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Conversion factors 

Multiply By To obtain

Length
micrometer (µm) 3.937×10-5 inch (in.)
meter (m) 3.281 foot (ft)
foot (ft) 0.3048 meter (m)

Mass
pound, avoirdupois (lb) 0.4536 kilogram (kg) 
ton, short (2,000 lb)  0.9072 metric ton (t)(1,000 kg) = 

1 megagram (Mg)
kilogram (kg) 2.205 pound, avoirdupois (lb)
metric ton (t)(1,000 kg) = 1 megagram (Mg) 1.102 ton, short (2,000 lb)
billion metric tons = gigaton (Gt) 1.102 billion short tons





Carbon Dioxide Storage in Unconventional Reservoirs 
Workshop: Summary of Recommendations

By Kevin B. Jones and Madalyn S. Blondes

Introduction 
As mandated by the Energy Independence and Security Act (Public Law 110–140; U.S. Congress, 2007), the U.S. Geological 

Survey (USGS) recently completed a national assessment of geologic carbon dioxide (CO2) storage resources (U.S. Geological 
Survey Geologic Carbon Dioxide Storage Resources Assessment Team, 2013a,b,c). The probabilistic methodology used to esti-
mate storage resources is based on a volumetric calculation using geologic parameters within sedimentary formations (Burruss 
and others, 2009; Brennan and others, 2010; Blondes and others, 2013). The assessment only examined existing pore space 
accessible through residual and buoyant trapping within saline formations (sandstones, limestones, or dolostones) and therefore 
did not calculate storage capacity for reservoirs where changes to the rock (dissolution, mineralization, adsorption, hydraulic 
fracturing) contribute to CO2 storage. 

“Unconventional reservoirs”—reservoirs in which changes to the rock trap CO2 and therefore contribute to CO2 storage—
including coal, shale, basalt, and ultramafic rocks, were the focus of a USGS workshop held March 28 and 29, 2012, at the 
National Conservation Training Center in Shepherdstown, West Virginia. The workshop was designed to help determine the next 
steps for the USGS regarding assessing CO2 storage potential in unconventional reservoirs. The workshop consisted of presen-
tations describing the current state of laboratory studies, modeling, and pilot projects and a discussion of the feasibility of CO2 
storage in coal, shale, basalt, and ultramafic rocks. The ultimate goals of the workshop were to determine whether an assessment 
of CO2 storage capacity in unconventional reservoirs is warranted, and if so, to build a set of recommendations that could be 
used to develop a methodology to assess this storage capacity. At this stage, such an assessment would address only the techni-
cally available resource, independent of economic or policy factors. 

The current assessment methodology for buoyant and residual trapping (Brennan and others, 2010) deals with geological 
storage of CO2 between 3,000 feet (ft) (914 meters [m]) and 13,000 ft (3,962 m) depth. It also allows additional assessment 
of storage deeper than 13,000 ft (3,962 m), as formations warrant. The methodology is probabilistic instead of deterministic. 
Carbon dioxide is generally in a supercritical state at these depths, where it is a buoyant fluid that displaces water, oil, and gas 
and that can be contained in structural traps; CO2 can also be held in place by residual trapping in pore spaces. Overlying sealing 
formations are required to prevent the stored CO2 from escaping to the atmosphere. Based on the Safe Drinking Water Act of 
1974 and U.S. Environmental Protection Agency (2009, 2010) underground injection controls that protect underground sources 
of drinking water, the salinity of groundwater in the assessed formations must be greater than 10,000 parts per million (ppm) of 
total dissolved solids.

The U.S. Department of Energy (DOE) also assesses potential CO2 storage resource using a separate methodology (Goodman 
and others, 2013). The DOE publishes the National Carbon Sequestration Database and Geographic Information System 
(NATCARB), now being integrated into the Energy Data Exchange, and, with Natural Resources Canada and the Mexican Min-
istry of Energy, the North American Carbon Storage Atlas (North American Carbon Atlas Partnership, 2012; Wright and others, 
2013). The DOE’s storage resource estimates are based on technically accessible pore volumes for buoyant trapping, and do not 
consider regulatory or economic constraints. The DOE assessment for potential CO2 storage in coal only considers “unminable” 
coal beds, which it defines as those that cannot be mined economically using today’s technology. Although USGS and DOE 
assessments are fundamentally similar, they use different methodologies; the DOE’s assessment is regional in scale, while USGS 
assessments consider each formation in a sedimentary basin individually; additionally, USGS assessments are fully probabilistic. 

Based on the USGS and DOE assessments, potential CO2 storage in U.S. coals, shales, basalts, and ultramafic rocks is 
orders of magnitude less than that in saline formations. Saline formations in the United States may be able to hold 2,300 to 
3,700 billion metric tons (gigatons, Gt) of CO2 (U.S. Geological Survey Geologic Carbon Dioxide Storage Resources Assess-
ment Team, 2013a), but coal may only be able to hold 60 to 120 Gt of CO2 (U.S. Department of Energy, National Energy Tech-
nology Laboratory, 2012). McGrail and others (2006) estimated that the Columbia River Basalt Group in the Western United 
States could hold 100 Gt of CO2.



2    Carbon Dioxide Storage in Unconventional Reservoirs Workshop: Summary of Recommendations

Because the mechanisms for CO2 storage in organic-rich rocks are so different from those in ultramafic rocks, and because 
the state of knowledge regarding these mechanisms and the state of pilot carbon storage projects in these two groups of litholo-
gies are so different, the workshop split into two groups to discuss these unconventional storage reservoirs separately. This docu-
ment addresses the findings of the coals and organic-rich shales group first, and the findings of the group that considered storage 
in basalts and ultramafic rocks second. 

Coal and Organic-Rich Shale
Coal—and, by extension, organic-rich shale—is an excellent lithology for storing CO2, although the bulk volume of coal is 

orders of magnitude less than that of the sandstones and limestones typically considered for conventional geologic CO2 storage. 
Coal has a CO2 storage capacity per unit volume that is five or six times that of conventional reservoir rock because of the large 
internal surface area in coal’s networks of micropores (Clarkson and Bustin, 1999; Shi and Durucan, 2005). Carbon dioxide 
adsorbs to the surfaces of organic material in coal and organic-rich shale, and is held there permanently by van der Waals forces 
unless pressure and temperature conditions change (Mastalerz and others, 2004). Some absorption of CO2 into the coal may also 
occur (Reucroft and Sethuraman, 1987; Milewska-Duda and others, 2000). Formation volume and sorption characteristics (that 
is, how much CO2 can be stored per unit volume) of coal and organic-rich shale would be the main inputs to a storage assess-
ment calculation for these resources. 

When the workshop participants discussed how to assess CO2 storage in coal and shale, many questions arose. For example: 
What type of storage will be assessed—only sorption, or also buoyant trapping and residual trapping in pore spaces? How essen-
tial is a cap rock or sealing formation? There may be less need for sealing formations above unconventional storage reservoirs 
than above conventional storage reservoirs; for example, when CO2 is adsorbed to or absorbed in coal or organic-rich shale, the 
CO2 is immobile and does not leak if pressure and temperature remain constant. Injected CO2 may not have to be in a super-
critical state for it to be stored by adsorbtion and absorption in coal and organic-rich shale, so how might this affect the depth 
requirements for CO2 storage? How will hydraulic fracturing affect storage potential, particularly in organic-rich shales? Will 
possible “utilization” of the stored CO2 play a role? For example, CO2 can be injected into hydrocarbon-bearing reservoirs to 
recover methane in a process called enhanced gas recovery. It may also be necessary to consider the effect of CO2 on methane-
producing microbial communities in the subsurface.

Porosity and Permeability

Coal is stress-sensitive and its porosity and permeability change with depth. Coal acts like a sponge: it shrinks when gas 
desorbs from it and swells when gas adsorbs to it. Following injection, adsorption of CO2 to the coal surface occurs over days 
(Kovscek and others, 2006). Coal preferentially adsorbs CO2 over methane or nitrogen, so at any given pressure, coal can adsorb 
several times as many molecules of CO2 as of methane (Gentzis, 2000; Stanton and others, 2001; Gluskoter and others, 2002; 
Krooss and others, 2002; Burruss, 2003; Mastalerz and others, 2004; Busch and Gensterblum, 2011). Replacing adsorbed meth-
ane with adsorbed CO2, then, requires additional volume causing coal to swell (Cui and others, 2007; Bustin and others, 2008; 
Hol and others, 2011). Coal permeability is likely to change over the lifetime of an injection project. These permeability changes 
can cause weakening and failure of the organic-rich matrix. Coal swelling, however, is a dynamic process and is therefore 
beyond a static calculation of maximum CO2 storage capacity. It might be better addressed as a storage efficiency factor that can 
reduce capacity from a theoretical maximum to an expected “effective capacity.”

Wet coal has less capacity to adsorb CO2 than dry coal does, because water blocks some adsorption sites on the coal surface 
(Gensterblum and others, 2013). Wet environments, then, may present a challenge for assessing storage capacity as water satu-
ration can reduce the theoretical maximum gas adsorption. The moisture content of coals should therefore be considered in a 
realistic assessment of coal’s storage capacity—again, possibly as a storage efficiency factor.

Although swelling from gas adsorption is understood relatively well for coal, it is not yet known whether swelling is an 
important parameter for CO2 storage in organic-rich shale (Heller and Zoback, 2014). Shale contains much less organic material 
than coal does, so the effect of this factor would be very different.

Understanding adsorption isotherms for coal, or quantifying the available pore space in organic-rich shale, could be the 
basis for a well-constrained assessment. Although these kinds of data are unavailable in many areas that have not been exploited 
for energy resource production, it may be possible to use coal rank or vitrinite reflectance to estimate adsorption characteristics.
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Minability

Precisely what types of coal deposits would be considered—all coal, or some subset of coal—for an assessment of potential 
CO2 storage in coal beds needs to be defined. In the past, CO2 storage has only been considered in “unminable” coals—those 
that cannot be mined economically using current technology. This is an important issue because adding CO2 to coal may render 
the coal unminable. Mining and burning coal that contains stored CO2 would release the CO2 back to the atmosphere and could 
create unsafe conditions for mine workers. The presence of CO2 makes coal respond differently to stresses than an unmodified 
coal bed would, and, as discussed at the workshop, this change in response could contribute to roof falls, rock bursts, bumps, 
and floor heave (Koperna and others, 2013). 

Defining unminable coal is difficult because the minability of coal changes by mining company, basin, and seam. It also 
changes as mining technology improves and as the global energy economy changes. Minability also may not strictly be the real 
question, because underground gasification or other techniques for in-place use of energy resources could allow energy to be 
extracted from coal beds without mining them conventionally.

The group consensus was to stop trying to distinguish minable and unminable coal because, technically, any coal could 
ultimately be mined. An assessment of potential CO2 storage in any coal should be based on physical, non-economic criteria. 
The portions of this storage resource that are located in areas that could be mined—particularly areas that are of high economic 
value or that may be mined soon—could then be subtracted from the calculated total storage resource if necessary. This would 
be similar to the groundwater salinity cutoff in the existing storage assessment of residual and buoyant trapping—although it 
is physically possible to store CO2 in formations that are underground sources of drinking water (less than 10,000 ppm total 
dissolved solids), this storage is generally prohibited and so CO2 storage in these formations is not considered.

Organic-Rich Shale

Most discussions of storing CO2 in organic-rich rocks focus on coal, but organic-rich shale is also a possible target lithology 
for CO2 storage. Although this type of shale is unlikely to be a primary target for this storage, the possibility of extracting shale 
gas as a profitable byproduct of CO2 storage makes it an attractive economic option. Workshop participants raised questions 
about which shales should be assessed—only shale from which gas, oil, or both have been produced, or all shale? The group 
reached the consensus that CO2 storage capacity should be assessed in all organic-rich shales. Minimum criteria of maturity of 
at least 0.5 percent vitrinite reflectance (Ro) and about 1 percent total organic content were proposed, but it was noted that an 
organic content cutoff might need to vary by basin. For example, most shales used to store CO2 would contain at least 3 percent 
total organic carbon, but some notable shales of less than 1 percent total organic carbon should also be assessed. 

Environmental Concerns

Environmental concerns from CO2 injection into coal and organic-rich shale include CO2 leaking to the atmosphere, 
groundwater contamination, and induced seismicity.

Storage integrity—that is, preventing leaks—is an important risk factor in geologic CO2 storage. Workshop questions 
included the following: How long can CO2 stay in these rocks? Do reactions that occur between CO2, other pore fluids, and the 
host rock during and after injection influence this storage? We need more information on storage capacity, the time required for 
injection and adsorption, and whether the host rock changes due to the presence of CO2 over time: the first pilot projects involv-
ing CO2 storage in coal only began in the 1990s. Monitoring of any CO2 storage project—before injection to establish a baseline, 
during injection, and after injection—will be critically important.

Participants discussed whether an overlying low-permeability sealing formation is necessary for reducing risk associated 
with CO2 storage in coal and organic-rich shale. Carbon dioxide would be stored in these lithologies almost entirely by sorption 
(regardless of the presence or absence of an overlying seal), and so the CO2 would be fixed to the rock as long as pressure and 
temperature did not change after injection while the CO2 is being stored. If pressure decreased, for example, some adsorbed 
CO2 would tend to desorb in response. The general consensus was that sealing formations, like those required for CO2 stored 
in conventional lithologies by buoyant trapping, would increase the safety factor. Therefore, it would be prudent to require the 
presence of sealing formations overlying any coals or organic-rich shales assessed as potential CO2 storage formations.

Organic molecules (Kolak and Burruss, 2006) and toxic metals (Kharaka and others, 2006) liberated from the storage 
formation by the formation interacting with injected CO2 could leak into water wells and aquifers. Some injected CO2 itself 
may also leak into these wells and aquifers. One-third of U.S. drinking water is produced from wells tapping underground 
sources of drinking water (U.S. Environmental Protection Agency, 2012). We need to (a) understand the organic components 
that come from shale, oil, and coal beds, and (b) understand the toxicity of the organic components, and the reactions they 



4    Carbon Dioxide Storage in Unconventional Reservoirs Workshop: Summary of Recommendations

undergo underground. We know little about dissolved organic molecules, but they could allow early detection of CO2 leaks 
into groundwater. Though potential groundwater contamination will be an operational concern, it does not affect the storage 
resource calculation.

Groundwater salinity does not place a physical limit on CO2 storage, but it places a regulatory limit on where CO2 can be 
injected, removing a large potential storage volume from consideration for storage. The current conventional assessment meth-
odology (Brennan and others, 2010) uses 10,000 ppm total dissolved solids as a minimum.

Produced waters resulting from any CO2 injection project must be disposed. Although this is an environmental concern, 
produced waters do not affect storage capacity and therefore are not an assessment consideration.

Although induced seismicity is a concern for safety, formation integrity, and public opinion, it is beyond the scope of an 
assessment. It is an operational concern that does not affect a calculation of potential storage capacity. It is assumed that injec-
tion will not fracture the host formation. Safe pressure rules can be determined locally for storage sites by monitoring the pres-
sure during injection tests (for example, Gilliland and others, 2013). Participants also expressed concern about using formations 
for storage that have previously been hydraulically fractured for petroleum extraction, suggesting that poorly controlled hydrau-
lic fracturing may have created paths for leakage or for unwanted lateral migration of fluids.

Summary

At the end of the coal and organic-rich shale discussion, the group assembled a list of the most important issues to consider 
for an assessment of CO2 storage potential in this unconventional resource. These issues were formation geometry, including 
depth and volume; the adsorption capacity of the rock, determined by adsorption isotherm analysis if possible, otherwise by 
coal rank (for coals) or vitrinite reflectance and total organic content (for shales); and formation porosity. Secondary issues, 
less important for an assessment but still worth considering and reporting on, included formation permeability (above a certain 
minimum) and injectivity, the pore size distribution, and whether the formation has been hydraulically fractured or contains coal 
mines. The participants also suggested assessing (a) the total CO2 storage resource that these lithologies represent and (b) the 
amount of CO2 that could be stored if such storage only resulted from profitable enhanced gas recovery.

Any capacity assessment should start with observable variables that are important and relatively easy to determine. 
Observations include total volume of the target formation, adsorption isotherm data (or thermal maturity or coal rank to 
predict adsorption capacity where isotherms are unknown), the presence or absence of sealing formations, the presence or 
absence of underground sources of drinking water, the regional pressure-depth relationship, and total organic content of the 
target formation.

Basalts and Ultramafic Rocks
Storing CO2 in mafic or ultramafic rocks, in which CO2 reacts to form solid, stable carbonates, eliminates much of the risk 

of CO2 leaking to the atmosphere or affecting nearby aquifers. Until recently, the costs of mineral carbonation technologies were 
prohibitive and were excluded from USGS geological assessments because the technology was unlikely to be used for large-
scale storage of CO2. However, new pilot studies have shown a decrease in the costs and reaction times of mineral carbonation.

During mineral carbonation, CO2 reacts with magnesium, iron, and calcium silicate phases to form stable carbonates. The 
most energetically favorable phases that exist in place in large volumes are found in mafic and ultramafic rocks (for example, 
Seifritz, 1990; Lackner and others, 1995; Kelemen and Matter, 2008; Oelkers and others, 2008). Ultramafic rocks, including 
peridotite and serpentinite, contain abundant magnesium, iron, and calcium in the form of olivine and serpentine. Mafic rocks, 
including basalt, contain abundant magnesium, iron, and calcium in the volcanic glass. Previous studies have shown the areal 
extent of ultramafic and mafic rocks (Oelkers and others, 2008; Krevor and others, 2009; U.S. Department of Energy, National 
Energy Technology Laboratory, 2012) and estimates of storage capacity in deep sea basalts (Goldberg and Slagle, 2009) and the 
Columbia River Basalts in the United States (McGrail and others, 2006), yet there is no clear estimate of how much CO2 could 
be stored in the mafic and ultramafic rocks of the United States. 

The basalt and ultramafic rocks working group first examined the state of experimental research, modeling, and pilot proj-
ects and then addressed the feasibility of assessing potential long-term subsurface CO2 storage by mineralization. 

Recent Advances in Modeling and Experiments

Recent experiments related to the interaction of CO2 with basalt or ultramafic rocks have improved the understanding 
of dissolution and precipitation kinetics for the relevant phases (for example, Daval and others, 2010; Stockmann and others, 
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2014), the kinetic differences between supercritical and aqueous CO2 (for example, Schaef and others, 2011, 2013), the mutual 
solubilities between CO2 and water (for example, Spycher and others, 2003; Spycher and Pruess, 2005), and the effect of cata-
lysts on reaction rates (for example, Stolaroff, 2013).

Workshop participants presented results of a number of experiments, some of which had not yet been published. Research 
by the National Energy Technology Laboratory using Columbia River Basalt Group core samples from the Wallula pilot project 
(McGrail and others, 2011a,b) have shed light on the effect of supercritical CO2 on basalt, the natural formation waters within 
the fractures and pore space, and pre-existing microbial communities (Lavalleur and Colwell, 2013). Bacteria were found to 
exist in all samples, and iron-rich carbonates and iron hydroxides formed when exposed to supercritical CO2. Computed tomog-
raphy (CT) scanners with resolutions of 240 micrometers to 1 micrometer (Crandall and Bromhal, 2013) are being used to image 
CO2 flow at reservoir conditions through Grande Ronde Basalt from the Columbia River Basalt Group, and these images help 
researchers infer how subsurface CO2 moves during pilot tests. Experiments on Columbia River Basalt samples at the Pacific 
Northwest National Laboratory show that mutual solubilities of CO2 and water can have a large impact on reaction kinetics 
(McGrail and others, 2011b). The amount of CO2 that can be dissolved in water varies little with pressure and temperature, yet 
water solubility in supercritical CO2 is highly dependent on temperature at high pressures. Experiments with such water-rich 
supercritical CO2 show the formation of carbonate layers, an increase in iron content, and long rods of amorphous silica after 
180 days (McGrail and others, 2011b). The inclusion of SO2 causes secondary sulfide minerals to form, removing sulfur species 
from the water-rich supercritical CO2. 

Hydrothermal autoclave experiments using crushed basalt samples from multiple locations show that the extents of reactions 
depend largely on temperature and basalt composition (Rosenbauer and others, 2012). In particular, the magnesium content of 
the rock is a good indicator of reaction extent. Other hydrothermal autoclave experiments were performed on olivine, the domi-
nant mineral in ultramafic rocks (Johnson and others, 2014). These showed that an amorphous silica layer often forms on the 
surface of olivine crystals, but organic acids in the presence of CO2 release magnesium from the olivine, increasing alkalinity and 
triggering carbonate precipitation and greater storage through mineralization. Further, flow mechanics of CO2-rich fluids may 
provide ways to increase porosity and permeability in ultramafic rocks, enhancing the potential for CO2 storage. Other labora-
tories are using autoclave experiments to specifically study dissolution and carbonate reaction kinetics. Experiments on olivine 
by Qiu and others (2012) show that temperature, pressure, pH, mineral surface properties, and experimental methods all affect 
dissolution rates: reactions occur more rapidly at higher temperatures, with greater concentrations of dissolved inorganic carbon 
in the fluid, and with smaller grains of olivine. Dissolution and precipitation modeling by Prigiobbe and Mazzotti (2013) sup-
ports such experiments. Dissolution rates were calculated for a range of temperatures and pH values and the presence of salts. 
Precipitation kinetics were then determined for the resulting magnesium carbonates. 

Remaining gaps in experimental and modeling knowledge include a multi-laboratory consensus regarding reaction kinetics, 
updated thermodynamic data and activity models, and a better understanding of relative permeabilities. 

Pilot Projects

Current pilot projects for CO2 injection into basalt include CarbFix in Iceland (Gislason and others, 2010; Matter and 
others, 2011; Aradóttir and others, 2012) and the Wallula pilot project (McGrail and others, 2011a) in the Pacific Northwest. 

Iceland, located on the Mid-Atlantic Ridge, is almost entirely composed of basalt. The Hellisheiði geothermal power plant 
releases 60,000 tons of magmatic CO2 per year, and the CarbFix project plans to mix 2,000 tons per year of this CO2 with water 
and inject it into basalt at a depth of about 1770 ft (540 m) (Matter and others, 2011; Aradóttir and others, 2012). The aqueous 
CO2 will further mix with groundwater and react with the basalt to form stable carbonates. Five wells allow monitoring of 
subsurface fluid movement. Conservative tracers, trifluoromethyl sulfur pentafluoride (SF5CF3) and sulfur hexafluoride (SF6), are 
used to determine how the injected fluid advects and disperses. Radiocarbon tagging distinguishes injected CO2 from preexisting 
CO2 (Matter and others, 2011). In January 2012, 175 tons of pure CO2 was injected into the basalt target, and in July 2013, 
73 tons of a mixture of CO2 and H2S was combined with 2,500 tons of water and was injected into the basalt target (Matter and 
others, 2014). 

The Wallula pilot project (McGrail and others, 2011a,b) is a study of CO2 injection into the Columbia River Basalt, a large 
continental flood basalt province covering parts of Washington, Oregon, and Idaho. The project is run by the Big Sky Carbon 
Sequestration Partnership, led by Montana State University and largely funded by the U.S. Department of Energy. The field site 
is located above some of the deepest and thickest basalt of the Columbia River Basalt Group in eastern Washington. The injec-
tion target is the Slack Canyon member of the Grande Ronde Basalt at a depth below 2,700 ft (823 m). Unlike the CarbFix pilot 
project, the Wallula pilot project injects supercritical rather than aqueous CO2 into the subsurface. An extensive characterization 
process was completed (McGrail and others, 2009), including seismic analyses and simulation modeling, as well as hydrologic 
and microbiological testing. Injection of 1,000 tons of CO2 into the Grande Ronde Basalt in eastern Washington began in July 
2013 and monitoring activities are ongoing. 
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Future work for these and other pilot projects will seek a better understanding of basalt seal integrity, monitoring tools, and 
how lab experiments scale up to the field level.

Volumetric Equation for Storage by Mineralization

Several quantifiable parameters of a volumetric equation are necessary to complete a probabilistic assessment of potential 
mafic or ultramafic rock storage. The mappable area and thickness of a given rock body is the starting point for an assessment. 
The primary and secondary porosity, as well as the mineralogy and the proportion of unaltered rock, will determine how much 
of that rock will interact with CO2. Dissolution and precipitation kinetics will be controlled by temperature, pressure, oxygen 
fugacity, water chemistry, and pH. Other parameters that may affect the availability of formations for CO2 storage because of 
environmental concerns include water quality and toxic metal composition within trace mineral phases.

Conclusions
At the end of the workshop, participants agreed that sufficient knowledge exists to allow an assessment of the potential CO2 

storage resource in coals, organic-rich shales, and basalts. More work remains to be done before the storage resource in ultra-
mafic rocks can be meaningfully assessed.

In order to assess the CO2 storage capacity of coals and organic-rich shales, the workshop participants agreed that the 
following several factors are key: sorption mechanisms and capacity, pore fluid composition and saturation, thermal maturity, 
formation thickness, and whether hydrocarbons have been extracted from the formation previously (for example, by enhanced 
gas or oil recovery). In order to assess the CO2 storage capacity of basalts, the workshop participants agreed that the key factors 
include temperature, pressure, pH, water chemistry, mineral chemistry, organic content, mineralogy, porosity, permeability, rela-
tive permeabilities, and CO2 phase. Similar to the recent USGS residual and buoyant trapping assessment, the storage capacity 
for all unconventional reservoirs may be modeled with a volumetric equation starting with the extent of the rock unit, and 
adjusted using the key factors listed above and including reaction terms. 

The ideas that were developed during this workshop can be used by USGS scientists to develop a methodology to assess 
the CO2 storage resource in unconventional reservoirs. This methodology could then be released for public comment and 
peer review. After completing this development process, the USGS could then use the methodology to assess the CO2 storage 
resource in unconventional reservoirs.
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