previously, the techniques in this category tend to have poor 
representation of extreme events. For instance, Maurer and 
Hidalgo (2008) note that BCSD tends to have more error in 
the extremes of the temperature and precipitation distributions 
compared to other downscaling techniques. 

Just as different techniques and methods are used to 
derive the statistically downscaled model output, the NARC-
CAP, Hostetler, and CLAREnCE10 datasets are created using 
different variations of dynamic downscaling. These varia-
tions are mostly in terms of the RCMs used to downscale the 
GCM output (each with different parameterization schemes). 
In addition, NARCCAP, Hostetler, and CLAREnCE10 also 
downscale different GCMs. Similar to GCMs, individual 
RCMs have uncertainties from their parameterization schemes 
and spatial and temporal discretization. RCMs also inherit 
the uncertainty from the GCM that is being downscaled. 
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NARCCAP contains data from six different RCMs that have 
been used to downscale four GCMs. Each RCM has a dif-
ferent combination of parameterizations for land surface, 
vegetation types, clouds, and aerosols. The GCMs used also 
each have a different combination of parameterizations. There 
are not data yet for every combination of RCMs and GCMs 
in NARCCAP. The Hostetler dataset is created using only one 
RCM (RegCM3) to downscale three GCMs (different from the 
GCMs used in NARCCAP) with differing parameterizations. 
CLAREnCE10 uses the Florida Climate Institute/Florida State 
University Regional Spectral Model (RSM) RCM to down-
scale three of the GCMs used in NARCCAP. Although the 
RSM is closely related to the Experimental Climate Prediction 
Center model used in NARCCAP, RSM has different parame-
terizations than the RCMs used in the NARCCAP dataset. The 
parameterizations are important because each parameterization 
is created slightly differently from other parameterizations cre-
ated for representing the same process. For example, different 
parameterizations represent convection slightly differently and 
this in turn effects the results produced by a given GCM or 
RCM.

3.2  Spatial Domain and Resolution 

In this section, we will further explore the spatial domain 
and resolution differences between these datasets. Most of 
the downscaled datasets have archived model output for the 
continental U.S. or for most of North America (Table 3.1). 
NARCCAP and Hostetler cover North America, while 
CLAREnCE10 only covers the Southeast U.S. The SERAP 
and BCSD datasets cover the continental U.S. while the 
CCR dataset focuses on the Eastern U.S. However, although 
Table 3.1 gives a sense of the domain covered, the domain 
actually represented by each downscaled dataset will be dif-
ferent given different map projections, offshore coverage, 
and multiple domains covering a larger area. For example, 
consider Figure 3.1, which shows the modeling domain of 
NARCCAP. Areas with a lack of color reflect regions where 
NARCCAP has no data and the domain covered by this down-
scaled dataset takes its shape because of the map projection 
used. Figure 3.2 shows the five separate modeling domains 
used by the Hostetler datasets. The Southeast U.S. is contained 

in the ENA or Eastern North America Domain, while the 
Western U.S. is covered by the remaining four domains used. 

An additional important difference is that some of these 
datasets do not provide information offshore. NARCCAP 
(as shown in Figure 3.4) does provide output offshore of the 
Southeast U.S. Figure 3.3 shows examples of the output from 
the (a) BCSD dataset, (b) CLAREnCE10, and (c) SERAP for 
which there is no output available over the open ocean and 
the (d) Hostetler dataset for which there is output available 
over open ocean. Finally, Figure 3.4 displays the domain of 
the CCR dataset, which extends into southern Canada, but 
also does not provide output over the ocean. While all of these 
downscaled datasets cover land masses in the Southeast U.S., 
only two of these datasets extend into the Atlantic Ocean and 
Gulf of Mexico. Therefore, for ecological modeling appli-
cations that require information offshore, NARCCAP and 
Hostetler datasets are the only ones covered in this analysis 
that have this information for the available variables. 

The spatial resolution varies in a similar fashion between 
downscaled datasets to the domain each covers. Table 3.1 
shows that the resolution of NARCCAP is the coarsest 
(50 km) while the resolution of CLAREnCE10 is the finest 
(10 km). The resolution of the downscaled datasets created 
with statistical downscaling (CCR, BCSD, SERAP) falls 
between NARCCAP and CLAREnCE10. In addition, the 
Hostetler dataset provides both 15 and 50 km resolution data. 
Although the spatial resolution varies, the differences between 
these downscaled datasets and their applications to ecological 
modeling are discussed in Section 3.5 of this report.

3.3  Temporal Resolution and Time Period

All downscaled datasets have information available rep-
resenting the climate for the 20th and 21st centuries; however, 
not all datasets have a continuous time series. The BCSD and 
SERAP datasets cover a continuous period from as early as 
1950 (BCSD) to 2099. However, NARCCAP, CLAREnCE10, 
Hostetler, and CCR do not have a continuous time series of 
data available (Table 3.1; Figure 3.5). For those analyses 
investigating differences between future and current climatic 
change, all six of the downscaled datasets considered in this 
study can provide information for the available variables. 
However, if there is a need in an analysis for continuity from 
the current time to a future period, then the BCSD and SERAP 
datasets are the only downscaled datasets in this analysis that 
provide a continous time period. It should also be noted that 
the output temporal resolution of each of these datasets can 
be very different. The BCSD dataset has monthly downscaled 
model output, which is the coursest temporal resolution of 
all the considered datasets (Table 3.1). SERAP, CCR, and 
Hostetler provide daily output, while the remaining two data-
sets (NARCCAP and CLAREnCE10) provide data at hourly, 
3-hour, or 6-hour resolution. These different resolutions have 
implications for what output is available and derivable from 
each of these datasets, as discussed in the next section.

Table 3.2.  Number of GCMs and emissions scenarios 
considered by each downscaled dataset.

Downscaled 
dataset

Number of GCMs  
downscaled

Number of emissions 
scenarios used

CLAREnCE10 3 1
Hostetler 3 1
NARCCAP 4 1
CCR 10 3

BCSD 18 3

SERAP 12 4
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Figure 3.1.  Model domain of the North American Regional Climate Change Assessment Program 
(NARCCAP).  Original image courtesy of University Corporation for Atmospheric Research (http://www.
narccap.ucar.edu/about/index.html).

Figure 3.2.  Modeling domains of the Hostetler datasets.  The five model domains: Pacific Northwest (PNW), Pacific Southwest 
(PSW), Northern Rocky Mountains (NRM), Southern Rocky Mountains (SRM), and Eastern North America (ENA).  Original image 
courtesy of U.S. Geological Survey, Oregon State University  (http://regclim.coas.oregonstate.edu/dynamical-downscaling/index.html).
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Figure 3.3.  Model output examples for the (a) Bias Corrected Spatial Disaggregation (BCSD), (b) COAPS Land-
Atmospheric Regional Ensemble Climate Change Experiment (CLAREnCE10), (c) Southeast Regional Assessmente 
Project (SERAP), and (d) Hostetler datasets.  BCSD example is for monthly precipitation for Jan. 1960 (mm/day) from 
CGCM3 with the A1B emissions scenario, CLAREnCE10 example is for daily precipitation for Jan. 1, 2038 (mm) from the 
HADCM3 with the A2 emissions scenario, SERAP example is for daily precipitation (mm) for Jan. 3, 1960 HADCM3 with 
the A1B emissions scenario, Hostetler example is daily total precipitation (mm) from Jan. 3, 1980 from the GENMOM 
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N

Figure 3.4.  Domain of model output from the Center for Climatic Research (CCR) dataset.  Image courtesy of Dr. David Lorenz 
(Center for Climatic Research).
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3.4  Available/Derivable Variables

Each of these datasets differs in the specific variables that 
might be needed for a given application. In this section we 
will briefly discuss the variables available from each of these 
datasets both in terms of those used by climate scientists for 
evaluation and analysis and those used in ecological model-
ing. The full list of the variables available for each dataset 
is shown in Table 3.1. In addition, the complete list of vari-
ables for NARCCAP is available on the NARCCAP Web site 
(http://www.narccap.ucar.edu/data/data-tables.html).

All the evaluated datasets produce downscaled tempera-
ture and precipitation. However, it is important to note that 
although daily output is available for the SERAP and CCR 
projects and sub-daily output is available for the dynamic 
datsets, the BCSD dataset only produces monthly output. This 
precludes consideration of many derived climate extremes 
unless additional statistical techniques are employed to simu-
late sub-monthly values. Temperature and precipitation are 
the two most commonly downscaled climate variables. Other 
variables, such as dew point temperature, relative humidity, 
and wind speed and direction typically are not available from 
most statistically downscaled datasets, including the SERAP, 
BCSD, and CCR. The lack of long-term and spatially dense 

observational records for these variables makes it difficult 
to build the robust statistical relations necessary for empiri-
cal downscaling. Nevertheless, some studies have produced 
downscaled output for these varibles. Notably, Abatzoglou and 
Brown (2012) created a downscaled dataset for the Western 
U.S.that includes temperature, precipitation, wind speed, wind 
direction, relative humidity, and solar radiation. Information 
on changes in wind speed and wind direction is not avail-
able from the statistically downscaled datasets in this report. 
The absence of these variables from statistically downscaled 
datasets also makes it difficult to produce other ecologically 
important variables such as evapotranspiration. In contrast, 
dynamic downscaling enables the direct modeling or deriva-
tion of these variables. 

 The Southeast U.S. experiences many different atmo-
spheric circulation patterns at multiple scales, including 
frontal systems, hurricanes, and sea breezes, all of which 
influence precipitation, winds, and evapotranspiration at the 
smaller scales. There are many variables that can be used to 
define these patterns of circulation, including pressure, verti-
cal motion, and wind speed/direction at high altitudes (Hart-
mann, 1994; Wallace and Hobbs, 2006). Because dynamically 
downscaled datasets use equations that represent the physics 
and dynamics of the atmosphere, some of these features can 
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Figure 3.5.  Output time period for the downscaled datasets.

http://www.narccap.ucar.edu/data/data-tables.html
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be resolved or analyzed on the basis of model output. It is less 
common for statistical downscaling approaches to define pat-
terns of circulation as there is less observed historical data for 
these variables available to draw the required robust relation.

It is important to note that the statistical techniques 
represented in these downscaled datasets have been shown by 
the literature to have difficulty in capturing extremes in tem-
perature and precipitation. As discussed by Wilby and others 
(2004), transfer functions can underestimate the variability of 
the variables downscaled, and that is particularly evident with 
daily precipitation. Variability is tied to frequency of extreme 
events for the variable in question. For example, underesti-
mated precipitation variability leads to an underestimation of 
the frequency of extreme wet periods, extreme dry periods, or 
both. In contrast, if the varability of precipitation is overesti-
mated, there will be a tendency to overestimate the frequency 
of extreme wet period or extreme dry periods. Some statistical 
techniques have been applied to improve the representation of 
extreme events (e.g., Furrer and Katz, 2007). The issues with 
variability and extreme events in the six downscaled datasets 
in this analysis will be discussed in Chapter 4. 

3.5  The Climate Sensitivities of Southeast U.S. 
Species and Ecosystems

 The potential impact associated with changes in precipi-
tation, temperature, and extreme events has led to multiple 
studies of the impacts to ecosystems in the Southeast and 
around the world. The National Climate Assessment states 
that coastal ecosystems in the Southeast will be affected by 
changes in salinity and water levels associated with sea level 
rise, and the broader Southeast will be affected by changes in 
rainfall and evapotranspiration. In addition to these changes, it 
is also noted that changes in the frequency of fires, hurricanes, 
and other disturbances can have a profound impact on ecosys-
tems as a whole (Ingram and others, 2013). Specifically in the 
Southeast, changes in precipitation have been observed during 
warmer months, causing changes in stream discharges and 
warmer water (Alexandrov and Hoogenboom, 2001; Rugel 
and others, 2012). 

Two common ecological modeling approaches with 
regard to climate change include both bioclimatic models and 
species distribution models. One of the primary concerns with 
both GCM and downscaled datasets for ecological models is 
that the spatial scale is too coarse, particularly in mountainous 
areas. Some studies suggest that the coarse scale of climate 
models and currently available downscaled datasets cause 
a bias toward species survivability in the ecosystem models 
(Trivedi and others, 2008; Franklin and others, 2013). Specifi-
cally, Franklin and others (2013) recommend that the resolu-
tion of climate model output used be finer than a 4 km spatial 
resolution, finer than any downscaled dataset in this synthesis. 
Among the six downscaled datasets evaluated in this report, 
none come close to this level of spatial resolution (Figure 3.6). 
Even the finest resolution dataset, CLAREnCE10, has a spatial 

resolution two to three times as coarse as the recommenda-
tions by Franklin and others (2013), while the other datasets 
are from three to more than ten times as coarse. An example 
of one such downscaled dataset produced with a resolution 
finer than 4 km is the NASA Earth Exchange Downscaled 
Climate Projections (NEX-DCP30; Thrasher and others, 
2013). This downscaled dataset has a resolution of 800 meter 
(m) across the continental U. S. It should be noted, however, 
NEX-DCP30 is not evaluated here. In addition, while this 
downscaled dataset does have a finer resolution, the finer reso-
lution does not necessarily indicate that a dataset provides a 
more accurate representation of historical climate. This in turn 
does not mean that a finer resolution dataset provides a more 
accurate representation of future climate. While resolutions 
finer than 4 km may be desireable or even necessary for some 
ecological studies, limitations in computing power, scientific 
knowledge of fine-scale climate processes, and availablility 
of observed data make the production of downscaled datasets 
finer than 4km infeasible in most situations. 

First, dynamic downscaling requires a large amount of 
computing power. This leads to a large amount of time (poten-
tially months) and/or a large amount of computer processors 
required to run the dynamic downscaling. In contrast, the 
observations that could be used for the creation and evalu-
ation of a dataset created with statistical downscaling typi-
cally do not have a resolution finer than 4 km. These are two 
primary limitations of technology and observations that may 
be overcome in the future. While it is possible to downscale 
to these resolutions, there are questions among climatologists 
as to how meaningful the results would be with regard to the 
atmospheric processes involved at such fine resolutions. The 
ability to determine how meaningful downscaling would be at 
less than 4 km is limited by the availability of measurements 
at a similar scale to evaluate the resulting downscaled dataset. 
Therefore, the available computing power limits the amount 
of downscaling done through a dynamic downscaling process, 
statistical downscaling is limited by the available observa-
tions, and the lack of observations at a resolution as equal to 
the downscaling limits the ability to assess how meaningful 
downscaled datasets are at these resolutions.

Although there are limitations to climate observations, 
there is also a mismatch between the observation record of 
climate and the measurement records for species and ecosys-
tems. Although the National Climate Assessment Southeast 
Technical Report (SETR; Ingram and others, 2013) indicates 
multiple impacts to ecosystems in the Southeast U.S., it also 
notes (particularly with regard to aquatic ecosystems) that 
“...the ecological relationships and life histories of many 
Southeast species are not yet well understood within the 
constraints of current climatic variability” (p. 243). The SETR 
has documented numerous studies of the potential impacts of 
climate change in an effort to show the potential impacts of 
climate change to Southeast ecosystems. However, although 
there are studies of climate change impacts to the most vulner-
able species, there is no informational database regarding the 
specific climate sensitivities of individual species. In addition, 
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although there are more than 100 years of record for weather 
and climate observations for several locations in the Southeast, 
there is typically less than 5 years of observations of ecosys-
tems. This mismatch of climate and ecological observations 
presents a challenge to building robust relations between 
climate and ecology. In terms of variables available from the 
downscaled datasets in this synthesis, changes in tempera-
ture, precipitation, and the frequency of extreme events (for 
example, fires, droughts, and hurricanes) are among the most 
likely aspects of climate change to affect the ecosystems of the 
Southeast. However, few of the studies described in the SETR 
describe the climate sensitivities of individual species and the 
potential impacts. Some examples of species studies include:

•	 Cabbage Palm and Red Cedar – Desantis and others, 
2007

•	 Bald Cypress – Middleton, 2009 

•	 Cypress and Swamp Gums – Conner and others, 
2011

•	 Multiple Wetland Tree Species – Stallins and others, 
2010 

•	 Red and Black Mangroves – Sherrod and others, 
1986; Pickens and Hester, 2011

•	 Longleaf Pine – Bhuta and others, 2009; Stambaugh 
and others, 2011

•	 Multiple Freshwater Fish Species – Matthews and 
Marsh-Matthews, 2003

•	 Freshwater Mussels – Golladay and others, 2004

•	 Sea Urchins – Lessios, 1988

•	 Coral – Jokiel and Coles, 1977; Wilkinson and 
Souter, 2008

•	 Daphnia pulex and Daphnia lumholtzi – Fey and 
Cottingham, 2011

•	 Spartina alterniflora – Kirwan and others, 2009
While these represent some of the most vulnerable species to 
climate change in the Southeast, this compilation of studies 
also allows the opportunity to compare the climate sensitiv-
ity of these species. First, consider the sensitivities associated 
with tree species in the Southeast as shown in Table 3.3. Three 
of the six species are sensitive to drought conditions, while 
the remaining three species are sensitive to temperature or a 
combination of temperature and precipitation. This indicates 
that there are several climate metrics that can be used to deter-
mine the impact of climate change to multiple tree species. 
All the datasets in this synthesis can provide information on 
temperature and precipitation and can be used to derive some 
aspects of future drought conditions. However, while variables 
such as evapotranspiration can be estimated, the estimate of 
this variable requires wind speed and solar radiation, neither 
of which are available from the SERAP, BCSD, and CCR 
datasets. Table 3.4 shows the sensitivities of the remaining 
species discussed in the SETR. In this instance, most species 
are primarily sensitive to changes in water temperature. Given 
a relation developed between air and water temperature (as in 
the harmonic analysis by Cho and Lee, 2012), it is possible to 
estimate water temperature from the available datasets. How-
ever, hurricane circulation can only be approximated by the 
GCMs (Tapiador, 2008), and a hurricane climatology can only 
be represented by dynamic downscaling techniques (Emanuel 
and others, 2008). Although a GCM can represent the atmo-
spheric patterns that drive the location of hurricanes, the 
coarse resolution of a GCM does not allow it to fully resolve 
the circulation of a hurricane. As such the full circulation and 
precipitation patterns of a hurricane cannot be resolved by a 
GCM, though they can be approximated by dynamic down-
scaling approaches.
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Figure 3.6.  Visualization of spatial resolution differences between Franklin and others (2013) 
recommendations, the downscaled datasets, and the global climate models.
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 Although the literature on the climate sensitivities of 
species continues to grow, it remains a challenge for clima-
tologists to provide downscaled datasets that speak to the great 
complexity and diversity of relations between species, their 
ecosystems, and climate. In addition to the computational 
expense associated with running GCMs and downscaling, 
there is also a computing issue associated with storage. The 
results of running a GCM and downscaling process can lead 

to the production of several terrabytes (or in the case of GCMs 
used for IPCC, petabytes). Therefore, even though there are 
many variables produced by a GCM and downscaling, only 
some of them can be stored. Without knowledge of which 
climate variables and associated thresholds are important, the 
variables stored will be chosen by the climate modeler without 
emphasis on the needs of other disciplines. In addition, the 
lack of knowledge regarding the sensitivity limits the ability 
to assess the accuracy of downscaled datasets for the critical 
needs of ecologists for a specific species or habitat. 

4  Downscaled Dataset Evaluation 

 This section describes the results of an initial evaluation 
of each of the downscaled datasets described in this report for 
ecosystem modeling across the Southeast U.S. The methodol-
ogy for this initial evaluation is discussed in Section 4.1, fol-
lowed by a summary of results and a discussion of several key 
points common to multiple downscale datasets in Section 4.2. 

4.1  Data and Methods

Each of the six downscaled datasets has distinct dif-
ferences in metadata, which presents unique challenges for 
evaluating model output across the Southeast. Each dataset has 
a different spatial resolution, temporal resolution, time period 
(or periods), and spatial domain. In order to focus on the dif-
ferences between the downscaled datasets rather than those 
caused by differences in scale and methodology, the evaluation 
was done over scales, periods, and domains common to all six 
datasets. Specifically, this method considers all the variables 
evaluated for each downscaled dataset over the following 
scales, periods, and spatial domains:

•	 Temporal resolution—For this initial evaluation 
the variables in the evaluation were considered at a 
monthly timescale. Given that the BCSD dataset has 
only a monthly temporal resolution, the remaining 
datasets were aggregated to this temporal resolution. 

•	 Time period—The datasets were evaluated over a 
historical time period that is common to all six datas-
ets and to the observed gridded dataset used for this 
evaluation. The time period chosen is 1971 through 
1999.

•	 Spatial resolution—Given that NARCCAP has 
the coarsest resolution of these downscaled datas-
ets, the five remaining downscaled datasets and the 
observed dataset were aggregated to the resolution 
of NARCCAP (50 km). However, given the potential 
value of an evaluation on a finer scale, an addi-
tional level of analysis used a 15 km resolution and 
excluded NARCCAP from analysis.

Table 3.3.  Climate sensitivities of given species and associated 
studies for tree species. 

Species Study Sensitivity

Cabbage Palm Desantis and others, 2007 Drought, tidal flooding
Southern Red 

Cedar
Desantis and others, 2007 Drought, tidal flooding

Bald Cypress Middleton, 2009 Temperature, precipita-
tion, water depth

Multiple 
Wetland Tree 
species

Conner and others, 2011 Drought, precipitation, 
evapotranspiration

Red and Black 
Mangroves

Sherrod and others, 1986; 
Pickens and Hester, 
2011

Temperatures < 37.5 F 
for 2 to 5 days,  
Temperatures 
< 20.3 F for 2 to  
5 days

Longleaf Pine Bhuta and others, 2009; 
Stambaugh and others, 
2011

Winter season tempera-
tures and precipita-
tion, fire frequency

Table 3.4.  Climate sensitivities of given species and associated 
studies for the remaining species. 

Species Study Sensitivity

Multiple Fresh-
water Fish 
Species

Matthews and Marsh-
Matthews, 2003

Drought

Freshwater 
Mussels

Golladay and others, 2004 Drought, water tem-
perature

Sea Urchins Lessios, 1988 Hurricanes, water 
temperature

Coral Jokiel and Coles, 1977; 
Wilkinson and Souter, 
2008

Water temperature 
> 89 F (mortality), 
Water temperature 
> 86 F (bleaching), 
Hurricanes

Daphnia pulex 
and Daphnia 
lumholtzi

Fey and Cottingham, 
2011

Temperature, water 
temperature

Spartina alter-
niflora

Kirwan and others, 2009 Mean annual  
temperature
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•	 Spatial domain—The continental portion of the 
Southeast Climate Science Center (SECSC) domain 
was the basis for this evaluation. The latitude/longi-
tude boundaries used for this domain are 25N to 38N 
and 94W to 75W. However, given the variations in 
topography and climatic conditions across the study 
domain, several regional subdomains were also used 
for this evaluation. These domains are discussed in 
more depth below.

Figure 4.1 shows the boundaries of the regional subdo-
mains used in this evaluation, and Table 4.1 lists the number, 
name, and latitude/longitude boundaries of each subdomain 
in the Southeast U.S. These subdomains are used in assessing 
the performance of each of the six datasets during a histori-
cal period. Note that CLAREnCE10 does not cover the entire 
study domain. CLAREnCE10 extends to 37N and 89W, which 
excludes all or parts of subdomains 8 through 14. As such, 
the five remaining datasets were evaluated for subdomains 
8 through 14, and CLAREnCE10 was excluded from the 

analyses for these subdomains. The subdomains were chosen 
at their respective sizes and shapes to capture the different 
microclimates across the Southeast U.S. 

4.1.1  Observed Dataset
PRISM (Parameter-elevation Regression on Independent 

Slopes Model) is a 4 km monthly modeled dataset created 
from station observations covering the continental U.S. 
PRISM data are derived using a spatial model that uses point 
data, a digital elevation model, and other spatial datasets to 
generate gridded estimates of annual, monthly, and event-
based climatic elements. The spatial modeling of PRISM 
involves a coordinate set of rules that takes into account eleva-
tion and proximity to water. Full details regarding PRISM are 
available from Daly and others (2008), and further documenta-
tion is available on the PRISM Web site. The specific PRISM 
dataset used to evaluate the downscaled datasets here is the 
AN81m monthly data with a spatial resolution of 2.5 minutes 

35º

30º

25º

–95º –90º –85º –80º –75º

Regional Evaluation Domains

Figure 4.1.  Map of regions used in evaluation.



4  Downscaled Dataset Evaluation     19

(approximately 4 km), which was also aggregated to a 50 km 
resolution for the evaluation (PRISM Climate Group, 2014). 
It is important to acknowledge that although PRISM is created 
with observed data, it does have some errors that are associ-
ated with the spatial modeling used to create it. However, 
these errors are considered negligible compared to the errors 
of downscaled datasets themselves. It should also be noted, 
that PRISM was not used in the creation of any of the down-
scaled datasets in this analysis.

4.1.2  GCM Constraints

This initial evaluation compares the downscaled data 
from the Geophysical Fluid Dynamics Lab (GFDL) GCM 
only. An evaluation of the ensemble of all available down-
scaled GCMs for each dataset was considered; however, the 
statistically downscaled datasets SERAP, BCSD, and CCR 
have downscaled data from more GCMs than dynamically 
downscaled datasets such as NARCCAP, Hostetler, and 
CLAREnCE10. Given that GFDL is the only GCM in com-
mon among all of the downscaled datasets, only the evalua-
tion based on downscaled GFDL data is presented here. It is 
important to note that a comprehensive comparison of GCMs 
was beyond the scope of this project; however, a comparison 
of GCMs is available from Sheffield and others (2013).

4.1.3  GFDL Contraints

In previous sections, it was mentioned that GCMs have 
their own biases before the data are downscaled. Given that 
each downscaled dataset evaluated in this report is derived 
GFDL GCM data, the datasets all inherit the errors from that 
GCM. GFDL’s simulated interannual surface temperature 
variability appears excessive over the Southeast U.S. (Knutson 
and others, 2006). In addition, GFDL has a cold bias for 
annual mean temperature. GFDL-modeled annual average 
temperatures in the Southeast U.S. are 1 to 5 °C below the 
average observations for the year (Delworth and others, 2006). 
The GFDL-modeled annual temperature is more variable than 
observations in the U.S., especially along the Gulf Coast. 
Furthermore, the GCM has a dry bias along the Gulf Coast 
and over Florida; however, the model becomes wetter than 
observations over North Carolina. Although the datasets in 
this synthesis all downscale GFDL, they do not all downscale 
the same model version. Hostetler and CCR downscale GFDL 
model version 2.0 while CLAREnCE10 and NARCCAP 
downscale GFDL model version 2.1. The remaining datasets, 
SERAP and BCSD, downscale both model versions 2.0 and 
2.1; however, only the downscaled data from GFDL model 
version 2.1 were analyzed in this synthesis (Table 3.1). Differ-
ences in modeled temperature and precipitation between the 
two versions of GFDL downscaled in the evaluated datasets 
are due to changes in model parameterizations. The tempera-
ture in GFDL model version 2.0, downscaled in CCR and 
Hostetler, is approximately one degree cooler in the Southeast 

U.S. except for in the State of Florida (Delworth and oth-
ers,2006). GFDL version 2.0 temperature is less variable 
than the temperature in GFDL version 2.1 by approximately 
0.1 standard deviations. The anomalously dry region along the 
Gulf Coast extends further north in GFDL version 2.1 than in 
GFDL version 2.0. Model version 2.1 of GFDL is similar to 
model version 2.0; however, there are differences in param-
eterizations of clouds and the land surface, as well as a change 
in dynamic equations. Model version 2.1 was calibrated to 
substantially reduce an equatorward drift in winds in the mid-
latitudes and the global cold bias that exist in model version 
2.0 (Delworth and others, 2006). The errors identified in the 
GFDL GCM over the Southeast U.S. do not suggest that the 
model is inadequate for use as input to regional downscaling; 
however, users of downscaled products need to be aware of 
such issues in order to understand and adequately interpret 
results from downscaling methods. Images and statistical 
evaluation of other downscaled GCMs from the downscaled 
datasets will be made available through the SECSC, but they 
are not discussed in this report.

4.1.4  Variables and Evaluation Metrics
Two climate variables, monthly average temperature and 

precipitation, were chosen for the initial evaluation. These 
variables were chosen because they were among the highest 
priority variables requested by ecologists at a workshop held 
on May 16–17, 2013, in Raleigh, N.C. This workshop high-
lighted temperature, precipitation, winds, and evapotranspira-
tion as a common set of variables of interest to ecologists. It 
is also important to ecologists to consider how a downscaled 
dataset represents the average, variability, and extremes of 
each variable (see Appendix 1 for a summary of the findings 
of the workshop). Here, we evaluated the following metrics:

•	 Bias was used to assess differences between the 
mean of each variable for each month from the 
observations during the historical period. Bias for 
each variable for each month was represented as

Biasi = Di – O,

•	 where i is the dataset; Di is the mean of the variable 
during the historical period; and O is the observed 
mean of the variable during the historical period. 
This bias was considered across the time period over 
the domain. This metric was used to assess what 
amount of bias is present in the downscaled datasets 
that are available, regardless of if these downscaled 
datasets have had bias correction applied. 

•	 Standard Deviation Difference was used to assess 
differences in the year to year variability of tem-
perature and precipitation between each dataset 
and the observations. This difference is calculated 
similarly to the bias. However, instead of consider-
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ing the mean of each variable from each dataset 
and the observations, the standard deviation was 
calculated for each variable for each dataset and the 
observations. These were then used to determine the 
standard deviation difference. This difference was 
considered across the time period over the domain. 
The standard deviation difference is analogous to 
how each downscaled dataset represents the natural 
variability of a given variable. A downscaled dataset 
that underestimates the variability of precipita-
tion (i.e., a negative standard deviation difference) 
indicates that the downscaled dataset in question has 
as many very wet or very dry periods as observed 
historically. 

•	 Probability Distribution Functions – Given that 
different species and landscapes are affected by 
different thresholds of temperature and precipita-
tion extremes, the probability distribution functions 
(PDFs) for each dataset and the observations are 
used to assess differences in the representation of 
these extremes. The PDFs are calculated for January 
and July for each of the subregions in the South-
east U.S. domain. The PDFs estimated by each 
downscaled dataset to the observed PDF allows for 
an assessment of how frequently given thresholds 
of temperature and precipitation occur compared 
to observations. Given that different thresholds of 
temperature and preciptitation influence different 
species, comparing these PDFs to observed PDFs 
provides sense of the accuracy of each downscaled 
dataset for multiple thresholds of importance.

•	 Annual Cycle – The annual cycle of a variable is 
defined as the fluctuation of the variable that is a 
function of the time of year (American Meteorologi-
cal Society, 2000). In addition to a qualitative com-
parison of the annual cycles, the root mean square 
error and correlation are calculated for each dataset 
and variable. Root mean square error is a measure 
of the difference between the model and the obser-
vations. Higher values indicate greater differences 
beween the models and the observations. Correlation 
is a measure of the relation between the annual cycle 
from each downscaled dataset and the observed 
annual cycle. For instance, if the observed tempera-
ture increases from winter to summer by 10 degrees, 
will the temperatures estimated by each downscaled 
dataset increase by a similar amount? This is all 
related to how well each downscaled dataset repli-
cates the timing and transition between seasons for 
temperature and precipitation, which is critical for 
the phenology of species and ecosystems. 

Given the methodology and constraints, the next section 
discusses the results of this initial evaluation. The final section 
discusses the broad conclusions of this study and recommen-
dations for dataset use and future research.

4.2  Results and Discussion

Given the large amount of information available from 
each downscaled dataset, the results presented in this section 
are divided into two subsections. The first subsection summa-
rizes the overall results for each subregion in the domain. The 
second subsection discusses important aspects of the evalua-
tion and comparison of these downscaled datasets to consider 
prior to use in ecological modeling and decisionmaking.

4.2.1  Summary of Results
Results for each region described in Table 4.1 are sum-

marized in Tables 4.2–4.15. The tables are organized in order 
for subdomains 1–14. The downscaled datasets are each one 
column in a table. The metrics evaluated are listed in the rows. 
Each cell of the table lists the value of the relative error of the 
variable for the given month for the downscaled dataset listed 
at the top of the column. The relative error for each down-
scaled dataset and variable was defined as

where δx is the relative error; x is the value of a given vari-
able estimated by any given downscaled dataset; and x0 is the 
observed value of the given variable as indicated by PRISM. 
Positive (or negative) values of the relative error indicate that 
a variable is overestimated (or underestimated) by a down-
scaled dataset. In Tables 4.2–4.15, the relative error for each 
variable (average temperature, temperature variability, average 
precipitation, and precipitation variability) is shown monthly 
and color coded for each downscaled dataset. The relative 
error is included in addition to the other metrics described 
to summarize the results of the full analysis. The complete 
analyses for all metrics is included in Appendixes 2, 3, and 
4. Relative error gives an indication of how well a variable 
is estimated by a downscaled dataset relative to the observed 
value of that variable. 

Average Temperature: The dynamic datasets, CLAR-
EnCE10, Hostetler, and NARCCAP, have relative errors 
that indicate a consistent cold bias throughout the year in 
most regions (Tables 4.2–4.15). However, CLAREnCE10 
has a warm bias during July and August in Southern Florida, 

0

1xx
x

δ = −
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Northern Gulf Coast of Florida, and Alabama/Western Georgia 
(Tables 4.2, 4.4, 4.5). CLAREnCE10 temperatures are closer 
to observed temperatures than the other dynamic datasets for 
all seasons in most regions with the exception of winter in the 
Southern Appalachians (Table 4.7). There is a warm bias to the 
west of the Appalachians and a cold bias on the eastern side of 

the mountains in all downscaled datasets created with statisti-
cal downscaling in all months. An example of this is shown 
in the bias maps for January (Figure 4.2). It is important 
to note that this mountain bias is also present in the down-
scaled datasets created with dynamic downscaling when bias 
correction is applied.

Table 4.1.  Regional subdomain information.

Sub-
domain 
number

Subdomain name
Minimum 
latitude

Maximum 
latitude

Minimum 
longitude

Maximum 
longitude

1 Southern Florida 25 29 –83 –80

2 Northeast Florida / Georgia Coast 29 32.5 –83 –80
3 Northern Gulf Coast of Florida 29.5 32 –88.5 –83
4 Alabama / Western Georgia 32 34.5 –88.5 –83
5 South Carolina 32.5 34.5 –83 –79

6 Southern Appalachians 34.5 36.5 –85.5 –80.5

7 Eastern North Carolina 34.5 36.5 –80.5 –75

8 Louisiana / Mississippi Coast 29 32 –94 –88.5
9 Northern Mississippi / Northern  

Louisiana / Southern Arkansas
32 34.5 –94 –88.5

10 Southeast Virginia 36.5 38 –80.5 –75

11 Western Virginia / Eastern Kentucky 36.5 38 –85.5 –80.5
12 Western Kentucky / Tennessee 34.5 38 –88.5 –85.5
13 Northern Arkansas 34.5 36.5 –94 –88.5

14 Southern Missouri 36.5 38 –94 –88.5
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Figure 4.2.  Bias for monthly average temperature (°C) in January for (a) CLAREnCE10, (b) Hostetler, (c) NARCCAP, 
(d) CCR, (e) BCSD, and (f) SERAP.
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Table 4.2.  Summary of results for Region 1–Southern Florida, for CLAREnCE10 (CL10), Hostetler (Host), NARCCAP (NAR), CCR, BCSD, 
and SERAP (SRP).

Month
Average temperature Temperature variability EXPLANATION

CL10 Host NAR CCR BCSD SRP CL10 Host NAR CCR BCSD SRP From To

Jan. –0.10 –0.20 –0.26 –0.01 –0.02 –0.04 0.07 –0.13 –0.06 –0.22 –0.14 –0.15 < –0.80

Feb. –0.13 –0.22 –0.26 –0.01 –0.02 –0.02 0.26 0.07 0.18 0.06 0.05 0.13 –0.80 –0.50

Mar. –0.13 –0.22 –0.25 0.00 –0.01 –0.01 0.30 0.14 0.29 0.07 –0.01 0.15 –0.50 –0.30

Apr. –0.09 –0.18 –0.20 –0.01 –0.00 –0.01 0.18 0.08 –0.01 0.07 –0.04 0.03 –0.30 –0.10

May –0.06 –0.18 –0.19 –0.00 0.00 –0.01 0.03 –0.00 –0.08 –0.20 –0.25 –0.14 –0.10 0.10

June –0.02 –0.16 –0.17 –0.01 –0.00 –0.00 0.11 0.58 0.02 –0.02 0.06 0.03 0.10 0.30

July 0.01 –0.12 –0.11 –0.00 0.00 0.01 0.53 1.29 1.04 –0.01 –0.11 0.53 0.30 0.50

Aug. 0.01 –0.13 –0.11 0.00 0.00 0.00 0.77 1.30 0.84 0.18 –0.05 0.61 0.50 0.80

Sept. –0.03 –0.16 –0.14 0.00 –0.00 –0.00 0.79 0.46 0.68 0.06 0.03 0.41 > 0.80

Oct. –0.03 –0.16 –0.15 –0.01 –0.02 –0.01 0.31 –0.01 0.19 0.06 0.04 0.18

Nov. –0.04 –0.17 –0.20 –0.04 –0.04 –0.02 0.41 0.10 0.18 –0.06 0.05 –0.04

Dec. –0.07 –0.18 –0.24 –0.02 –0.04 –0.03 0.32 –0.03 0.16 –0.05 –0.02 –0.00

Month
Average precipitation Precipitation variability EXPLANATION

CL10 Host NAR CCR BCSD SRP CL10 Host NAR CCR BCSD SRP From To

Jan. 1.02 0.26 0.55 –0.09 –0.07 0.03 0.72 –0.11 0.14 –0.17 –0.11 –0.08

Feb. 0.61 0.15 0.52 –0.13 0.10 –0.01 0.21 –0.30 –0.10 –0.21 –0.07 –0.06 < –0.80

Mar. 0.34 0.01 0.41 –0.04 –0.02 –0.08 0.08 –0.35 –0.07 –0.09 –0.09 –0.09 –0.80 –0.50

Apr. 0.24 0.40 0.62 0.04 0.07 0.18 –0.06 –0.09 0.12 –0.04 –0.11 0.14 –0.50 –0.30

May –0.05 0.20 0.32 –0.07 –0.02 –0.05 0.03 –0.14 0.02 0.13 –0.06 0.42 –0.30 –0.10

June –0.42 –0.22 –0.23 –0.03 –0.00 0.09 –0.24 –0.38 –0.38 0.07 –0.11 0.58 –0.10 0.10

July –0.13 –0.11 0.04 0.05 0.01 0.01 0.22 0.11 0.73 0.51 –0.20 0.83 0.10 0.30

Aug. 0.11 0.02 0.21 0.01 –0.02 –0.02 0.37 0.27 0.95 0.25 –0.27 0.38 0.30 0.50

Sept. 0.45 0.07 0.31 –0.04 0.09 0.16 0.40 0.00 0.52 0.15 –0.13 0.45 0.50 0.80

Oct. 1.05 0.07 0.81 –0.10 0.21 0.14 0.78 –0.04 0.57 –0.13 0.12 0.25 > 0.80

Nov. 1.01 –0.18 0.22 –0.15 –0.10 –0.17 0.77 –0.28 0.07 –0.24 –0.20 –0.15

Dec. 1.34 0.27 0.92 0.03 0.15 0.18 0.41 –0.33 –0.02 –0.17 –0.13 –0.11
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Table 4.3.  Summary of results for Region 2– Northeast Florida/Georgia Coast, for CLAREnCE10 (CL10), Hostetler (Host), NARCCAP 
(NAR), CCR, BCSD, and SERAP (SRP).

Month
Average temperature Temperature variability EXPLANATION

CL10 Host NAR CCR BCSD SRP CL10 Host NAR CCR BCSD SRP From To

Jan. –0.17 –0.35 –0.44 0.02 –0.00 –0.05 0.36 –0.04 –0.10 –0.21 –0.14 –0.17 < –0.80

Feb. –0.19 –0.33 –0.40 –0.00 –0.01 –0.00 0.59 0.21 0.21 0.11 0.08 0.15 –0.80 –0.50

Mar. –0.18 –0.29 –0.34 –0.00 –0.02 –0.03 0.37 0.11 0.18 0.16 0.09 0.23 –0.50 –0.30

Apr. –0.11 –0.22 –0.23 –0.01 0.00 –0.01 0.41 0.26 0.12 0.19 0.06 0.26 –0.30 –0.10

May –0.08 –0.20 –0.19 0.01 0.01 –0.00 0.13 –0.03 –0.02 –0.00 –0.04 –0.03 –0.10 0.10

June –0.02 –0.19 –0.17 0.00 0.00 0.00 –0.05 –0.35 –0.29 –0.17 –0.02 –0.11 0.10 0.30

July 0.01 –0.17 –0.12 –0.00 0.00 0.00 0.71 0.11 0.97 0.10 –0.04 0.59 0.30 0.50

Aug. 0.01 –0.16 –0.12 0.00 0.00 0.01 0.72 0.12 0.55 0.35 0.05 0.73 0.50 0.80

Sept. –0.02 –0.17 –0.15 0.00 –0.01 –0.01 0.70 0.17 0.20 0.13 0.10 0.44 > 0.80

Oct. –0.01 –0.17 –0.15 –0.00 –0.02 –0.01 0.46 0.03 0.01 0.03 –0.03 0.14

Nov. –0.03 –0.20 –0.25 –0.03 –0.05 –0.02 0.65 0.10 –0.02 –0.12 0.01 –0.05

Dec. –0.13 –0.29 –0.40 –0.03 –0.05 –0.05 0.73 0.07 0.05 –0.06 0.01 –0.02

Month
Average precipitation Precipitation variability EXPLANATION

CL10 Host NAR CCR BCSD SRP CL10 Host NAR CCR BCSD SRP From To

Jan. 0.62 –0.03 0.01 –0.18 –0.09 –0.10 0.19 –0.17 –0.18 –0.18 –0.02 –0.18

Feb. 0.44 –0.08 0.27 0.06 0.11 0.15 0.14 –0.25 –0.01 0.13 –0.14 –0.08

Mar. 0.39 –0.12 0.11 0.03 0.03 0.04 0.33 –0.21 0.00 0.08 –0.07 –0.04 < –0.80

Apr. 0.65 0.41 0.42 0.11 0.05 0.14 0.24 –0.00 0.21 0.09 –0.18 –0.14 –0.80 –0.50

May 0.11 0.15 0.28 –0.07 0.00 –0.04 0.11 –0.20 0.07 0.08 –0.15 0.25 –0.50 –0.30

June –0.27 –0.17 –0.02 0.02 0.01 0.02 –0.01 –0.36 0.12 0.31 –0.20 0.51 –0.30 –0.10

July –0.03 –0.01 0.04 0.03 0.05 0.10 0.35 –0.13 0.69 0.76 –0.11 1.00 –0.10 0.10

Aug. –0.03 –0.18 –0.09 0.02 0.01 0.04 0.06 –0.30 0.24 0.27 –0.15 0.33 0.10 0.30

Sept. 0.42 –0.22 –0.11 0.06 0.04 0.06 0.29 –0.26 0.05 0.30 –0.11 0.20 0.30 0.50

Oct. 0.65 –0.24 0.15 –0.14 –0.00 –0.09 0.46 –0.26 0.14 –0.27 –0.04 –0.08 0.50 0.80

Nov. 1.05 –0.13 0.11 –0.17 –0.13 –0.07 1.04 –0.10 –0.01 –0.11 –0.24 –0.22 > 0.80

Dec. 1.27 0.32 0.61 0.05 –0.02 0.14 0.41 0.02 –0.04 –0.10 –0.19 –0.12
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Table 4.4.  Summary of results for Region 3 – Northern Gulf Coast of Florida, for CLAREnCE10 (CL10), Hostetler (Host), NARCCAP 
(NAR), CCR, BCSD, and SERAP (SRP).

Month
Average temperature Temperature variability EXPLANATION

CL10 Host NAR CCR BCSD SRP CL10 Host NAR CCR BCSD SRP From To

Jan. –0.40 –0.43 –0.56 0.05 0.02 –0.04 0.17 –0.10 –0.16 –0.22 –0.23 –0.19 < –0.80

Feb. –0.33 –0.37 –0.48 0.01 0.01 0.02 0.69 0.39 0.35 0.24 0.19 0.27 –0.80 –0.50

Mar. –0.24 –0.31 –0.37 –0.00 –0.02 –0.03 0.37 0.14 0.17 0.20 0.10 0.25 –0.50 –0.30

Apr. –0.11 –0.21 –0.24 –0.01 0.01 –0.00 0.41 0.18 0.10 0.14 0.09 0.19 –0.30 –0.10

May –0.06 –0.19 –0.19 0.01 0.02 –0.00 0.20 –0.07 0.02 0.00 0.02 0.07 –0.10 0.10

June. –0.02 –0.19 –0.16 0.00 0.01 –0.00 0.05 –0.23 –0.21 –0.03 0.03 –0.03 0.10 0.30

July 0.04 –0.16 –0.10 –0.00 0.00 0.01 1.08 0.54 1.27 0.20 –0.06 0.59 0.30 0.50

Aug. 0.03 –0.16 –0.10 0.01 0.00 0.01 0.90 0.21 0.69 0.33 0.09 0.59 0.50 0.80

Sept. –0.03 –0.19 –0.15 0.01 –0.01 –0.01 0.60 0.04 0.17 0.11 0.03 0.40 > 0.80

Oct. –0.06 –0.19 –0.17 0.00 –0.01 –0.01 0.41 0.06 0.08 0.03 –0.06 0.24

Nov. –0.14 –0.23 –0.30 –0.03 –0.04 –0.01 0.47 0.09 –0.08 –0.11 –0.01 –0.03

Dec. –0.35 –0.37 –0.52 –0.03 –0.03 –0.06 0.50 –0.04 –0.02 –0.09 –0.00 –0.03

Month
Average precipitation Precipitation variability EXPLANATION

CL10 Host NAR CCR BCSD SRP CL10 Host NAR CCR BCSD SRP From To

Jan. 0.01 –0.25 –0.19 –0.25 –0.10 –0.12 –0.01 –0.26 –0.21 –0.06 –0.03 –0.16

Feb. –0.08 –0.26 –0.04 0.07 0.03 0.16 –0.04 –0.30 –0.10 0.28 –0.05 0.23

Mar. 0.12 –0.21 –0.20 0.04 0.01 –0.04 0.32 –0.13 –0.19 0.33 –0.12 0.01 < –0.80

Apr. 0.69 0.44 0.43 0.03 0.12 0.17 0.34 0.13 0.07 0.06 –0.12 –0.11 –0.80 –0.50

May 0.13 0.16 0.25 –0.16 –0.11 –0.18 –0.04 –0.21 –0.06 0.04 –0.26 0.04 –0.50 –0.30

June. –0.26 0.09 0.26 0.02 0.01 0.12 –0.10 –0.22 0.27 0.12 –0.17 0.43 –0.30 –0.10

July –0.35 –0.13 –0.21 –0.03 –0.08 –0.17 –0.13 –0.48 –0.19 0.23 –0.37 0.31 –0.10 0.10

Aug. –0.27 –0.09 –0.13 0.03 –0.01 0.13 –0.12 0.02 0.02 0.32 –0.13 0.57 0.10 0.30

Sept. –0.05 –0.37 –0.18 0.24 0.10 0.01 –0.28 –0.55 –0.34 0.23 –0.09 –0.04 0.30 0.50

Oct. –0.11 –0.53 –0.16 –0.03 –0.04 –0.03 –0.14 –0.55 –0.09 –0.04 –0.02 0.02 0.50 0.80

Nov. 0.12 –0.34 –0.09 –0.15 –0.14 –0.12 0.20 –0.30 0.07 –0.19 –0.18 –0.23 > 0.80

Dec. 0.70 0.15 0.34 0.10 0.03 0.19 0.63 0.16 0.15 0.12 0.14 0.23
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Table 4.5.  Summary of results for Region 4–Alabama/Western Georgia, for CLAREnCE10 (CL10), Hostetler (Host), NARCCAP (NAR), 
CCR, BCSD, and SERAP (SRP).

Month
Average temperature Temperature variability EXPLANATION

CL10 Host NAR CCR BCSD SRP CL10 Host NAR CCR BCSD SRP From To

Jan. –0.80 –0.69 –0.90 0.09 0.04 –0.06 –0.06 –0.09 –0.16 –0.17 –0.18 –0.13 < –0.80

Feb. –0.58 –0.54 –0.72 0.02 –0.00 0.02 0.56 0.39 0.22 0.24 0.13 0.23 –0.80 –0.50

Mar. –0.35 –0.40 –0.48 –0.01 –0.05 –0.07 0.21 0.11 0.05 0.17 0.11 0.24 –0.50 –0.30

Apr. –0.15 –0.25 –0.28 –0.01 0.00 –0.02 0.39 0.24 0.16 0.17 0.03 0.20 –0.30 –0.10

May –0.07 –0.19 –0.18 0.02 0.02 0.00 0.07 –0.10 –0.06 –0.09 –0.02 –0.05 –0.10 0.10

June –0.03 –0.18 –0.15 0.00 0.01 –0.01 0.07 –0.33 –0.12 –0.06 0.04 0.02 0.10 0.30

July 0.02 –0.17 –0.09 –0.00 –0.00 –0.00 0.98 0.07 0.75 0.11 –0.01 0.37 0.30 0.50

Aug. 0.01 –0.16 –0.09 0.01 –0.00 0.01 0.86 –0.03 0.46 0.20 0.08 0.40 0.50 0.80

Sept. –0.06 –0.19 –0.16 0.01 –0.01 –0.02 0.39 –0.08 0.05 0.05 0.03 0.30 > 0.80

Oct. –0.13 –0.21 –0.18 0.01 –0.01 –0.00 0.26 0.04 0.06 0.01 –0.04 0.21

Nov. –0.28 –0.28 –0.37 –0.02 –0.05 –0.00 0.16 –0.02 –0.19 –0.11 –0.02 –0.04

Dec. –0.67 –0.54 –0.77 –0.04 –0.05 –0.10 0.23 –0.06 –0.12 –0.03 0.04 0.04

Month
Average precipitation Precipitation variability EXPLANATION

CL10 Host NAR CCR BCSD SRP CL10 Host NAR CCR BCSD SRP From To

Jan. –0.02 –0.06 –0.12 –0.12 0.00 –0.07 0.19 0.02 0.04 0.25 0.02 0.03

Feb. –0.04 –0.16 –0.04 0.02 0.06 0.14 –0.07 –0.23 –0.14 0.26 0.05 0.11

Mar. 0.22 –0.09 –0.23 0.04 0.07 0.03 0.12 –0.24 –0.39 0.08 –0.20 –0.10 < –0.80

Apr. 0.75 0.31 0.21 0.06 0.07 0.13 0.48 –0.04 –0.17 –0.05 –0.25 –0.24 –0.80 –0.50

May 0.68 0.12 0.10 –0.07 –0.09 –0.14 0.39 –0.19 –0.01 0.21 –0.19 0.01 –0.50 –0.30

June 0.82 0.28 0.24 –0.03 0.03 0.27 0.44 –0.18 0.10 –0.00 –0.23 0.42 –0.30 –0.10

July 0.43 0.13 0.06 –0.04 –0.02 –0.13 0.37 –0.35 0.12 0.23 –0.22 0.34 –0.10 0.10

Aug. 0.58 0.05 –0.10 –0.04 0.01 0.12 0.90 –0.23 0.19 0.55 –0.05 1.03 0.10 0.30

Sept. 0.09 –0.43 –0.37 0.11 –0.01 –0.09 0.03 –0.56 –0.27 0.57 –0.13 0.09 0.30 0.50

Oct. 0.00 –0.45 –0.26 –0.07 –0.11 –0.06 0.22 –0.44 –0.30 0.14 –0.05 0.20 0.50 0.80

Nov. 0.26 –0.12 0.09 –0.18 –0.12 –0.00 0.67 –0.03 0.34 –0.15 –0.23 –0.07 > 0.80

Dec. 0.39 0.14 0.22 0.08 0.02 0.10 0.29 –0.02 –0.03 0.11 0.13 –0.01
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Table 4.6.  Summary of results for Region 5–South Carolina, for CLAREnCE10 (CL10), Hostetler (Host), NARCCAP (NAR), CCR, BCSD, 
and SERAP (SRP). 

Month
Average temperature Temperature variability EXPLANATION

CL10 Host NAR CCR BCSD SRP CL10 Host NAR CCR BCSD SRP From To

Jan. –0.55 –0.65 –0.73 0.05 0.02 –0.06 0.31 –0.06 –0.12 –0.24 –0.19 –0.19 < –0.80

Feb. –0.43 –0.53 –0.59 0.00 –0.01 0.01 0.76 0.33 0.19 0.11 0.04 0.17 –0.80 –0.50

Mar. –0.29 –0.39 –0.41 –0.01 –0.04 –0.05 0.46 0.16 0.10 0.19 0.11 0.33 –0.50 –0.30

Apr. –0.16 –0.27 –0.27 –0.01 0.00 –0.03 0.49 0.38 0.19 0.21 –0.05 0.27 –0.30 –0.10

May –0.10 –0.21 –0.20 0.01 0.02 –0.00 0.06 –0.02 0.03 –0.06 –0.01 –0.13 –0.10 0.10

June. –0.03 –0.18 –0.16 0.00 0.00 –0.00 –0.06 –0.46 –0.30 –0.16 –0.05 –0.07 0.10 0.30

July –0.01 –0.17 –0.12 –0.01 –0.00 –0.01 0.56 –0.28 0.52 –0.03 –0.08 0.29 0.30 0.50

Aug. –0.02 –0.16 –0.11 0.01 –0.00 0.00 0.59 –0.13 0.38 0.14 –0.02 0.36 0.50 0.80

Sept. –0.06 –0.17 –0.15 0.00 –0.01 –0.02 0.55 0.07 0.31 0.21 0.03 0.38 > 0.80

Oct. –0.09 –0.19 –0.15 0.01 –0.01 0.00 0.34 –0.06 –0.07 –0.10 –0.07 0.10

Nov. –0.19 –0.27 –0.31 –0.01 –0.05 –0.01 0.57 –0.05 –0.16 –0.22 –0.06 –0.13

Dec. –0.46 –0.51 –0.63 –0.04 –0.05 –0.07 0.74 0.03 0.01 –0.12 –0.02 –0.01

Month
Average precipitation Precipitation variability EXPLANATION

CL10 Host NAR CCR BCSD SRP CL10 Host NAR CCR BCSD SRP From To

Jan. 0.08 0.09 0.03 –0.16 –0.07 –0.14 0.17 0.08 0.14 –0.11 –0.03 –0.21

Feb. 0.06 –0.03 0.22 0.03 0.07 0.12 –0.04 –0.22 0.05 0.26 –0.18 –0.05

Mar. 0.19 0.06 0.11 0.12 0.08 0.06 0.17 –0.09 –0.00 0.27 –0.09 –0.01 < –0.80

Apr. 0.57 0.35 0.39 0.09 0.07 0.17 0.39 –0.02 0.12 0.12 –0.15 –0.02 –0.80 –0.50

May 0.37 –0.02 0.07 –0.05 –0.03 0.00 0.29 –0.23 0.00 0.12 –0.20 0.28 –0.50 –0.30

June 0.26 –0.09 0.01 –0.08 0.02 0.10 0.03 –0.40 –0.01 0.04 –0.24 0.32 –0.30 –0.10

July 0.51 –0.03 0.09 –0.02 0.01 0.03 0.39 –0.42 0.09 0.53 –0.09 0.42 –0.10 0.10

Aug. 0.23 –0.37 –0.36 –0.15 –0.06 –0.03 0.04 –0.59 –0.31 0.01 –0.22 –0.01 0.10 0.30

Sept. –0.03 –0.54 –0.57 –0.10 –0.11 –0.08 –0.36 –0.68 –0.64 –0.19 –0.38 –0.26 0.30 0.50

Oct. –0.06 –0.49 –0.31 0.01 –0.11 –0.10 –0.10 –0.55 –0.32 –0.05 –0.15 –0.19 0.50 0.80

Nov. 0.40 –0.04 0.27 –0.18 –0.14 –0.06 0.18 –0.15 0.28 –0.14 –0.18 –0.28 > 0.80

Dec. 0.60 0.36 0.55 –0.08 –0.10 0.03 0.36 0.10 0.18 –0.03 –0.15 –0.10
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Table 4.7.  Summary of results for Region 6–Southern Appalachians, for CLAREnCE10 (CL10), Hostetler (Host), NARCCAP (NAR), CCR, 
BCSD, and SERAP (SRP).

Month
Average temperature Temperature variability EXPLANATION

CL10 Host NAR CCR BCSD SRP CL10 Host NAR CCR BCSD SRP From To

Jan. –1.68 –1.46 –1.89 0.20 –0.01 –0.21 –0.10 –0.12 –0.20 –0.17 –0.10 –0.11 < –0.80

Feb. –1.05 –1.04 –1.26 0.00 –0.09 –0.02 0.47 0.33 0.07 0.16 0.08 0.18 –0.80 –0.50

Mar. –0.53 –0.62 –0.67 –0.03 –0.10 –0.13 0.20 0.21 0.05 0.19 0.12 0.30 –0.50 –0.30

Apr. –0.23 –0.35 –0.36 –0.02 –0.02 –0.06 0.33 0.28 0.15 0.13 –0.00 0.12 –0.30 –0.10

May –0.12 –0.23 –0.22 0.01 0.01 –0.01 –0.01 –0.04 –0.07 –0.09 0.00 –0.07 –0.10 0.10

June –0.06 –0.18 –0.16 0.00 –0.01 –0.02 –0.06 –0.19 –0.23 –0.08 –0.01 –0.02 0.10 0.30

July –0.04 –0.16 –0.11 –0.01 –0.02 –0.02 0.13 –0.21 –0.06 –0.03 –0.06 0.04 0.30 0.50

Aug. –0.05 –0.15 –0.12 0.01 –0.01 –0.01 0.22 –0.11 –0.05 0.03 –0.02 0.10 0.50 0.80

Sept. –0.12 –0.20 –0.20 0.01 –0.02 –0.03 0.08 –0.05 –0.02 0.05 0.01 0.13 > 0.80

Oct. –0.21 –0.25 –0.23 0.02 –0.03 –0.02 0.08 –0.02 –0.12 –0.06 –0.00 0.12

Nov. –0.42 –0.40 –0.48 –0.01 –0.10 –0.02 0.11 –0.05 –0.23 –0.08 0.02 –0.06

Dec. –1.19 –0.94 –1.29 –0.08 –0.15 –0.21 0.25 0.03 –0.07 –0.01 0.04 0.12

Month
Average precipitation Precipitation variability EXPLANATION

CL10 Host NAR CCR BCSD SRP CL10 Host NAR CCR BCSD SRP From To

Jan. –0.17 –0.02 –0.04 –0.08 0.01 –0.08 –0.14 –0.14 –0.11 0.15 0.01 0.02

Feb. –0.09 0.05 0.04 0.03 0.10 0.09 –0.05 –0.06 –0.15 0.15 –0.05 –0.06

Mar. 0.03 0.02 –0.08 0.06 0.07 –0.03 0.01 –0.22 –0.25 –0.10 –0.21 –0.29 < –0.80

Apr. 0.67 0.29 0.21 0.04 0.06 0.21 0.56 0.14 –0.14 0.13 –0.24 –0.14 –0.80 –0.50

May 0.55 –0.13 –0.05 –0.02 –0.05 –0.08 0.41 –0.35 –0.14 0.10 –0.31 –0.11 –0.50 –0.30

June 1.13 –0.06 0.09 –0.03 0.06 0.18 0.70 –0.42 –0.02 0.11 –0.12 0.42 –0.30 –0.10

July 1.11 –0.08 0.04 0.02 0.06 0.03 0.88 –0.35 0.19 0.06 –0.14 0.28 –0.10 0.10

Aug. 0.92 –0.29 –0.20 –0.04 0.05 0.05 0.87 –0.44 –0.16 0.24 –0.05 0.20 0.10 0.30

Sept. 0.23 –0.45 –0.49 0.03 –0.08 –0.00 0.05 –0.57 –0.48 0.22 –0.13 0.13 0.30 0.50

Oct. 0.00 –0.31 –0.25 –0.06 –0.20 –0.15 0.06 –0.31 –0.36 0.13 –0.20 –0.05 0.50 0.80

Nov. 0.27 0.14 0.24 –0.12 –0.06 0.04 0.71 0.22 0.15 –0.04 –0.09 –0.08 > 0.80

Dec. 0.11 0.21 0.29 –0.03 –0.03 0.02 –0.08 –0.16 –0.22 –0.00 0.03 –0.15
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Table 4.8.  Summary of results for Region 7– Eastern North Carolina, for CLAREnCE10 (CL10), Hostetler (Host), NARCCAP (NAR), CCR, 
BCSD, and SERAP (SRP).

Month
Average temperature Temperature variability EXPLANATION

CL10 Host NAR CCR BCSD SRP CL10 Host NAR CCR BCSD SRP From To

Jan. –0.77 –0.79 –0.91 0.04 –0.00 –0.11 0.22 0.04 0.00 –0.25 –0.12 –0.18 < –0.80

Feb. –0.55 –0.64 –0.69 –0.03 –0.04 0.01 0.56 0.36 0.19 –0.03 –0.07 0.10 –0.80 –0.50

Mar. –0.34 –0.43 –0.44 –0.03 –0.05 –0.06 0.54 0.44 0.25 0.32 0.15 0.52 –0.50 –0.30

Apr. –0.19 –0.30 –0.29 –0.02 –0.01 –0.05 0.64 0.66 0.36 0.25 –0.05 0.31 –0.30 –0.10

May –0.11 –0.21 –0.19 0.01 0.02 –0.00 0.21 0.18 0.27 –0.01 0.05 –0.07 –0.10 0.10

June –0.05 –0.15 –0.15 –0.00 –0.01 –0.00 0.07 –0.30 –0.16 –0.10 –0.00 0.04 0.10 0.30

July –0.04 –0.14 –0.12 –0.01 –0.01 –0.01 0.39 –0.23 0.24 –0.08 –0.08 0.18 0.30 0.50

Aug. –0.04 –0.14 –0.12 0.00 –0.01 0.00 0.59 –0.09 0.19 –0.01 –0.08 0.16 0.50 0.80

Sept. –0.09 –0.16 –0.17 –0.00 –0.02 –0.03 0.33 0.02 0.17 0.07 –0.03 0.17 > 0.80

Oct. –0.13 –0.18 –0.16 0.01 –0.02 –0.01 0.24 –0.03 –0.05 –0.16 –0.08 –0.00

Nov. –0.25 –0.29 –0.32 –0.02 –0.07 –0.02 0.41 0.03 –0.04 –0.22 –0.10 –0.18

Dec. –0.63 –0.58 –0.73 –0.07 –0.09 –0.11 0.54 0.12 0.11 –0.15 –0.05 –0.02

Month
Average precipitation Precipitation variability EXPLANATION

CL10 Host NAR CCR BCSD SRP CL10 Host NAR CCR BCSD SRP From To

Jan. –0.15 0.11 0.07 –0.17 –0.07 –0.17 0.13 0.05 0.11 –0.15 –0.10 –0.33

Feb. –0.07 0.12 0.32 0.08 0.11 0.08 –0.07 –0.06 0.13 0.14 –0.24 –0.26

Mar. –0.08 0.14 0.08 –0.02 –0.00 –0.01 0.15 0.07 0.24 0.36 –0.15 –0.06 < –0.80

Apr. 0.34 0.27 0.30 0.13 0.06 0.16 0.36 0.10 0.05 0.14 –0.20 –0.06 –0.80 –0.50

May 0.38 –0.13 –0.02 –0.04 –0.01 –0.03 0.62 –0.22 –0.01 0.03 –0.22 –0.02 –0.50 –0.30

June 0.74 –0.11 0.00 0.06 0.08 0.20 0.72 –0.42 –0.08 0.34 –0.17 0.27 –0.30 –0.10

July 0.75 –0.21 –0.02 0.04 0.06 0.08 0.86 –0.36 0.08 0.13 –0.12 0.02 –0.10 0.10

Aug. 0.42 –0.49 –0.34 –0.08 0.00 –0.02 0.50 –0.63 –0.25 0.06 –0.12 –0.07 0.10 0.30

Sept. –0.06 –0.62 –0.61 –0.17 –0.16 –0.11 –0.27 –0.72 –0.72 –0.34 –0.42 –0.40 0.30 0.50

Oct. 0.00 –0.40 –0.34 0.04 –0.14 –0.14 0.22 –0.35 –0.09 –0.03 –0.22 –0.23 0.50 0.80

Nov. 0.26 0.21 0.22 –0.09 –0.07 0.01 0.37 0.22 0.04 –0.07 –0.08 –0.12 > 0.80

Dec. 0.22 0.46 0.63 –0.09 –0.12 0.00 0.15 0.06 0.05 –0.07 –0.18 –0.26
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Table 4.9.  Summary of results for Region 8 – Louisiana/Mississippi Coast, for CLAREnCE10 (CL10), Hostetler (Host), NARCCAP (NAR), 
CCR, BCSD, and SERAP (SRP).

[NA, not applicable]

Month
Average temperature Temperature variability EXPLANATION

CL10 Host NAR CCR BCSD SRP CL10 Host NAR CCR BCSD SRP From To

Jan. NA –0.40 –0.61 0.07 0.05 –0.02 NA 0.17 –0.00 –0.02 –0.12 –0.06 < –0.80

Feb. NA –0.31 –0.51 0.01 0.01 0.03 NA 0.52 0.38 0.25 0.21 0.27 –0.80 –0.50

Mar. NA –0.27 –0.38 0.00 –0.02 –0.04 NA 0.33 0.21 0.29 0.19 0.29 –0.50 –0.30

Apr. NA –0.18 –0.25 0.00 0.01 –0.00 NA 0.14 –0.01 0.14 0.11 0.14 –0.30 –0.10

May NA –0.17 –0.19 0.01 0.01 0.00 NA –0.03 –0.11 0.10 0.02 0.19 –0.10 0.10

June NA –0.16 –0.16 0.00 0.01 –0.01 NA 0.49 –0.02 0.12 0.01 0.12 0.10 0.30

July NA –0.12 –0.08 0.00 0.01 0.01 NA 1.37 1.62 0.07 –0.01 0.44 0.30 0.50

Aug. NA –0.13 –0.07 0.01 0.01 0.01 NA 0.72 1.11 0.10 0.09 0.37 0.50 0.80

Sept. NA –0.17 –0.15 0.01 –0.00 –0.01 NA 0.19 0.18 0.08 0.00 0.31 > 0.80

Oct. NA –0.17 –0.18 0.01 –0.01 –0.00 NA 0.23 0.16 0.08 –0.06 0.20

Nov. NA –0.21 –0.34 0.00 –0.03 0.00 NA 0.18 –0.06 –0.11 –0.01 –0.05

Dec. NA –0.36 –0.59 –0.02 –0.02 –0.06 NA 0.22 0.09 –0.04 0.05 0.09

Month
Average precipitation Precipitation variability EXPLANATION

CL10 Host NAR CCR BCSD SRP CL10 Host NAR CCR BCSD SRP From To

Jan. NA –0.31 –0.34 –0.22 –0.07 –0.12 NA –0.35 –0.51 –0.25 –0.11 –0.15

Feb. NA –0.20 –0.22 –0.01 –0.00 0.05 NA –0.29 –0.37 –0.09 –0.06 –0.07

Mar. NA 0.00 –0.17 –0.08 –0.04 –0.01 NA –0.12 –0.27 0.08 –0.02 0.15 < –0.80

Apr. NA 0.45 0.23 –0.06 –0.00 0.06 NA –0.23 –0.32 –0.07 –0.20 –0.32 –0.80 –0.50

May NA 0.28 0.13 –0.13 –0.16 –0.17 NA –0.13 –0.04 0.13 –0.21 –0.01 –0.50 –0.30

June NA 0.21 0.24 –0.09 –0.06 0.05 NA 0.09 0.38 –0.01 –0.23 0.11 –0.30 –0.10

July NA –0.18 –0.29 –0.04 –0.08 –0.36 NA 0.11 0.19 0.34 –0.23 0.14 –0.10 0.10

Aug. NA –0.09 –0.14 –0.02 –0.05 –0.03 NA –0.02 0.20 0.20 –0.16 0.37 0.10 0.30

Sept. NA –0.31 –0.04 0.04 –0.04 –0.08 NA –0.09 0.17 0.14 –0.17 0.04 0.30 0.50

Oct. NA –0.44 –0.42 –0.10 –0.10 –0.13 NA –0.35 –0.27 0.07 –0.10 –0.04 0.50 0.80

Nov. NA –0.28 –0.24 –0.21 –0.14 0.01 NA –0.01 –0.08 0.00 –0.16 –0.00 > 0.80

Dec. NA –0.13 –0.14 –0.06 –0.04 0.03 NA –0.11 –0.17 0.20 –0.07 0.18
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Table 4.10.  Summary of results for Region 9– Northern Mississippi/Northern Louisiana/Southern Arkansas, for CLAREnCE10 (CL10), 
Hostetler (Host), NARCCAP (NAR), CCR, BCSD, and SERAP (SRP).

[NA, not applicable]

Month
Average temperature Temperature variability EXPLANATION

CL10 Host NAR CCR BCSD SRP CL10 Host NAR CCR BCSD SRP From To

Jan. NA –0.65 –0.96 0.16 0.08 –0.01 NA –0.07 –0.06 0.00 –0.17 0.01 < –0.80

Feb. NA –0.48 –0.74 0.02 –0.00 0.03 NA 0.29 0.11 0.16 0.07 0.22 –0.80 –0.50

Mar. NA –0.35 –0.46 –0.01 –0.05 –0.07 NA 0.11 0.06 0.35 0.21 0.32 –0.50 –0.30

Apr. NA –0.20 –0.26 –0.01 0.00 –0.02 NA 0.14 0.09 0.13 0.03 0.18 –0.30 –0.10

May NA –0.17 –0.17 0.02 0.02 0.01 NA –0.17 –0.08 –0.02 –0.03 0.05 –0.10 0.10

June NA –0.16 –0.13 0.00 0.01 –0.00 NA 0.19 0.29 0.10 0.10 0.18 0.10 0.30

July NA –0.11 –0.04 0.00 0.01 0.00 NA 1.11 1.64 0.16 0.08 0.46 0.30 0.50

Aug. NA –0.13 –0.04 0.01 0.01 0.02 NA 0.50 1.01 0.18 0.11 0.42 0.50 0.80

Sept. NA –0.17 –0.13 0.01 –0.00 –0.01 NA –0.12 0.15 0.00 –0.04 0.28 > 0.80

Oct. NA –0.18 –0.17 0.02 –0.00 0.00 NA 0.19 0.34 0.08 –0.04 0.29

Nov. NA –0.27 –0.40 0.01 –0.03 0.01 NA –0.05 –0.24 –0.09 –0.06 –0.00

Dec. NA –0.52 –0.83 –0.02 –0.04 –0.10 NA –0.05 –0.19 0.06 0.10 0.20

Month
Average precipitation Precipitation variability EXPLANATION

CL10 Host NAR CCR BCSD SRP CL10 Host NAR CCR BCSD SRP From To

Jan. NA –0.26 –0.31 –0.11 –0.03 –0.14 NA –0.34 –0.46 0.02 –0.08 –0.15

Feb. NA –0.16 –0.22 0.00 –0.02 0.05 NA –0.17 –0.34 –0.03 –0.09 –0.06

Mar. NA –0.09 –0.30 –0.05 –0.01 –0.01 NA –0.20 –0.40 –0.11 –0.22 –0.08 < –0.80

Apr. NA 0.42 0.07 0.04 –0.01 –0.00 NA –0.25 –0.39 –0.21 –0.27 –0.44 –0.80 –0.50

May NA 0.62 0.15 –0.06 –0.11 –0.10 NA 0.33 0.00 0.17 –0.14 0.08 –0.50 –0.30

June NA 0.73 0.26 –0.15 –0.11 0.07 NA 0.36 0.38 –0.03 –0.27 0.22 –0.30 –0.10

July NA 0.19 –0.08 –0.04 –0.03 –0.30 NA 0.25 0.33 0.17 –0.22 0.17 –0.10 0.10

Aug. NA 0.47 –0.04 –0.01 –0.03 –0.01 NA 0.22 0.19 0.33 –0.19 0.68 0.10 0.30

Sept. NA –0.21 –0.22 –0.04 0.02 –0.05 NA –0.05 0.16 0.41 0.04 0.45 0.30 0.50

Oct. NA –0.41 –0.49 –0.19 –0.21 –0.22 NA –0.29 –0.41 0.13 –0.20 –0.08 0.50 0.80

Nov. NA –0.18 –0.21 –0.15 –0.07 0.09 NA 0.16 –0.23 0.15 0.01 0.28 > 0.80

Dec. NA –0.29 –0.24 –0.07 –0.15 –0.07 NA –0.34 –0.36 –0.05 –0.21 –0.21
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Table 4.11.  Summary of results for Region 10–Southeast Virginia, for CLAREnCE10 (CL10), Hostetler (Host), NARCCAP (NAR), CCR, 
BCSD, and SERAP (SRP).

[NA, not applicable]

Month
Average temperature Temperature variability EXPLANATION

CL10 Host NAR CCR BCSD SRP CL10 Host NAR CCR BCSD SRP From To

Jan. NA –1.72 –1.93 0.11 0.03 –0.21 NA 0.09 –0.05 –0.18 –0.02 –0.11 < –0.80

Feb. NA –1.23 –1.23 –0.05 –0.08 0.01 NA 0.44 0.14 0.04 –0.04 0.13 –0.80 –0.50

Mar. NA –0.64 –0.61 –0.05 –0.08 –0.11 NA 0.71 0.41 0.50 0.26 0.68 –0.50 –0.30

Apr. NA –0.39 –0.35 –0.03 –0.02 –0.07 NA 1.02 0.63 0.38 0.09 0.36 –0.30 –0.10

May NA –0.24 –0.22 0.01 0.01 –0.01 NA 0.40 0.48 0.06 0.18 0.09 –0.10 0.10

June NA –0.17 –0.17 –0.01 –0.02 –0.02 NA 0.18 0.15 0.01 0.15 0.23 0.10 0.30

July NA –0.14 –0.15 –0.01 –0.02 –0.02 NA 0.15 0.26 0.08 0.16 0.24 0.30 0.50

Aug. NA –0.16 –0.16 –0.00 –0.02 –0.01 NA 0.21 0.23 0.09 0.13 0.20 0.50 0.80

Sept. NA –0.20 –0.22 –0.01 –0.02 –0.03 NA 0.27 0.27 0.11 0.16 0.24 > 0.80

Oct. NA –0.24 –0.23 0.01 –0.02 –0.01 NA 0.15 0.01 –0.08 0.01 0.06

Nov. NA –0.40 –0.42 –0.02 –0.08 –0.01 NA 0.16 –0.05 –0.07 0.02 –0.06

Dec. NA –0.99 –1.20 –0.08 –0.13 –0.18 NA 0.25 0.04 –0.07 0.04 0.09

Month

Average precipitation Precipitation variability EXPLANATION

CL10 Host NAR CCR BCSD SRP CL10 Host NAR CCR BCSD SRP From To

Jan. NA 0.17 0.28 –0.14 –0.04 –0.13 NA –0.01 0.06 –0.10 –0.11 –0.31

Feb. NA 0.30 0.41 –0.01 0.09 0.04 NA 0.10 0.13 –0.05 –0.28 –0.26

Mar. NA 0.26 0.21 –0.01 0.01 –0.05 NA 0.01 0.14 –0.00 –0.22 –0.25 < –0.80

Apr. NA 0.38 0.28 0.10 –0.00 0.13 NA 0.20 0.10 –0.09 –0.15 –0.13 –0.80 –0.50

May NA –0.10 0.07 –0.05 –0.05 –0.10 NA –0.16 0.11 0.01 –0.22 –0.14 –0.50 –0.30

June NA –0.01 0.20 –0.02 0.04 0.16 NA –0.49 –0.03 0.05 –0.20 0.27 –0.30 –0.10

July NA –0.25 –0.07 0.05 0.01 0.03 NA –0.33 0.06 0.25 –0.21 –0.02 –0.10 0.10

Aug. NA –0.35 –0.17 –0.03 0.08 0.07 NA –0.46 –0.09 0.08 –0.08 –0.17 0.10 0.30

Sept. NA –0.49 –0.49 –0.21 –0.16 –0.12 NA –0.62 –0.63 –0.37 –0.36 –0.36 0.30 0.50

Oct. NA –0.30 –0.21 –0.04 –0.17 –0.18 NA –0.31 –0.13 –0.06 –0.34 –0.28 0.50 0.80

Nov. NA 0.48 0.48 –0.06 –0.07 0.11 NA 0.46 0.01 –0.17 –0.18 –0.20 > 0.80

Dec. NA 0.59 0.79 –0.06 –0.10 –0.02 NA –0.01 0.11 –0.14 –0.15 –0.33
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Table 4.12.  Summary of results for Region 11–Western Virginia/Eastern Kentucky, for CLAREnCE10 (CL10), Hostetler (Host), NARCCAP 
(NAR), CCR, BCSD, and SERAP (SRP).

[NA, not applicable]

Month
Average temperature Temperature variability EXPLANATION

CL10 Host NAR CCR BCSD SRP CL10 Host NAR CCR BCSD SRP From To

Jan. NA –6.05 –7.73 1.26 0.55 –0.38 NA –0.17 –0.28 –0.19 –0.13 –0.15 < –0.80

Feb. NA –1.91 –2.17 0.04 –0.02 0.16 NA 0.28 –0.10 0.09 –0.04 0.16 –0.80 –0.50

Mar. NA –0.78 –0.80 –0.01 –0.08 –0.13 NA 0.26 –0.00 0.36 0.11 0.43 –0.50 –0.30

Apr. NA –0.38 –0.37 –0.01 0.02 –0.03 NA 0.63 0.43 0.23 –0.02 0.18 –0.30 –0.10

May NA –0.22 –0.20 0.03 0.05 0.03 NA 0.10 0.10 –0.15 0.01 –0.07 –0.10 0.10

June NA –0.16 –0.14 0.01 0.02 0.01 NA 0.01 0.10 –0.07 0.09 0.03 0.10 0.30

July NA –0.13 –0.10 0.00 0.01 –0.00 NA 0.03 0.34 –0.02 0.02 0.09 0.30 0.50

Aug. NA –0.14 –0.11 0.02 0.01 0.03 NA 0.11 0.19 –0.04 –0.06 0.15 0.50 0.80

Sept. NA –0.20 –0.19 0.02 0.01 0.00 NA 0.03 0.07 0.01 –0.03 0.10 > 0.80

Oct. NA –0.26 –0.22 0.05 0.02 0.03 NA –0.01 –0.17 –0.09 –0.07 0.05

Nov. NA –0.45 –0.52 0.00 –0.06 0.04 NA –0.07 –0.31 –0.08 –0.07 –0.13

Dec. NA –1.50 –2.05 –0.07 –0.11 –0.26 NA –0.01 –0.21 0.04 0.02 0.16

Month
Average precipitation Precipitation variability EXPLANATION

CL10 Host NAR CCR BCSD SRP CL10 Host NAR CCR BCSD SRP From To

Jan. NA 0.06 0.13 0.04 0.11 –0.01 NA –0.26 –0.06 0.18 0.19 –0.04

Feb. NA 0.22 0.15 0.05 0.12 0.07 NA 0.09 –0.12 0.21 0.13 –0.03

Mar. NA 0.17 0.10 0.05 0.11 –0.03 NA –0.17 –0.21 –0.16 –0.11 –0.29 < –0.80

Apr. NA 0.25 0.22 –0.06 0.00 0.12 NA –0.08 –0.09 –0.09 –0.14 –0.13 –0.80 –0.50

May NA –0.13 –0.05 –0.07 –0.03 –0.08 NA –0.23 –0.01 0.19 –0.13 –0.05 –0.50 –0.30

June NA 0.02 0.17 0.04 0.01 0.09 NA –0.28 0.02 0.30 –0.17 0.18 –0.30 –0.10

July NA –0.11 –0.01 0.16 0.10 0.11 NA –0.09 0.47 0.54 0.01 0.60 –0.10 0.10

Aug. NA –0.26 –0.15 0.03 –0.00 –0.03 NA –0.20 0.11 0.50 –0.05 0.34 0.10 0.30

Sept. NA –0.31 –0.29 –0.06 –0.05 0.00 NA –0.39 –0.29 0.28 –0.09 0.19 0.30 0.50

Oct. NA –0.09 –0.03 –0.08 –0.23 –0.16 NA –0.07 –0.06 0.06 –0.32 –0.06 0.50 0.80

Nov. NA 0.43 0.46 –0.04 –0.01 0.09 NA 0.64 –0.01 0.04 –0.11 –0.17 > 0.80

Dec. NA 0.22 0.33 –0.07 –0.05 –0.02 NA –0.26 –0.32 –0.13 –0.13 –0.33
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Table 4.13.  Summary of results for Region 12–Western Kentucky/Tennessee, for CLAREnCE10 (CL10), Hostetler (Host), NARCCAP 
(NAR), CCR, BCSD, and SERAP (SRP).

[NA, not applicable]

Month
Average temperature Temperature variability EXPLANATION

CL10 Host NAR CCR BCSD SRP CL10 Host NAR CCR BCSD SRP From To

Jan. NA –1.66 –2.41 0.42 0.21 –0.08 NA –0.17 –0.20 –0.14 –0.15 –0.13 < –0.80

Feb. NA –0.99 –1.28 0.05 –0.01 0.07 NA 0.22 –0.09 0.09 –0.05 0.10 –0.80 –0.50

Mar. NA –0.54 –0.61 –0.01 –0.08 –0.12 NA 0.23 0.03 0.33 0.15 0.37 –0.50 –0.30

Apr. NA –0.27 –0.30 –0.01 0.01 –0.03 NA 0.40 0.33 0.22 –0.02 0.15 –0.30 –0.10

May NA –0.18 –0.17 0.02 0.04 0.02 NA –0.09 0.01 –0.13 –0.05 –0.09 –0.10 0.10

June NA –0.15 –0.12 0.01 0.02 0.00 NA –0.10 0.30 –0.08 0.06 0.08 0.10 0.30

July NA –0.12 –0.06 0.00 0.01 –0.00 NA 0.23 0.82 0.08 0.04 0.38 0.30 0.50

Aug. NA –0.13 –0.06 0.02 0.01 0.02 NA 0.04 0.44 0.08 –0.02 0.34 0.50 0.80

Sept. NA –0.17 –0.15 0.02 0.00 –0.01 NA –0.10 0.06 –0.02 –0.06 0.19 > 0.80

Oct. NA –0.21 –0.19 0.02 0.01 0.01 NA 0.04 0.02 –0.05 –0.13 0.10

Nov. NA –0.35 –0.46 0.01 –0.05 0.01 NA –0.12 –0.31 –0.08 –0.08 –0.11

Dec. NA –0.88 –1.36 –0.08 –0.09 –0.20 NA –0.07 –0.21 0.05 0.07 0.18

Month
Average precipitation Precipitation variability EXPLANATION

CL10 Host NAR CCR BCSD SRP CL10 Host NAR CCR BCSD SRP From To

Jan. NA –0.12 –0.13 0.02 0.10 –0.03 NA –0.27 –0.24 0.24 0.21 0.06

Feb. NA 0.02 –0.10 0.03 0.06 0.08 NA –0.09 –0.32 –0.02 0.04 0.04

Mar. NA –0.10 –0.18 –0.04 0.05 –0.07 NA –0.30 –0.38 –0.21 –0.21 –0.33 < –0.80

Apr. NA 0.25 0.15 0.02 0.01 0.17 NA –0.12 –0.15 0.01 –0.24 –0.16 –0.80 –0.50

May NA –0.05 –0.02 –0.06 –0.04 –0.09 NA –0.30 –0.04 0.10 –0.16 0.07 –0.50 –0.30

June NA 0.24 0.19 –0.04 –0.02 0.09 NA –0.00 0.16 0.09 –0.19 0.31 –0.30 –0.10

July NA 0.12 0.03 –0.05 –0.00 –0.06 NA –0.03 0.35 0.28 –0.07 0.51 –0.10 0.10

Aug. NA 0.05 –0.17 –0.08 0.00 –0.03 NA –0.14 0.02 0.36 –0.05 0.74 0.10 0.30

Sept. NA –0.39 –0.42 –0.05 –0.09 –0.09 NA –0.48 –0.37 0.26 –0.15 0.17 0.30 0.50

Oct. NA –0.23 –0.25 –0.06 –0.23 –0.17 NA –0.01 –0.10 0.51 –0.25 0.04 0.50 0.80

Nov. NA 0.08 0.05 –0.05 –0.03 0.05 NA 0.38 –0.11 0.06 –0.04 –0.00 > 0.80

Dec. NA –0.17 –0.09 –0.08 –0.10 –0.07 NA –0.33 –0.45 –0.13 –0.16 –0.37
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Table 4.14.  Summary of results for Region 13–Northern Arkansas, for CLAREnCE10 (CL10), Hostetler (Host), NARCCAP (NAR), CCR, 
BCSD, and SERAP (SRP).

[NA, not applicable]

Month
Average temperature EXPLANATION

CL10 Host NAR CCR BCSD SRP CL10 Host NAR CCR BCSD SRP From To

Jan. NA –1.19 –1.93 0.30 0.17 0.02 NA –0.09 –0.06 –0.07 –0.18 –0.05 < –0.80

Feb. NA –0.76 –1.13 0.02 –0.04 0.03 NA 0.14 –0.09 –0.00 –0.12 0.06 –0.80 –0.50

Mar. NA –0.46 –0.58 –0.04 –0.08 –0.11 NA 0.14 0.01 0.30 0.17 0.32 –0.50 –0.30

Apr. NA –0.25 –0.32 –0.02 –0.01 –0.04 NA 0.27 0.23 0.19 –0.00 0.15 –0.30 –0.10

May NA –0.18 –0.19 0.02 0.02 0.01 NA –0.17 –0.06 –0.07 –0.04 –0.03 –0.10 0.10

June NA –0.16 –0.12 –0.00 0.01 –0.01 NA –0.06 0.31 0.03 0.15 0.15 0.10 0.30

July NA –0.12 –0.05 –0.00 –0.00 –0.01 NA 0.44 0.87 0.07 0.03 0.34 0.30 0.50

Aug. NA –0.14 –0.04 0.01 –0.00 0.02 NA 0.24 0.63 0.11 0.02 0.35 0.50 0.80

Sept. NA –0.18 –0.15 0.01 –0.01 –0.01 NA –0.12 0.18 0.00 –0.01 0.21 > 0.80

Oct. NA –0.22 –0.22 0.02 –0.00 –0.00 NA 0.22 0.37 0.04 0.01 0.19

Nov. NA –0.34 –0.49 0.01 –0.05 0.00 NA –0.14 –0.24 –0.10 –0.06 –0.05

Dec. NA –0.74 –1.28 –0.05 –0.09 –0.17 NA –0.04 –0.18 0.09 0.13 0.24

Month
Average precipitation EXPLANATION

CL10 Host NAR CCR BCSD SRP CL10 Host NAR CCR BCSD SRP From To

Jan. NA –0.16 –0.13 0.00 0.07 –0.09 NA –0.27 –0.21 0.33 0.18 0.04

Feb. NA 0.01 –0.11 0.02 0.02 0.07 NA –0.11 –0.32 –0.05 –0.05 0.01

Mar. NA –0.07 –0.27 –0.03 0.00 –0.07 NA –0.27 –0.46 –0.07 –0.18 –0.16 < –0.80

Apr. NA 0.38 0.04 0.01 –0.05 0.07 NA –0.11 –0.26 –0.24 –0.23 –0.29 –0.80 –0.50

May NA 0.53 0.08 0.01 –0.03 –0.08 NA 0.37 0.02 0.22 –0.03 0.16 –0.50 –0.30

June NA 0.83 0.23 –0.09 –0.06 –0.00 NA 0.60 0.35 0.15 –0.13 0.36 –0.30 –0.10

July NA 0.55 0.22 0.08 0.06 –0.04 NA 0.39 0.46 0.25 –0.13 0.38 –0.10 0.10

Aug. NA 0.80 –0.10 –0.05 0.04 –0.04 NA 0.77 0.13 0.30 –0.07 0.77 0.10 0.30

Sept. NA –0.12 –0.34 –0.05 –0.02 –0.10 NA –0.08 –0.03 0.19 –0.10 0.10 0.30 0.50

Oct. NA –0.24 –0.34 –0.06 –0.23 –0.15 NA –0.18 –0.21 0.41 –0.30 0.02 0.50 0.80

Nov. NA –0.18 –0.23 –0.07 –0.03 0.07 NA –0.05 –0.44 0.29 0.00 0.10 > 0.80

Dec. NA –0.37 –0.30 –0.13 –0.20 –0.14 NA –0.44 –0.46 –0.09 –0.27 –0.35
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Table 4.15.  Summary of results for Region 14–Southern Missouri, for CLAREnCE10 (CL10), Hostetler (Host), NARCCAP (NAR), CCR, 
BCSD, and SERAP (SRP).

[NA, not applicable]

Month
Average temperature Temperature variability EXPLANATION

CL10 Host NAR CCR BCSD SRP CL10 Host NAR CCR BCSD SRP From To

Jan. NA –1.06 –1.88 3.64 2.19 0.75 NA –0.14 –0.14 –0.12 –0.16 –0.11 < –0.80

Feb. NA –1.39 –2.05 0.03 –0.04 0.08 NA 0.02 –0.23 –0.05 –0.17 0.03 –0.80 –0.50

Mar. NA –0.59 –0.72 –0.05 –0.11 –0.15 NA 0.17 0.02 0.36 0.16 0.39 –0.50 –0.30

Apr. NA –0.29 –0.36 –0.04 –0.01 –0.05 NA 0.36 0.29 0.25 –0.06 0.13 –0.30 –0.10

May NA –0.17 –0.20 0.01 0.03 0.02 NA –0.18 –0.06 –0.08 –0.09 –0.07 –0.10 0.10

June NA –0.15 –0.11 0.00 0.01 –0.00 NA –0.05 0.39 0.02 0.12 0.09 0.10 0.30

July NA –0.12 –0.05 –0.00 –0.00 –0.01 NA 0.22 0.54 0.06 0.02 0.29 0.30 0.50

Aug. NA –0.14 –0.06 0.01 –0.00 0.02 NA 0.13 0.40 0.08 –0.03 0.32 0.50 0.80

Sept. NA –0.18 –0.16 0.02 0.00 –0.00 NA –0.16 0.11 –0.04 –0.10 0.13 > 0.80

Oct. NA –0.23 –0.25 0.03 0.02 0.00 NA 0.22 0.32 0.04 0.02 0.10

Nov. NA –0.39 –0.57 0.03 –0.05 0.02 NA –0.27 –0.25 –0.12 –0.10 –0.10

Dec. NA –1.32 –2.47 –0.07 –0.11 –0.32 NA –0.11 –0.20 0.07 0.09 0.21

Month
Average precipitation Temperature variability EXPLANATION

CL10 Host NAR CCR BCSD SRP CL10 Host NAR CCR BCSD SRP From To

Jan. NA –0.04 –0.03 0.01 0.02 –0.09 NA –0.21 –0.22 0.21 0.14 –0.03

Feb. NA 0.10 –0.07 –0.01 –0.02 0.06 NA –0.08 –0.38 –0.07 –0.11 –0.02

Mar. NA –0.05 –0.18 –0.02 0.02 –0.08 NA –0.36 –0.42 0.11 –0.15 –0.11 < –0.80

Apr. NA 0.30 0.05 –0.03 –0.05 0.08 NA –0.13 –0.17 –0.23 –0.17 –0.22 –0.80 –0.50

May NA 0.50 0.16 0.03 0.04 –0.01 NA 0.30 0.01 0.14 –0.05 0.14 –0.50 –0.30

June NA 0.77 0.20 –0.08 0.00 –0.02 NA 0.43 0.37 0.06 –0.07 0.16 –0.30 –0.10

July NA 0.64 0.28 0.12 0.08 0.08 NA 0.43 0.33 0.28 –0.07 0.33 –0.10 0.10

Aug. NA 0.64 –0.05 –0.07 0.00 –0.12 NA 0.55 0.26 0.17 –0.08 0.50 0.10 0.30

Sept. NA 0.01 –0.20 –0.01 –0.02 –0.02 NA –0.22 –0.04 –0.07 –0.23 –0.19 0.30 0.50

Oct. NA –0.11 –0.22 –0.02 –0.18 –0.06 NA 0.00 0.14 0.43 –0.14 0.21 0.50 0.80

Nov. NA –0.20 –0.18 –0.10 –0.03 –0.02 NA –0.13 –0.42 –0.06 –0.05 –0.17 > 0.80

Dec. NA –0.26 –0.22 –0.16 –0.22 –0.16 NA –0.46 –0.48 –0.22 –0.37 –0.44



4  Downscaled Dataset Evaluation     37

The largest relative error in the statistical datasets, CCR, 
BCSD, and SERAP, is smaller than 1 as opposed to the larger 
biases seen for the dynamic datasets. Relative errors greater 
than 1 are in each of these datasets in January in Southern 
Missouri (Table 4.15) and in CCR in Western Virginia/Eastern 
Kentucky (Table 4.12). However, in most regions and for most 
months the absolute value of the relative error for each of the 
statistical datasets is less than 0.1 for each month. 

Temperature Variability: Temperature variability is 
measured by the standard deviation of monthly temperatures; 
therefore, the estimated and observed values of this standard 
deviation are used in the calculation of relative error. The rela-
tive error in this section indicates how accurate each down-
scaled dataset replicates natural variability relative to PRISM. 
It is important to note, however, that temperature variability 
is also related to the frequency of hot and cold extremes. 
Therefore, in this instance, values of relative error less than 
(or greater than) zero indicate a tendency to underestimate 
(or overestimate) temperature variability relative to PRISM. 
As an example, a relative error greater than or equal to 0.5 
indicates that the estimated temperature variability is 1.5 times 

greater than the observed temperature variability and has more 
frequent hot and cold extremes than historically observed 
relative to PRISM. The downscaled datasets tend to have a 
relative error within 0.3 over the entire Southeast U.S., with 
some exceptions. CLAREnCE10 has a relative error greater 
than 0.3 for most months in each of the regions it covers, 
indicating a tendency to overestimate temperature variability 
(Table 4.2–4.8). In NARCCAP, the relative error indicates a 
tendency to overestimate temperature variability in the sum-
mer (June, July, August) in all regions except the Southern 
Appalachians. In general, BCSD has relative errors within 0.1 
over a large part of the Southeast U.S. and for most months. 
CLAREnCE10 has relative errors greater than 0.3 in most 
months for South Carolina (Table 4.6) and in Eastern North 
Carolina (Table 4.8). There are relative errors from 0.28 to 
1.06 inches February through April in Southeast Virginia and 
Western Virginia/Eastern Kentucky in the Hostetler dataset 
(Tables 4.11 and 4.12)

Average Precipitation: CLAREnCE10 has the largest 
relative errors for mean precipitation in many cases for 
multiple months and regions in the domain. The relative error 
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Figure 4.3.  Bias for monthly average precipitation (mm/day) in May for (a) CLAREnCE10, (b) Hostetler, (c) NARCCAP, 
(d) CCR, (e) BCSD, and (f) SERAP.
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Figure 4.4.  Bias for monthly average temperature (°C) in September for (a) CLAREnCE10, (b) Hostetler, (c) NARCCAP, 
(d) CCR, (e) BCSD, and (f) SERAP.

Figure 4.5.  Bias for monthly average temperature (°C) in September for  (a) CLAREnCE10, (b) Hostetler, (c) Bias 
Corrected NARCCAP, (d) CCR, (e) BCSD, and (f) SERAP.
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also indicates a tendency to overestimate the mean precipita-
tion, except for the summer months (June, July, and August) 
in Southern Florida, Northeastern Florida/Georgia Coast, and 
Northern Gulf Coast of Florida (Tables 4.2–4.4). The average 
monthly precipitation is represented well in most regions by 
the statistically downscaled datasets (relative errors less than 
0.3 in most cases for CCR, BCSD, and SERAP), but it can 
also be well represented in some seasons by NARCCAP and 
Hostetler for some regions. NARCCAP relative errors (values 
from 0.22 to 0.92) show a tendency to overestimate average pre-
cipitation in Southern Florida in October–December (Table 4.2). 
In addition, both Hostetler and NARCCAP relative errors also 
show a tendency to underestimate average precipitation in 
several other regions in September. This is most notable for 
the South Carolina, Southern Appalachians, Eastern North 
Carolina, and Southeastern Virginia regions, where the rela-
tive errors range from –0.49 to –0.61 (Tables 4.6–4.8, 4.11). 
Relative errors ranging from 0.55 to 0.83 from the Hostetler 
dataset also indicate a tendency to overestimate average 
precipitation in June, July, and August in regions 13 and 14 
(Tables 4.14–4.15). 

Precipitation Variability: Precipitation variability is 
measured by the standard deviation of monthly precipitation; 
therefore, the estimated and observed values of this standard 
deviation are used in the calculation of relative error. The rela-
tive error in this section indicates how accurate each down-
scaled dataset replicates natural variability relative to PRISM. 
It is important, however, to note that precipitation variability 
is also related to the frequency of dry and wet extremes. 
Therefore, in this instance, values of relative error less than 
(or greater than) zero indicate a tendency to underestimate (or 
overestimate) temperature variability relative to PRISM. As an 
example, a relative error greater than or equal to 0.5 indicates 
that the estimated precipitation variability is 1.5 times larger 
than the observed temperature variability and has more fre-
quent wet and dry extremes than historically observed relative 
to PRISM. No dataset reflects the variability of precipitation 
in any region throughout the entire year. In the Alabama/
Western Georgia and the Southern Appalachians, the widest 
set of difference exists in relative errors between the down-
scaled datasets (Tables 4.5 and 4.7). CLAREnCE10 has the 
largest relative errors for precipitation variability for multiple 
months and regions in the Southeast U.S. The relative errors 
from Hostetler indicate a tendency to underestimate the vari-
ability, except in the summer in Southern Florida, Louisiana/
Mississippi Coast, Northern Mississippi/Northern Louisiana/
Southern Arkansas, Northern Arkansas, and Southern Missouri 
(Tables 4.2, 4.9, 4.10, 4.14, and 4.15). The relative errors 

also indicate that the variability tends to be underestimated 
throughout the year in all subregions by BCSD. SERAP tends 
to overestimate in the summer months (relative errors from 0.3 
to 1.03); however, the variability is underestimated in the win-
ter for most regions across the Southeast U.S. (relative errors 
from –0.35 to –0.1, Tables 4.2–4.15). CCR overestimates pre-
cipitation variability in June, July, and August for most regions 
across the Southeast U.S. (relative errors from 0.1 to 0.6).

4.2.2  Discussion

The dynamic datasets (a) CLAREnCE10, (b) Hostetler, 
and (c) NARCCAP have a consistent set of relative errors that 
indicate a cold bias for most regions. This cold bias is at least 
4 ºC for most months (for example, January, Figure 4.2). It 
is important to note, however, that datasets analyzed in this 
evaluation did not receive any additional bias corrections. As 
mentioned in Section 2.3, there are many ways to bias correct 
data, and no single best bias correction technique exists. As 
shown in the bias maps for January temperature, the dynamic 
models are colder than observed temperatures by more than 
4 ºC in many regions. This bias could be removed using any of 
the techniques described in Section 2.3. Resulting projections 
would be different depending on the bias removal technique 
used. In contrast, statistical downscaled datasets correct the 
cold bias from GFDL to a greater extent because they build 
statistical relations between the GFDL GCM and observations, 
so some bias correction of the GCM is built into the statistical 
techniques. If the dynamic datasets were bias corrected, they 
would similarly show less of a cold bias. BCSD does an ade-
quate job of dampening the bias issue found in GFDL, to the 
point of having some areas of warm bias in January. Figure 4.3 
shows the bias for monthly average precipitation (millimeters 
per day (mm/day)) in May for (a) CLAREnCE10, (b) 
Hostetler, (c) NARCCAP, (d) CCR, (e) BCSD, and (f) SERAP. 
It is important to note that precipitation bias is discussed using 
units of millimeters per day. Therefore, the bias in millime-
ters per day is directly related to a bias in total precipitation. 
Consider the following for interpretation of the precipitation 
bias. If there is 1 mm/day of bias for the average precipitation 
for a given month and it rains 15 days on average during that 
month, then the bias for average total precipitation for that 
month is 15 mm (~0.6 inches). There are many regions of the 
domain where the statistically created datasets (CCR, BCSD, 
and SERAP, Figure 4.3d–f) tend to underestimate precipita-
tion by between 1 and 3 mm/day. There is also a tendency for 
each of these datasets to overestimate precipitation in May on 
the Western Coast of Florida, with NARCCAP and Hostetler 
overestimating by the greatest amounts. The switch between 
tendencies to overestimate precipitation across the domain in 
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Figure 4.6.  Annual cycle for the (a) mean and (b) standard deviation of the monthly average precipitation (mm/day) 
for eastern North Carolina.

Figure 4.7.  Standard deviation differences across the Southeast for (a) CLAREnCE10, (b) Hostetler,  
(c) NARCCAP, (d) CCR, (e) BCSD, and (f) SERAP for September precipitation (mm/day).
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Figure 4.8.  Annual cycles for the (a) mean and (b) standard deviation of monthly average temperature (°C) for the 
Southern Appalachians.

Figure 4.9.  July probability distribution functions for temperature (°C) for (a) the Southern Appalachians and 
(b) Eastern North Carolina.
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May by the dynamically created datasets to an underestimate 
across the domain by the statistically created datasets suggests 
that the bias correction inherent in most statistical downscaling 
techniques was possibly too rigorous in the Southeast during 
this time period.

A dataset should not necessarily be disqualified from 
use because it has bias. To show this, bias was removed from 
NARCCAP-downscaled data over the entire Southeast U.S. 
by using a simple technique. First, the difference between 
NARCCAP and PRISM is determined for each grid cell.. 
Second, the average of this difference is calculated for the 
Southeast U.S. This is the average bias. . Finally, the aver-
age bias is added to the difference between NARCCAP and 
PRISM at each grid cell to create bias corrected NARCCAP 
data.. This is a very simple bias-removal technique and not 
typically the best way of removing bias. Figure 4.4 shows 
the bias for monthly average temperature in September for 
(a) CLAREnCE10, (b) Hostetler, (c) NARCCAP, (d) CCR, 
(e) BCSD, and (f) SERAP. Figure 4.5 is similar to Figure 4.4 
except that NARCCAP has been bias corrected with the 
simple technique described here. Before the bias is removed, 
NARCCAP shows a strong cold bias over the entire Southeast 

U.S. in September (Figure 4.4c). Once the bias is removed 
from NARCCAP-downscaled temperature, the bias for most 
of the Southeast U.S. is brought more in line with the tempera-
ture biases for the statistially downscaled datasets as shown 
in the bias for the month of September (Figure 4.5). The bias for 
NARCCAP in all regions for September ranges between 0–1 °C. 
The pattern of above and below normal temperatures seen 
in statistically downscaled datasets can be seen in the bias-
corrected NARCCAP data.

Downscaled datasets created with dynamic downscaling 
are almost always provided without bias correction. The lack 
of bias correction in the raw data for dynamically created data-
sets leads these datasets to potentially accentuate the biases 
from the GCM. Depending on the GCM usedand the dynamic 
downscaling technique itself, the biases in the raw output of 
a dynamically downscaled dataset may vary from month to 
month and region to region in a given study domain. As such 
it is important to consider that raw output data taken from a 
dataset created with dynamic downscaling may not be bias 
corrected. This potential error should be considered before 
using a dynamically created dataset. In general, dynamically 
downscaled datasets should be bias corrected before they are 
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considered for individual use so the model bias will not influ-
ence additional analyses.

Considering the information presented in Tables 4.2–
4.15, it is apparent that there is a tendency for all six datasets 
to underestimate precipitation variability in September from 
South Carolina through Southeastern Virginia (specifically 
Regions 5, 7, and 10). In addition, there is a tendency to 
underestimate average precipitation in Eastern North Caro-
lina. September is the peak of the Atlantic hurricane season, 
and hurricanes can contribute substantially to the annual 
total precipitation in the Southeast. For instance, in Eastern 
North Carolina, hurricanes contribute 6 to 10 percent of the 
annual total precipitation on average. The annual cycle for 
(a) monthly average precipitation and (b) the standard devia-
tion of monthly average precipitation for Eastern North Caro-
lina is shown in Figure 4.6. Figure 4.6a shows that the cycle 
for the average precipitation for each statistically downscaled 
dataset (CCR, BCSD, SERAP) tends to follow the observa-
tions, but the dynamically downscaled datasets have a wider 
spread around the observations. All these downscaled datas-
ets tend to underestimate average precipitation in this region 
in September. Figure 4.6b shows that most datasets tend to 
capture the annual cycle for precipitation variability, but all the 
downscaled datasets underestimate the precipitation variability 
in September in this region. Figure 4.7 shows the standard 
deviation difference between (a) CLAREnCE10, (b) Hostetler, 
(c) NARCCAP, (d) CCR, (e) BCSD, and (f) SERAP and the 
observations for September across the study domain. Most of 
the downscaled datasets tend to underestimate the precipita-
tion variability along the South Carolina coast to Southeastern 
Virginia and the Northern Gulf Coast, and overestimate the 
variability in Florida in September. Because much of Florida 
is a coastal region, it is subject to more thunderstorm activity 
associated with sea breeze in addition to hurricane precipita-
tion. The larger errors in the standard deviation are related 
to the irregular extreme precipitation events associated with 
hurricanes. As such, the challenge associated with hurricanes 
for downscaling techniques is in representing the precipitation 
that results from hurricanes with the appropriate frequency. In 
literature this has proven a challenge for statistical techniques 
to incorporate. This is also a challenge for dynamically down-
scaled datasets because the lack of hurricanes in the driving 
GCM is translated into the dynamically downscaled output 
for precipitation and related variables. Therefore, although 
it is important to consider bias correction for dynamically 
downscaled datasets, it is also important in the Southeast to 
carefully consider how accurately any dataset reproduces the 
influence of hurricanes on precipitation and other related vari-
ables (winds, evapotranspiration, others).

The Southern Appalachians has the largest elevation and 
topographic changes of any of the regions in the Southeast 
U.S. As such, this region is subject to larger spatial variability 
in both precipitation and temperature. Given that the changes 
in topography and elevation in this region are not well repre-
sented in the GCMs, the input into downscaling techniques 
can have errors associated with topography. In the case of 

dynamic downscaling, the RCMs in this report have a better 
representation of topography than the GCMs and can cor-
rect some GCM errors in this region. In the case of statistical 
downscaling, some techniques will incorporate information 
about the topographic changes in a region, allowing these 
techniques to provide some correction to errors in the GCM 
information in this region. Regardless, the accuracy of each 
downscaled dataset over small areas of the mountains can vary 
dramatically across the Southern Appalachians, and use of 
these datasets in the mountains should be carefully considered 
in ecological modeling or conservation planning.

Topography and representations of topography by climate 
models and downscaling techniques are also important to 
consider when using a downscaled dataset. Table 4.7 provides 
a summary of how each dataset performs over the Southern 
Appalachians region. Figure 4.8 shows the annual cycle for 
(a) monthly average temperature and (b) standard deviation of 
average temperature for the Southern Appalachians for each 
downscaled dataset and the observations. From these two 
figures it seems that each dataset captures the annual cycle of 
average temperature and temperature variability over the entire 
region. For temperature variability, however, it is apparent 
that the downscaled datasets can have a wide spread around 
the observations. Figure 4.9 shows the probability distribution 
function (PDF) for July monthly average temperatures across 
the (a) Southern Appalachians and (b) Eastern North Carolina. 
Similarly to Figure 4.8b, the PDFs show that some down-
scaled datasets (NARCCAP and Hostetler in particular) have 
larger differences from the observations in the Southern Appa-
lachians compared to the neighboring Eastern North Carolina 
region. However, it is also important to note that for both 
regions, the distributions can be similar to the observations 
or narrower. These figures and the information in the tables 
provide insight to how each downscaled dataset performs over 
the region as a whole. It is important, however, to consider 
that the accuracy of a dataset may be different in different 
areas of the Southern Appalachians because of the complex 
topography of the region. Figure 4.10 shows the bias for aver-
age temperature in July for (a) CLAREnCE10, (b) Hostetler, 
(c) NARCCAP, (d) CCR, (e) BCSD, and (f) SERAP. Although 
there are distinct differences among these downscaled datasets 
across the region, there is a consistent pattern in the Southern 
Appalachians. Each dataset tends to underestimate the average 
temperature on the east side of the mountains, and overesti-
mate (or have less of an underestimation) on the west side of 
the mountains. This pattern is not shown by Figures 4.8 and 
4.9 or the earlier tables, but is important to consider for using 
these downscaled datasets in this region. 

No single downscaled dataset best represents all the 
aspects of temperature and precipitation across the entire 
report domain. As shown in Tables 4.2–4.15, in most cases no 
one downscaled dataset is consistently most accurate for all 
the metrics and variables over the entire Southeastern region. 
Some downscaled datasets better represent one or both vari-
ables studied in individual regions. Accordingly, it is important 
that the choice to use a particular downscaled dataset is made 
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within the context of the natural resource decision or impact 
assessment. That is, what climate and climate change attri-
butes are most (or are thought to be most) relevant to the deci-
sion or impact assessment made? Datasets differ with respect 
to the variables available and in the fidelity of those variables 
to observations. 

Our results and experience from working with and ana-
lyzing these data lead to three clear primary recommendations 
for managers, ecologists, and others with a need to select and 
use downscaled datasets for ecological modeling, assessments, 
and related decision support.

•	 Consult a climatologist familiar with climate models 
and downscaling—Climatologists familiar with 
climate models and downscaling possess a knowledge 
base that can be useful to an ecologist when select-
ing appropriate datasets. These climatologists will 
be aware of the differences described in this report 
and can assist ecologists when selecting one or more 
downscaled datasets for use in studies of ecological or 
conservation impacts. Recommendations of appropri-
ate climatologists to work with can be provided by the 
authors or the Department of the Interior Southeast 
Climate Science Center.

•	 Use more than one downscaled dataset—Each down-
scaled dataset has its own strengths and weaknesses. 
Using multiple datasets (also known as an ensemble) 
allows the weaknesses in each model to be addressed 
by incorporating a range of possible scenarios. Using 
an ensemble mean also allows the best and worst case 
possibilities to be considered. Ideally, all available 
datasets should be used in order to fully characterize 
the internal and structural uncertainties of the down-
scaled projection for each scenario (Mote and others, 
2011), including multiple emissions scenarios to fully 
characterize the uncertainty associated with human 
actions.

•	 If it is only feasible to use one downscaled dataset, 
consider the best possible one for all sensitivities— 
As mentioned previously, no one downscaled dataset 
will provide the highest accuracy for every metric for 
every variable. Therefore, it is important to consider 
what aspect of climate has the largest influence on the 
species and (or) ecosystem of interest and which down-
scaled datasets best represent these sensitivities.

These recommendations should be considered when deciding 
which downscaled datasets to use. Given the complexities of 
different downscaling techniques and the resulting differ-
ences in accuracy among downscaled datasets, we recommend 
engaging a climatologist during the process of modeling. Dis-
cussions with a climatologist about critical sensitivities in the 
ecosystem of interest can assist with the selection of the best 
data to use and help ensure that the climate model deficiencies 
and uncertainties are more fully understood. 

5  Conclusions and Recommendations
The previous sections discussed the results of the initial 

evaluation of each of the six datasets and a comparison of the 
available information and literature regarding these datasets. 
This analysis details results for the annual cycle and prob-
ability distribution functions (PDFs) for each region and 
spatial analysis of the bias and standard deviation difference 
for the Southeast for each month. The main narrative of this 
analysis, however, focuses on highlighting important differ-
ences with regard to the impacts to ecology and conservation 
decisionmaking in the Southeast U.S. Appendixes 2, 3, and 
4 include all other figures and tables related to the evalua-
tion of these datasets. Appendix 2 contains the 50 and 15 km 
resolution maps of bias and standard deviation difference. 
Appendix 3 contains plots of the annual cycles, including the 
root mean square error and correlation for each dataset and 
for each region, and Appendix 4contains the PDFs for each 
region. Given that this report was separated into two sections, 
downscaled dataset summary and downscaled dataset evalu-
ation, this section will summarize the conclusions from each 
section separately. The recommendations of the report will be 
discussed at the end of this section.

5.1  Downscaled Dataset Summary

Section 2 summarized the differences among six avail-
able datasets and provided context regarding the needs for 
ecological modeling in the Southeast. From this synthesis 
several conclusions can be drawn regarding the ability of 
downscaling techniques as shown in literature.

•	 Downscaled datasets have different temporal and 
spatial resolutions: Although the desired temporal 
scales of these datasets are not shown in ecological 
literature, all of these datasets have coarser spatial 
resolution than recommended by ecological literature, 
particularly for mountainous terrain. It is important to 
note, however, that the most useful spatial resolution 
for a downscaled dataset will vary depending upon the 
application. For instance, resolutions finer than 10 km 
are needed in some, but not necessarily all, instances to 
provide robust results in ecological modeling. In cases 
where a downscaled dataset with a resolution finer 
than 10 km is required, some method of resampling 
may also be used rather than considering a down-
scaled dataset finer than 10 km. Resampling refers 
to a variety of methods for estimating the precision 
of various sample statistics. For instance, resampling 
includes bootstrap techniques, which takes samples 
with replacement from the original data to provide an 
estimate of the distribution of a variable where there is 
a lack of information.

•	 Extremes and Statistical Downscaling Techniques: 
Transfer functions such as those used to create the 
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SERAP and BCSD datasets are shown in literature to 
provide a good estimate of changes in average condi-
tions, but tend to lack representation of the observed 
climate variability and extremes. The technique in 
SERAP produces a better representation of extremes 
in the output than the BCSD approach as shown in 
literature.

•	 Computational Expense of Dynamic Downscaling: 
Datasets created with dynamic downscaling techniques 
(CLAREnCE10, Hostetler, NARCCAP) capture more 
of the physics of the atmosphere; however, the expense 
of computation reduces the number of emissions sce-
narios, GCMs, and model years. 

•	 Statistical Downscaling and Number of Variables: 
Given that statistical downscaling techniques depend 
on an observed record of the variable of interest, most 
downscaled datasets created with statistical techniques 
focus on temperature and precipitation because they 
have long records (> 20 years) in station and gridded 
observation datasets.

5.2  Downscaled Dataset Evaluation

Section 3 focused on the results of an initial evaluation 
of six downscaled datasets over the Southeast U.S. Given the 
evaluation of these six datasets, several conclusions can be 
drawn from the previous results and discussion.

•	 Bias Correction: Each of the downscaled datasets 
created with dynamic downscaling (CLAREnCE10, 
Hostetler, NARCCAP) inherit the errors of the driv-
ing GCM and will show significant biases in the raw 
data. These results indicate a need for bias correction 
of these datasets prior to use in ecological modeling. 
However it is important to note that downscaled 
datasets created with statistical downscaling (CCR, 
BCSD, SERAP) also inherit the errors of the GCM, 
and some of the GCM errors will be reflected in these 
datasets also.

•	 Hurricanes: Given the resolution of most GCMs 
(> 100 kilometers ), the precipitation associated 
with hurricanes is approximated, or parameterized, 
and not explicitly represented in the GCM. Because 
every downscaling technique begins with informa-
tion from the GCM, this leads to errors with regard to 
the variability of precipitation during the peak of the 
Atlantic hurricane season. In some places the variabil-
ity is overestimated (Florida), while the variability is 
strongly underestimated in other places (North Caro-
lina, Northern Gulf Coast). 

•	 Complex Topography: Changes in topography and 
elevation in the Southern Appalachians are not well 
represented by GFDL, and this is also true of the 

downscaled datasets. There are challenges representing 
temperature and precipitation in this region.

•	 There is no “best” downscaled dataset: There is 
no single downscaled dataset that best represents all 
the aspects of temperature and precipitation across 
the entire report domain. However, there are some 
downscaled datasets that better represent one or both 
variables studied in individual regions.

5.3  Recommendations

The summaries, results, and discussion presented in this 
report have led to several conclusions,which in turn has lead to 
several recommendations for the use of downscaled datasets in 
ecological modeling and decisionmaking. 

(1) Consolidate what is known regarding the critical 
sensitivities of Southeast species. There are only a few stud-
ies in the Southeast that assess the impact of climate change 
to individual species and provide information regarding the 
sensitivities of an individual species to current climate vari-
ability. This lack of information has been acknowledged in the 
Southeast Technical Report for the National Climate Assess-
ment, but is also acknowledged by the Science and Technical 
Advisory Committee of the North Carolina Department of 
Environment and Natural Resources (2008). Therefore, it is 
recommended that the information from studies regarding the 
climate sensitivities of individual species be consolidated and 
made available to ecological and climate modelers as well as 
conservation planners. 

(2) Evaluation of downscaled datasets should be 
considered broadly. Evaluation of these datasets should 
consider averages of at least temperature, precipitation, and 
winds, but should also include averages of evapotranspiration 
and (or) humidity where possible. Because there are different 
thresholds for different individual species, the evaluation of 
extremes should examine the accuracy of the entire distribu-
tion of values, rather than individual thresholds. 

(3) Additional evaluation is needed. This initial evalu-
ation focused on temperature and precipitation, but ecologists 
in the Southeast have indicated a need for information about 
the accuracy of winds, evapotranspiration, and drought condi-
tions in these datasets as well as a finer temporal resolution. 
Therefore, it is recommended that this evaluation be repeated 
for data at a daily timescale for multiple variables and thresh-
olds of variables (i.e., number of days with temperature greater 
than 32 ºC), but also with multiple GCMs included where 
possible.

(4) Further engagement among the climatology com-
munity, ecologists, and conservation managers should be 
encouraged. It is important to consider that the results of the 
evaluation in this report provide a basic guide to the accuracy 
of each of these datasets. Therefore, the engagement between 
these groups can allow the needs of ecologists and conserva-
tion managers to be effectively addressed by climatologists. In 
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addition, the engagement process can also allow the needs of 
climatologists to be addressed by ecologists and conservation 
managers in the Southeast. At local levels, this engagement 
can be promoted by the Landscape Conservation Cooperatives 
(LCCs) by highlighting relevant studies that are collabora-
tive in nature between climatologists and ecologists/natural 
resource managers. In addition, both the LCCs and SECSC 
can actively work to connect ecologists interested in using 
downscaled datasets to climatologists familiar with these 
datasets. This could be done by promoting an online directory 
of such climatologists or by facilitating collaborative efforts 
between the scientific communities that also engage and work 
with natural resource managers. 

5.4  Acknowledgments

The authors thank the Department of Interior Southeast 
Climate Science Center (Grant number G12A20515) for fund-
ing this report. The authors also thank the members of their 
Client Advisory Team for providing guidance in the creation 
of this report. The team members include

•	 Rua Mordecai, South Atlantic Landscape Conservation 
Cooperative

•	 Jayantha Obeysekera, South Florida Water Manage-
ment Division

•	 Laurie Rounds, NOAA Office of Ocean and Coastal 
Resource Management – Coastal Programs Division

•	 Laura Thompson, National Climate Change and Wild-
life Science Center

•	 John Tirpak, Gulf Coastal Plains Ozarks Landscape 
Conservation Cooperative

•	 Steve Traxler, Peninsular Florida Landscape Conserva-
tion Cooperative

We also thank the participants of the Regional Climate 
Variation and Change for Terrestrial Ecosystems Workshop for 
providing insights and knowledge regarding appropriate vari-
ables and metrics to evaluate for ecologists, as well as their 
thoughts on further engagement between the climate science 
and ecology communities in the Southeast U.S.

6  References Cited

Abatzoglou, J.T., and Brown, T.J., 2012, A comparison of sta-
tistical downscaling method suited for wildfire applications: 
International Journal of Climatology, v. 32, p. 720–780. 

Alexandrov, V.A., and Hoogenboom, G., 2001, Climate varia-
tion and crop production in Georgia, U.S.A., during the 
twentieth century: Climate Research, v. 17, p. 33–43. 

American Meteorological Society, 2000, Glossary of Meterol-
ogy (2d ed.): American Meteorological Society, 855 p.

Baigorria, G.A., and Jones, J.W., 2010, GiST—A stochastic 
model for generating spatially and temporally correlated 
daily rainfall data: Journal of Climate, v. 23, p. 5990–6008, 
doi:10.1175/2010JCLI3537.1. 

Bardossy, A., and Caspary, H.J., 1990, Detection of climate 
change in Europe by analyzing European atmospheric 
circulation patterns from 1881 to 1989: Theoretical Applied 
Climatology, v. 42, p. 155–167. 

Barnes B., Bi, H., and Roderick, M.L., 2006, Application of an 
ecological framework linking scales based on self-thinning: 
Ecological Applications, v. 16, accessed August 14, 2014, at 
http://dx.doi.org/10.1890/05-0763.

Barrow, E., 2002, Downscaling—An introduction (Region-
alisation: Canadian Climate Impacts and Scenarios Project, 
Climate Scenarios Training Workshop, Nov. 2002, accessed 
August 21, 2014, at http://www.cics.uvic.ca/scenarios/
pdf/2002bcworkshop/c-ciarn_bc_downscaling.pdf.

Barstad, I., Sorteberg, A., Flatoy, F., and Deque, M., 2009, 
Precipitation, temperatture and wind in Norway—Dynami-
cal downscaling of ERA 40: Climate Dynamics, v. 33, 
p. 769–776, doi:10.1007/s00382-008-0476-5. 

Benestad, R.E., 2007, Novel methods for inferring future 
changes in extreme rainfall over Northern Europe: Climate 
Research, v. 34, p. 195–210.

Benestad, R.E., Hanssen-Bauer, I., and Chen, D., 2008, Empir-
ical-Statistical Downscaling: World Scientific, 215 p. 

Bhuta, A.A.R., Kennedy, L.M., and Pederson, N., 2009, 
Climate-radial growth relationships of northern latitudinal 
range margin longleaf pine (Pinus palustris P. Mill.) in the 
Atlantic coastal plain of southeastern Virginia: Tree-Ring 
Research, v. 65, p. 105–115, accessed August 15, 2014, at 
http://dx.doi.org/10.3959/2008-17.1. 

Bocedi, G., Pe’er, G., Heikkinen, R.K., Matsinos, Y., and 
Travis, J.M.J., 2012, Projecting species’ range expan-
sion dynamics—Sources of systematic biases when 
scaling up patterns and processes: Methods in Ecology 
and Evolution, v. 3, p. 1008–1018, DOI: 10.1111/j.2041-
210X.2012.00235.x.

Busuioc, A., Chen, D., and Hellstrom, C., 2001, Performance 
of statistical downscaling models in GCM validation and 
regional climate estimates—Application for Swedish  
Precipitation: International Journal of Climatology, v. 21,  
p. 557–578.

http://dx.doi.org/10.1890/05-0763
http://dx.doi.org/10.3959/2008-17.1


6  References Cited    47

Busuioc, A., Giorgi, F., Bi, X., and Ionita, M., 2006, Compari-
son of regional climate model and statistical downscaling 
simulations of different winter precipitaiton change scenar-
ios over Romania: Theoretical Applied Climatology, v. 86, 
p. 101–123, doi:10.1007/s00704-005-0210-8. 

Carter, L.M., Jones, J.W., Berry, L., Burkett, V., Murley, J.F., 
Obeysekera, J., Schramm, P.J., and Wear, D., 2013, South-
east and the Caribbean, chap. 17 of Melillo, J.M., Rich-
mond, T.C., and Yohe, G.W., eds., Climate change impacts 
in the United States—The Third National Climate Assess-
ment: U.S. Global Change Research Program, p. 396–417, 
doi:10.7930/J0N-P22CB. 

Cho, H., and Lee, K., 2012, Development of an air–water 
temperature relationship model to predict climate-induced 
future water temperature in estuaries: Journal of Envi-
ronmental Engineering, v. 138, p. 570–577, doi:10.1061/
(ASCE)EE.1943-7870.0000499. 

Conner, W.H., Song, B., Williams, T.M., and Vernon, J.T., 
2011, Long-term tree productivity of a South Carolina 
coastal plain forest across a hydrology gradient: Journal of 
Plant Ecology, v. 4, p. 67–76, doi:10.1093/jpe/rtq036. 

Conway, D., and Jones, P.D., 1998, The use of weather types 
and air flow indices for GCM downscaling: Journal of 
Hydrology, v. 212–213, p. 348–361.

Corte-Real, J., Qian, B., and Xu, H., 1999, Circulation pat-
terns, daily precipitation in Portugal and implications for 
climate change simulated by the second Hadley Centre 
GCM: Climate Dynamics, v. 15, p. 921–935. 

Dalton, M.S., and Jones, S.A., comps., 2010, Southeast 
Regional Assessment Project for the National Climate 
Change and Wildlife Science Center, U.S. Geological Sur-
vey: U.S. Geological Survey Open-File Report 2010–1213, 
38 p.

Daly, C., Halbleib, M., Smith, J.I., Gibson, W.P., Doggett, 
M.K., Taylor, G.H., Curtis, J., and Pasteris, P.P., 2008, 
Physiographically sensitive mapping of climatological 
temperature and precipitation across the conterminous 
United States: International Journal of Climatology, v. 28, 
p. 2031–2064, DOI: 10.1002/joc.1688.

Davy, R.J., Woods, M.J., Russell, C.J., and Coppin, P.A., 
2010, Statistical downscaling of wind variability from 
meteorological fields: Boundary Layer Meteorology, v. 135, 
p. 161–175, doi:10.1007/s10546-009-9462-7. 

Delworth and others, 2006, GFDL’s CM2 global coupled cli-
mate models—Part 1, Formulation and simulation charac-
teristics: Journal of Climate, v. 19, p. 643–674.

Desantis, L.R.G., Bhotika, S., Williams, K., and Putz, F.E., 
2007, Sea-level rise and drought interactions accelerate 
forest decline on the Gulf Coast of Florida, U.S.A.: Global 
Change Biology, v. 13, p. 2349–2360, doi:10.1111/j.1365-
2486.2007.01440.x. 

Devore, J.L., 2004, Simple linear regression and correlation, in 
Crockett, C., ed., Probability and statistics for engineers and 
the sciences: Brooks/Cole-Thomson Learning, p. 496–554.

Emanuel, K., Sundararajan, R., and Williams, J., 2008, 
Hurricanes and global warming—Results from down-
scaling IPCC AR4 simulations: Bulletin of the American 
Meteorological Society, v. 89, p. 347–367, doi:10.1175/
BAMS-89-3-347. 

FAO Corporate Document Repository, 1998, FAO Penman-
Monteith equation, chap. 2 of Allen, R.G., Pereira, L.S., 
Raes, D., and Smith, M., Crop evapotranspiration—Guide-
lines for computing crop water requirements: Food and 
Agriculture Organization of the United Nations, FAO irriga-
tion and drainage paper 56, accessed August 15, 2014, at 
http://www.fao.org/docrep/X0490E/x0490e06.htm.

Fey, S.B., and Cottingham, K.L., 2011, Linking biotic inter-
actions and climate change to the success of exotic Daph-
nia lumholtzi: Freshwater Biology, v. 56, p. 2196–2209, 
doi:10.1111/j.1365-2427.2011.02646.x. 

Franklin, J., Davis, F.W., Ikegami, M., Syphard, A.D., Flint, 
L.E., Flint, A.L., and Hannah, L., 2013, Modeling plant spe-
cies distributions under future climates—How fine scale do 
climate projections need to be?: Global Change Biology,  
v. 19, p. 473–483, DOI: 10.1111/gcb.12051. 

Frei, C., Christensen, J.H., Deque, M., Jacob, D., Jones, R.G., 
and Vidale, P.L., 2003, Daily precipitation statistics in 
regional climate models—Evaluation and intercomparison 
for the European Alps: Journal of Geophysical Research-
Atmospheres, v. 108, doi:10.1029/2002JD002287. 

Frogner, I., Haakenstad, H., and Iversen, T., 2006, Limited-
area ensemble predictions at the Norwegian Meteorological 
Institute: Quarterly Journal of the Royal Meteorological 
Society, v. 132, p. 2785–2808, doi:10.1256/qj.04.178. 

Ghosh, S., and Mujumdar, P.P., 2008, Statistical downscaling 
of GCM simulations to streamflow using relevance vector 
machine: Advances in Water Resources, v. 31, p. 132–146, 
doi:10.1016/j.advwatres.2007.07.005. 

Giorgi, F., 1990, Simulation of regional climate using a limited 
area model nested in a general circulation model: Journal of 
Climate, v. 3, p. 941–964. 



48    Downscaled Climate Projections for the Southeast United States

Golladay, S.W., Gagnon, P., Kearns, M., Battle, J.M., and 
Hicks, D.W., 2004, Response of freshwater mussel 
assemblages (Bivalvia:Unionidae) to a record drought 
in the Gulf Coastal Plain of southwestern Georgia: Jour-
nal of the North American Benthological Society, v. 23, 
p. 494–506, accessed August 15, 2014, at http://dx.doi.
org/10.1899/0887-3593(2004)023<0494:ROFMAB> 
2.0.CO;2. 

Goodess, C., Hulme, M., and Osborn, T., 2001, The identi-
fication and evaluation of suitable scenario development 
methods for the estimate of future probabilities of extreme 
weather events: Tyndall Centre for Climate Change 
Research, accessed August 22, 2014, at http://www.tyndall.
ac.uk/sites/default/files/wp6.pdf.

Hanssen-Bauer, I., Forland, E.J., Haugen, J.E., and Tveito, 
O.E., 2003, Temperature and precipitation scenarios for 
Norway—Comparison of results for dynamical and empiri-
cal downscaling: Climate Research, v. 25, p. 15–27. 

Hartmann, D.L., 1994, Global physical climatology: Academic 
Press, International Geophysics Series, v. 56, 411 p. 

Hawkins, E., and Sutton, R., 2009, The potential to narrow 
uncertainty in regional climate predictions: Bulletin of the 
American Meteorological Society, v. 90, p. 1095–1107.

Hawkins, E., and Sutton, R., 2011, The potential to narrow 
uncertainty in projections of regional precipitation change: 
Climate Dynamics, v. 37, p. 407–418.

Hayhoe, K./Pine Integrated Network—Education, Mitigation, 
and Adaptation Project, 2012, High-resolution climate pro-
jections—Where do they come from and what can we use 
them for?: YouTube, accessed August 15, 2014, at https://
www.youtube.com/watch?v=aXqCYP7nALI.

Haylock, M.R., Cawley, G.C., Harpham, C., Wilby, R.L., and 
Goodess, C.M., 2006, Downscaling heavy precipitation 
over the United Kingdom—A comparison of dynamical and 
statistical methods and their future scenarios: International 
Journal of Climatology, v. 26, p. 1397–1415, doi:10.1002/
joc.1318. 

Hellstrom, C., Chen, D., Achberger, C., and Raisanen, J., 
2001, Comparison of climate change scenarios for Sweden 
based on statistical and dynamical downscaling of monthly 
precipitation: Climate Research, v. 19, p. 45–55. 

Hewitson, B.C., and Crane, R.G., 2002, Self-organizing 
maps—Applications to synoptic climatology: Climate 
Research, v. 22, p. 13–26.

Hewitson, B.C., and Crane, R.G., 2006, Consensus between 
GCM climate change projections with empirical down-
scaling: precipitation downscaling over South Africa: 
International Journal of Climatology, v. 26, p. 1315–1337, 
doi:10.1002/joc.1314. 

Heyen, H., Zorita, E., and Von Storch, H., 1996, Statistical 
downscaling of monthly mean North Atlantic air-pressure to 
sea level anomalies in the Baltic Sea: Tellus, v. 48A,  
p. 312–323.

Hoar, T., and Nychka, D., 2008, Statistical downscaling of 
the community climate system model (CCSM) monthly 
temperature and precipitation projections: IMAGe/UCAR 
White Paper, April 2008, accessed August 21, 2014, at 
https://gisclimatechange.ucar.edu/sites/default/files/users/
Downscaling.pdf.

Hostetler, S.W., Alder, J.R., and Allan, A.M., 2011, Dynami-
cally downscaled climate simulations over North Amer-
ica—Methods, evaluation, and supporting documenta-
tion for users: U.S. Geological Survey Open-File Report 
2011–1238, 64 p. 

Hughes, J.P., Lettenmaier, D.P., and Guttorp, P., 1993, A 
stochastic approach for assessing the effect of changes in 
synoptic circulation patterns on gauge precipitation: Water 
Resources Research, v. 29, p. 3303–3315. 

Huth, R., 2000, A circulation classification scheme applicable 
in GCM studies: Theoretical Applied Climatology, v. 67,  
p. 1–18. 

Ingram, K.T., Dow, K., Carter, L., and Anderson, J., eds., 
2013, Climate of the Southeast United States—Variabil-
ity, change, impacts, and vulnerability: Washington, D.C., 
Island Press, National Climate Assessment Regional Techni-
cal Input Report Series, accessed August 15, 2014, at http://
www.seclimate.org/pdfpubs/2013/SE-NCA-draft8-color.pdf. 

Intergovernmental Panel on Climate Change, 2009, IPCC Spe-
cial Report Emissions Scenarios, Summary for Policymak-
ers: Intergovernmental Panel on Climate Change, accessed 
August 15, 2014, at https://www.ipcc.ch/pdf/special-reports/
spm/sres-en.pdf.

IPCC-TGCIA, 1999, Guidelines on the use of scenario data 
for climate impact and adapation assessment, Version 1, 
Prepared by T.R. Carter, M. Hulme, and M. Lal: Inter-
governmental Panel on Climate Change, Task Group on 
Scenarios for Climate Impact Assessment, 69 p., accessed 
August 15, 2014, at http://www.ipcc-data.org/guidelines/
TGICA_guidance_sdciaa_v1_final.pdf.

Jianhua, Hu, 2011, The correlation analysis between 74, 
Atmospheric circulation parameters: Proceedings, 2011 
International Conference on Electrical and Control Engi-
neering (ICECE), September 16–18, 2011, Yichang, China, 
p. 3220–3223. 

Jokiel, P.L., and Coles, S.L., 1977, Effects of temperature on 
the mortality and growth of Hawaiian reef corals: Marine 
Biology, v. 43, p. 201–208, doi:10.1007/BF00402312. 

http://dx.doi.org/10.1899/0887-3593(2004)023%3c0494:ROFMAB%3e2.0.CO;2
http://dx.doi.org/10.1899/0887-3593(2004)023%3c0494:ROFMAB%3e2.0.CO;2
http://dx.doi.org/10.1899/0887-3593(2004)023%3c0494:ROFMAB%3e2.0.CO;2


6  References Cited    49

Jones, P.D., Hulme, M., and Briffa, K.R., 1993, A comparison 
of lamb circulation types with an objective classification 
scheme: International Journal of Climatology, v. 13,  
p. 655–663. 

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, 
D., Gandin, L., Iredell, M., Saha, S., White, G., Wool-
len, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, 
M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.C., 
Ropelewski, C., Wang, J., Jenne, R., and Joseph, D., 1996, 
The NCEP/NCAR 40-year reanalysis project: Bulletin of 
the American Meteorological Society, v. 77, p. 437–471, 
doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2. 

Karl, T.R., Melillo, J.M., and Peterson, T.C., eds., 2009, 
Global climate change impacts in the United States: Cam-
bridge, N.Y., Cambridge University Press, accessed  
August 18, 2014, at http://www.globalchange.gov/usimpacts.

Kidson, J.W., 2000, An analysis of New Zealand synoptic 
types and their use in defining weather regimes: Interna-
tional Journal of Climatology, v. 20, p. 299–316. 

Kidson, J.W., and Thompson, C.S., 1998, A comparison of 
statistical and model-based downscaling techniques for 
estimating local climate variations: Journal of Climate,  
v. 11, p. 735–753. 

Kirwan, M.L., Guntenspergen, G.R., and Morris, J.T., 2009, 
Latitudinal trends in Spartina alterniflora productivity and 
the response of coastal marshes to global change: Global 
Change Biology, v. 15, p. 1982–1989, doi:10.1111/ 
j.1365-2486.2008.01834.x. 

Knutson, T.R., Delworth, T.L., Dixon, K.W., Held, I.M., Lu, 
J., Ramaswamy, V., Schwarzkopf, M.D., Stenchikov, G., 
and Stouffer, R.J., 2006, Assessment of twentieth-century 
regional surface temperature trends using the GFDL CM2 
coupled models: Journal of Climate, v. 19, p. 1624–1651, 
accessed August 18, 2014, at http://dx.doi.org.prox.lib.ncsu.
edu/10.1175/JCLI3709.1.

Knutti, R., and J., Sedláček, 2012, Robustness and uncer-
tainties in the New CMIP5 climate model projections: 
Nature Climate Change, v. 3, p. 369–373, doi:10.1038/
nclimate1716.

Laprise, R., 2008, Regional climate modeling: Jour-
nal of Computational Physics, v. 227, p. 3641–3666, 
doi:doi:10.1016/j.jcp.2006.10.024. 

Lee, C.C., Ballinger, T.J., and Domino, N.A., 2012, Utilizing 
map pattern classification and surface weather typing to 
relate climate to the Air Quality Index in Cleveland, Ohio: 
Atmospheric Environment, v. 63, p. 50–59, doi:10.1016/ 
j.atmosenv.2012.09.024. 

Lessios, H.A., 1988, Mass mortality of Diadema Antillarum in 
the Caribbean—What have we learned? Annual Review of 
Ecology and Systematics, v. 19, p. 371–393. 

Lorenz, David, n.d., Daily downscaled data: Nelson Institute 
for Environmental Studies, accessed August 21, 2014, at 
http://djlorenz.github.io/downscaling2/main.html.

Mac, M.J., Opler, P.A., Puckett Haecker, C.E., and Doran, 
P.D., 1998, Regional trends of biological resources—
Southeast, in Status and trends of the Nation’s biological 
resources, v. 1, p. 255–314. 

Matthews, W.J., and Marsh-Matthews, E., 2003 Effects of 
drought on fish across axes of space, time, and ecological 
complexity: Freshwater Biology, v. 48, p. 1232–1253. 

Maurer, E.P., Brekke, L., Pruitt, T., and Duffy, P.B., 2007, 
Fine-resolution climate projections enhance regional cli-
mate change impact studies: Eos, Transactions American 
Geophysical Union, v. 88, doi:10.1029/2007EO470006. 

Maurer, E.P., and Hidalgo, H.G., 2008, Utility of daily vs. 
monthly large-scale climate data: an intercomparison of 
two statistical downscaling methods: Hydrology and Earth 
System Sciences, v. 12, p. 551–563. 

Mearns, L.O., Gutowski, W.J., Jones, R., Leung, L.-Y., 
McGinnis, S., Nunes, A.M.B., and Qian, Y., 2009, A 
regional climate change assessment program for North 
America: Eos, Transactions American Geophysical Union, 
v. 90, no. 36, p. 311–312, doi: 10.1029/2009EO360002.

Middleton, B.A., 2009, Regeneration potential of Taxodium 
distichum swamps and climate change: Plant Ecology,  
v. 202, p. 257–274.

Misra, V., and Michael, J.-P., 2013, Varied diagnosis of the 
observed surface temperature trends in the Southeast United 
States: Journal of Climate, v. 26, p. 1467–1472. 

Misra, V., Moeller, L., Stefanova, L., Chan, S., O’Brien, J.J., 
Smith III, T.J., and Plant, N., 2011, The influence of the 
Atlantic warm pool on the Florida panhandle sea breeze: 
Journal of Geophysical Research—Atmospheres, v. 116, 
D00Q06, doi:10.1029/2010JD015367.

Mote, P., Brekke, L., Duffy, P.B., and Maurer, E., 2011, Guide-
lines for constructing climate scenarios: Eos, Transactions 
American Geophysical Union, v. 92, p. 257–258. 

Murphy, J., 1999, An evaluation of statistical and dynami-
cal techniques for downscaling local climate: Journal of 
Climate, v. 12, p. 2256. 

North Carolina Department of Environment and Natural 
Resources, 2008, Estuarine responses to climate change: 
Albemarle-Pamlico National Estuary Partnership Science & 
Technical Advisory Committee, Issue Paper 5. 

http://dx.doi.org.prox.lib.ncsu.edu/10.1175/JCLI3709.1
http://dx.doi.org.prox.lib.ncsu.edu/10.1175/JCLI3709.1


50    Downscaled Climate Projections for the Southeast United States

Palmer, T.N., and Weisheimer, A., 2011, Diagnosing the causes 
of bias in climate models—Why is it so hard?: Geophysical 
and Astrophysical Fluid Dynamics, v. 105, p. 351–365.

Pesquero, J.F., Chan Chou, S., Nobre, C.A., and Marengo, 
J.A., 2010: Climate downscaling over South America for 
1961–1970 using the Eta Model: Theoretical Applied Cli-
matology, v. 99, p. 75–93, doi:10.1007/s00704-009-0123-z. 

Pickens, C.N., and Hester, M.W., 2011, Temperature 
tolerance of early life history stages of black mangrove 
Avicennia germinans—Implications for range expansion: 
Estuaries and Coasts, v. 34, p. 824–830, doi:DOI 10.1007/
s12237-010-9358-2. 

PRISM Climate Group, 2013, Descriptions of PRISM spatial 
climate datasets for the conterminous United States: Oregon 
State University – Northwest Alliance for Computational 
Science and Engineering, accessed August 18, 2014, at 
http://www.prism.oregonstate.edu/documents/PRISM_
datasets_aug2013.pdf.

Qian, Y., Ghan, S.J., and Leung, L.R., 2010, Downscaling 
hydroclimatic changes over the Western US based on CAM 
subgrid scheme and WRF regional climate simulations: 
International Journal of Climatology, v. 30, p. 675–693, 
doi:10.1002/joc.1928. 

Racsko, P., Szeidl, L., and Semenov, M.A., 1991, A serial 
approach to local stochastic weather models: Ecological 
Modelling, v. 57, p. 27–41. 

Randall, D.A., Wood, R.A., Bony, S., Colman, R., Fichefet, 
T., Fyfe, J., Kattsov, V., Pitman, A., Shukla, J., Srinivasan, 
J., Stouffer, R.J., Sumi, A., and Taylor, K.E., 2007, Climate 
models and their evaluation, in Solomon, S., Qin, D., Man-
ning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., 
and Miller, H.L., eds., Climate change 2007—The physi-
cal science basis: Cambridge, United Kingdom, and New 
York, Cambridge University Press, Contribution of Working 
Group I to the Fourth Assessment Report of the Intergov-
ernmental Panel on Climate Change.

Rastetter, E.B., King, A.W., Cosby, B.J., Hornberger, G.M., 
O’Neill, R.V., and Hobbie, J.E., 1992, Aggregating fine-
scale ccological knowledge to model coarser-scale attributes 
of ecosystems: Ecological Applications, v. 2, p. 55–70. 

Richardson, C.W., and Wright, D.A., 1984, WGEN—A model 
for generating daily weather variables: Department of Agri-
culture, Agriculture Research Service, ARS-8. 

Rugel, K., Jackson, C.R., Romeis, J.J., Golladay, S.W., Hicks, 
D.W., and Dowd, J.F., 2012, Effects of irrigation withdraw-
als on streamflows in a karst environment—Lower Flint 
River Basin, Georgia, U.S.A.: Hydrological Process, v. 26, 
p. 523–534, doi:10.1002/hyp.8149. 

Schultz, J.A., and Neuwirth, B., 2012, A new atmospheric 
circulation tree-ring index (ACTI) derived from climate 
proxies—Procedure, results and applications: Agricultural 
and Forest Meteorology, v.164, p. 149–160, doi:10.1016/ 
j.agrformet.2012.05.007. 

Sheffield, J., Barrett, A.P., Colle, B., Fernando, D.N., Fu, R., 
Geil, K.L., Hu, Q., Kinter, J., Kumar, S., Langenbrunner, B., 
Lombardo, K., Long, L.N., Maloney, E., Mariotti, A., Mey-
erson, J.E., Mo, K.C., Neelin, J.D., Nigam, S., Pan, Z., Ren, 
T., Ruiz-Barradas, A., Serra, Y.L., Seth, A., Thibeault, J.M., 
Stroeve, J.C., Yang, Z., and Yin, L., 2013, North American 
Climate in CMIP5 Experiments, Part I—Evaluation of his-
torical simulations of continental and regional climateology: 
Journal of Climate, v. 26, p. 9209–9245.

Sherrod, C. L., Hockaday, D.L., and McMillan, C., 1986, 
Survival of red mangrove, Rhizophora mangle, on the Gulf 
of Mexico coast of Texas: Contributions in Marine Science, 
v. 29, p. 27–36. 

Stallins, J.A., Nesius, M., Smith, M., and Watson, K., 2010, 
Biogeomorphic characterization of floodplain forest change 
in response to reduced flows along the Apalachicola 
River, Florida: River Research and Applications, v. 26, p. 
242–260, doi:10.1002/rra.1251. 

Stambaugh, M.C., Guyette, R.P., and Marschall, J.M., 2011: 
Longleaf pine (Pinus palustris Mill.) fire scars reveal new 
details of a frequent fire regime: Journal of Vegetation  
Science, v. 22, p. 1094–1104, doi:10.1111/ 
j.1654-1103.2011.01322.x. 

Stefanova, L., Misra, V., Chan, S.C., Griffin, M., O’Brien, 
J.J., and Smith, T.J., III, 2012, A proxy for high-resolution 
regional reanalysis for the Southeast United States: Climate 
Dynamics, v. 38, p. 2449–2466, DOI: 10.1007/ 
s00382-011-1230-y.

Stefanova, L., Misra, V., and Smith, T.J., III, 2012, Climate 
means, trends and extremes in the Everglades—Historical 
data and future projections: 9th INTECOL Wetlands Confer-
ence, Orlando, Fla., June 3–8, 2012.

Stoner, A.M.K., Hayhoe, K., Yang, X., and Wuebbles, D.J., 
2012, An asynchronous regional regression model for sta-
tistical downscaling of daily climate variables: International 
Journal of Climatology, v. 33, p. 2473–2494, doi:10.1002/
joc.3603. 

Tapiador, F.J., 2008, Hurricane footprints in global climate 
models: Entropy, v. 10, p. 613–620, accessed August 18, 
2014, at http://dx.doi.org/10.3390/e10040613. 

Thrasher, B., Xiong, J., Wang, W., Melton, F., Michaelis, A., 
and Nemani, R., 2013, Downscaled climate projections suit-
able for resources management: Eos, Transactions American 
Geophysical Union, v. 94, p. 321–323.

http://dx.doi.org/10.3390/e10040613


6  References Cited    51

Timbal, B., and McAvaney, B.J., 2001, An analogue based 
method to downscaled surface air temperature—Application 
for Australia: Climate Dynamics, v. 17, p. 947–963. 

Trivedi, M.R., Berry, P.M., Morecroft, M.D., and Dawson, 
T.P., 2008, Spatial scale affects bioclimate model projec-
tions of climate change impacts on mountain plants: Global 
Change Biology, v. 14, p. 1089–1103, doi:10.1111/ 
j.1365-2486.2008.01553.x. 

Tudor, M., and Termonia, P., 2010, Alternative formulations 
for incorporating lateral boundary data into limited-area 
models: Monthly Weather Review, v. 138, p. 2867–2882, 
doi:10.1175/2010MWR3179.1. 

Urban, D., 2009, Modeling ecological processes across scales: 
Ecology, v. 86, p. 1996–2006, accessed August 18, 2014, at 
http://dx.doi.org/10.1890/04-0918.

U.S. Environmental Protection Agency, 2013, Glossary of cli-
mate change terms, U.S. Environmental Protection Agency 
Web site, accessed August 18, 2014, at http://www.epa.gov/
climatechange/glossary.html#R. 

Varis, O., Kajander, T., and Lemmela, R., 2004, Climate and 
water—From climate models to water resources manage-
ment and vice versa: Climate Change, v. 66, p. 321–344. 

Von Storch, H., Hewitson, B.C., and Mearns, L.O., 2000, 
Review of empirical downscaling techniques, in Iversen, 
T., and Høiskar, B.A.K., eds., Regional Climate Develop-
ment Under Global Warming, Conference Proceedings 
of the RegClim Spring Meeting, Jevnaker, Norway, May 
8–9, 2000: Kjeller, Norway, Norwegian Institute for Air 
Research, General Technical Report No. 4, p. 29–46.

Wallace, J.M., and Hobbs, P.V., 2006, Atmospheric Dynamics, 
chap. 7 of Atmospheric Science: An Introductory Survey 
(2d ed.): Academic Press, p. 271–313. 

Wang, Y., Leung, L.R., McGregor, J.L., Lee, D., Wang, W., 
Ding, Y., and Kimura, F., 2004, Regional climate model-
ing—Progress, challenges, and prospects: Journal of the 
Meteorological Society of Japan, v. 82, p. 1599–1628. 

Watanabe, S., Kanae, S., Seto, S., Yeh, P.J.-F., Hirabayashi, 
Y., and Oki, T., 2012, Intercomparison of bias-correc-
tion methods for monthly temperature and precipita-
tion simulated by multiple climate models: Journal of 
Geophysical Research—Atmospheres, v. 117, D23114, 
doi:10.1029/2012JD018192. 

Widmann, M., Bretherton, C.S., and Salathe, E.P., 2003, 
Statistical precipitation downscaling over the Northwestern 
United States using numerically simulated precipitation as a 
predictor: Journal of Climate, v. 16, p. 799–816.

Wilby, R.L., Charles, S.P., Zorita, E., Timbal, B., Whetton, 
P., and Mearns, L.O., 2004, Guidelines for use of climate 
scenarios developed from statistical downscaling methods: 
Intergovernmental Panel on Climate Change, Task Group 
on Data and Scenario Support for Impacts and Climate 
Analysis, 27 p. 

Wilkinson, C., and Souter, D., 2008, Status of Caribbean 
coral reefs after bleaching and hurricanes in 2005: Global 
Coral Reef Monitoring Network, and Reef and Rainforest 
Research Centre, 304 p. 

Wilks, D.S., and Wilby, R.L., 1999, The weather generation 
game—A review of stochastic weather models: Progress in 
Physical Geography, v. 23, p. 329–357, doi:10.1177/ 
030913339902300302. 

Zorita, E., and Von Storch, H., 1999, The analog method as a 
simple statistical downscaling technique—Comparison with 
more complicated methods: Journal of Climate, v. 12,  
p. 2474–2489.

http://dx.doi.org/10.1890/04-0918




Appendixes    53

Appendix 1.  Workshop Summary

Regional Climate Variations and Change for Terrestrial Ecosystems Workshop: Summary

North Carolina State University, the University of 
North Carolina at Chapel Hill, and the U.S. Environmental 
Protection Agency in partnership with the U.S. Department 
of the Interior Southeast Climate Science Center hosted 
the Regional Climate Variations and Change for Terrestrial 
Ecosystem Workshop. The workshop was held at N.C. State 
University in Raleigh on May 16–17, 2013. The workshop 
brought together approximately 40 scientists, mostly from the 
Raleigh–Durham–Chapel Hill area, to discuss challenges and 
uncertainties of understanding the interactions of climate and 
ecosystems across the Carolinas. This multidisciplinary effort 
sought to bridge the knowledge gap between climate scientists 
and ecosystem scientists. To create a foundation, high-level 
scientific presentations were given from both disciplines. 

The first day of the workshop included an open discus-
sion between participants and speakers on climate data and 
uncertainties. Climate presentations focused on data needs 
for ecosystem scientists and included talks on global climate 
modeling, dynamic and statistical downscaling, and synthesiz-
ing currently available climate change projections. The open 
discussion on climate model projections and datasets provided 
expert guidance on using climate change projections for eco-
systems applications. Ecosystem scientists are seeking climate 
scientists who can provide expert guidance on how to properly 
use global climate models (GCMs) and downscaled climate 
change projection data. Currently, there is some disconnect 
between the disciplines and the potential misuse of climate 
change projection information. Ecologists stress other antici-
pated changes in the future, such as urbanization, are likely 
more important than climate change for the Carolinas. Ecolo-
gists suggested that future decisions about climate change 
should also consider the influence of the human component 
changes on the local climate. 

The first half of the second day included presentations on 
terrestrial ecosystem modeling and a panel discussion about 
integrating climate and ecosystems. Similar to the first day, 
ecologists provided presentations to help climate scientists 
understand ecosystem needs and challenges. The presenta-
tions focused on different ecosystem modeling techniques, 
uncertainties associated with ecosystem modeling, and a 
few examples of climate adaptation practices for ecosystem 
decisions with respect to climate change. The first discussion 
sessions provided a sense of the needs for ecosystem scien-
tists. In general, considering the impact of a changing climate 
on ecosystems is considered a “wicked” problem because 
there is an urgent need to make decisions that are informed by 

model frameworks that have large uncertainties. In particular, 
it has been identified that model errors propagate and grow 
as the model framework becomes more complex. Ecolo-
gists acknowledge that expert assessments are used to make 
informed decisions relating to climate change; however, there 
is a need for more quantitative assessment of climate change 
for ecosystems. The quantitative assessment is hindered by the 
lack of ecological data and basic biological research relating 
climate sensitivities to species and ecosystems.

During lunch on the second day, a demonstration of the 
USGS Geo Data Portal (http://cida.usgs.gov/gdp/) was pro-
vided by David Blodgett (IT Specialist and Project Manager, 
USGS Center for Integrated Data Analytics). The demonstra-
tion focused on illustrating the availability and capability to 
access different datasets through the Geo Data Portal. The 
datasets available include downscaled climate change datas-
ets, topographic information, and projections of sea level rise. 
The Geo Data Portal, however, does not indicate the accuracy 
of the downscaled climate change datasets. This underscored 
the need for more guidance and interaction between climate 
scientists and ecologists.

The final discussion on the second day focused on two 
aspects of the needs of ecologists with regard to climate 
change information and research priorities. The general needs 
of ecologists with regard to climate information were first 
discussed followed by determining the climate sensitivi-
ties that are most important to ecological applications in the 
Southeast. During the discussion, ecologists identified that 
extreme weather events and potential changes to the spatial 
and temporal distribution of those events are important for 
ecosystems. The extremes mentioned most often by the group 
included temperature extremes, rainfall extremes, and storm 
frequency. Ecologists also identified that the downscaling does 
not provide the resolution needed for many applications, and 
interpolation typically is used to supplement downscaled data. 
For instance, topoclimatic models are applied to increase the 
resolution of downscaled climate change datasets. However, 
climate scientists stress that these techniques are not appropri-
ate for extremes or spatially discontinuous variables such as 
precipitation. 

As part of the discussion, climate scientists attempted 
to compile a list of model metrics that can be used to evalu-
ate currently available downscaled climate change datasets 
over recent history. Defining a comprehensive list is difficult, 
because model metrics can be species/application specific and 
the relation between species and climate variability often is 

http://cida.usgs.gov/gdp/
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uncertain. In addition to the frequency of extreme events, there 
is interest in more specialized output, including evapotranspi-
ration and vapor pressure deficit. The specificity with regard 
to the climate sensitivity of an ecosystem or species, however, 
was not identified. This mirrors current ecological literature 
regarding the climate sensitivities of given species and 
ecosystems. From these discussions several recommendations 
were produced by the workshop participants.

•	 More solicitations on collaborative research between 
ecosystems scientists and climate modelers on discrete 
decision-based projects are encouraged. 

•	 There is a need for more documentation and guidance 
from the climate science community regarding:

•	 Appropriate use of downscaled climate change 
datasets

•	 Error/uncertainty propagation in climate modeling

•	 Basic metadata differences (spatial domain, spatial 
resolution, temporal resolution, time periods, etc.) 
between downscaled datasets

•	 There is a need for more basic ecology/biology 
research regarding the climate sensitivities of different 
species and ecosystems.

•	 Integrating climate data with land-use/cover change 
information.

•	 Further engagement is encouraged among the ecolo-
gists, hydrologists, biologists, managers, and climate 
scientists through similar workshops held at least 
annually.

It was recognized by the group that some decisions can-
not use a small project decision-based approach and require 
urgent and immediate action for resilient decisions integrat-
ing climate change information. In those instances, scientists 
must rely on the best available data for decisions. Therefore, 
documenting the strengths and weaknesses of available cli-
mate data and providing accessibility to experts on these data 
for guidance was a key recommendation of this workshop. 
The workshop participants recommended further engagement 
through annual or biannual workshops with the larger com-
munity of ecologists and climate scientists. Specifically, the 
participants requested that future workshops provide updates 
on the state of the respective scientific fields to include discus-
sions of priority needs.

Appendix 2.  Bias and Standard 
Deviation Difference Maps 50 and 
15 km Resolutions

[Appendix 2 available for download at http://pubs.usgs.gov/
of/2014/1190/]

In Chapters 3 and 4, the bias and standard deviation dif-
ference were used with 50 km resolution maps as part of the 
discussion of downscaled datasets across the Southeast U.S. 
In this appendix, both 50 km and 15 km resolution maps are 
shown for the bias and standard deviation difference from 
monthly temperature and precipitation for each month across 
the domain. 

Appendix 3.  Annual Cycles for All 
Subregions

[Appendix 3 available for download at http://pubs.usgs.gov/
of/2014/1190/]

In previous chapters of this report, the annual cycles were 
discussed for the mean and standard deviation of monthly 
temperature and precipitation for several subregions in the 
Southeast U.S. In this appendix, all the annual cycles for 
monthly temperature and precipitation are included for each 
subregion. In addition, the root mean square error and cor-
relation for each variable are also included in tables following 
each group of figures.

Appendix 4.  Probability Distribution 
Functions (PDFs) for All Subregions

[Appendix 4 available for download at http://pubs.usgs.gov/
of/2014/1190/]

In Chapters 3 and 4, the distribution of temperature and 
precipitation was discussed through the use of probability 
distribution functions (PDFs). While some examples were pro-
vided in Chapters 3 and 4, this appendix provides all the Janu-
ary and July PDFs for temperature and precipitation in each 
of the 14 subregions discussed in the earlier chapters. Recall 
that PDFs are unitless value but represents the frequency with 
which a value of temperature or precipitation occurs.
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