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Conversion Factors

SI to Inch/Pound

Multiply By To obtain
Length

centimeter (cm) 0.3937 inch (in.)
millimeter (mm) 0.03937 inch (in.)
meter (m) 3.281 foot (ft) 
kilometer (km) 0.6214 mile (mi)
kilometer (km) 0.5400 mile, nautical (nmi) 
meter (m) 1.094 yard (yd) 

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:

°F=(1.8×°C)+32
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Detecting Sea-Level Hazards: Simple Regression-Based
Methods for Calculating the Acceleration of Sea Level
By Kara S. Doran, Peter A. Howd, and Asbury H. Sallenger, Jr.

Introduction 
This report documents the development of statistical tools used to quantify the hazard presented 

by the response of sea-level elevation to natural or anthropogenic changes in climate and ocean circula-
tion. A hazard is a physical process (or processes) that, when combined with vulnerability (or suscep-
tibility to the hazard), results in risk. This study presents the development and comparison of new and 
existing sea-level analysis methods, exploration of the strengths and weaknesses of the methods using 
synthetic time series, and when appropriate, synthesis of the application of the method to observed 
sea-level time series. These reports are intended to enhance material presented in peer-reviewed journal 
articles where it is not always possible to provide the level of detail that might be necessary to fully sup-
port or recreate published results.

The purpose of this report is to document and compare three simple methodologies that have 
previously been used to provide estimates with associated errors of the acceleration of sea-level eleva-
tion. These techniques have been used by coastal scientists and planners in assessing coastal risk over 
a wide range of spatial and temporal scales (for example, Dasgupta and others, 2007; Edwards, 2008; 
Frazier and others, 2010). Because relative sea-level (SL) elevation time series contain energetic fluctua-
tions at many time scales, extracting what can be relatively small rate and acceleration signals (along 
with estimates of the error) from much larger “noise” has proven to be both difficult and controversial. 
Acceleration is a preferred measure of SL response to recent changes in the Earth’s climate because over 
time scales of 100 years or less slow vertical land motions (such as glacial isostatic adjustment) contrib-
ute only to the linear signal and not to acceleration, thus reducing the complexity of the analysis. Hence 
acceleration is useful if the goal of a study is to characterize and quantify the hazard associated with the 
changing relative elevation of water with respect to land on decadal time scales. Although in some cases 
it may be necessary to determine the cause of relative sea level rise, as a first step, it is important to ac-
curately estimate the magnitude of the threat.

Most researchers agree that global sea level (GSL) rose persistently through much of the 20th 
century at about 1.5–2.0 millimeters per year (mm/yr) (for example, Douglas, 1991; Holgate and Wood-
worth, 2004; Merrifield and others, 2009; Church and White, 2011). There is far less agreement about 
whether the rate of sea-level rise (SLR) is increasing (that is, an acceleration in SL). More recently, 
Houston and Dean (2011a) reported negative acceleration of SL in the United States and around the 
world during much of the 20th century. Rahmstorf and Vermeer (2011) argued that Houston and Dean’s 
(2011a) results were biased by their choice of 1930 as a start date for their input data and that this choice 
assured they would detect no positive acceleration. Rahmstorf and Vermeer (2011) further contradicted 
Houston and Dean (2011a) by showing positive acceleration in the global sea-level dataset of Church 
and White (2006) in which a more recent range of start dates was used. Watson (2011) found evidence 
in Australia and New Zealand of negative SL acceleration similar in some respects to what Houston 
and Dean (2011a) reported for the United States. Unlike Houston and Dean (2011a), however, Watson 
(2011) qualitatively reported recent acceleration in Australia that was not captured by his analysis meth-
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odology. More recently, Sallenger and others (2012) defined a regional hotspot of sea-level acceleration 
on the east coast of North America from Cape Hatteras, North Carolina, into the maritime provinces 
of Canada.

These recent studies, and most of their predecessors, use tide gage data to quantify SL accelera-
tion, ASL(t). In the current study, three techniques were used to calculate acceleration from tide gage 
data, and of those examined, it was determined that the two techniques based on sliding a regression 
window through the time series are more robust compared to the technique that fits a single quadratic 
form to the entire time series, particularly if there is temporal variation in the magnitude of the accelera-
tion. The single-fit quadratic regression method has been the most commonly used technique in deter-
mining acceleration in tide gage data. The inability of the single-fit method to account for time-varying 
acceleration may explain some of the inconsistent findings between investigators. Properly quantifying 
ASL(t) from field measurements is of particular importance in evaluating numerical models of past, pres-
ent, and future SLR resulting from anticipated climate change.

Calculating Sea-Level Acceleration 
Acceleration of sea-level elevation is strictly defined as the second derivative of the elevation 

time series with respect to time. Although acceleration could be directly estimated by twice calculat-
ing the first differences between points, the resulting ASL(t) is generally too noisy to be of practical 
use. Some degree of smoothing is required, either applied initially to the elevation time series or to the 
acceleration estimates. Three methods are reviewed for calculating smoothed estimates of acceleration 
where the smoothing is imbedded in the application of ordinary least squares regression analysis. There 
are two primary benefits of using regressions to estimate accelerations. First, statistical errors are eas-
ily assigned to the estimated accelerations. Second, the methods themselves are based on elementary 
statistics, providing a reasonable entry point to the problem before more advanced time series analysis 
techniques are introduced.

Regression-Based Methods

A large number of authors, most recently Houston and Dean (2011a), Woodworth and others 
(2011), and Watson (2011), have used a single-fit quadratic regression method (QRM) as a tool to calcu-
late the time-averaged acceleration of a sea-level elevation time series as

(1)AQRM = 2c
	

where AQRM is the estimated acceleration of the series using the quadratic regression method, and 2c is 
the second derivative with respect to time (t) of a quadratic equation fit to the sea-level data, using the 
ordinary least squares error criterion:

(2)SL(t) = a + bt + ct2 + ε(t)

where SL(t) is the measured sea-level elevation time series, and ε(t) is the residual error. The underlying 
assumption in the choice of this calculation method is that the regression coefficients are constant over 
the duration of the record so that ASL(t) = AQRM .   
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 AQRM is an estimate of the average acceleration occurring over the duration of the time series 
used in the regression. If the duration of a given sea-level record is varied and significant changes in 
AQRM occur, acceleration during any given time period within the record may vary considerably from the 
estimate over the entire time period, and the average acceleration will vary depending on what portions 
of the record are included. In the worst case, a time-varying acceleration may result in the time series 
being poorly approximated with a quadratic expression.These problems cast doubt on the appropriate-
ness of the QRM results for comparisons either through time within a given record or between records 
with different start or end dates (see Jevrejeva and others, 2008; Rahmstorf and Vermeer, 2011; Sal-
lenger and others, 2012). 

Jevrejeva and others (2008) recognized the issues associated with assuming constant accelera-
tion over an entire record and reported results from a sliding-window quadratic regression method 
(SQRM). In this technique, the quadratic regression is fit to the first subsample (a window with duration, 
τ) of a record, and the resulting acceleration estimate is attributed to the central time of the window, tc. 
The regression window is then shifted by an interval of Δτ (which does not necessarily correspond to 
the analysis window, τ), and the analysis is repeated, creating a time series of average accelerations.

(3)
SL(t,τ ) = a + bt + ct2 + ε(t)

resulting in 

(4)ASQRM (tc ,τ ) = 2c(tc ,τ )

Each regression window covers a complete time period of τ; therefore, the maximum value of tc 
is the length of the time series minus τ / 2. This analysis can be repeated for a series of τ values. As will 
be shown later, increasing τ has the effect of damping high frequency signals in ASQRM (tc ,τ ) .

It is suggested that an alternative calculation informed by the observations that, over time scales 
of order decades, many SL records appear to be composed of linear segments with varying slopes and 
durations rather than a single or series of quadratic forms; in other words, the accuracy of the regression 
is improved through discontinuous piecewise or segmented linear regression (Woodworth, 1990; Church 
and White, 2006; Merrifield and others, 2009; Woodworth and others, 2009; Woodworth and others, 
2011; Sallenger and others, 2012). A rate-based method (RBM) is used to calculate a time series of aver-
age accelerations by differencing successive estimates of the rate of sea-level rise

(5)ARBM (tc ,τ ) =
2SLRD(tc ,τ )

τ

with the sea-level rate difference (SLRD) between the two sub-intervals given by

(6)SLRD(tc ,τ ) = β2 t2 ,
τ
2

⎛
⎝⎜

⎞
⎠⎟
− β1 t1,

τ
2

⎛
⎝⎜

⎞
⎠⎟

where t1 and t2 are the start times of the first and second halves of a total regression interval with dura-
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tion τ. Here τ is the combined time interval of two separate regresssions rather than the interval for one 
regression, and tc , the central time of the estimate, is taken as t2, the first date of the latter regression 
interval. The two underlying regression models are

(7)

SL t t1,
τ
2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
= α1 + β1t + ε1(t)

SL t t2 ,
τ
2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
= α 2 + β2t + ε2(t)

 

Similar to the approach demonstrated by Jevrejeva and others (2008), if the chosen τ is less than 
the total record length, the analysis may be repeated after shifting t1 and t2 by Δτ. The acceleration calcu-
lations may be repeated until t2 +

τ
2

 reaches the last measurement date. 

For both sliding regression methods (SQRM and RBM), if Δτ< τ the time-stepped regression 
windows overlap and it is important to remember that resulting points in the ASQRM, ARBM, and SLRD time 
series will not be independent because they have underlying data points in common. If additional statis-
tical analyses are conducted using the acceleration time series, it is necessary to account for this lack of 
independence (see Sallenger and others (2012) for implications). If the regression step interval (Δτ) 
corresponds to one data point, an approximation of the maximum number of strictly independent data 
points in the estimated acceleration time series is (N − (τ ∗Δτ )) / (τ ∗Δτ ) , where N is the number of 
values in the original SL(t) record.

With regard to window duration τ, many investigators refer to Douglas (2001) who found that 
the duration needed to obtain a stable estimate of the linear rate of SLR for use in estimating the rate of 
global sea level rise generally is greater than 50 years and that regression results for records less than 
20 years are seriously contaminated by decadal-scale fluctuations. Because many societal decisions are 
made on the basis of information with characteristic time scales of years to decades, specifying an opti-
mal value for τ should be avoided. It remains at the discretion of the user to carefully choose a range of 
appropriate values for τ and Δτ on the basis of objectives, the errors of the underlying regressions, and 
the signal-to-noise characteristics of the time series. The use of a range of τ values that extends beyond 
the times scales of interest to the user would provide a context for specific conclusions. 

It is important to note that specifically modeling SL = f(t) is not being done in any causal sense, 
that is, it is understood that SL is being forced by a physical process not by the passage of time. Least 
squares regression methods are being used as a tool to allow estimation of the second derivatives of a 
sea-level elevation time series (the accelerations) and to quantify the potential error of those estimates. 
Sophisticated filtering methods have been applied to the SL time series prior to calculation of rates or 
accelerations using methods similar to those above, improving the fit of the regression (Jevrejeva and 
others, 2006; Jevrejeva and others, 2008; Hamlington and others, 2010) but potentially complicating the 
estimation of error. 
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Uncertainty Analysis

Generalizing the regression equations 2, 3, and 7 as

(8)SL(t) = βit
i

i=0

n

∑⎛⎝⎜
⎞
⎠⎟
+ εn(t) 	

 
the standard errors on the regression coefficients (assuming normally distributed residuals) are given by

(9)σ (βi ) =
RSS
Nr

XTX⎡⎣ ⎤⎦
−1( )

jj

where σ(βi ) is the standard error of the ith parameter estimate (i = j – 1), RSS is the sum of squares of 
the residuals, Nr is the number of degrees of freedom for the regression model (subject to the limits of 
serial correlation), X is the matrix composed of the basis functions (t 0, t 1, t 2, and so forth) used in the 
regression model, and j is the number of elements in X (Bendat and Piersol, 1986). 

Serial correlation between points is a significant issue for the tide gage (and reconstructed 
global) data commonly used in SL acceleration calculations. Error estimates for serial correlation are 
corrected by substituting an effective number of independent data points (Neff) to replace N in the typi-
cal representation of Nr = N – j (N is the number of data points used in the regression model, and j is the 
number of estimated coefficients). Maul and Martin (1993) suggest a first-level correction can be made 
by calculating Neff for annual mean sea-level measurements using the lag-1 autocorrelation, r :

(10)Neff = N
1− r
1+ r

With the large decadal-scale variability present in tide gage records making direct computation 
of r an unstable estimate of the long-period variability, it is suggested to fit an autoregressive order one, 
AR(1), model to the residuals and use the AR(1) coefficient for r. Unless stated otherwise, the AR(1) 
technique is used in the subsequently described analysis to correct the standard error. A typical value 
for the AR(1) coefficient is 0.40, decreasing N by about 40 percent and increasing the standard error of 
the regression coefficient by about 50 percent. This increase varies and these numbers are only general 
approximations. This adjustment technique is standard procedure for the National Oceanic and Atmo-
spheric Administration (NOAA) (Zervas, 2009). Foster and Rahmstorf (2011) show that the true error 
may be even larger if the AR(1) model underestimates the serial correlation. They present a clear discus-
sion of a correction methodology given a generic autocorrelation structure.

The standard error of SLRD in the current report is calculated as:

(11)σ SLRD tc ,τ( ) = σ β1

2 t1,
τ
2

⎛
⎝⎜

⎞
⎠⎟
+σ β2

2 t2 ,τ
2

⎛
⎝⎜

⎞
⎠⎟

 

where the standard errors of the coefficients for the two regression windows (σ β1
2

1
 and σ β2

2 ) are the  
 

adjusted values calculated using equations 9 and 10. The standard errors reported for AQRM and ASQRM are 
adjusted for serial correlation using equations 9 and 10. These calculated errors are compared to error 
estimates derived from Monte Carlo simulations discussed in a later section. 
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Simple Examples

The sensitivities and performance of the three methods were examined using three sets of 
synthetic time series, each representing annual mean sea level over 201 years (nominally 1850–2050 
for plotting purposes). The first set is composed of three time series, satisfying the QRM assumption 
of constant acceleration: TS1, a constant linear trend; TS2, defined by constant acceleration with no 
linear trend; and TS3, constant acceleration added to a linear trend (table 1). The QRM was applied 
using the entire time series with t = 0 set at year 1850, giving an  AQRM estimate applicable to all years 
(1850–2050). For ASQRM  (tc , τ)  and ARBM  (tc , τ)  τ  = 60 years and Δτ = 1 year are fixed for demonstration 
purposes, resulting in calculated acceleration time series from tc = 1880 to tc = 2021. Each regression 
sets t = 0 at the first year in the window. This does not effect acceleration values but does result in more 
intuitively meaningful rate calculations in the cases where t2 coefficients are calculated. As expected for 
these three very simple time series, all techniques accurately estimated the known accelerations (fig. 1). 

Table 1.  Definitions for synthetic time series (plotted year = t + 1850).
            Time series definitions                Time vectors

	

TS1= 2t⎡⎣ t = 0→ 200

TS2 = 0.01t2⎡⎣ t = 0→ 200

TS3= 2t + 0.005t2⎡⎣ t = 0→ 200

TS4 =
2t
2t + 0.005t2

⎡

⎣

⎢
⎢
⎢

t = 0→ ts
t = ts +1( )→ 200

ts = 0→199

TS5=
2t
4t

⎡

⎣

⎢
⎢
⎢

t = 0→ ts
t = ts +1( )→ 200

ts = 0→199

TS4 and TS5 (set 2) demonstrate how each technique handles very simple violations of the as-
sumption of constant acceleration within a regression interval (fig. 2). Either (1) the year at which the 
otherwise constant acceleration increases from 0 to 0.01 (the TS4 variants) or (2) the year the linear rate 
of SLR increases from 2 mm/yr to 4 mm/yr (the TS5 variants) was varied. The subscripted year indicates 
the time (ts) when there was a change in the acceleration.

Each variant time series results in predictions of AQRM, ASQRM, and ARBM (or SLRD). Results for 
the variants with acceleration steps at the midpoint year ts = 1950 demonstrate some of the differences 
between these calculations (fig. 3). ASL(t) for the TS4 variants is characterized by a step function with an 
increase in acceleration from 0 to 0.01 (at year 1950 for the variant shown) and for the TS5 variants by 
a finite amplitude impulse function at the year when the rate increase occurs. AQRM represents both TS4 
and TS5 accelerations with constant values that represent the best leastsquares fit to the entire respec-
tive SL time series. The ASQRM(tc, 60) and ARBM(tc, 60) estimates are smoothed representations of the true 
accelerations and give the appearance of a weighted moving average filter having been applied to the 
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Figure 1.  Acceleration estimates for TS1, TS2, and TS3. These times series meet the ASQRM assumption of con-
stant acceleration throughout the duration of the record. [mm/yr2, millimeters per year squared]
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true ASL(t) time series. The smoothing-related bias extends τ / 2 on either side of ts. The ASQRM(tc, 60) and 
ARBM(tc, 60) estimates correctly define ASL(t) outside this smoothing region for the TS4 and TS5 variants.

The results for individual variants can be rotated and stacked to show the temporal evolution 
of the estimates as ts is incremented (figs. 4, 5). The horizontal axes are the year the nonzero accelera-
tion is initiated; each year represents a different time series variant. The vertical axes are the years for 
which acceleration is either known (t, figs. 4a, 5a) or estimated (tc, figs. 4b, 4c, 4d; 5b, 5c, 5d). The AQRM 
results for both variant sets (figs. 4b, 5b) are biased over a large range of the prediction space. A particu-
lar concern is the inability of this method to correctly capture the temporal evolution of acceleration. 
In light of the recent interpretations of Houston and Dean (2011a) and Watson (2011) in their studies of 
average acceleration, AQRM, the increasing underprediction of the magnitude of recent acceleration as the 
change in acceleration moves toward the present is particularly noteworthy. Stated more explicitly, the 
combination of long records and use of a single-fit quadratic equation to test for, or to represent, recently 
changed acceleration is likely to result in statistically valid but misleading results.

The ARBM(tc, 60) and ASQRM(tc, 60) estimates produce less overall bias and limit the distortion of 
the temporal evolution of acceleration patterns (figs. 4c, 4d; 5c, 5d) but do smooth the abrupt transitions 
of the true values. The ARBM(tc, 60) and ASQRM(tc, 60) estimates also suffer from blanking of duration τ / 2 
at both the beginning and end of the available record, although this effect could be lessened by using 
increasingly smaller values of τ at the beginning and end of the record. 
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Figure 2.  Examples of TS4 and TS5 variants. (a) TS4, where the start year of a constant acceleration within the 
time series is initiated. (b) TS5, where the start year of an increased rate of SL rise is initiated. [mm, millimeter]
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Bias of Acceleration Estimates for TS4 and TS5 Variants

The TS4 variant bias errors for both sets of acceleration estimates, although generally small 
compared to the magnitude of the accelerations, can reach the magnitude of the known accelerations for 
some regions of the prediction space. The map of QRM bias is relatively complex (fig. 6a), and the mag-
nitudes are generally larger than those for RBM estimates (fig. 6c). This latter point is particularly true 
for the estimates of acceleration in the years immediately prior to an acceleration with a start year near 
the beginning of the record (acceleration is overestimated) and for the years immediately after an accel-
eration with a start year late in the record (acceleration is underestimated). The ARBM biases are generally 
smaller in magnitude and are confined to the narrow region where the start year of the quadratic term 
falls within the total regression window of duration τ. The ASQRM bias errors have the same pattern as the 
ARBM biases. For a given tc , the width of the biased region is τ (fig. 3).

The AQRM biases for TS5 variants are also generally larger and more widespread than the biases 
of ARBM estimates (fig. 6b, 6d). The ARBM biases are again confined to a band of width τ that surrounds the 
diagonal, marking when the abrupt change in rate occurs. Because both techniques introduce temporal 
averaging of conditions over the lengths of their respective regression windows, both techniques have 
issues defining the true signal that, for any one variant, has the entire non-zero acceleration contained 
within 1 year. For the ARBM estimate, reducing the window width τ will decrease the bias (eq. 5) but, 
in the presence of noise, may result in unacceptably large confidence intervals about the estimate. The 
ASQRM bias errors mirror the bias pattern of the ARBM estimates (fig. 6f). 
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Figure 3.  Acceleration estimates for TS41950 (top) and TS51950 (bottom) using the three regression-based estima-
tors. The total duration of the smoothing interval for ASQRM (tc , 60) and ARBM (tc , 60) is equal to the duration of the 
window, 60 years for this example. [mm/yr2, millimeters per year squared]
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Figure 4.  True and predicted ASL(t) for the TS4 variants. The vertical axis corresponds to the year associated with 
the acceleration estimate (or simply the year in (a)), and the horizontal axis increments through the TS4 variants. 
(a) True acceleration, 0.01 mm/yr2 for t greater than or equal to ts and otherwise 0. (b) AQRM. (c) ARBM. (d) ASQRM. 
[mm/ yr2, millimeters per year squared]

Figure 5.  True and predicted ASL(t) for the TS5 variants. The vertical axis is tc, the year associated with the 
acceleration estimate (or simply the year in (a)), and the horizontal axis increments through the TS5 variants. (a) 
True acceleration, 0 everywhere except on a line defined by t = ts where it is 2 mm/yr2. (b) AQRM. (c) ARBM. (d) ASQRM. 
[mm/ yr2, millimeters per year squared]



11

Modes of Acceleration and SLRD Time Series. 

The shape of the SLRD  (tc , τ) and ASQRM  (tc , τ) time series are distinctively different depend-
ing on the conceptual model for how sea-level acceleration may be occurring (fig. 7). In the following 
sections, focus will switch from estimating acceleration (A) to piecewise rate differences (SLRD). The 
estimates for a constant acceleration (that is, TS2, a fixed quadratic coefficient) result in a constant value 
for the time series (figs. 7b, 7c). A change in an otherwise constant acceleration, as in TS41950 where the 
quadratic coefficient increases from 0 to 0.005 (acceleration from 0 to 0.01, eq. 1), produces time series 
with two segments of constant rate change connected by a smooth transition region of width τ. A change 
in otherwise constant linear rate, as given by TS51950 (rate increase from 2 to 4 mm/yr at year 1950), pro-
duces a “bump” of width τ. The distinctive differences might be used, in combination with varying τ, to 
grossly characterize the mode of SL response and narrow the estimate of when the acceleration occurred 
or changed, assuming the possibility of discrete changes in SL response to external forcing.

It is important to note in figure 7h that the SLRD peak estimate matches the magnitude of the 
rate change at the year of the change. If one accepts the “model” of changing rates of SLR occurring in 
discrete steps (opposed to smooth quadratic segments), it would be preferable to use the SLRD (tc , τ) 
representation of rate change.

b

Figure 6.  Bias for the three estimates of ASL(t) for the TS4 and TS5 time series variants. The vertical axis cor-
responds to the year associated with the acceleration estimate, and the horizontal axis increments through the 
variants as the year of the change in acceleration (ts) moves through the record. The colors represent the difference 
between the true values and the predictions given by AQRM (top row), ARBM (middle row), and ASQRM (bottom row) for 
TS4 (left column) and TS5 (right column). [mm/yr2, millimeters per year squared]
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Monte Carlo Error Analysis for Estimates of SLRD(tc , τ)

The accuracy and bias of SLRD estimates in the presence of noise were investigated through 
Monte Carlo simulations (number of simulations = 104) using TS41950 and TS51950 (fig. 8). Realizations 
of noise, with varying characteristics, both of the statistical formulation and the magnitude of variance, 
are added to each time series. Three noise types were simulated, f-0.6 red noise (where f is the frequency, 
AR(1) noise (ρ = 0.4, where ρ is the AR(1) coefficient), and white (Gaussian) noise. In the cases of the 
red and AR(1) noise, parameters were fit to the spectrum of annual residuals (linear term only) from 
28 tide gages along the Atlantic coast of North America with records beginning in 1970 or earlier. Tide 
gage data were obtained from the Permanent Service for Mean Sea Level (http://www.psmsl.org/data/
obtaining/complete.php).The median value from each parameter fit was chosen for the Monte Carlo sim-
ulations. The noise variance magnitudes were based on the variance of residuals from the same gages 
(approximately 2,500 square millimeters (mm2)). For each noise type, three variance levels (1,250; 
2,500; and 3,750 mm2; that is, 50, 100 and 150 percent of observed, respectively) were tested. 

Examples of TS51950 with the different noise types (at the 100 percent variance level), the ensem-
ble mean of the estimated SLRD(tc, 60) time series, and the distributions of the 104 estimated SLRD at tc 
=1950 are shown in figure 9. Although the type of noise has no effect on the bias of the technique at the 
year of the rate shift (it is 0 at 1950 for all noise types), it does dramatically influence the distribution 
of the estimates for any tc. Red noise introduces variability at periods of approximately O(τ ), which is 
identified by the analysis as a signal in SLRD, resulting in the widest distribution of SLRD values. White 
noise, with no long period bias in noise distribution, produces the narrowest distribution of predicted 
SLRD. A set of probability density funtions (PDF) from TS41950 and TS51950 shows the SLRD method 
produces unbiased estimates of the expected value regardless of noise formulation or magnitude (fig. 10; 
table 2). As expected, the variance of SLRD predictions increases with increasing noise variance. The 
same trends (increasing variance with increasing noise and the relative shape of the noise PDFs with dif-
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ferent types of noise) are obtained for ARBM(1950,60) and ASQRM(1950,60) and for the equivalent analyses 
using TS41950. The variation in the width of the SLRD PDF with noise at various frequency distributions 
demonstrates why an adjustment is required to the confidence limits on ordinary least-squares regression 
coefficients when serial correlation between residuals is present. Shortening the length of the regression 
window,  τ , widens the distribution of estimated SLRD, but introduces no bias (fig. 11). 

Compilations of the Monte Carlo simulations for TS41950 and TS51950 demonstrate the sensitivi-
ties of the estimates and their 1σ errors resulting from the addition of three types of random noise with 
variance 2,500 mm2 (table 2). In each case the estimate is for year 1950 and the regression window is 
60 years in duration, centered on 1950. The mean values for each calculation method (ASQRM , SLRD) are 
relatively insensitive to the the type of noise introduced; what variation exists is the result of the differ-
ent degrees of low frequency contamination depending on the noise distribution. Also, it is important to 
note that the errors adjusted for serial correlation for red and AR(1) noise always exceed the standard 
calculation, and the Monte Carlo estimate of the error is the largest in all cases. In a few cases the calcu-
lated adjustment fitting an AR(1) model with white noise resulted in negative lag 1 autocorrelation es-
timates, thus resulting in a smaller adjusted error than the standard. The implication is the non-physical 
result of having more degrees of freedom than data points in the regression. In these cases, the adjusted 
error was set equal to the standard error. Tide gage records are autocorrelated, with various interannual, 
decadal, and multi-decadal signals present, so this likely would not occur in real data.

Figure 8.  Examples of time series with added AR(1) noise at a variance level (2,500 mm2) representative of U.S. 
east coast tide gages. (a) TS41950. (b) TS51950. [mm, millimeters; mm2, square millimeters]
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Figure 9.  Summary of Monte Carlo simulation for SLRD(1950,60), using different noise formulations with equal 
variance in conjunction with TS51950. The true value for the rate increase is 2. (a) Example time series with red 
noise (f-0.6); (b) Ensemble mean red noise SLRD time series with τ = 60 years; (c) Example time series with AR(1) 
ρ = 0.4 noise; (d) Ensemble mean AR(1) noise SLRD time series with τ = 60 years; (e) Example time series with 
white noise; (f) Ensemble mean white noise SLRD time series with τ = 60 years; (g) PDF of the SLRD estimates 
for year 1950 for red noise time series; (h) PDF of the SLRD estimates for year 1950 for AR(1) noise time series; (i) 
PDF of the SLRD estimates for year 1950 for white noise time series. [mm/yr, millimeters per year]
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Table 2.  Mean acceleration/SLRD estimates with 2σ errors on the basis of 10,000 trials. “Adjusted” indicates that 
the standard error has been corrected for serial correlation as described in the section “Uncertainty Analysis”. 
[mm/yr, millimeters per year]

Figure 10.  Summary probability distributions for the 104 Monte Carlo predictions of SLRD (1950,60) for three 
noise types and three variance levels added to TS51950. (a) Red noise with variance 50% of observed; (b) Red noise 
with variance 100% of observed; (c) Red noise with variance 150% of observed; (d) AR(1) noise with variance 50% 
of observed; (e) AR(1) noise with variance 100% of observed; (f) AR(1) noise with variance 150% of observed; (g) 
White noise with variance 50% of observed; (h) White noise with variance 100% of observed; (i) White noise with 
variance 150% of observed. [mm/yr, millimeters per year]

TS4 (1950, 60) Red noise (100%) (mm/yr) AR(1) noise (100%) (mm/yr) White noise (100%) (mm/yr)
ASQRM: standard 0.003 ± 0.014 0.003 ± 0.015 0.003 ± 0.016
ASQRM: adjusted 0.003 ± 0.019 0.003 ± 0.021 0.003 ± 0.016
ASQRM: Monte Carlo 0.003 ± 0.041 0.003 ± 0.036 0.003 ± 0.024
SLRD: standard 0.163 ± 1.28 0.130 ± 1.35 0.172 ± 1.41
SLRD: adjusted 0.163 ± 1.64 0.130 ± 1.89 0.172 ± 1.41
SLRD: Monte Carlo 0.163 ± 2.60 0.130 ± 2.16 0.172 ± 1.45

TS5 (1950, 60) Red noise (100%) AR(1) noise (100%) White noise (100%)
ASQRM: standard 0.031 ± 0.014 0.031 ± 0.015 0.031 ± 0.016
ASQRM: adjusted 0.031 ± 0.019 0.031 ± 0.021 0.031 ± 0.016
ASQRM: Monte Carlo 0.031 ± 0.041 0.031 ± 0.036 0.031 ± 0.024
SLRD: standard 1.99 ± 1.28 1.97 ± 1.36 2.00 ± 1.41
SLRD: adjusted 1.99 ± 1.64 1.97 ± 1.89 2.00 ± 1.41
SLRD: Monte Carlo 1.99 ± 2.62 1.97 ± 2.17 2.00 ± 1.45
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Signal Detection

The RBM and SQRM methods result in smoothing of the true acceleration signal and, through 
the regression process, suppression of “noise” at time scales significantly less than the window duration. 
Following Jevrejeva and others (2008), stacking the results (SLRD(tc , τ), ARBM (tc , τ) and ASQRM (tc , τ)) to 
define both the temporal evolution of the SLRD (or acceleration) signal and, through using variable τ , a 
crude filtering at different time scales, provides very useful context to the interpretation of any specific  
(tc , τ)  (fig. 12). Using the analysis of noise-free TS51950 shows the underlying influence of increasing τ 

Figure 11.  Effect of window duration τ on the distribution of estimated SLRD for fixed noise type and variance. 
(a) Example TS51950 variant. (b–d) Averaged SLRD(1950, τ ) time series from the Monte Carlo simulations for τ = 
40, 50, 60 years, respectively. (e–g) Probability density functions for predictions of SLRD(1950, τ ) for τ = 40, 50, 60 
years, respectively.
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in smoothing the pulse of acceleration at year 1950. The region of non-zero SLRD corresponds to the 
spread of τ-dependent bias error away from the true year of the rate increase (as shown in figure 3b for 
τ  = 60). 

Adding Gaussian noise to the time series creates noise in the analysis, as expected (fig. 13). As 
shown in figure 10, noise of any distribution type increases the random error (spread) of rate difference 
(or acceleration) estimates. In the case shown, interpretation of the results improves when considering 
analysis results across multiple values of both tc and τ. Given the smoothed nature of the analysis tech-
nique, it is more likely that clustered or contiguous (tc , τ) cells with significant values represent signal 
as compared to scattered or rapidly varying (tc , τ) magnitudes. Noise-related (incoherent) variability is 
dramatically lessened from the N = 1 case when averages are computed over N = 20, 100, 1,000 inde-
pendent samples of the process (fig. 13b–d). For this reason, regional averaging over the largest number 
of available gages will eliminate random noise while the coherent signal (shown in figure 12e) survives 
the averaging process. These results are as expected, as shown in figure 9.

The ability to detect a significant change in the rate of SLR depends on two concepts: (1) How 
does the (moving, in the case of SQRM and RBM) regression window influence the representation of 
the magnitude of a rate increase? and (2) How do statistical uncertainties (from noise in the time series) 
influence the detection and significance of rate changes? These concepts are further explored using the 
Monte Carlo simulations of analyses for TS51950 + AR(1) noise based on actual tide gage noise character-
istics.

A dimensionless form of the SLRD(tc, τ) time series is given by

(12)SLRD(t ',τ )

max SLRD(t ',τ )( )
with

(13)t ' =
tc − t s
τ

where ts is the time of the rate change, the straight line bracket indicates absolute value, and the angled 
brackets represent ensemble averaging over the simulations. Results illustrate that the estimated mag-
nitude of the rate change is a function of the separation between tc, the central year of the regression 
window, and the year of the rate change, ts, normalized by the window duration (fig. 14). The rate 
change is captured in its entirety at tc = ts. Rate changes occurring relatively distant in time from tc will 
have a much reduced magnitude and will therefore be more difficult to differentiate from 0. For ARBM and 
ASQRM analyses, where the rate change occurs defines the width of the bias error bands shown in figure 6. 
This also illustrates why the AQRM analysis (or SLRD and ASQRM analyses with relatively large τ) of a long 
time series, which includes a longer time period prior to the acceleration and thus forces tc (the central 
time of the record in the case of AQRM) far from ts, may not show a significant acceleration if the accel-
eration is initiated in the recent past while a shorter time series (which forces tc closer to ts ) will allow 
detection of such an event (Houston and Dean (2011a, b); Rahmstorf and Vermeer (2011); Sallenger and 
others (2012)). AQRM estimates based on a sample with different start and (or) end dates (thus different 
τ and (or) tc ) and time-varying acceleration are not expected to be equivalent, even in the absence of 
noise. The practical implications are straightforward: (1) comparision of acceleration estimates between 
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tide gages should be made only for records (or windows) with identical start and end dates, and (2) it 
should be recognized that any change in acceleration occurring near the (relative) beginning or end of 
the record/window will be significantly underestimated and thus difficult to detect. Given that sea-level 
rise acceleration would be expected to occur more recently in the tide gage records, this latter point 
argues for the use of shorter records (or analysis windows) for the detection of recent acceleration in SL 
time series in order to allow for the range of tc  to include values close or equal to times of possible step 
changes in SLR (ts ).

For the regression methods presented here, the influence of noise can be approached from two 
conceptual directions as it relates to signal detection. First is the error surrounding any estimate of A or 
SLRD. The variance of the residual errors from the regression solution (eqs. 3, 7, 8) propagates to the 
error in the sample estimate of the acceleration (eq. 9), or rate difference (eq. 11). Figure 14 shows that 
for a step increase in rate (TS5), the most accurate estimate of SLRD occurs for the regression window 
centered on ts. The first approach suggests a ratio to compare the magnitude of the sampling error for 
SLRD (tc = ts , τ ) to the magnitude of the SLRD. For the Monte Carlo simulations this comparison would 
be shown as

(14)
2σ MC SLRD(tc=ts ,τ )

SLRD(tc = ts ,τ )

Figure 13.  SLRD estimates for time series TS51950 with Guassian (white) noise at 100% observed level. Compare 
to figure 12e (but note color scale is different.) 1σ  error mask applied (values set to 0 if not statistically different 
than 0). (a) N=1. (b) N=20. (c) N=100. (d) N=1,000. [mm/yr, millimeters per year]
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This provides a representation of the significance of a single estimate of SLRD(tc = ts , τ ) in the 
presence of noise (see figure 10 for associated examples of PDFs). At a value of 1.0, the estimated SLRD 
would equal the 2σ error; values less than 1 increasingly provide confidence that the SLRD estimate is 
different than 0. Shorter regression windows and low SLRD magnitudes, as expected, more commonly 
result in SLRD estimates not significantly different than 0. 

A second conceptual approach to noise-to-signal ratio compares the variance of the residuals 
about the regression to the variance added by the rate increase. The focus here is on the relative separa-
tion between the point cloud surrounding the signal with the changed rate and the (assumed) point cloud 
had there been no rate increase (fig. 15), which can be expressed as

(15)
2σ MCAR(1)

SLRD(tc = ts ,τ ) ∗τ

Figure 14.  Dimensionless representation of ensemble-averaged SLRD time series with multiple AR(1) noise 
levels (0, 50, 100, 150 percent of observed) and different window lengths for TS51950. (a) τ = 40 years. (b) τ = 50 
years. (c) τ = 60 years. The probability of detecting the rate difference is maximized at tc = ts.
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Equation 15 represents the magnitude of the noise (residual) variance, σMCAR(1), relative to the in-
crease in the magnitude of the signal resulting from the change in rate. Assuming time-invariant Gauss-
ian noise at a value of 1.0, the 2σ  noise envelope around the increased sea-level trend will separate from 
the extension of the original trend (fig. 15; this value is conceptually useful but not a statistical require-
ment for rate change detection). The 2σ  envelopes around the extension of the first and second regres-
sion segments separate at a ratio of 0.5. This representation of noise-to-signal ratio suggests detection of 
smaller magnitude rate changes (relative to a fixed noise level) will require longer regression windows 
to allow for larger increases in signal variance. Contrary to the guidance discussed here, these consider-
ations argue for longer records. 

To summarize, estimates of SLRD or A using the regression methods developed here are sensi-
tive to the relative separation between the center of the regression window and the year of any change 
in acceleration. Short regression windows confine the influence of the rate change to a narrower range 
of years, decreasing potential bias errors for tc ≠ ts . However, estimates from shorter records are more 
widely distributed around the expected mean value. Longer windows, while extending potential bias 
error to a wider range of years, provide more accuracy in the determination of the magnitude of change 
through improved signal-to-noise ratios. 

Three primary options exist to reduce random error (and increase confidence) in the RBM esti-
mates. The first option is to average results from a collection of independently operated gages that can 
be reasonably assumed to be subject to the same forcing, be it on a regional or global scale (for example, 
Sallenger and others (2012) and Church and White (2011), respectively). Assuming M gages are inde-
pendent samples from the same statistical population of interest (for example, that the signals in the time 
series are well correlated, whereas the residuals are not), the error of their mean will roughly  
decrease by a factor of ( M

−1
2 ) relative to the errors of the individual gages (demonstrated in figures 12 

and 13). Second, the regression window length can be increased, resulting in smaller random errors but 

Figure 15.  Hypothetical time series showing the gradual separation of point clouds after a rate increase from 
2 mm/yr (red) to 4/mm yr (blue) at year 1950. The ability to detect the rate change is proportional to the magnitude 
of the rate difference and the length of the sample window and inversely proportional to the magnitude of the noise. 
[mm/yr, millimeters per year]
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at the expense of degraded temporal resolution and potentially increased bias. Third, the data can be 
carefully filtered to remove the unwanted coherent signals and statistical noise not of interest to the 
investigation (Hamlington and others, 2010). Authors are encouraged to clearly state the limitations of 
their methodology relative to the hypotheses to be tested or evaluated. The appropriate mix of methods 
will depend to a large extent on the specific objectives of the user. Scientists interested in global sea-
level rise over the historical record may well choose different methodology than coastal land-use plan-
ners focused on short-term, community-based issues.

SQRM and RBM Acceleration Estimates for Periodic Signals

Although this report focuses on techniques for capturing recent abrupt transitions in the climate 
system (and thus in SL) and the detectability of the potentially accelerating SL, it is also important to 
understand how the methodologies handle periodic signals.

SLRD, ARBM, and ASQRM estimates use two time scales. The first, τ, is the length of the sliding 
regression window and, for conceptual purposes, can be thought of as being analogous to the duration 
of a weighted moving-average filter. The second time scale, Δτ , is the time step used to slide the regres-
sion window through the SL time series and controls the sample density (or temporal resolution) of the 
resulting rate difference estimates. A simple example for SLRD is illustrative (fig. 16). For the case of a 
sinusoid with amplitude A and period T = 30 years, a window of τ = Τ = 30 stepped through the time se-
ries at Δτ  = 1 year will oscillate between ± 8A/Τ. The sampling of the oscillatory signal is controlled by 
the magnitude of Δτ , as there will be T/Δτ  estimates per cycle, and Δτ  must be small enough to define 
the oscillation. Note the temporal resolution is independent of τ, the regression window length. With a 
regression window of duration τ = 2T, the rate differences will be nearly zero as each half-window rate 
covers a complete cycle of the oscillation. In the case of a pure sinusoid, the next local rate difference 
amplitude maxima occurs for a regression window of duration τ  = 3T. However, due to the increased 
window length and the associated decrease in slope of the regression lines, the rate difference magni-
tudes for this oscillation will have dropped by a factor of 3 relative to τ = 30. In addition, if the rate 
differences are converted to accelerations by multiplying by (2/τ ), the amplitude decay of the signal is 
even more rapid as τ increases away from the fundamental period of the oscillation. 

The results for a variety of periodic signal shapes are shown for SLRD(tc , τ) in figure 17a–g and 
for ASQRM (tc , τ) in figure 19a–d. In these cases the fundamental period, T, is 25 years and Δτ = 1 year. 
Duration τ is varied from 10 to 200 years in even-numbered increments and the results are plotted with 
the central year of the sliding regression window on the horizontal axis and the value of τ on the vertical 
axis. There are two common results for all these single-frequency test cases: (1) the periodicity of the 
acceleration and rate difference oscillations remains 25 years, though some do exhibit interesting struc-
ture within that period, and (2) the 25-year oscillations are effectively damped before τ approaches 2T. 

Although the SLRD method also has some ability to separate the contributions of two sinusoids 
(figs. 17 h–i, 19h–i), as could be expected, results improve as the difference between the periods in-
creases. The distinction between oscillations with periods of 10 and 70 years is very clear (figs. 17h, 
19h). The results show a surprising ability to distinguish between signals of equal amplitudes with peri-
ods of 30 and 50 years. The 30-year period dominates for τ < 35, and the 50-year period dominates for 
τ > 45 years, with a transition region from roughly 35 < τ < 45 years (figs. 17i, 18, 19i).

Previous research has indentified two relatively energetic oscillations in sea-level elevation 
centered at periods of 20–30 years and 50–70 years (summarized in Frankcombe and Dijkstra, 2009). 
Time series are constructed with these periodicities (amplitude of 10 mm, periods of 25 and 60 years) 
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both alone and combined with two rate increase time series TS51950 and TS52000. Both periodicities and 
the rate change can be identified in the SLRD analyses (fig. 20). The rate increases are most obvious for 
τ > 50 years. The addition of TS51950 (fig. 20b) results in larger values for SLRD near the time of the rate 
increase, visibly altering the oscillatory signal in the region enclosed by 1930 < tc < 1970 and 50 < τ < 
200. Moving the rate increase toward the end on the time series (TS52000, fig. 20c) results in a similar 
increase to the oscillatory results. The negative acceleration centered near tc = 1995, τ = 60 in figure 20a 
is now completely masked by the rate increase in figure 20c. Increased SLRD values are also seen for 
the larger region roughly defined by τ > 50 and tc > 1980.

Figure 16.  A simple example of SLRD representation of a periodic fluctuation in sea level. Δτ  = 1 year in all 
cases. a: Sea-level time series with representations of the regression line segments for τ  = T (blue), τ  = 2T (red), 
and τ  = 3T (green) for a common central year, tc = 90 years. b: SLRD time series for τ  = T (30 years). c: SLRD time 
series for τ  = 2T (60 years). d: SLRD time series for τ  = 3T (90 years). [mm, millimeters; mm/yr, millimeters per 
year]
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Figure 17.  SLRD(tc , τ ) for representative periodic signals. Example segments of each SL time series are shown 
in the upper right of each panel. a: sin, T = 25 years; b: square wave, T = 25 years; c–g: sawtooth waves with dif-
ferent symmetry properties, all have T = 25 years; h: sum of 2 sin waves, T = 10 and T = 70 years; i: sum of 2 sin 
waves, T = 30 and T = 50 years. Dashed lines indicate locations of SLRD time series shown in figure 18. [mm/yr, 
millimeters per year]

Figure 18.  SLRD time series slices at τ for the two known periods from figure 17i. (a) τ = 30; (b) τ = 50. Note 
that the 30-year periodicity is significantly damped for τ = 50.
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Figure 20.  SLRD(tc, τ) calculations for oscillatory time series with different rate increase scenarios. (a) No rate 
increase. (b) Rate increase at year 1950. (c) Rate increase at year 2000. [mm/yr, millimeters per year]

Figure 19.  ASQRM(tc, τ) for representative periodic signals. Example segments of each SL time series are shown 
in the upper right of each panel. a: sin, T = 25 years; b: square wave, T = 25 years; c–g: sawtooth waves with dif-
ferent symmetry properties, all have T = 25 years; h: sum of 2 sin waves, T = 10 and T = 70 years; i: sum of 2 sin 
waves, T = 30 and T = 50 years. [mm/yr2, millimeters per year squared]
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Summary
The single-fit implementation of QRM can result in biased estimates of ASL(t) if changes in accel-

eration exist within the time series. This bias is a critical shortcoming of the technique if AQRM estimates 
are compared between records of different lengths or with different start and (or) end dates. The RBM 
and SQRM methods are not biased with respect to the timing of acceleration except if the acceleration 
occurs in the blanking region at the beginning or end of the record where no estimates are made or as τ 
approaches the total length of the record. RBM/SQRM biases in the synthetic time series tests are associ-
ated with the smoothing of abrupt changes in acceleration. 

The magnitude and timing of simple changes in acceleration can be recovered from the 
ARBM(tc, τ) series given an appropriate choice(s) for τ. Varying τ can guide the choice of an appropriate 
window, depending on the periodicity of the signal or noise. Conversely, as seen in the periodic time 
series tests, contributions from multiple changes in acceleration can be poorly resolved depending on 
their separation in time relative to the choice of τ. The primary deterrent to using the shorter regres-
sion windows is the small signal-to-noise ratio in tide gage records. Regional averaging can be used to 
increase confidence in ARBM estimates.
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Glossary
AQRM 	 Average acceleration calculated using a single quadratic regression.

ARBM	 Acceleration calculated using the rate-based method.

ASL	 The true acceleration of a sea-level record.

ASQRM	 Acceleration calculated using the sliding quadratic regression window.

GSL	 Global sea level. This measure is assumed to be free from the effects of vertical land motion.

QRM	 Quadratic regression method. Refers to the use of a single second order regression equation to 
estimate the average acceleration over the entire record length.

RBM	 Rate-based method. A method for calculating acceleration based on a sliding regression window 
and the differencing of two rates (first half, second half) calculated using linear regression. Simi-
lar to the sliding quadratic regression method.

SL	 Relative sea level. This elevation measure is recorded by tide gages and includes any land mo-
tion.

SLR	 Sea-level rise.

SLRD 	 Sea-level rate difference. The arithmatic difference between two successive estimates of the rate 
of sea-level rise. SLRD is referenced to the central time of those two rates and to the length of 
the combined interval that formed the basis for the rate estimates.

SQRM (SQM)	 Sliding quadratic regression method. A quadratic regression method where multiple 
second order regressions are calculated by sliding a regression window through the time series. 
The calculated accelerations are estimates of the local average and associated with the time at the 
center of the window.
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