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Conversion Factors and Datums 
Conversion Factors 
Inch/Pound to SI 

Multiply By To obtain 

Length 

inch (in.) 2.54 centimeter (cm) 

inch (in.) 25.4 millimeter (mm) 

foot (ft) 0.3048 meter (m) 

mile (mi) 1.609 kilometer (km) 

Area 
square mile (mi2) 259.0 hectare (ha) 

square mile (mi2)  2.590 square kilometer (km2)  

Volume 
cubic yard (yd3) 0.7646 cubic meter (m3)  

Flow rate 
cubic foot per second (ft3/s)  0.02832 cubic meter per second (m3/s) 

Mass 
ton, short (2,000 lb)  0.9072 megagram (Mg)  

   

SI to Inch/Pound   

Multiply By To obtain 

Length 

millimeter (mm) 0.03937 inch (in) 
 
Concentrations of suspended sediment in water are given in milligrams per liter (mg/L)). 

Datums 
Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83). 
Vertical coordinate information is referenced to the North American Vertical Datum of 1929 (NAVD 29). 
Elevation, as used in this report, refers to distance above the vertical datum.
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Correlations of Turbidity to Suspended-Sediment 
Concentration in the Toutle River Basin, near  
Mount St. Helens, Washington, 2010–11 

By Mark A. Uhrich, Jasna Kolasinac2, Pamela L. Booth3, Robert L. Fountain2, Kurt R. Spicer1, and 
Adam R. Mosbrucker1 

Abstract 
Researchers at the U.S. Geological Survey, Cascades Volcano Observatory, investigated 

alternative methods for the traditional sample-based sediment record procedure in determining 
suspended-sediment concentration (SSC) and discharge. One such sediment-surrogate technique was 
developed using turbidity and discharge to estimate SSC for two gaging stations in the Toutle River 
Basin near Mount St. Helens, Washington. To provide context for the study, methods for collecting 
sediment data and monitoring turbidity are discussed. Statistical methods used include the development 
of ordinary least squares regression models for each gaging station. Issues of time-related 
autocorrelation also are evaluated. Addition of lagged explanatory variables was used to account for 
autocorrelation in the turbidity, discharge, and SSC data. Final regression model equations and plots are 
presented for the two gaging stations. The regression models support near-real-time estimates of SSC 
and improved suspended-sediment discharge records by incorporating continuous instream turbidity. 
Future use of such models may potentially lower the costs of sediment monitoring by reducing time it 
takes to collect and process samples and to derive a sediment-discharge record.  

Introduction 
Suspended-sediment transport throughout the Toutle River Basin has been monitored and 

studied since 1980–81, following the eruption of Mount St. Helens on May 18, 1980. This study used 
standard U.S. Geological Survey (USGS) methods to compute sediment-discharge for gaging stations in 
the basin (Porterfield, 1977), along with standard laboratory and field procedures (Guy, 1977; Edwards 
and Glysson, 1999). Streamflow and suspended-sediment concentration (SSC) have been measured, and 
suspended-sediment discharge (SSQ) has been computed, in several drainages in the Toutle River Basin 
(Dinehart, 1998). SSC data are collected by pump sample most days and by depth-integrated methods 
on infrequent days. This report uses data from two long-term gaging stations on the North Forth Toutle 
River and main-stem Toutle River. Daily, monthly, and annual SSC and SSQ data are available online. 
 
 
_____________________________________________ 

1U.S. Geological Survey. 
2Portland State University. 
3University of Rhode Island.  
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In recent years, technology improvements have spawned efforts to develop innovative and 
improved methods of generating time-series records of SSC and SSQ. Traditionally, sample-based 
methods require lengthy evaluation and review before sediment records are finalized, although 
interactive software referred to as Graphical Constituent Loading Analysis System (GCLAS) has 
improved this processing (Koltun and others, 2006). Using recently approved methods (Rasmussen and 
others, 2009); this study examines turbidity as an alternative or surrogate for SSC with the intention of 
better defining SSQ, streamlining record computations, and possibly lowering costs. Additionally, land, 
water, fish, and wildlife resource planners need real-time estimations of SSC and SSQ to more 
effectively respond to changes and disturbances in basins under their management. These techniques, 
which compute SSC from turbidity and streamflow, coupled with a gaging-station telemetry system, 
potentially would allow delivery of near real-time SSC and SSQ data. Because real-time SSQ estimates 
are considered provisional owing to sensor and sampling uncertainty, regression-based SSQ records 
would be finalized annually following approval of turbidity and streamflow data. Use of a regression 
model to compute sediment records may improve accuracy by incorporating high-frequency 
measurements of explanatory variables, and also may lower costs by reducing record processing time 
and the number of samples collected and analyzed. The sediment-sample collection, turbidity 
monitoring, and regression analysis for this study were conducted in cooperation with the U.S. Army 
Corps of Engineers, Portland District. 

Purpose and Scope 
• The primary objective of this study is to test the feasibility and application of instream turbidity 

sensors at two sites in the Toutle River Basin and to demonstrate the use of these sensors as a 
surrogate for SSC, and document the results. 

• Turbidity and streamflow data from April 2010 to September 2011 are used to generate 
regression models for estimating SSC. Such models can be updated as new turbidity, 
streamflow, and sampled SSC data become available. 

• Regression equations are provided for both streamgages and could be used to provide near-real-
time estimates of SSC and SSQ. The proof of concept is shown and regression-based estimates 
for the time-series data could be finalized if they were deemed beneficial. Future projections of 
SSC also could be made available as an online data series. 

• Finally, we make a preliminary assessment as to whether using such a regression approach 
would provide a better-quality SSQ estimate and would reduce effort and expense compared to 
previous methods. 

Study Area 
The number and location of streamflow-gaging and sediment-monitoring stations in the Toutle 

River Basin have evolved since their establishment in 1980–81. Current (2014) gaging stations shown in 
figure 1 include North Fork Toutle River below Sediment Retention Structure near Kid Valley, 
Washington (NF Toutle-SRS, 14240525); and Toutle River at Tower Road near Silver Lake, 
Washington (Toutle-Tower, 14242580). A third gaging station, South Fork Toutle River at Toutle, 
Washington (SF Toutle, 14241500), was discontinued in 2013. For the 6 water years (WYs 2007–12)  
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the reported NF Toutle-SRS total SSQ was more than 18 million tons (units in short tons), constituting 
more than 67 percent of the total SSQ of nearly 27 million tons computed for Toutle-Tower. For the 20-
year period, WYs 1993–2012, the reported total SSQ for Toutle-Tower was more than 60 million tons, 
an annual average of 3 million tons. For the 1.5-year (April 2010–September 2011) period of data in this 
report, the Toutle-Tower SSQ totaled nearly 2.9 million tons, slightly less than the yearly average 
(http://wdr.water.usgs.gov/). 

The Toutle-Tower gaging station, at 160-ft in elevation, is about 7 river miles (RMs) upstream 
of the confluence of the Toutle and Cowlitz Rivers and has a drainage area of 496 mi2. The NF Toutle-
SRS gaging station, at RM 12 of the North Fork Toutle River, drains 175 mi2, and is about 30 RMs 
upstream of the Toutle-Tower gaging station (fig. 1). The NF Toutle-SRS station, at 700-ft elevation, is 
less than 2 RMs downstream of the Sediment Retention Structure (SRS). The SRS was completed in 
1989 to retain and avert sediment eroded from the Mount St. Helens debris-avalanche deposit from 
being transported to the lower basin and eventually the Cowlitz and Columbia Rivers. Through 2012, 
the SRS has trapped about 115 million yd3, representing about 3.5 percent of the total sand and gravel 
deposited after the 1980 eruption (Major and Spicer, 2003; Gibson and others, 2010). Nonetheless, a 
large volume of fluvial sediment passing the SRS is deposited downstream and is aggrading channel 
beds, thereby increasing the threat of flood inundation to the surrounding communities, as well as 
posing a hazard to river navigation and economically important commerce, drinking-water supplies, and 
migrating fish. 

 

  

Figure 1.  Map showing Toutle River Basin study area, drainage basins, and U.S. Geological Survey (USGS) 
gaging station locations, near Mount St. Helens, Washington. 
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Data Collection and Analysis Methods 
To achieve the objectives in the section, “Purpose and Scope,” we installed instream turbidity 

sensors at two gaging stations, NF Toutle-SRS and Toutle-Tower. Fifteen-minute unit-value turbidity 
and discharge data and periodic suspended-sediment samples were collected at both gaging stations 
(U.S. Geological Survey, 2010, 2011). 

Matched pairs of turbidity and discharge with SSC were used as the explanatory and response 
variables, respectively, in a multi-linear regression using ordinary least squares (OLS) methods. 
Separate regression models were generated for each station. The resulting equations can be used to 
estimate 15-minute unit values of SSC from associated turbidity and water discharge unit values. 
Finally, the regression results, including accompanying uncertainty estimates, can be compared with 
previous sample-based sediment records computed for these stations in the Toutle River Basin in order 
to evaluate the relative utility of the traditional and surrogate methods. 

Several established USGS methods were used to collect and process the suspended-sediment 
samples and to check, review, and publish the turbidity data. 

Suspended-Sediment Sampling 
This study started in April and May 2010 for the Toutle-Tower and NF Toutle-SRS streamgages, 

respectively, when turbidity calibrations and data collection began (figs. 2 and 3). Suspended-sediment 
samples were collected routinely in WYs 2010 and 2011, with an emphasis on storm, high-streamflow, 
and high-turbidity events. 

 
 

 

Figure 2.  Photographs showing suspended-sediment sampling, March 12, 2010 (large photograph), and servicing 
sensors, April 20, 2012 (inset), at North Fork Toutle River below Sediment Retention Structure near Kid Valley, 
Washington. Photographs taken by Kurt Spicer, USGS, Cascades Volcano Observatory. 
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Figure 3.  Photographs showing suspended-sediment sampling at Toutle River at Tower Road near Silver Lake, 
Washington, December 13, 2012. Photographs taken by Kurt Spicer, USGS, Cascades Volcano Observatory. 

 

Cross-Sectional, Depth-Integrated Sediment Samples 
Manual suspended-sediment samples were collected at both gaging stations using standard 

USGS depth-integrated, equal-discharge-increment (EDI) and equal-width-increment (EWI) methods, 
(figs. 2 and 3; Edwards and Glysson, 1999). These sampling procedures have been used consistently at 
the NF Toutle-SRS and Toutle-Tower gaging stations since sampling began in the early 1980s. EDI and 
EWI sampling methods are the accepted procedures for providing representative cross-sectional SSCs. 

Two sets of manual EDI/EWI samples (sets “A” and “B”) usually were collected nearly 
simultaneously for each sampling visit and can be used independently or averaged to produce a single 
concentration and to better capture sample uncertainty (Topping and others, 2011). Manual data in this 
study used sample A and B sets so that each individual concentration could be used to better populate 
and define the regression model. 

Point Samples 
Automatic pumping samplers on the bank at each site were used to augment the EDI/EWI cross-

sectional samples for periods between the manual collections. A single pump sample per day usually 
was collected in addition to multiple samples during high-flow events. Autosamplers draw water from a 
single point in depth and cross section, and, therefore, differ from the EDI/EWI methods that capture 
spatial variability throughout the stream width and water column. Autosampler concentrations nearest in  
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time to EDI/EWI samples were evaluated to determine if an adjustment or shift in the autosampler 
concentration was necessary. These point-sample correction adjustments or coefficients are used to shift 
autosampler concentrations to better reflect the mean cross-section concentration defined by manual 
EDI/EWI samples. 

Autosampler concentrations typically are less than or equal to manual-sample concentrations 
(Glysson, 2008). To establish a correction coefficient, a pumping sample normally is manually triggered 
before and after an EDI/EWI cross-section sample set. Generally, if the pump and EDI/EWI sample 
concentrations agree to within 5 percent, no correction is applied and the coefficient is 1.0. If the 
difference is greater than 5 percent, the autosampler concentrations are adjusted to the manual 
concentration with a shift usually greater than 1.0. The shift is applied across time, either by relation to 
flow or by linear proration, until the next measured pumping sample coefficient. The corrections are 
defined by a manual cross-sectional sample or by a particular streamflow or turbidity event that may 
have altered the pumping efficiency or indicated a change in stream-channel dynamics (Guy, 1977; 
Guy, 1978; Porterfield, 1977; Bent and others, 2000). Finally, as in any sample collection program, 
there is a delay in acquiring the concentration data because of shipment time and laboratory processing, 
so that pump and manual sample results are not available in real time. 

Turbidity Measurement and Data Processing 
Turbidity data were collected and processed using established USGS procedures for continuous 

water-quality monitoring (Wagner and others, 2006). Continuous turbidity data were collected at NF 
Toutle-SRS and Toutle-Tower using a DTS-12 sensor™, manufactured by Forest Technology Systems, 
Victoria, Canada (http://www.ftsenvironmental.com/products/sensors/dts12/). The sensor has a large 
optical face that allows for a relatively wide water column area to be measured by the lens and detector. 
The probe has a large and durable wiper that virtually eliminates the need for cleaning corrections 
because debris buildup on the optics is removed at each reading. The head of the sensor is angled at 45 
degrees to lessen the formation of air bubbles, which can interfere with the optics and cause false 
readings. The sensor head must be oriented facing down and into the main water body for correct 
turbidity readings. The DTS-12 sensor™ turbidity readings are reported in Formazin Nephelometric 
Units (FNU) (Anderson, 2005). 

Suspended-sediment concentrations in the Toutle River Basin typically range from 10–50 
milligrams per liter (mg/L) during extended periods of low flow, to 10,000–20,000 mg/L during storm 
runoff. Such sediment-laden waters can negatively affect instream electronic instrumentation. The DTS-
12 sensors™ have worked consistently through these harsh conditions, requiring only routine cleanings 
with calibration checks every 3 to 6 months. The DTS-12 sensor™ takes 20 readings per second over 5 
seconds and provides several parameters for those 100 readings. These parameters include mean, 
median, minimum, and maximum turbidity, and water temperature. Two variance parameters also are 
included to help with quality assurance for the other parameters. Near real-time median turbidity 
readings are reported on the USGS National Water Information System Web site 
(http://waterdata.usgs.gov/wa/nwis/current/?type=flow) in 15-minute intervals, and are used in the 
regression analyses. Daily median, minimum, and maximum turbidity for the two gaging stations are 
published in the Washington Annual Data Report (U.S. Geological Survey, 2010, 2011). Approved 
instantaneous turbidity and discharge data for NF-Toutle-SRS and Toutle-Tower used in this analysis 
are shown in figure 4. 
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Figure 4.  Graphs showing stream discharge and turbidity at two streamgages in Toutle River Basin, Washington, 
2010–11. (A) April 1, 2010–September 30, 2011 and (B) May 1, 2010–September 30, 2011. (ft3/s, cubic foot per 
second; FNU, Formazin Nephelometric Units.) 

Turbidity Greater than Instrument Limits 
All instream turbidity sensors have a maximum, instrument-specific reading. If turbidity 

surpasses that threshold, the sensor produces a false reading wherein the maximum value is reported 
repeatedly throughout the event. When graphed, this turbidity threshold displays as a horizontal line. 
After turbidity decreases to less than this threshold, the sensor again records valid measurements within 
the range of the probe. 
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The DTS-12 sensor™ threshold varies from sensor to sensor and ranges from about 1,600 to 
2,100 FNU. Turbidity at NF Toutle-SRS reached the sensor threshold in December 2010, and in January 
and March 2011, with each threshold reading lasting from several hours to as long as 5 days. Turbidity 
at Toutle-Tower exceeded the sensor threshold on January 16, 2011, for 3 hours. Sediment samples 
collected during these turbidity sensor thresholds were not included in the regression models, as the true 
turbidity for the samples was unknown. 

Existing alternative turbidity sensors suitable for instream monitoring that measure values 
greater than the DTS-12 sensor™ threshold potentially could provide a more consistent and complete 
turbidity record through peak events. Such a turbidity sensor was tested and routinely calibrated at NF 
Toutle-SRS, although the records for that sensor have not yet been approved. Data from this alternative 
sensor could be used to supplement periods when the DTS-12 sensor™ recorded threshold values and 
flat-lined. It then would be possible to run the regression models using these secondary values. The 
high-end turbidity values, if estimated or measured for missing or greater-than-threshold periods, also 
could be used to compute more complete and continuous model-generated SSC and SSQ values, which 
would be valuable given that these often are the periods of the greatest sediment transport. However, 
processing the high-end turbidity data would require further examination and review. Because the 
development of turbidity-surrogate regressions for this report was considered a proof of concept for the 
Toutle River gaging stations, processing high-end turbidity data was beyond the scope of this report; 
we, therefore, used only existing turbidity data that was approved and published. The potential utility of 
the high-turbidity data for refining the existing load estimates is considered in the section, “Discussion 
and Future Studies.” 

Selection of Turbidity and Sediment Concentration Data for Regression Analysis 
Approved turbidity and SSC data were paired by matching the autosampler and EDI 

concentration to the closest-in-time turbidity value. If the EDI sample took more than 30 minutes to 
collect, the 15-minute turbidity values were averaged for the necessary time period in order to obtain a 
single value. Turbidity and sediment-sample data used for this report constitute roughly one-half of WY 
2010 and the entire WY 2011 (April or May 2010–September 2011) for the Toutle-Tower and NF 
Toutle-SRS gaging stations, respectively. This provided a base dataset to begin construction of the 
regression models (appendix A). These relations can be evaluated from year to year, and can be 
compared with turbidity and SSC data collected in later years to determine any shift in turbidity-
discharge to SSC relations and (or) transport regime. 

To maintain consistency with the previously published sediment records for these periods 
(http://wdr.water.usgs.gov/), the identical sample concentrations (both EDIs and pumping samples) used 
in the sediment records were used in the regression analysis, except for turbidity and sample 
concentrations deleted from the analysis dataset when turbidity readings were at maximum threshold. 
The total number of EDI and pumping samples available for each gaging station collected from April or 
May 2010 through September 2011 are shown in table 1. 

NF Toutle-SRS and Toutle-Tower discharge and turbidity with EDI samples collected from May 
1 or April 1, 2010, through September 30, 2011, are shown in figure 5. Two EWI samples were 
collected, but neither sample was used because of contamination from the streambed. 
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Table 1.  Number and type of sediment samples collected at North Fork Toutle River below Sediment Retention 
Structure near Kid Valley (NF Toutle-SRS) and Toutle River at Tower Road near Silver Lake (Toutle-Tower), Toutle 
River Basin, Washington, 2010–11. 
 

Gaging station and sample dates 
Equal-Discharge-

Increment samples 
collected 

Pumping samples 
collected 

NF Toutle-SRS, May 2010–September 2011 48 605 

Toutle-Tower, April 2010–September 2011 9 696 
 

 
 

  

  

Figure 5.  Graphs showing stream discharge and turbidity with time of equal-discharge-increment samples 
collected overlaid on turbidity, at (A) North Fork Toutle River below Sediment Retention Structure near Kid Valley 
(NF Toutle-SRS), May 1, 2010–September 30, 2011, and (B) Toutle River at Tower Road near Silver Lake (Toutle-
Tower), April 1, 2010–September 30, 2011, Toutle River Basin, Washington. Discharge is measured in cubic feet 
per second (ft3/s) and turbidity is measured in Formazin Nephelometric Units (FNU). Not all points are visible 
because of overlap of set A and B sample points collected close in time to each other. 
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These two sample sets indicate a strong reliance on autosamples, as is the normal routine in 
working a sample-based sediment-discharge record. As mentioned in the “Suspended-Sediment 
Sampling; Point Samples” section, autosamples, by nature of their position and orientation along the 
side of a channel cross section and as single-point samples, may not typically represent a concentration 
equal to the manual depth-integrated, cross-sectional samples. Therefore, a regression-based approach 
ideally would rely more on EDI/EWI samples than on pumping samples because of the differences in 
uncorrected concentrations between the two sample types. 

Discharge Data  
Water discharge values used for this analysis were computed from a stage-discharge rating 

developed from current-meter measurements and a 15-minute, time-series stage record, using 
established USGS techniques (Buchanan and Somers, 1976; Rantz and others, 1983). Streamflow 
measurements typically, but not always, accompanied cross-section EDI and EWI samples. Current-
meter instruments were used exclusively for discharge data in this report. According to Sauer and Meyer 
(1992), the standard errors associated with individual discharge measurements can range from 2 to 20 
percent, although most standard errors range from 3 to 6 percent. Discharge data for the Toutle River 
sites are available at http://wdr.water.usgs.gov/. 

Statistical Methods 
Regression Models Applied  

We used OLS linear regression (Helsel and Hirsch, 2002) with turbidity and discharge as 
explanatory variables and the EDI/EWI and auto-sampled SSC data as the response variable. Regression 
model development for SSC is covered extensively in Rasmussen and others (2009), including various 
correlation and data transformation measures and use of available explanatory variables. We selected 
the best candidate model on the basis of supportive diagnostic statistics, the fit of the explanatory and 
response variables, and hydrographer knowledge of sediment dynamics and data collection at the 
individual sites. 

Following visual and statistical analysis of the SSC, turbidity, and discharge datasets, as well as 
examination of the residuals from preliminary OLS models, we log-transformed the datasets of both 
streamgages to improve distributional normality. We also tried natural log, square, and cube root 
transformations. The log transformation worked best overall by compressing tailings and outliers, as 
well as addressing possible heteroscedasticity, thereby improving the fit of the regression (Helsel and 
Hirsch, 2002). We also tested using a univariate model with turbidity as the sole explanatory variable. 
Finally, the addition of discharge statistically improved the sum of squares error (SSE) and coefficient 
of determination (R2) and, therefore, was used in a multiple linear regression (MLR). However, the log 
transformation and MLR did not alleviate time-related auto-correlation, as indicated by low Durban-
Watson statistics (Helsel and Hirsch, 2002). Although this transformation improved overall model fit by 
decreasing the SSE and normalizing the residuals, autocorrelation was still a concern. 

One method to address autocorrelation and to increase accuracy in the regression model was the 
inclusion of time lags of turbidity and discharge as additional explanatory variables. The final MLR 
used a single lag of turbidity as a third variable. The inclusion and importance of lagged turbidity is 
explained in the section, “Accounting for Autocorrelation.” 
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Statistical Diagnostics and Analysis of Variance  
Analysis of Variance (ANOVA) statistics generated for each gaging station regression are shown 

in tables 2 and 3. The structure of the ANOVA is written from left to right, with each column 
broadening the understanding and role that each “Source” statistic contributes to the development and 
significance of the final regression model. A base understanding of the terminology and structure of the 
statistics is necessary to better interpret the results. 

The Sequential Sum of Squares (Seq. SS) consists of the decomposition of the sum of the 
squared difference between the individual observed value of the log of SSC and the mean of log of SSC 
into the “Regression” part and the “Error” part. The Regression part is the sum of the squared difference 
between the predicted value and the overall mean of log of SSC, whereas the Error part is the difference 
between the observed value and the predicted value. Because there are multiple values for each day, the 
Error is further decomposed into Lack-of-Fit (sum of square of difference between local average and 
fitted) and Pure Error (sum of square of difference between observed and local average). These SS 
values then are corrected for bias by their respective degrees of freedom (df) with the unbiased 
estimation value under Sequential Mean Square (Seq. MS). The Seq. MS functions as the value for the 
estimations of variance for the distributions of the Regression and the Error. 

Table 2.  Final Analysis of Variance (ANOVA) for logSSC compared to LogT, logT-lag, logQ, for North Fork Toutle 
River below Sediment Retention Structure near Kid Valley, Washington. [See text for explanation of statistical 
terms]. 
 

Source Seq. SS df Seq. MS F-statistic P > F 
Regression 145.62527 3 48.5419 929.71 0.000 
Error 33.8854 649 0.05221   
    Lack-of-Fit 33.798 624 0.0541635 15.48589 0.000 
    Pure Error 0.08744 25 0.0034976   
Total 179.5112 652    

�𝑀𝑆𝐸 =  0.228499 𝑅2 = 𝟖𝟏.𝟏% 𝑅𝑎𝑑𝑗2 = 81.0% 𝑃𝑅𝐸𝑆𝑆 =  34.4759  𝐷𝑊 = 0.168913  𝐶𝑝 = 4  

 
where 

Seq. SS   is Sequential Sum of Squares, 
Seq. MS   is Sequential Mean Squares, 
df    is degrees of freedom, 
Regression SS  is Sum of Squares from Regression; Regression SS/Regression df 
Regression MS  is Mean Squares from Regression (MSE) 
Error SS   is Sum of Squares Error (SSE); Pure Error SS +Lack-of-Fit SS 
Error MS   is Mean Squares Error (MSE); SSE/Error df or Error SS/Error df 
Pure Error SS  is True Error 
Lack-of-Fit SS  is Error from poor estimation  
Total SS   is Total Sum of Squares; Regression SS + SSE 
 

The SSE and R2 values are important statistical and comparative diagnostics referred to in the 
“Accounting for Autocorrelation” section, hence appear bolded to emphasis. 
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Table 3.   Final Analysis of Variance (ANOVA) for logSSC compared to LogT, logT-lag, logQ, for Toutle River at 
Tower Road near Silver Lake, Washington. 
 

Source Seq. SS df Seq. MS F-statistic P > F 
Regression 428.1358 3 142.7112 2,968.57 0.000 
Residual Error 33.70 701 0.04807   
Lack-of-Fit 33.55 693 0.0484127 2.5803 0.074 
Pure Error 0.1501 8 0.0187625   
Total 461.8359 704    

�𝑀𝑆𝐸 =  0.219259 𝑅2  =  92.7% 𝑅𝑎𝑑𝑗2 =  92.7% 𝑃𝑅𝐸𝑆𝑆 =  34.3041 𝐷𝑊 = 0.686354 𝐶𝑝 = 4 

 
In testing the significance or statistical fit of the regression equation for the NF Toutle-SRS and 

Toutle-Tower gaging stations, the ANOVA F-statistic from tables 2 and 3 indicates a significant relation 
between log of turbidity and log of SSC with a 1-percent probability of a type I error or the probability 
of incorrectly rejecting a true null hypothesis. The significance is determined by comparison to a critical 
F* value on the F-distribution with 3, and 649 or 701 df for the NF Toutle-SRS and Toutle-Tower sites, 
respectively, as determined by the numerator (𝑀𝑆𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = RegressionSS/Regressiondf) and the 
denominator (𝑀𝑆𝐸 = 𝐸𝑟𝑟𝑜𝑟𝑺𝑺/𝐸𝑟𝑟𝑜𝑟𝒅𝒇). This F-statistic is formed through the ratio of two 
probability distributions: the explained regression to the unexplained errors. The resulting ratio is an 
indicator of the overall fit of the regression model without involving units of measure or implying 
multiplicative effects. 

The F-statistics for both regressions indicated that a significant proportion of the variation in log 
(SSC) was explained by the relation with log T (Turbidity) and log Q (Discharge) relative to the 
unexplained variation in log (SSC). Because the variance estimator Seq. ME (or MSE from the ANOVA 
table) is expressed as SSE divided by df of the error, focusing on minimizing SSE was important for 
minimizing the estimate of the variance and standard deviation (�𝑀𝑆𝐸  ) of the model. The ANOVA 
tables 2 and 3 also included a “Lack-of-Fit” statistic that for both regressions was significant, indicating 
a poor overall fit. The discrepancy between the F and Lack-of-Fit statistics indicates a high variation 
within the data, including the possibility of autocorrelation of the errors observed through the 
distribution of the residuals, as reflected in the low Durban-Watson scores. 

One of the best methods for determining the quality of a regression is the PRESS or prediction 
sum of squares. In general terms, the PRESS is a cross-validation calculation that provides a regression-
fit summary that measures how well the model will perform in predicting new data. PRESS values were 
included and evaluated so that the best candidate model would have the lowest PRESS, and, thus, the 
best structure. 
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The Variance Inflation Factors (VIFs) in tables 4 and 5 also help determine the quality of a 
regression; VIFs measure the extent to which multicollinearity was present between the explanatory 
variables. Multicollinearity occurs when two or more variables are linear combinations of the other 
variables. A VIF greater than 5 is cause for concern, whereas a VIF greater than 10 is a major sign of 
colinearity, indicating that the predictors are highly correlated. Also provided in tables 2 and 3 are 
Mallow’s Cp statistics, which are designed to minimize bias and standard error by keeping the number 
of coefficients low and in balance. Too few model variables cause bias, whereas too many predictors 
result in an imprecise model. Mallow’s Cp is used so that the precision and bias of the full MLR is 
compared to the best subsets of predictors. The desired Mallow’s Cp is a value that is close to the 
number of beta or explanatory variable coefficients plus the constant or y-intercept. This provides a 
model that is relatively precise and unbiased in estimating the correct regression coefficients, as well as 
predicting future responses or SSCs. Overall, the ANOVA results in tables 2 and 3 indicate that the final 
regressions between log SSC and the log transformed turbidity and discharge data are significant, with 
these variables explaining much of the variation in SSC. However, the strength of these relations is 
lessened because of the presence of significant autocorrelation. 

Autocorrelation 
The large number of daily and sub-daily pumping samples and paired EDI A and B sets, 

collected close in time to each other and available for this analysis, opened the dataset to potential 
problems associated with autocorrelation, or the serial correlation of a variable such as turbidity and (or) 
suspended-sediment concentration with itself over successive time intervals. When a variable indicates 
autocorrelation, one observation is related to another observation such that both observations will 
change together to some extent. In this case, the individual values of SSC, turbidity, or discharge are 
essentially similar to their previous value in the time series, such as during a storm event, and, therefore, 
do not represent random or independent occurrences. This presents a problem because statistically 
sound OLS regression models are assumed to have independent and normally distributed errors. When 
the errors, as observed through the residuals, show autocorrelation, the OLS method tends to 
underestimate the standard errors and coefficients of the model, thereby producing erroneously narrow 
confidence and prediction interval bands. These patterns typically can be identified through graphical 
analysis. For instance, if several samples are collected during a particular event, such as on the rising or 
falling limb of a hydrograph, the residuals may appear grouped together for that event in a non-random 
pattern. 

Initial attempts to minimize the effects of autocorrelation led to averaging EDI-paired A and B 
sample sets, as well as randomly subsampling the autosamples. These smaller datasets then were tested 
by applying different regressions on the reduced number of autosamples and EDIs as suggested by 
Helsel and Hirsch (2002). Although these attempts reduced the potential for autocorrelation, the 
resulting graphical and statistical analysis showed minimal reduction. Therefore,  additional methods 
were used to develop a model using all data (EDIs and autosamples), while also reducing the 
autocorrelation and SSE. 
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Evaluating Autocorrelation 
The Durbin-Watson statistic (DW) (tables 2 and 3) essentially is the measure of the Sum of Error 

generated from the difference between a residual at index i and index i-1 taken over all residuals. A DW 
statistic between 0 and 1.6 generally indicates a positive auto-correlation for large sample sizes, 
especially when DW is less than 1. Because the DWs for both regressions were close to 0, there is a 
strong indication that positive autocorrelation was present. Because there was reason to be concerned 
about the variability of the residuals, a closer analysis of residual graphs for normality was warranted. 

The normal probability graphs for the NF Toutle-SRS and Toutle-Tower gaging stations (figs. 
6A and 7A) showed no strong deviation from a normal distribution of residuals. However, a comparison 
of the histogram (figs. 6B and 7B) and the “fitted values” against their residuals (figs. 6C and 7C) 
showed some abnormal grouping and tailing. Collectively, these three graphs show no reason for 
concern; for each station, the graphs of residuals against “observation order” (figs. 6D and 7D) showed 
that the residuals were related to each other across time, substantiating the DW statistic. 

 
 

 

Figure 6.  Graphs showing (A) normal probability distribution of residuals; (B) frequency distribution of residuals; 
(C) comparison of residuals with fitted values; and (D) comparison of residuals with observation order, for a 
multivariate regression of log(SSC) against log(T), log(Tlag), and log(Q), for North Fork Toutle River below 
Sediment Retention Structure near Kid Valley, Washington. Figure made from Minitab® software as 4-in-1 plots 
(www.minitab.com). 
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Figure 7.  Graphs showing (A) normal probability distribution of residuals; (B) frequency distribution of residuals; 
(C) comparison of residuals with fitted values; and (D) comparison of residuals with observation order, for a 
multivariate regression of log(SSC) against log(T), log(Tlag), and log(Q), for Toutle River at Tower Road near Silver 
Lake, Washington. Figure made from Minitab® software as 4-in-1 plots (www.minitab.com). 

 

Accounting for Autocorrelation 
There are various options to account for time-related autocorrelation, including Auto-Regressive 

Moving Average (ARMA) modeling (Box and Jenkins, 1976); state-space modeling (SSM) using a 
Kalman filter (Harvey, 1989); and variable lagging, among others. Because this particular application 
was for real-time estimation and not for future forecasting, more extensive autocorrelation modeling 
techniques such as ARMA and SSM were not used. Additionally, the collection time difference between 
paired observations reduced the necessity for more extensive modeling as described in 
“Autocorrelations Die Out.” Thus, regressions were run adding lag values of discharge and turbidity to 
account for some of the autocorrelation. The inclusion of lags increased R2, lowered the standard error 
(SSE), and improved the DW statistic. The final R2 and SSE are listed with tables 2 and 3. 
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Autocorrelations Die Out 
Although this analysis indicated that autocorrelation was present in the datasets, use of more 

extensive time-series modeling was impractical for real-time application given that the correlation of 
logSSC with the most recent observed value of SSC died out after about 30 days. That is, the daily 
statistical dependence or strength of the relation between the 96 values of 15-minute logSSC variables 
decreases to near zero in about 1 month, such that the change in one 15-minute SSC will correspond to a 
change in another 15-minute SSC for only about 30 days. Because it normally takes more than 30 days 
for a sample concentration to become available from the laboratory and accessible for analysis, and 
because this dataset contained breaks in pump and manual sample collection that were longer than 30 
days, this model used lagged values instead of a time-series component to increase accuracy in the 
regression model. Given these conditions, the regression developed using 2010–11 data worked 
adequately because the SSC correlations went to zero in such a relatively short time. In other words, the 
30-day die out and the availability of new SSC sample data will almost never overlap, making the value 
of time-series models negligible in real-time estimation of SSC. If SSC were to be predicted into the 
future, a time-series model would be necessary. 

Lagging Turbidity and Discharge 
Regressions using lagged values of turbidity and discharge were tested for significance and 

improvement over the non-lagged MLR. A lag is a past value of the variable; a turbidity lag of 1would 
use the previous 15-minute value, a turbidity lag of 2 would use the previous 30-minute value, and so 
on. In our case, we evaluated using 1 lag of turbidity and 1 lag of water discharge by adding these 
values as third and fourth explanatory variables. On the basis of the regression diagnostics and 
ANOVA, we decided to use a single turbidity lag of 1, without using lags of discharge. 

Robustness Checks  
The term “robustness” here refers to statistics with good performance with the data, such that the 

coefficients are resistant to errors in the results and not unduly influenced by outliers. Robustness 
checks look for consistency of coefficient estimates by subsampling the original dataset and then 
estimating the model with out-of-sample data, along with other means of testing the validity of 
regression results. 

The consistency of the OLS regression coefficient estimates for each streamgage was checked 
using the following methodology: Data for each streamgage first was condensed to a single matched 
pair per day. Days with only one value were automatically included. On days with multiple 
observations, one observation per day was randomly selected. For NF Toutle-SRS, the 653 observations 
came from 341 days, and for Toutle-Tower, the 705 observations came from 355 days. 
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This condensed dataset of 341 and 355 observations, respectively, was further subsampled. Each 
observation was given a random number and then sorted by that number from highest to lowest. The top 
90 percent of the data with the highest random number were selected for use in generating the five 
potential OLS regression models. The five sets of explanatory variables included (1) logT; (2) logT and 
logT-lag; (3) LogT and logQ; (4) LogT, logT-lag, logQ; and (5) logT, logT-lag, logQ, logQ-lag. The 
remaining 10 percent of the data were used as out-of-sample or sequestered data and input to the 90-
percent regression equation. That is, the turbidity, lagged turbidity, and discharge values from the 10-
percent group were input to the 90-percent subsampled regression equation. The estimated SSC results 
and associated SSE were compared between the 90- and 10-percent datasets. For NF Toutle-SRS, 307 
observations were used for the 90-percent regression and 34 observations were used for comparison. For 
Toutle-Tower, 320 observations were used for the 90-percent regression and 35 observations were used 
for the 10-percent comparison (appendix B). 

OLS regressions were run on the 90-percent subsampled data for each of the five models for 
each gaging station. In using the 90-percent subsampled data for each model, two means of comparison 
were used. First, the coefficient estimates and standard errors were compared to their full data 
counterparts for consistency. Second, SSC was estimated and SSE was calculated using the 10-percent 
sequestered data. The model with the smallest SSE and most consistent estimates was considered the 
best model. If the 90-percent OLS estimates were grossly different and (or) had different signs from the 
full dataset OLS, then this model would not be the best to use. 

Across models, although there was some deviation in the magnitude of the lagged turbidity 
estimate, the positive or negative sign remained the same and estimates for turbidity and discharge 
fluctuated within reason. Testing the subsample models on the 10-percent sequestered data showed that 
the ideal model using turbidity, lagged turbidity, and discharge (number 4 in the explanatory variable 
list) as explanatory variables had the lowest out-of-sample SSE. These results support the use of the 
final model and coefficient estimates. 

Final Regression Models 
Regression Model Coefficients 

The log-log regression model analysis of SSC (response variable) with turbidity, turbidity-lag, 
and discharge (predictor variables) for the NF Toutle-SRS and Toutle-Tower gaging stations provided 
the output shown in tables 4 and 5. The coefficients are used to generate the regression equations listed 
as equations 1 and 2. The ANOVA statistics in tables 2 and 3 apply to these equations. 
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Table 4.  Regression coefficients for North Fork Toutle River below Sediment Retention Structure near Kid Valley, 
Washington. 
 

Parameter Coefficient SE t-statistic P-value VIF 
logT 0.1854 0.2882 0.64 0.52 322.304 
logT lag 0.3545 0.2897 1.22 0.221 321.817 
logQ 0.89518 0.04497 19.91 0 1.601 
Constant -0.8054 0.1135 -7.10 0  

 
log𝑡 𝑆𝑆𝐶 = −0.8054 + 0.1854 log𝑡 𝑇 + 0.3545 log𝑡 𝑇𝑙𝑎𝑔 + 0.8952 log𝑡 𝑄  (1) 

 
where 

T  is turbidity, 
Q  is discharge, 
Tlag is lag turbidity value for the previous 15-minute period, and 
t  is the 15-minute interval time. 

Table 5.  Regression coefficients for Toutle River at Tower Road near Silver Lake, Washington.. 
 

Parameter Coefficient SE t-statistic P-value VIF 
logT 0.5676 0.1456 3.90 0 115.711 
logT lag 0.1612 0.1449 1.11 0.266 112.942 
logQ 0.9101 0.03587 25.37 0 3.149 
Constant -1.99049 0.09096 -21.88 0  

 

log𝑡 𝑆𝑆𝐶 = −1.9905 + 0.5676 log𝑡 𝑇 + 0.1612 log𝑡 𝑇𝑙𝑎𝑔 + 0.9101 log𝑡 𝑄  (2) 

 

Selecting the Predictor Variables for Model 
Using the coefficients from the logt SSC to logt T, logt Tlag, and logt Q regression model, the 

unlogged or untransformed final equations became: 
 

NF Toutle-SRS: 
Equation (1) is converted to power form as equation 3, 

𝑆𝑆𝐶𝑡 = 0.156531 ∗ 𝑇𝑡0.1854 ∗ 𝑇𝑙𝑎𝑔𝑡0.3545 ∗ 𝑄𝑡0.8952 (3) 
 

Toutle-Tower: 
Equation (2) is converted to power form as equation 4, 

𝑆𝑆𝐶𝑡 = 0.010221 ∗ 𝑇𝑡0.5676 ∗ 𝑇𝑙𝑎𝑔𝑡0.1612 ∗ 𝑄𝑡0.9101 (4) 
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Applying the Bias Correction Factor 
Because regressions were conducted on log-transformed variables, a bias was introduced that 

distorts the estimated SSC when the log values are converted back to their original linear form. Duan’s 
smearing bias correction factor (BCF) was computed using the average of the unlogged residuals, as a 
best estimate of this introduced bias (Helsel and Hirsch, 2002; Rasmussen and others, 2009; Uhrich and 
Bragg, 2003). The BCF result for each station is computed as:  

Bias Correction Factor (BCF): ∑ 10𝑟𝑖𝑛
𝑖
𝑁

= 1.1491573 𝑎𝑛𝑑 1.14909,  
for NF Toutle-SRS and Toutle-Tower, respectively, and where r = logged residual values. 
 

The right side of the regressions (equations 3 and 4) then are multiplied by the BCF to obtain the final 
equation: 
 
NF Toutle-SRS: 

𝑆𝑆𝐶𝑡 = 0.179879 ∗ 𝑇𝑡0.1854 ∗ 𝑇𝑙𝑎𝑔𝑡0.3545 ∗ 𝑄𝑡0.8952 (5)  
 

Toutle-Tower: 
𝑆𝑆𝐶𝑡 = 0.011745 ∗ 𝑇𝑡0.5676 ∗ 𝑇𝑙𝑎𝑔𝑡0.1612 ∗ 𝑄𝑡0.9101 (6)  

 
Equations 5 and 6 are considered the general regression analysis (GRA) in this report and can be 

used normally to estimate SSC, with no further derivations. 
The BCF accounts only for model error with no corrections for sample error, or error arising 

when estimating regression coefficients from a more finite dataset. That is, if one wanted to calculate 
the daily mean turbidity and averaged just three 15-minute values for that day, the sample error would 
be higher than if the mean turbidity was averaged using all ninety-six 15-minute values available for 
that day. Hence, larger sample sets, such as those used in this analysis, will tend to have a lower or 
negligible sample error. Although the BCF for model error increases SSC, the sample error correction 
has the inverse effect. Smaller sample sets without a sample error correction tend to overestimate the 
SSC. Because sample error was negligible in this analysis, no correction was applied. 

Applying the Regression Models to Future Data 
As new turbidity and discharge data are collected, they can be added to the original 15-minute 

turbidity and discharge datasets or kept separate as their own unique dataset. This distinction depends on 
the new GRA assembled from the additional SSC samples, which are paired with a turbidity and 
discharge value at the specific time of each sample. Analysis of covariance or ANCOVA can be used to 
test the significance of the original regression against future data added to the dataset. This would help 
determine if a change in the turbidity-SSC relation warrants developing a model for the new dataset 
(Helsel and Hirsch, 2002, p. 316). Rasmussen and others (2009) suggest that each water year be worked 
separately, and that the data from that water year then be compared to the data from the previous water 
year. If there is no significant difference in the slope and y-intercept between water years, the data could 
be joined together to refine the model and to generate a single multi-water year GRA. As a potential 
benefit, the refined model may have a lower SSE and reduced prediction interval. If the difference in 
regression models is significant, then a new GRA equation must be developed, using the methods 
described in this section, for the additional water year and (or) period of record. The new GRA equation 
then would be used until the analysis is reiterated using data from subsequent water years. 
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Final Regression Model Graphs 
Graphs of the logSSC (measured) against logSSC (estimated) from final GRA equations for both 

gaging stations are shown in figures 8 and 9. The OLS lines in figures 8 and 9 represent the GRA 
relation defined by equations 5 and 6. The 95-percent prediction and confidence intervals are shown in 
figures 8 and 9, as provided by the statistical package used (www.minitab.com). A prediction interval is 
always wider than a confidence interval because it must account for both the uncertainty of the 
population mean and data scatter, also described as the model and sampling uncertainty. The distinction 
is that prediction intervals provide information on the distribution of values and not the uncertainty in 
determining the population mean, whereas confidence intervals provide information on how well the 
population mean was determined. The key point here is that confidence intervals provide information on 
the true population parameter, whereas prediction intervals represent ranges of values within which 
there is a 95-percent certainty (in this case) that the true population (SSC) occurs. 
 

 

Figure 8.  Final multiple linear regression model showing the general regression analysis line (equation 5) 
superimposed over measured and estimated suspended-sediment concentrations for pump and equal discharge 
increment samples, for North Fork Toutle River below Sediment Retention Structure near Kid Valley, Washington, 
water years 2010–11. Graph also shows 95-percent prediction and confidence intervals. 
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Figure 9.  Final multiple linear regression model showing the general regression analysis line (equation 6) 
superimposed over measured and estimated suspended-sediment concentrations for pump and equal discharge 
increment samples, for Toutle River at Tower Road near Silver Lake, Washington, water years 2010–11. Graph 
also shows 95-percent prediction and confidence intervals. 

 

Discussion and Future Studies 
The use of surrogates for high-density measurements in real time offers many opportunities for 

improved understanding of hydrologic processes, along with well-characterized and reduced 
uncertainty, and ultimately better informed decision-making. In this study, we used turbidity as a 
surrogate for SSC in the sand-dominated Toutle River Basin; as a proof-of-concept approach to evaluate 
the feasibility of improving estimates of sediment loading and transport in the drainage basin; and 
possibly to reduce costs, compared to historical, manual techniques. The results of the study indicate 
that the potential for such improvements is high, with relatively robust regressions developed at both the 
NF-Toutle-SRS and Toutle-Tower sites. Although beyond the scope of this report, use of these 
regressions, together with discharge data from the two gaging stations, could be used to calculate 15-
minute and daily concentrations and loads from the WYs 2010–11 dataset. The calculations also could 
be extended through WY 2012, with each computation being a relatively straightforward exercise. 
Future refinement and other uses of these regression techniques, beyond calculation of concentration 
and load, could provide additional information for understanding changes over time in sediment 
sources, transport, and deposition. Additionally, there remain some limitations and criteria to the 
regressions obtained in this report and to the overall use of surrogate technologies, which must be 
considered when using these results for decision-making. 
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Appropriate Uses of Turbidity-SSC Surrogate Regressions 
Development of turbidity-SSC regressions are not conventionally universal across all water 

systems and riverine environments. The models developed herein can be used solely for the Toutle 
River Basin and cannot be transferred to other drainage basins. In addition, some waterways do not lend 
themselves to this type of analysis because of variability in the sediment-water matrix, as well as 
unacceptable monitoring conditions. From a monitoring standpoint, the turbidity-SSC surrogate 
regressions generally assume a consistent amount of light scattering by particles in transport over the 
range of the regression data. However, sediment grain-size distributions usually change during events or 
by season, based on the energy of the stream and the sediment sources, which can add uncertainty to the 
regression-based estimates of concentration or load. Based on past sediment events, it may be 
advantageous to subdivide the data by seasonal time frames or by increasing or decreasing streamflow 
and (or) turbidity components. This might produce a suite of regression models that could be used in 
conjunction with each other, each invoked by assessing in real time the sequential changes in turbidity 
and (or) discharge to determine which model to use, and thereby improve the estimates of sediment 
concentration. 

By using these refined models, potential future work could compare results from the single 
regression model developed in this report to such a combined seasonal or event model approach. The 
combined approach likely would provide a tighter fit with a near-zero covariance between the residuals. 
The Toutle River Basin is a complex fluvial system that, upon further analysis, might lend itself to this 
type of event-based sediment-transport regime. Seasonal or event models may better estimate sediment-
transport events that are unrelated to streamflow, which show up as tailings outside the confidence 
interval of the single regression line. Examples include volcanic- or glacial-influenced events from the 
Mount St. Helens crater, as well as landslides or localized streambank sloughing. These types of studies 
would provide insight into how the Mount St. Helens sediment-source terrain and depositional areas 
evolve over time, along with insight into management of sedimentation in the lower Toutle River Basin. 

It also would be informative to test the comparability, cross-sectional representation, and cost 
effectiveness of a sampling regime that emphasizes more pump samples, as used for this study, 
compared to one composed of a greater number of manual EDIs. Such an evaluation could bolster the 
cost-effectiveness and usability of the data-collection program by assuring samples would be collected 
at the appropriate time and frequency. Additionally, the autosample sediment-size mixture of coarse and 
fine sediment can differ greatly from the EDIs and EWIs because of various pipe-hose lengths and 
configurations, hydraulic head required to pump and disperse the sample, and variable stream velocity 
and bed movement near the autosampler intake. Many of the pumping samples collected and used in 
this study were targeted to capture the full range of suspended sediment during peak discharge and 
turbidity events, when manual samples could not be collected. These samples provided valuable 
confirmation at critical sediment flux periods that otherwise would not have been possible. Regardless 
of this, if the surrogate-regression based approach is used, the number of pump samples collected and 
analyzed in the future could be decreased without significantly increasing manual EDI samples. 

As a reasonable next step in processing these data, future work could include SSC as an online 
near-real-time parameter, using the regressions shown in this report with the ongoing continuous 
turbidity values. SSC could be added to the parameters of turbidity, stage, and discharge for each 
station, and also could be used as a comparison to the previous sample-based, sediment-record results. 
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As mentioned in the section, “Turbidity Greater than Instrument Limits,” when the turbidity 
sensors are at their flat-line threshold, the data are not used in turbidity-discharge to SSC model 
development, as well as in any continuous SSC estimation. This is the most critical limitation to this 
study, as sediment transport is highest during these episodes and, therefore, is most vital in quantifying 
the sediment flux. Future work could include estimates through these peak periods or use alternative 
high-end turbidity sensors to provide a complete record of model-estimated SSC and SSQ. However, 
the high-end turbidity sensors would need to have their own instrument- and site-specific regressions 
generated. This prerequisite is owing to differences in light scattering and detection between a high-end 
sensor and the DTS-12 sensor™ used in this study (Rasmussen and others, 2009). One such high-end 
sensor initially was deployed at the NF Toutle-SRS site in 2011; therefore, a dataset with paired SSC 
sample results already is available, and can be used as the starting point from which to begin this work. 

Finally, no inferences were drawn with respect to the sediment-size data. All manual samples 
and many of the autosamples include size-fraction data; however, none of these data were taken into 
account for this study. Regression models could be constructed for the individual sand/silt fraction, such 
that concentration and load for coarse- or fine-grain sizes could be determined separately. Additional 
work could use the size-fraction data to suggest source areas and to develop a synopsis of how specific 
areas have eroded and evolved over time, as well as to estimate the volumes of different size classes 
transported downstream past the NF Toutle-SRS gaging station to the main-stem Toutle and Cowlitz 
Rivers. 

Updating Existing Regressions 
The regression models in this report use data only from April 2010 to September 2011, as the 

time frame and scope for this work coincided with WYs 2010–11 approved and published turbidity and 
SSC records. The regression models and equations can easily be applied to or updated to include later 
water years. Inclusion of additional manual and pumping samples, the data for which already are 
available for WYs 2012–13, would better define the turbidity-discharge to SSC relation and improve the 
regression development and structure. By periodically evaluating the latest, finalized turbidity and 
discharge data, by water year, major changes in the sediment-transport system could be documented. 

Trends and Use of State-Space Models 
Sediment flux in the Toutle River Basin at both gaging stations responds to regional hydrology, 

but also responds to localized events and patterns. Specific erosional events from the Mount St. Helens 
crater and debris avalanche, and areas directly upstream of the SRS have all caused spikes and 
anomalies that are outside the typical sediment-transport pattern. These types of events can produce a 
hysteresis or differential pattern between sediment concentration and turbidity or discharge over varying 
parts of the event hydrograph. These patterns could reveal source or process information that, with 
closer evaluation, could be used to more effectively understand and manage sediment transport 
throughout the Toutle River Basin. The debris-avalanche deposit and braided channels formed through 
the entire valley, upstream and downstream of the SRS, also have implications for other environmental 
factors, such as fish survival and migration, along with the health and restoration of other aquatic 
species and habitats. Additional explanatory variables that weigh supplementary factors (such as 
seasonality, specific events, antecedent conditions, water temperature, and other water-quality 
parameters) could be incorporated in the model to help understand these wide-ranging ecological 
conditions. 
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In working within the 30-day autocorrelation die-off period, if SSC sample results, including 
laboratory analysis and database entry, could be routinely performed on a more real-time, continuous 
basis, such that SSC values were provided in less than 30 days, then autocorrelation modeling with a 
time-series component would be relevant to the results and should be applied. Realistically, however, 
most processing of sediment samples takes more than 30 days to generate an SSC value. One benefit of 
more real-time SSC data would be improved event-based estimation. Additionally, understanding and 
correcting for time-series properties of SSC would be most useful when interpolating between missing 
values of observed SSC. However, to apply these types of time-series corrections would require all SSC 
samples to be in an even time-step (Jones, 1986); although adjustments could be made using SSMs to 
alleviate this concern. Other time-series components, such as an ARMA model, also might be required, 
along with smoothing techniques to estimate intermediate values of SSC, such as using a Kalman filter 
in a SSM. 

Such sophisticated techniques as ARMA processing and SSMs, if employed, would better 
simulate the trends in observed SSC by incorporating seasonality and rise/fall hysteresis variables. One 
possible parameter to better define rise/fall dynamics in fluvial constituent studies is use of the square of 
streamflow (Cohn and others, 1992). Particularly powerful are SSMs that use dynamic optimization 
techniques to define the best “path” through a deterministic or stochastic dataset. One such data-fusion 
procedure is a Kalman filter, which works by smoothing linear data and then estimating missing SSC in 
a feed-forward and feed-back manner by minimizing the mean square error of the estimated SSC 
(Maybeck, 1979). For instance, noisy, erratic data could be smoothed and estimates made in past, 
present, and future states. The Kalman filter works much like GCLAS by melding the observed sampled 
SSCs with estimated SSCs and interpolating missing values, although the two methods have their 
distinctions. GCLAS by its design is a human-based, more time-dependent interactive process, whereas 
SSM with a Kalman filter can be entirely automated. The distinct advantages of the SSM method are its 
reproducibility and reduced processing time, as well as the ability to estimate error metrics of the 
interpolated values. Thus, the more frequently samples are collected, the less the error estimate. After 
turbidity and discharge records are available, a sediment discharge record could be generated 
automatically with a defined uncertainty. 

High-End Turbidity Sensor 
As mentioned in the “Turbidity Greater Than Instrument Limits” section, a high-end turbidity 

sensor capable of monitoring suspended-sediment at levels at least one order of magnitude higher than 
the current turbidity sensor is in operation, on a trial basis, at NF Toutle-SRS. Future work could 
include this high-end sensor as part of the normal turbidity calibration and records-processing work, 
which could be published as a second turbidity parameter. Separate regressions for the high-end sensor 
also would need to be developed. See figure 10 for comparison of instream DTS-12 sensor™ and high-
end sensor readings. 
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Figure 10.  Graphs showing turbidity at North Fork Toutle River below Sediment Retention Structure near Kid 
Valley, Toutle River Basin, Washington, 2012 and 2014. Graph in blue shows how NF Toutle-SRS turbidity, for (A) 
November 18–December 4, 2012, and (B) March 5–March 14, 2014, reached the sensor maximum at near 2000 
FNU. Graph in red shows, for the same time period and scale, how a high-end sensor (Turbidity #2) recorded 
turbidity (in formazin backscatter ratio units, FBRU) beyond the threshold level in blue. 

 

Expected Effects of Raising SRS-Spillway 
The SRS spillway was raised in elevation by 7 ft in September–October 2012, (back cover 

photograph; U.S. Army Corps of Engineers, 2012). The effects of this higher spillway on sediment 
transport and downstream channel morphology are not yet quantified. Additional analysis could 
integrate future turbidity and streamflow data into the established regression model, and also serve as a 
contrast to previous turbidity-discharge to SSC relations. For example, data directly preceding and 
following the spillway construction, such as data for WYs 2012 and 2013, could be compared. Any 
change in this relation would help to define and quantify new trends in sediment transport affected and 
(or) caused by this spillway raise. Similarly, future longer-term modifications to the SRS could be 
evaluated for any changes to the turbidity-SSC, turbidity-streamflow, and turbidity plus streamflow-
SSC relation. Finally, the spillway raise may have affected the sediment-size fraction transported 
downstream past the SRS; one possible effect would be that relatively more coarse sediment is retained 
upstream of the SRS, with relatively more fine material transported downstream. Existing data on both 
size fractions and the nature of the turbidity-SSC regression could shed light on the degree to which 
these changes have occurred. The suspended-sediment loads could be computed with the percentage of 
certain size classes quantified by volume and compared year-to-year. 
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Conclusions 
Despite the more than 30 years since the eruption of Mount St. Helens, sediment management in 

the Toutle River remains a daunting task. To help improve estimates of sediment transport and to reduce 
costs, the feasibility of instream turbidity measurement as a surrogate for suspended-sediment 
concentration (SSC) was tested in the Toutle River Basin. The results indicate that turbidity can be used 
reliably to augment the existing SSC sample collection, and possibly to improve the final estimates, as 
well as to reduce future data collection costs. The Toutle River at Tower Road (Toutle-Tower) near 
Silver Lake, Washington, and North Fork Toutle River below Sediment Retention Structure (NF Toutle-
SRS) near Kid Valley, Washington, gaging stations each had sensors installed and data collected for the 
periods April 1 and May 1, 2010, through September 30, 2011, respectively. Multiple linear regression 
models using ordinary least square methods were generated and equations were provided for both 
gaging stations that use the instream turbidity and discharge data to enable prediction of real-time SSC. 
The equations to calculate SSC were corrected for bias using a smearing estimator. 

The turbidity-SSC regressions were relatively successful, and could be improved in the future by 
employing sensors that have a higher maximum range. The use of pump samplers also could be 
optimized by finding a balance between cost savings from their unattended sampling capabilities, and 
the uncertainty they introduce. Uncertainty from pump samplers occurred because the sample 
represented a single point rather than a cross section, and the large number (as used herein) contributed 
to autocorrelation. Scheduling manual equal-discharge-increment sampling for times providing the most 
desirable and broadest range in streamflow and turbidity levels also could help to streamline the data-
collection program. 

In addition to the regression statistics, other tests and improvement measures were applied, such 
as the Durbin-Watson statistic to test for serial correlation and the use of lagged turbidity and discharge 
variables. The regression with the best supportive diagnostic statistics and best fit of the explanatory and 
response variables, along with minimal serial correlation, was selected as the final model and equation. 
The final regression equation used logged values of turbidity, discharge, and a single 15-minute lag of 
turbidity as explanatory variables in estimating SSC. 

The dataset used in this study was confined to roughly 1.5 years of turbidity and SSC; however, 
additional years of data were made available after this data analysis was underway. Future water years 
could readily be added to better define and fine-tune these correlations. Sediment-size data were not 
used in this analysis, which prevented any inferences regarding sediment transport of various size 
fractions. Future models could be constructed for separate fine- or coarse-grain sediment transport. 

Despite these limitations, the proof of concept described in the initial study objectives has shown 
that, even in a high sand-transport environment, rugged in-stream turbidity instrumentation, robust 
measuring technology, and appropriate statistical modeling methods may produce a more efficient and 
less costly alternative to conventional sample-based, sediment-record methods currently (2014) in use. 
More sophisticated statistical analysis would be useful for this dataset and future Toutle-Tower and NF 
Toutle-SRS datasets, as this would broaden the understanding of turbidity-discharge to SSC correlations 
by incorporating seasonality, trends, and rise/fall hysteresis terms. Future use of an Auto-Regressive 
Moving Average component and State-Space Models using a Kalman filter also would automate 
sediment-discharge computations, deliver reproducibility, and provide an error measurement of the load 
estimate. 
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Appendix A.  Suspended-Sediment Sample, Discharge, and Turbidity Data 
Suspended-sediment sample data are presented for the discharge and turbidity monitoring gaging 

stations North Fork Toutle River below Sediment Retention Structure near Kid Valley, Washington (NF 
Toutle-SRS; U.S. Geological Survey [USGS] gaging station No. 14240525) and Toutle River at Tower 
Road near Silver Lake, Washington (Toutle-Tower; USGS gaging station No. 14242580). The data were 
used for regression model calibration and consist of the total suspended-sediment concentration and the 
corresponding discharge and turbidity recorded at the monitoring station during sample collection. 
When available, sample concentrations with fine suspended-sediment data are presented for particle 
sizes less than 0.0625 millimeters. Separate bar plot worksheets also are included that depict the number 
of samples collected at each gaging station. Each bar plot is differentiated by sample type as Equal-
Discharge-Increment or pump sample, and by nine different ranges in turbidity that span the entire 
sensor measurement scale. 

 
[Appendix A is a Microsoft© Excel file and can be downloaded at http://pubs.usgs.gov/ofr/2014/1204/.] 

Appendix B.  Robustness Check Data 
Data used in checking for robustness is presented as two separate worksheets for each station in 

an Excel spreadsheet. Included are the sampled suspended-sediment concentration (SSC) data, and 
adjoining discharge (Q), turbidity (T) and lagged turbidity (T-lag) values for the 90- and 10-percent 
subsampled and sequestered out-of-sample data, respectively. Samples were randomly selected for the 
90-percent group. One sample was randomly selected for days with more than one sample. The 
remaining samples were used for the 10-percent sequestered data. For NF Toutle-SRS, 653 samples 
were reduced to 307 and 34 samples for the 90- and 10-percent groups, respectively. For Toutle-Tower, 
705 samples were reduced to 320 and 35 samples for the 90- and 10-percent groups, respectively. 

 
[Appendix B is a Microsoft© Excel file and can be downloaded at http://pubs.usgs.gov/ofr/2014/1204/.]  
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