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Algorithms used in the Airborne Lidar Processing System 
(ALPS)
By David B. Nagle and C. Wayne Wright

Abstract
The Airborne Lidar Processing System (ALPS) analyzes Experimental Advanced Airborne 

Research Lidar (EAARL) data—digitized laser-return waveforms, position, and attitude data—to derive 
point clouds of target surfaces. A full-waveform airborne lidar system, the EAARL seamlessly and 
simultaneously collects mixed environment data, including submerged, sub-aerial bare earth, and vege-
tation-covered topographies.

ALPS uses three waveform target-detection algorithms to determine target positions within a 
given waveform: centroid analysis, leading edge detection, and bottom detection using water-column 
backscatter modeling. The centroid analysis algorithm detects opaque hard surfaces. The leading edge 
algorithm detects topography beneath vegetation and shallow, submerged topography. The bottom de-
tection algorithm uses water-column backscatter modeling for deeper submerged topography in turbid 
water.

This report describes slant range calculations and explains how ALPS uses laser range and orien-
tation measurements to project measurement points into the Universal Transverse Mercator coordinate 
system. Parameters used for coordinate transformations in ALPS are described, as are Interactive Data 
Language- (IDL) based methods for gridding EAARL point cloud data to derive digital elevation mod-
els. Noise reduction in point clouds through use of a random consensus filter is explained, and detailed 
pseudocode, mathematical equations, and Yorick source code accompany this report.

Introduction
Light detection and ranging (lidar) is a remote sensing method that transmits short light pulses 

to a target and measures the return time of the associated backscattered light. Other valuable informa-
tion can be determined by capturing a time record of the returning backscatter or return waveform. The 
speed of light in air (or for bathymetric systems, water) and the return waveform’s time record can be 
used to calculate a slant range measurement. Slant range measurements combined with sensor position 
and attitude data can be used to derive three-dimensional point clouds—collections of georeferenced 
points—of surfaces.

Targets such as ground surfaces, water surfaces, submerged surfaces, and forest canopies appear 
as features within lidar waveforms (fig. 1). The characteristics of these features vary depending on many 
factors, including the type of surface surveyed and the design of the lidar system. Processing algorithms 
and software must take these factors into account when generating target point clouds. Submerged tar-
gets are particularly challenging to resolve due to complications introduced by the water column, such 
as surface refraction, attenuation, scattering, absorption, and bottom reflectivity (Guenther, 1985). 

Many commercial airborne topo-bathymetric lidar systems use proprietary algorithms and soft-
ware that prevent lidar consumers and scientists from understanding how the data are generated. This 
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report provides a complete algorithm-level description of the processing workflows used in a modern 
research lidar. While the techniques documented herein likely differ from those in proprietary systems, 
they are general enough to be adapted for use with common lidar systems.

Experimental Advanced Airborne Research Lidar

The Experimental Advanced Airborne Research Lidar (EAARL) is a software-defined full-wave-
form airborne lidar system designed for the simultaneous and seamless collection of mixed environment 
data, including submerged topography, sub-aerial topography, and vegetation-covered topography. The 
design of the current version of the system, designated EAARL–B, differs from traditional bathymetric 
systems in four primary ways: it uses a relatively short laser pulse (0.7 nanoseconds (ns)); it has three 
narrow receiver fields-of-view of 2 milliradians (mrad) each and a fourth, larger field-of-view of 18 
mrad; it records digitized signal backscatter full waveforms; and it relies on software instead of hard-
ware for real-time signal processing. The laser operates at a 532-nanometer (nm) wavelength (green). 
An oscillating cross-track scanning mirror distributes the pulses across a 240-meter (m)-wide swath 
perpendicular to the airplane flight track from a 300-m altitude.

The original EAARL–A system began operation in 2001 but was superseded in 2012 by the 
EAARL–B system. The algorithms in this report were developed during the lifecycles of both systems. 
In this report, the term EAARL is used for information that applies equally to both systems and the term 
EAARL–B is used for system-specific information that applies only to the EAARL–B system.

Figure 1.  Example EAARL–B (Experimental Advanced Airborne Research Lidar) waveforms from vegetation and submerged environments 
(Wright and Brock, 2002, revised).

intermediate returns
from sub-canopy

top edge
of canopy

ground return

bottom return

water column

air/sea
interface

I

I=Intensity

t
I

t

t=time



3

Airborne Lidar Processing System

Post-processing of EAARL data uses the Airborne Lidar Processing System (ALPS). The digi-
tized laser-return waveforms are combined with the aircraft positioning and attitude data derived from a 
global positioning system (GPS)-aided inertial navigation system (INS) receiver to derive data products, 
including point clouds. The point clouds are processed into digital elevation models (DEMs). The algo-
rithms used by the ALPS software are the focus of this report; Bonisteel and others (2009) describe how 
to use the software to process data.

The ALPS software is primarily built on open-source technologies and requires a Portable Op-
erating System Interface (POSIX) environment (typically Linux). The majority of the code is written 
in Yorick, an interpreted programming language designed for scientific numerical processing and visu-
alization by David H. Munro at Lawrence Livermore National Laboratory (Munro and Dubois, 1995). 
Yorick uses an array syntax that permits fast and powerful manipulation of large, multi-dimensional 
arrays of data without explicit loops.

ALPS leverages several other programming languages and tools, including C, Tcl/Tk, Makeflow, 
and ENVI IDL (Environment for Visualizing Images–Interactive Data Language). Yorick extensions 
are written in C to optimize performance at algorithmic bottlenecks. Tcl/Tk is used to provide a graphi-
cal user interface around the Yorick-based functionality. Makeflow, designed by the University of Notre 
Dame’s Cooperative Computing Lab, permits efficient processing of large batch jobs in parallel (Al-
brecht and others, 2012). ENVI IDL, designed by Exelis Visual Information Solutions, is used to gener-
ate DEMs and is the only closed-source technology in the platform. 

Workflow Overview
Lidar processing workflows in ALPS begin with the processing of digitized waveforms to create 

a point cloud. After a point cloud is derived, post-processing steps can include filtering the point cloud 
to remove noise, coordinate-system transformations, and gridding production for the creation of DEMs.

The production of a usable point cloud begins with the calculation of slant range measurements. 
The measurement is calculated for each point using two waveforms: the transmit waveform (tx), which 
captures the shape of the outbound transmitted laser pulse, and the corresponding return waveform (rx), 
which captures the energy backscattered from the environment. The transmit waveform is analyzed 
to determine its center of energy. The return waveform is then analyzed to determine the location of a 
target. The center of energy of the transmit and the target location in the return allows calculation of 
the slant range time of flight to the target. The slant range time can be converted into a distance mea-
surement using the speed of light in air, as is described in the section “Slant Range Measurement.” The 
analysis of the waveforms to determine the center of energy for the transmit waveform and the target 
location within the return waveform is detailed in the section “Waveform Analysis.” 

A georeferenced point cloud is then created to represent target locations in real-world coor-
dinates. Target ranges from the waveforms are combined with high precision and accuracy measure-
ments—of the attitude and position of the sensor, with respect to a reference ellipsoid—to project the 
lidar elevation measurement to the target. This process is repeated for each pulse from each channel, 
resulting in a point cloud that represents target locations in real-world space. The mathematics involved 
are explained in the section “Point Projection.”



4

Uncorrelated random range noise in the point cloud is reduced by applying the Random Consen-
sus Filter (RCF). The RCF algorithm removes outliers by detecting where the highest concentrations of 
points are located. This algorithm is described in the section “Random Consensus Filter (RCF).”

ALPS implements several horizontal and vertical datum transformations to provide data in a 
variety of coordinate systems, as is described under “Coordinate Transformations.” ALPS also provides 
a tool for creating a DEM from the point cloud by gridding with a triangulated mesh, which is docu-
mented under “Gridding.”

In practice, the typical ALPS lidar processing workflow incorporates significant manual edit-
ing. ALPS provides various manual editing tools that allow analysts to improve the quality of the point 
cloud, as is described under “Manual Editing.”

Slant Range Measurement
The time interval between the transmit pulse centroid and the various parts of the return wave-

form represent the slant range time of flight values. Slant range time of flight value is the time it takes 
the laser light to reach the target and then bounce back to the detector. Slant range time is directly 
proportional to the target’s range in a given medium of air or water. This measurement is then converted 
into a distance measurement using the speed of light in air. For submerged targets, this distance is cor-
rected as described in “Water Corrections.”

The specifics of this calculation are closely tied to how EAARL–B digitizes waveforms. The 
waveform digitizer is started 200 ns before the laser is triggered to ensure the emitted pulse is captured 
and to ensure jitter in the laser trigger does not cause the system to miss the transmit pulse. The exiting 
transmit-pulse waveform is captured as soon as the laser pulse is emitted. Once the waveform digitizer 
is started, it continues digitizing each of the four return channels for 16,384 ns each. Once the digitiza-
tion completes, the computer selects and transfers selected portions of each waveform to its local mem-
ory via direct memory access. There are 64 samples (1 ns per sample) extracted for the transmit pulse, 
and 1,500 samples are extracted for each of the four return waveforms. 

In computer memory, each of the four 1,500 sample returns is further processed with real-time 
software to reduce the length to a maximum of 450 samples. The 64-sample transmit waveform is pro-
cessed and reduced to 16 samples. At this point, the transmit and return waveforms are packetized and 
queued for recording to a solid-state disk. Along with the waveforms, two additional data types are col-
lected: the timestamp corresponding to the start of the transmit waveform and the time interval between 
the start of the transmit waveform and the start of the return waveform. These times allow for recon-
struction of the laser pulse firing timeline required for calculating the slant range time of flight (fig. 2).

Waveform Analysis
Before a point cloud is generated, the transmit and return waveforms collected by EAARL must 

be analyzed to derive slant range measurements. These distance measurements are later combined with 
the other physical measurements acquired by the system, as described in the section “Point Projection.”

The digitizer in EAARL–B samples the laser signal at 1-ns intervals and records digital counts pro-
portional to the relative intensity of the backscattered laser light. Although the counts are uncalibrated and 
do not represent absolute intensity or radiance values (for example, with units of watt per steradian (W·sr-1) 
or watt per steradian per meter (W·sr-1·m-1)), they do represent changes in relative intensity in a waveform. 
Throughout this report, the term “intensity” refers to this uncalibrated relative intensity measurement.



5

The transmit and return waveforms have decidedly different characteristics and processing 
algorithms. The transmit waveform captures the shape of the emitted laser pulse, and the energy center 
of the pulse is derived by using a simple centroid calculation on the transmit waveform. This process 
is documented in the “Centroid Analysis” section below. The return waveform represents the energy 
distribution over time of light scattered back to the sensor. Different environments result in waveforms 
with different characteristics, so ALPS provides three algorithms for use in waveform analysis. Each 
algorithm is designed for use with specific environments, and they are described in the sections “Cen-
troid Analysis,” “Leading Edge Detection,” and “Bottom Detection Using Water-Column Backscatter 
Modeling.” All three algorithms are used to determine a position within the waveform that corresponds 
to a target. Common targets are the ground (either submerged or subaerial), water surfaces, and the top 
of vegetation canopies. Centroid analysis is only suited for processing first surfaces (such as unveg-
etated, level ground; water surfaces; or the top of vegetation canopies). Leading edge detection is suited 
for topography underneath vegetation and for shallow, submerged topography. Bottom detection using 
water-column backscatter modeling is suited to submerged topography, especially in deeper waters.

Centroid Analysis

Centroid analysis is a fast algorithm best used for determining the center of energy in a pulse 
with a well-defined peak. The laser’s transmit and return waveforms are time-series of relative light-
intensity values. The centroid is calculated against the area under the curve (fig. 3). The algorithm has 
three components:

1.	 The waveform is adjusted to remove background energy by subtracting the intensity value of the 
first sample from all samples.

2.	 For first return analysis, the return waveform is truncated to 12 samples to restrict the portion of 
the waveform analyzed. (Transmit waveforms are not truncated.)

3.	 The centroid is calculated.

Figure 2.  Sample timeline for laser pulse firing and digitization. The transmit waveform (tx) centroid occurs 5.4 nanoseconds (ns) after the start 
of the recorded transmit waveform. The recorded digitized return waveform (rx) starts at 2165 ns. The first return peak is at 2173.9 ns, which cor-
responds to a slant range time of 2167.5 ns from the centroid of the transmitted pulse. The last return peak is at 2244 ns, which corresponds to a 
slant range time of 2237.6 ns.

tx start tx centroid rx start rx first return rx last return

0 5.4 2165 2173.9 2244

time since start of transmit waveform (ns)

time range to last return: 
2237.6 ns

time range to first return: 
2167.5 ns
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Transmit and return waveforms digitized by EAARL contain a significant level of background 
energy from the system and the environment. All analysis techniques remove this background energy, 
but centroid analysis is especially sensitive to background energy because it skews the centroid. The 
waveform in figure 3 already had the background energy removed. Figure 4 shows the same wave-
form before the removal of its background energy and the impact the energy has on the centroid. Bias 
is removed by subtracting the intensity value of the first sample in a waveform from all samples in the 
waveform (under the assumption that the first sample is at or near the baseline of the waveform).

For first return analysis, the next step is truncation. Identifying the centroid of transmit wave-
forms is straightforward because they represent the shape of a single pulse. The processing of return 
waveforms is more complicated than the processing of transmit waveforms because the energy from 
multiple targets can be convolved in a return waveform. However, the first return in the received 
waveform typically has a much higher energy level than other returns and is always located in the first 
12 samples of the waveform due to the EAARL–B system design. The EAARL–B real-time soft-
ware writes out the waveform such that it has 3–5 samples before impact to permit background bias 
estimation. Initially, a transmitted pulse is approximately 0.9-ns wide, but it is stretched by system 
components (photomultiplier tube, cables, electronics, digitizer) and the environment. EAARL–B has 
a sampling interval of 1 ns, so 12 samples provide 3–5 ns for the background energy and 7–9 ns for 
the return pulse from the first surface. Thus, first returns are derived by restricting centroid analysis to 
the first 12 samples of the waveform to ensure that subsequent returns do not significantly impact the 
centroid calculation.

Figure 3.  A waveform and its centroid. The solid black line is the waveform and the dashed blue line shows where the rest of the region is 
bounded. The black squares indicate the discrete intensity values. The red square is the centroid, and the vertical dotted red line shows the posi-
tion used in centroid analysis.

 5  10
 0

 100

 200

Sample Number

Sa
mp

le 
Co

un
ts 

(R
ela

tiv
e I

nte
ns

ity
)



7

The final step is the centroid calculation, which is defined mathematically as

	 C =
i ⋅wfi

i=1

n

∑

wfi
i=1

n

∑
	 (1)

where 	 C	 is the floating-point position of the centroid in the waveform

	 n	 is the number of samples in wf

	 i	 varies from 1 to n

	 wf	 is a sequence of waveform sample intensity values

Leading Edge Detection

Leading edge detection is primarily used for processing topography under vegetation; however, 
it is also used to process shallow, submerged topography. Leading edge detection attempts to discrimi-
nate between convolved signals in the waveform, allowing for the determination of a last return even in 
situations where additional signal returns might be above the topographic surface, as from vegetation or 
the water column. The algorithm has three components:

Figure 4.  A sample waveform and its centroid illustrating the effect of unremoved background energy. The solid black line is the waveform, and 
the dashed blue lines show where the rest of the region is bounded. The black squares indicate the discrete intensity values. The red square is the 
centroid, and the vertical dotted red line shows the position used in centroid analysis.
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1.	 The waveform is adjusted to remove background energy using the same approach described for cen-
troid analysis (meaning the value of the first sample is subtracted from all samples in the waveform).

2.	 The waveform is optionally smoothed as described in “Smooth Waveform” to mitigate the effect 
of noise.

3.	 The leading edge is determined as described in “Leading Edge.”

Smooth Waveform

The smooth waveform algorithm (table 1) mitigates the effect of noise in the waveform, reduc-
ing the likelihood of false positives in leading edge determination. The smooth waveform algorithm is 
described by the following function and parameters:

	 smoothed = smooth_waveform(wf, factor)	 (2)

	smoothed	 sequence of smoothed waveform intensity values

	 wf	 sequence of waveform sample intensity values

	 factor	 number of neighbor samples to use on each side of a sample for averaging

Table 1.  Smooth Waveform Algorithm
A sample Yorick implementation of this algorithm is available in Appendix A.

	 Let nwf be the number of samples in wf
	 Let smoothed be a copy of wf
	 For each sample in wf that has at least factor adjacent neighbors on each side:
		  Set the corresponding sample in smoothed to the average of that sample and its factor neighbors on each side
	 For each sample in wf that has fewer than factor adjacent neighbors on either side:
		  Set pts to the smallest count of neighbors on either side of that sample
		  Set the corresponding sample in smoothed to the average of that sample and its pts neighbors on each side
	 Return smoothed

The algorithm applies a moving-average function to the sample values in a window that slides 
through wf. Each output sample is the average of the corresponding input sample and its factor neigh-
bors on either side, with all samples weighted equally (via a boxcar filter). If there are fewer neighbors 
than are called for (as happens near the start and end of the waveform), then factor is reduced for those 
samples to conform to the available neighborhood. This smoothing step is optional and often omitted; 
inclusion and parameters are determined experimentally by the analyst processing the data.

Figure 5 illustrates how the algorithm works in practice. The figure shows a close-up of a 
120-sample range in the middle of a waveform. The red line is the original waveform and has one clear 
peak as well as an excess of jitter due to noise. The blue line is the result of the smooth waveform algo-
rithm (using factor=2) and shows that the peak is retained, but the noise jitter is reduced significantly.
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Leading Edge

The leading edge algorithm (table 2) uses a first-difference approach to analyze the waveform. 
This approach often permits the differentiation of convolved signals. The leading edge algorithm is de-
scribed by the following function and parameters:

	 position = leading_edge(wf, thresh, noiseadj)	 (3)

	 position	 position in the waveform of the final peak

	 wf	 sequence of waveform sample intensity values

	 thresh	 threshold value the peak must exceed for screening out noise

	 noiseadj	 Boolean value specifying whether a noise adjustment should be applied (false = no 
adjustment; true = adjustment)

Figure 5.  A close-up of a 120-sample range of a noisy waveform (in red) and the result of smoothing it with the smooth waveform algorithm (in 
blue). Algorithm parameter is factor=2.
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Table 2.  Leading Edge Algorithm
A sample Yorick implementation of this algorithm is available in Appendix A.

	 Let wfd1 be the discrete first derivative of wf
	 Let edges be the indexes into wfd1 corresponding to each point where the first derivative crosses above thresh
	 If edges is empty, then return null result
	 Let last_edge be the last element in edges
	 Let max_return_length be 18 samples
	 If last_edge + max_return_length exceeds the size of wf, then reduce max_return_length to wf - last_edge
	 If max_return_length is less than 5, then return null result (assumed to be noise)
	 If noiseadj is true:
		  If any of the values of wfd1 in the range with indices last_edge to last_edge+3 falls below 0:
			   Advance last_edge to the first such value (assumed to be noise, so advance beyond it)
			   Reduce max_return_length again if necessary to avoid exceeding the size of wf, as above
	 If any of the values of wfd1 in the range with indices last_edge+1 to last_edge+max_return_length falls below 0:
		  Return the index of the first such value
	 Otherwise:
		  Return null result

The discrete first derivative of the waveform (calculated using forward differences) is used to 
locate the leading edges of local peaks, which are the locations where the derivative is significantly 
positive (as determined by thresh). The waveform is then traversed after the last leading edge to locate 
the first location where the waveform changes from ascending to descending (forming a local peak) and 
that location is interpreted as corresponding with the last return (fig. 6).

When noiseadj is enabled the samples immediately after the detected peak are analyzed to 
compensate for the effect of noise. Sometimes a leading edge is followed by a small dip that is then fol-
lowed by another leading edge. If the dip is below thresh, then the second leading edge is masked by the 
preceding leading edge. The noiseadj check detects this situation and advances the algorithm past the 
dip so it can find the peak after the latter leading edge. Without noiseadj enabled, the local peak of the 
dip would be interpreted as the last return.

Bottom Detection Using Water-Column Backscatter Modeling

Bottom detection using water-column backscatter modeling is the most complex waveform anal-
ysis workflow and is used exclusively on submerged topography. The algorithm compensates for water 
column backscatter and absorption by modeling them and subtracting the model from the waveform 
signal. A first derivative approach is used to locate the final peak, then heuristics are used to validate the 
peak. The components of the algorithm are described more fully in the following sections, but below is 
a summary of the steps:

1.	 The waveform is adjusted to remove background energy. Unlike centroid analysis and leading 
edge detection, background energy for this algorithm is removed by finding the minimum value 
in the first fifteen samples and subtracting that minimum from all samples. The algorithms used 
are sensitive to noise, and using the first fifteen samples to derive the background energy makes 
the process more resilient against bias.

2.	 The waveform is optionally smoothed as described in “Smooth Waveform” under “Leading Edge 
Detection” (by using a moving average).
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3.	 The water surface is detected using a first derivative approach as described in “Detect Surface” 
below. This surface location is only used for determining where to start applying the signal 
decay compensation and where to begin normalization of the modeled water column and laser 
attenuation.

4.	 The waveform is adjusted to compensate for signal decay in the water column using manually 
calibrated parameters. The decay is modeled in one of two ways: as an exponential curve or as a 
log-normal curve. An automatic gain control (AGC) function is applied after the decay curve to 
modulate the amplification of the signal as a function of depth to help suppress wild excursions 
in the upper part of the water column. These two algorithms are described below in “Compen-
sate for Exponential Decay” and “Compensate for Log-Normal Decay.”

5.	 The bottom is detected as described in “Detect Bottom” below. Noise in the tail is temporarily 
removed (as described in “Remove Noisy Tail”). The final peak is then detected using a manual-
ly-calibrated threshold crossing and the first derivative (as described in “Extract Peaks with First 
Derivative”).

6.	 The peak is checked to see if it is saturated. If the peak is saturated, the location of the peak is 
tuned to compensate for the saturation as described in “Saturation Check.”

7.	 The peak is validated using heuristics that analyze the shape of the waveform at the detected bot-
tom location as described in “Validate Bottom.”

Figure 6.  Leading edge algorithm. The solid black and blue lines represent the waveform. The solid red line is the first derivative of the 
waveform with discrete values indicated by red squares. The dotted red line is the threshold. Leading edges are marked with red triangles. The 
blue line highlights the section searched for a peak (following the final leading edge), and the peak found is marked with a blue square. Algorithm 
parameters were thresh=4, noiseadj=false.
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The bottom peak location is then used for the bottom location, if it passes validation, and is 
paired with a water surface location as derived by the centroid algorithm.

Detect Surface

The detect surface algorithm (table 3) provides an approximate surface location that is used 
solely for applying the decay curve and is optimized for that purpose. This algorithm is described by the 
following function and parameters:

	 position = detect_surface(wf, maxint, sfc_last, wantlen)	 (4)

	 position	 position in waveform where surface peak is located

	 wf	 sequence of waveform sample intensity values

	 maxint	 intensity value that represents saturation

	 sfc_last	 farthest distance into the waveform to look for a saturated surface

	 wantlen	 number of samples to analyze in the waveform if no saturation is found

Table 3.  Detect Surface Algorithm
A sample Yorick implementation of this algorithm is available in Appendix A.

	 Let saturated be an index list showing which samples in wf are equal to maxint
	 Let numsat be the number of items in saturated
	 Let nwf be the number of samples in wf
	 If numsat is greater than 1 and the first element in saturated is less than or equal to sfc_last:
		  Let surface be the last value in the series of consecutive integers at the beginning of saturated
	 Otherwise:
		  If nwf is greater than wantlen + 8:
			   Let surface be the index of the maximum value of the first wantlen samples in wf
		  Otherwise:
			   Let surface be the smaller of wantlen and nwf
	 Return surface

This procedure does not necessarily determine the exact location of the surface. The decay algo-
rithms seek to fit a model to the submerged backscatter and only require the trailing edge of the surface 
return. In the case of a saturated waveform, the procedure places the surface at the end of the saturated 
section; the surface is actually earlier in the waveform, but the model would be skewed by the inclusion 
of the saturated section, so it is omitted. Non-saturated waveforms use the maximal peak. Very short 
waveforms (those shorter than wantlen + 8) use a dummy value.

Compensate for Exponential Decay

The exponential decay compensation algorithm (table 4) fits an exponential decay model to the 
backscatter in a shallow-water, narrow-beam-channel waveform. The algorithm is described by the fol-
lowing function and parameters:
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	wf_decay = compensate_decay_exp(wf, maxint, laser, water, surface, agc_factor)	 (5)

	wf_decay	 output sequence of waveform intensity values that have been adjusted to compensate 
for decay

	 wf	 sequence of waveform sample intensity values

	 maxint	 maximum intensity 

	 laser	 modeling factor for the inherent decay of the laser

	 water	 modeling factor for decay due to water column absorption and backscatter

	 surface	 location to use for the surface 

	agc_factor	 automatic gain control factor

Table 4.  Compensate for Exponential Decay Algorithm
A sample Yorick implementation of this algorithm is available in Appendix A.

	 Let nwf be the number of samples in wf
	 Let C_H2O be the speed of light through water in m/ns (approximately 0.22490)
	 Let attdepth be the first nwf elements in the series 0, 1*C_H2O*.5, 2*C_H2O*.5, 3*C_H2O*.5, …

	 Let laser_decay be exp(laser * attdepth) * maxint
	 Let secondary_decay be exp(water * attdepth) * maxint

	 Let decay be laser_decay + 0.25 * secondary_decay
	 Let agc be 1 - exp(agc_factor * attdepth)

	 Let shift be surface - 1
	 If shift is greater than 0:
		  Drop the last shift values of decay
		  Prepend a list of shift copies of maxint to decay
		  Replace indices shift and shift+1 in decay with maxint
		  Drop the last shift values of agc
		  Prepend a list of shift copies of 0 to agc
		  Replace index shift in agc with 0

	 Let bias be (1 - agc) * -5
	 Let wf_decay be (wf - decay) * agc + bias

	 Return wf_decay

A significant amount of light is reflected back by particulate material suspended in the water 
column. This backscatter contributes a gradually decreasing intensity level to the waveform that is 
convolved with the bottom return response, potentially masking it. The algorithm compensates for the 
decreasing intensity level by applying three cumulative adjustments to the waveform (fig. 7). The first 
and second adjustments use an exponential model to account for the characteristics of the laser and 
water column, respectively. The third adjustment applies an AGC correction.
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Compensate for Log-Normal Decay

The log-normal decay compensation algorithm (table 5) fits a log-normal model to the backscat-
ter in the waveform. The algorithm is described by the following function and parameters:

	 wf_decay = compensate_decay_lognorm(wf, mean, stdev, mean, xshift, xscale, tiepoint, agc_factor)	 (6)

	wf_decay	 output sequence of waveform sample intensity values that have been adjusted to 
compensate for decay

	 wf	 sequence of waveform sample intensity values

	 mean	 mean value for the log-normal curve

	 stdev	 standard deviation for the log-normal curve

	 xshift	 x-axis shifting factor

	 xscale	 x-axis scaling factor

	 tiepoint	 position in the waveform that should intersect with the log-normal curve

	agc_factor	 automatic gain control factor

Figure 7.  Submerged topography waveform as adjusted using the exponential decay model. The solid black line is the waveform prior to adjust-
ment. The solid red line is the combined decay model (laser and water) that was fit to the waveform. The solid blue line is the waveform as adjusted 
by the algorithm. The dotted red line indicates the zero sample count level. Algorithm parameters were laser=-2.9, water=-0.7, agc_factor=-1.0.
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Table 5.  Compensate for Log-Normal Decay Algorithm
A sample Yorick implementation of this algorithm is available in Appendix A.

	 Let nwf be the number of samples in wf
	 If nwf < tiepoint:
		  Return a list of nwf copies of 0

	 Let C_H2O be the speed of light through water in m/ns (approximately 0.22490)
	 Let attdepth be the first nwf elements in the series 0, 1*C_H2O*.5, 2*C_H2O*.5, 3*C_H2O*.5, …

	 Let x be the first nwf positive integers
	 Let x be (x - xshift) / xscale

	 Let decay be log_normal(x, mean, stdev)
	 Let factor be the value of wf at index tiepoint divided by the value of decay at index tiepoint
	 Let decay be decay * factor

	 Let agc be 1 - exp(agc_factor * attdepth)
	 Let shift be surface - 1
	 If shift is greater than 0:
		  Drop the last shift values of agc
		  Prepend a list of shift copies of 0 to agc
		  Replace index shift in agc with 0

	 Let bias be (1 - agc) * -5
	 Let wf_decay be (wf - decay) * agc + bias

	 Return wf_decay

As with the previous section, the backscatter in the water column is modeled and removed from 
the waveform (fig. 8). This algorithm fits a single log-normal curve instead of two exponential curves. 
The values of the log-normal curve are scaled to intersect with the waveform at the location of tiepoint 
in the waveform. As with the exponential decay model, an additional adjustment applies an AGC correc-
tion. The log-normal function is the best model for the EAARL–B deep water channel due to the nature 
of the optical design of the channel.

The algorithm makes use of a helper function log_normal. The log_normal function implements 
the equation for the probability density function of the log-normal distribution (Norstad, 2011):

	
log_normal(x,µ,σ )= 1

xσ 2π
e
(ln x−µ )2

2σ 2 	
(7)

where	 x	 is a standard normal variable

	 μ	 is the mean of the distribution

	 σ	 is the standard deviation of the distribution
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Detect Bottom

The bottom-detection algorithm (table 6) uses a first-derivative-peak extraction approach over a 
subsection of the waveform to determine the bottom location. The algorithm is described by the follow-
ing function and parameters:

	 bottom = detect_bottom(wf, first, last, thresh)	 (8)

	 bottom	 position in waveform where bottom is located

	 wf	 sequence of waveform sample intensity values

	 first	 starting position in the waveform to look for a peak

	 last	 ending position in the waveform to look for a peak

	 thresh	 noise threshold

Figute 8.  Submerged topography waveform as adjusted using the log-normal decay model. The solid black line is the waveform prior to the 
algorithm. The solid red line is the decay model that was fit to the waveform. The solid blue line is the waveform as adjusted by the algorithm. 
The dotted red line indicates the zero sample count level. Algorithm parameters were mean=1.7, stdev=0.9, agc_factor=-0.2, xshift=1, xscale=15, 
tiepoint=40.
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Table 6.  Detect Bottom Algorithm
A sample Yorick implementation of this algorithm is available in Appendix A.

	 Let nwf be the number of samples in wf
	 Let offset be first - 1
	 Let last be the smaller of last or nwf

	 Let wfaoi be the values in wf from index first to index last
	 Let last be offset + remove_noisy_tail(wfaoi, thresh)
	 If last - first is less than 4:
		  Return -1

	 Let wfaoi be the values in wf from index first to index last
	 Let peaks be extract_peaks_first_deriv(wfaoi, thresh)
	 If peaks is empty:
		  Return -1

	 Let bottom be offset plus the value of the last element in peaks
	 Return bottom

Only the specified range of the waveform is analyzed for a possible bottom: the first and last pa-
rameters must be tuned based on the characteristics of the area being processed. The tail portion of that 
region is truncated to remove noise if noise is present. Then the remaining range is subjected to the first 
derivative analysis. The algorithms used for the noisy tail removal and the peak detection are described 
in the following subsections, “Remove Noisy Tail” and “Extract Peaks with First Derivative.”

Remove Noisy Tail

The remove noisy tail algorithm (table 7) trims off the tail portion of the waveform where all 
samples fall below thresh, a noise threshold. This simple approach helps prevent minor noise fluctua-
tions from appearing as false bottom signals. The algorithm is described by the following function and 
parameters:

	 last = remove_noisy_tail(wf, thresh)	 (9)

	 last	 last non-noise position of the waveform

	 wf	 sequence of waveform sample intensity values

	 thresh	 noise threshold

Table 7.  Remove Noisy Tail Algorithm
A sample Yorick implementation of this algorithm is available in Appendix A.

	 Let nwf be the number of samples in wf
	 Let wfmin be the smallest value in wf
	 Let w be the indices into wf where wf > wfmin + thresh
	 If w is empty:
		  Return nwf
	 Let end be 1 plus the value of the last element in w
	 Return the smaller of nwf or end
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Extract Peaks with First Derivative

The peak extraction algorithm (table 8) locates peaks using the discrete first derivative of the 
waveform. The algorithm is described by the following function and parameters.

	 positions = extract_peaks_first_deriv(wf, thresh)	 (10)

	 positions	 sequence of positions in waveform where peaks were found

	 wf	 sequence of waveform sample intensity values

	 thresh	 noise threshold

Table 8.  Extract Peaks with First Derivative Algorithm
A sample Yorick implementation of this algorithm is available in Appendix A.

	 Let wfd1 be the discrete first derivative of wf
	 Let wfd1 be wfd1 - 0.05 (to avoid false positives due to the effect of AGC)

	 Let wfd1_sign be sign(wfd1) (where the sign function returns -1, 0, or 1 for values that are negative, zero, or positive)
	 Let wfd1_sign_d1 be the discrete first derivative of wfd1_sign
	 Let peaks be the indices into wfd1_sign_d1 with value equal to 2
	 Let peaks be peaks + 1 (needed to correct indices to reference wf due to successive derivative operations)

	 Let wfpeaks be the values of wf at the indices in peaks
	 Let idx be the indices into wfpeaks with values greater than or equal to thresh
	 If idx is empty:
		  Return an empty list
	 Let peaks be the values in peaks corresponding to idx
	 Return peaks

Peaks are located by looking for zero-crossings of the discrete first derivative. The peaks whose 
magnitudes match or exceed thresh are returned as candidate target locations (fig. 9).

Saturation Check

The saturation check algorithm (table 9) compensates for the effect of saturated waveforms. The 
algorithm is described by the following function and parameters:

	 bottom_new = saturation_check(saturated, bottom)	 (11)

	bottom_new	 revised bottom location

	 saturated	 sequence of Boolean values indicating which samples in the original waveform 
were saturated (true = saturated; false = not saturated)

	 bottom	 original bottom location
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Table 9.  Saturation Check Algorithm
A sample Yorick implementation of this algorithm is available in Appendix A.

	 Let nwf be the number of samples in wf
	 Let is_sat be the value of saturated at index bottom

	 If is_sat is false and the value of saturated at index bottom-1 is true:
		  (This means that AGC pushed the peak off the saturated section by a sample)
		  Let is_sat be true
		  Decrement bottom by 1

	 Let sat0 and sat1 each be bottom
	 While sat0 is greater than 1 and the value of saturated at index sat0-1 is true:
		  Decrement sat0 by 1
	 While sat1 is less than nwf and the value of saturated at index sat1+1 is true:
		  Increment sat1 by 1

	 Return (sat0+sat1)/2 truncated to an integer

The EAARL–B digitizer has a fixed signal range in which it can detect. If the signal intensity 
saturates the digitizer by exceeding that range, then the recorded signal values are at their maximum. 
Consequently, a strong peak may have its top flattened. If the bottom occurs in a saturated portion of 
the waveform, the bottom should be placed at the center of the saturated segment to approximate better 

Figure 9.  Peaks as extracted using the discrete first derivative. The black line is the waveform. The red line is the threshold. Red triangles are 
peaks that were rejected because they are below the threshold. Blue triangles are peaks that passed because they are above the threshold. 
Algorithm parameter used was thresh=6.
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the true location of the peak. This algorithm detects whether the saturation condition has occurred and 
updates the bottom accordingly. If no saturation is detected, then no change occurs.

Validate Bottom

The bottom validation algorithm (table 10) uses pulse heuristics to accept or reject the bottom 
based on the shape of the peak. The algorithm is described by the following function and parameters:

	 valid = bottom_validate(wf, bottom, thresh, first, last, lw_dist, rw_dist, lw_factor, rw_factor)	 (12)

	 valid	 Boolean value indicating whether the bottom is valid (true = valid; false = invalid)

	 wf	 sequence of waveform sample intensity values

	 bottom	 position in the waveform detected as the bottom

	 thresh	 threshold that the intensity value of a valid peak has to exceed

	 first	 starting position in the waveform for valid peaks

	 last	 ending position in the waveform for valid peaks

	 lw_dist	 left pulse wing distance threshold

	 rw_dist	 right pulse wing distance threshold

	lw_factor	 left pulse wing scaling factor

	rw_factor	 right pulse wing scaling factor

Table 10.  Validate Bottom Algorithm
A sample Yorick implementation of this algorithm is available in Appendix A.

	 Let lw_idx be bottom – lw_dist
	 Let rw_idx be bottom + rw_dist
	 Let bottom_intensity be the value of wf at index bottom

	 If bottom_intensity <= thresh or last < rw_idx:
		  Return false

	 If lw_idx < first or rw_idx > last:
		  Return false

	 Let lw_thresh be lw_factor * bottom_intensity
	 Let rw_thresh be rw_factor * bottom_intensity

	 Let lw_intensity be the value of wf at index lw_idx
	 Let rw_intensity be the value of wf at index rw_idx

	 If lw_intensity > lw_thresh or rw_intensity > rw_thresh:
		  Return false

	 Return true
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The bottom validation algorithm makes sure that the detected bottom is in the correct range 
of the waveform (specified by first and last) and exceeds a minimum intensity threshold (specified by 
thresh). The shape of the peak is then analyzed to ensure it fits within the bounds defined by the four 
pulse wing parameters (lw_dist, rw_dist, lw_factor, and rw_factor). Pulse wings are the sections of the 
waveform immediately before or after the peak.

Figures 10 and 11 illustrate how bottom validation works. A detected bottom must have an 
intensity above the red thresh line and the curve of the waveform must be below both pulse wing thresh-
olds (magenta markers) to pass validation. Figure 10 shows a bottom detected using thresh=6 that fails 
validation because its left pulse wing threshold is beneath the curve of the waveform. Figure 11 shows a 
bottom detected using thresh=9 that passes validation because both pulse wing thresholds are above the 
curve of the waveform and the intensity of the bottom is above thresh. 

Point Projection
The exact location of a georeferenced point representing a target surface detected by the system 

is derived from a combination of many data sources:
•	 The distance from the mirror to the target, as determined by waveform analysis (fig. 2).
•	 Known reference position data from one or more GPS base stations (fig. 12).
•	 Position and attitude (rotational) measurements for the aircraft, acquired by a NovaTel SPAN–

CPT unit (fig. 13).
•	 Manual calibration measurements for the positional offsets between the SPAN–CPT unit and the 

GPS antenna and between the SPAN–CPT unit and the mirror (fig. 13).
•	 Manual calibration measurements for the rotational offsets between the SPAN–CPT unit and the 

mirror and between the SPAN–CPT unit and the laser.
•	 The current angle of the oscillating mirror, provided by the mirror instrumentation (fig. 12).

The NovAtel SPAN–CPT unit is a GPS-assisted INS consisting of a kinematic dual-frequency 
GPS receiver tightly coupled with an inertial measurement unit composed of a laser fiber optic gyro and 
a set of precision microelectromechanical system accelerometers operating in the X, Y, and Z planes. 
The unit provides position and attitude measurements. Attitude consists of roll, pitch, and yaw: roll 
is the rotation about the longitudinal or y-axis of the airplane, pitch is the rotation about the lateral or 
x-axis of the airplane, and yaw is the rotation about the vertical or z-axis of the airplane. GPS base sta-
tion data are submitted to the Online Positioning User Service to derive accurate positions for the base 
stations (National Geodetic Survey, 2014). Commercial GPS and INS post-processing software (NovA-
tel Inertial Explorer) is used to improve the quality of the position and attitude measurements using the 
GPS base station data and the offset between the SPAN–CPT unit and the onboard GPS antenna. This 
process provides trajectory data consisting of high-quality position and attitude data for the location and 
orientation of the SPAN–CPT unit.

Within ALPS, the time measurements from waveform analysis (laser range, position in transmit 
waveform, and position in return waveform) are combined and converted to meters (using the speed 
of light through air) to determine the magnitude of the range vector between the mirror and the target. 
The aircraft position, the equipment offset vectors, and the various rotations are then applied to the 
range vector to derive the real-world coordinate location of the target in Universal Transverse Mercator 
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Figure 10.  Bottom return that fails bottom validation. The waveform is in black, and the threshold is in red. The dashed blue line indicates the 
bottom that was detected. The magenta markers represent the pulse wing thresholds. The right pulse wing threshold passes, but the left pulse 
wing threshold fails as it is beneath the curve of the waveform. Algorithm parameters used were lw_dist=3, lw_factor=0.7, rw_dist=4, rw_fac-
tor=0.7, first=15, last=220, thresh=6.
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Figure 11.  Bottom return that passes bottom validation. This figure shows the same waveform as depicted in figure 10 but used thresh=9 
instead of thresh=6. Both of the magenta pulse wing thresholds are above the curve of the waveform.
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Figure 12.  Experimental Advanced Airborne Research 
Lidar (EAARL) system in flight with oscillating scan pattern, 
plus external data sources.

Figure 13.  Experimental Advanced Airborne 
Research Lidar (EAARL) system components 
as located on an airplane.
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(UTM) coordinates. If the target is submerged, then the target location must also be adjusted to compen-
sate for refraction. The following sections detail the math and algorithms involved in transforming the 
data into a final real-world point location, as summarized below:

1.	 Rotation matrices are derived from the angles of rotation used when transforming frames of 
reference: from aircraft to real-world (using INS attitude data), from mirror to aircraft (using 
fixed mounting bias angles for the mirror assembly with respect to the airplane), and from laser 
to aircraft (using fixed mounting bias angles for the laser with respect to the airplane).

2.	 The location of the mirror is transformed from the aircraft’s frame of reference to the real-world 
frame of reference using the aircraft-to-real-world rotation matrix, the position of the GPS sys-
tem, and the known offset vector from the GPS system to the mirror.

3.	 The incidence direction vector for the laser is transformed from the laser’s frame of reference 
to the aircraft’s frame of reference using the laser-to-aircraft rotation matrix. The vector is then 
further transformed to the real-world frame of reference using the aircraft-to-real-world rotation 
matrix.

4.	 The normal direction vector of the mirror is transformed from the mirror’s frame of reference to 
the aircraft’s frame of reference using the mirror-to-aircraft rotation matrix. The vector is then is 
further transformed to the real-world frame of reference using the aircraft-to-real-world rotation 
matrix.

5.	 The reflection-direction vector of the laser is calculated by the law of specular reflection using 
the laser-incidence-direction vector and the mirror-normal-direction vector.

6.	 The target location is derived using the known mirror position, the known range from the mirror 
to the target, and the known laser-reflection-direction vector.

7.	 For submerged targets, the water-correction algorithm is applied to account for the different 
refractive indices for air and water.

Rotation Matrices

Rotations in EAARL are recorded and applied as a series of extrinsic Tait–Bryan angles in z-x-y 
order. These rotations are applied using rotation matrices (Wittenburg, 2008). Rotation matrices about 
the x, y, and z axes are defined as—

	
Rx (θ ) =

1 0 0
0 cosθ −sinθ
0 sinθ cosθ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥ 	

(13)

	 Ry (θ ) =
cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
	 (14)

	
Rz (θ ) =

cosθ −sinθ 0
sinθ cosθ 0
0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

	 (15)



25

where	 θ	 is the angle of rotation about the specified axis
These matrices are then combined using matrix multiplication to derive a final rotation matrix:

	 R(α ,β ,γ ) = Rz (γ )Rx (α )Ry (β ) 	 (16)

where	 α	 is the angle of rotation about the x axis

	 β	 is the angle of rotation about the y axis

	 γ	 is the angle of rotation about the z axis

In total, three sets of rotation matrices are used in deriving the target point location:
•	 The roll, pitch, and yaw of the aircraft (provided by the INS unit) are used to transform from the 

aircraft’s frame of reference to the real-world frame of reference.
•	 The fixed-mounting-bias angles of the mirror assembly, with respect to the airplane, combined 

with the scan angle of the oscillating mirror, as reported by the mirror instrumentation, are used to 
transform from the mirror’s frame of reference to the aircraft’s local frame of reference. The scan 
angle of the mirror is simply added to the y-axis mounting value.

•	 The fixed-mounting-bias angles of the laser, with respect to the airplane, are used to transform 
from the laser’s frame of reference to the aircraft’s local frame of reference.

Derivation of Mirror Location

The mirror location (representing the location on the scanning mirror where the laser hits to re-
flect) is known to be at a fixed location relative to the GPS system. To render that location in real-world 
coordinates, a three-dimensional conformal transformation, consisting of a rotation and a translation, 
must be applied. The equation for these transformations is—

	 	 (17)

where	 	 is the position vector of the mirror in real-world coordinates

	 Rar 	 is the rotation matrix to transform from the aircraft’s frame of reference to the real-
world frame of reference

	 sgm 	 is the offset vector from the GPS system to the mirror, in the aircraft’s frame of 
reference

	 pg 	 is the position vector of the GPS system in real-world coordinates

Incidence Vector for Laser

In the laser’s frame of reference, the laser beam is projected perpendicularly below an imaginary 
plane formed by the x and z axes of the frame of reference. The incidence vector of the laser is thus 
represented by a unit vector that is -1 unit in the y direction. This unit vector is changed to the real-world 
frame of reference by applying a sequence of two rotational transformations, placing it first into the 
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aircraft’s frame of reference and then into the real-world frame of reference. The equation for the real-
world incidence vector for the laser is

	
d̂i = RarRla

0
−1
0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥ 	

(18)

where	 d̂i 	 is the incidence direction vector of the laser in the real-world frame of reference

	 Rar 	 is the rotation matrix to transform from the aircraft’s frame of reference to the real-
world frame of reference

	 Rla 	 is the rotation matrix to transform from the laser’s frame of reference to the air-
craft’s frame of reference

Normal Vector for Mirror

In the mirror’s frame of reference, the mirror is treated as lying on the plane formed by the x and 
y axes of the frame of reference. The normal vector of the mirror is thus represented by a unit vector that 
is 1 unit in the z direction. This unit vector is changed to the real-world frame of reference by applying a 
sequence of two rotational transformations: first it is put into the aircraft’s frame of reference, and then it 
is put into the real-world frame of reference. The equation for the real-world normal vector for the laser is

	

d̂n = RarRma

0
0
1

⎡

⎣

⎢
⎢
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⎥
⎥
	

(19)

where	 d̂n 	 is the surface normal direction vector of the mirror in the real-world frame of reference

	 Rar 	 is the rotation matrix to transform from the aircraft’s frame of reference to the real-
world frame of reference

	 Rma 	is the rotation matrix to transform from the mirror’s frame of reference to the air-
craft’s frame of reference

Reflection Vector for Laser

The previous two sections derive a known incidence vector for the laser and a known surface 
normal vector for the mirror. The law of specular reflection is used to derive a unit vector of specular re-
flection from these two values, which provides the direction of the reflected laser that leaves the airplane 
(Comninos, 2006). The equation is

	 d̂s = 2(d̂i ⋅ d̂n )d̂n − d̂i 	 (20)

where	 d̂s 	 is the direction vector of specular reflection in the real-world frame of reference

	 d̂i 	 is the incidence direction vector of the laser in the real-world frame of reference

	 d̂n 	 is the surface normal direction vector of the mirror in the real-world frame of reference
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Derivation of Target Location

Combining the resulting values of the previous sections, the target location is derived using the 
equation

	 pt = d̂srmt + pm  	 (21)

where	 pt 	 is the position vector of the target location in real-world coordinates

	 d̂s 	 is the direction vector of specular reflection in the real-world frame of reference

	 rmt 	 is the range (distance) from the mirror to the target

	 pm 	 is the position vector of the mirror in real-world coordinates

Water Corrections

The water correction algorithm (table 11) adjusts submerged returns for the difference in refrac-
tive index between the air and the water. Since light travels more slowly in water than in air, the distance 
measurement between the surface and the target must be recalculated using the speed of light in water 
instead of the speed of light in air, resulting in a smaller value. A submerged target must also be cor-
rected for the angle of refraction using Snell’s law (Feynman and others, 1964). The algorithm is de-
scribed by the following function and parameters:

	 cx, cy, cz = water_correction(sx, sy, sz, bx, by, bz)	 (22)

	 cx, cy, cz	 corrected position coordinates of the bottom

	 sx, sy, sz	 position coordinates of the water surface

	bx, by, bz	 uncorrected position coordinates of the bottom

Table 11.  Water correction Algorithm
A sample Yorick implementation of this algorithm is available in Appendix A.

	 Let K_H2O be the refractive index for water at 20 degrees Celsius (approximately 1.333)
	 Let C_H2O be the speed of light through water in m/ns (approximately 0.22490)
	 Let C_AIR be the speed of light through air in m/ns (approximately 0.29971)

	 Let dx be bx – sx
	 Let dy be by – sy
	 Let dz be bz – sz

	 Let dist be the total displacement: the square root of the sum of the squares of dx, dy, and dz
	 Let horiz be the horizontal displacement: the square root of the sums of the squares of dx and dy
	 Let height be the vertical displacement: dz
	 Let hsign be sign(dz) (where sign returns -1 where dz is negative, 0 where dz is 0, and 1 where dz is positive)

	 Let theta be arctan(dy, dx)

	 If any values in dist are 0, change them to 10-10 (to prevent divide by zero errors)
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	 Let phi_air be arcos(height / dist)
	 Let phi_water be arcsin(sin(phi_air)/K_H2O)

	 Let dist be dist * C_H2O / C_AIR

	 Let height be cos(phi_water) * dist
	 Let horiz be sin(phi_water) * dist

	 Let cdx be horiz * cos(theta)
	 Let cdy be horiz * sin(theta)
	 Let cdz be height * hsign

	 Let cx be sx + cdx
	 Let cy be sy + cdy
	 Let cz be sz + cdz

	 Return cx, cy, cz

Random Consensus Filter
The point cloud data are filtered using the random consensus filter (RCF), which is modeled 

after the concepts of the random sample consensus (RANSAC) paradigm described by Fischler and 
Bolles (1981). The RCF algorithm was first implemented for use on EAARL data by Wright (2002) 
and was first described by Nayegandhi and others (2009). The basic building block for the filtering 
algorithms is the one-dimensional RCF, which identifies the region of highest concentration in a one-
dimensional list of values. For three-dimensional data, the gridded RCF algorithm partitions points 
into grid cells and then applies the one-dimensional RCF on elevation values. The multi-gridded RCF 
algorithm leverages the gridded RCF algorithm multiple times with offset partitioning to avoid sub-
optimal results near grid lines.

One-Dimensional RCF

The basic one-dimensional RCF algorithm (table 12) is used to reduce the presence of noise. The 
algorithm is described by the following function and parameters:

	 low = rcf(jury, width)	 (23)
	 low	 lower bound of the range that contains the highest concentration of points

	 jury	 list of numerical values in an arbitrary order

	 width	 width of the search window

Table 11.  Water correction Algorithm—Continued
A sample Yorick implementation of this algorithm is available in Appendix A.
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Table 12.  One-dimensional Random Consensus Filter (RCF) Algorithm
A sample Yorick implementation of this algorithm is available in Appendix A.

	 Sort jury into ascending order
	 Let best_vote be 0 

Let best_index be 0
	 For each index i into jury:
		  Let lower be the value corresponding to i in jury
		  Let upper be lower + width
		  Let j be the index of the last value in jury that is less than upper
		  Let vote be j – i + 1
		  If vote > best_vote:
			   Let best_vote be vote
			   Let best_index be i
	 Return the value corresponding to best_index in jury

The one-dimensional RCF algorithm operates on a list of values (jury) by identifying the range 
(with the size specified by width) that contains the highest concentration of points. The algorithm iter-
ates over each unique value in jury and determines how many values are greater than or equal to that 
value and also less than that value plus width. The value that has the highest count is the winning low. If 
there are multiple values that have the same high count, then the algorithm returns the largest value.

Gridded RCF

The gridded RCF algorithm (table 13) adapts the one-dimensional RCF for use on three-dimen-
sional point cloud data. The algorithm is described by the following function and parameters:

	 pass = gridded_rcf(x, y, z, width, buf, n) 	 (24)

	 pass	 sequence of Boolean values indicating which values passed the filter (true = pass; 
false = fail)

	 x, y, z	 sequences of point coordinate values

	 width	 width of the vertical search window

	 buf	 size of the horizontal buffer (grid cell)

	 n	 minimum number of winners
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Table 13.  Gridded Random Consensus Filter (RCF) Algorithm
A sample Yorick implementation of this algorithm is available in Appendix A.

	 Let xgrid be x/buf truncated to integers
	 Let ygrid be y/buf truncated to integers

	 Let pass be a Boolean sequence matching the length of x with all values initialized to false

	 For each distinct value xgi in xgrid:
		  For each distinct value ygi in ygrid:
			   Let idx be the indices into xgrid and ygrid where xgrid == xgi and ygrid == ygi
			   If idx is null, skip to next iteration
			   Let jury be the values in z corresponding to idx
			   Let low be the result of rcf(jury, width)
			   Let w be the indices into jury where jury >= low and jury < low + width
			   Let good be the values in idx that correspond to the indices in w
			   If good contains at least n values:
				    Update pass so that entries corresponding to the indices in good are set to true
	 Return pass

Points are partitioned into horizontal grid cells whose size is specified by buf. The elevation 
values (z) in each cell are then passed through the one-dimensional RCF. The points whose elevations 
pass the one-dimensional RCF in each grid cell pass the filter, provided there are enough points that pass 
to be significant (specified by n). The width and buf parameters must be manually chosen based on the 
characteristics of the terrain. On terrain with significant sloping, the filter requires looser settings (in-
creased width and/or reduced buf) to avoid removal of valid data, but it then allows more noise to pass 
through. Figure 14 illustrates how the gridded RCF filter operates over a cross-section of a point cloud.

Multi-Gridded RCF

The multi-gridded RCF algorithm (table 14) improves upon the gridded RCF algorithm by run-
ning it multiple times at slight spatial offsets. The algorithm is described by the following function and 
parameters:

	 pass = multi_gridded_rcf(x, y, z, width, buf, n, factor) 	 (25)

	 pass	 sequence of Boolean values indicating which values passed the filter (true = pass; 
false = fail)

	 x, y, z	 sequences of point coordinate values

	 width	 width of the vertical search window

	 buf	 size of the horizontal buffer (grid cell)

	 n	 minimum number of winners

	 factor	 number of times to shift in each horizontal direction
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Table 14.  Multi-Gridded Random Consensus Filter (RCF) Algorithm
A sample Yorick implementation of this algorithm is available in Appendix A.

	 Let pass be a Boolean sequence matching the length of x with all values initialized to false
	 For each integer i in the range 0 to factor - 1:
		  For each integer j in the range 0 to factor - 1:
			   Let xshift be buf * (i / factor)
			   Let yshift be buf * (j / factor)
			   Let cur be the result of gridded_rcf(x+xshift, y+yshift, z, width, buf, n)
			   Let good be the indices into cur where cur is true
			   Update pass so that entries corresponding to the indices in good are set to true
	 Return pass

The gridded RCF algorithm works well for points near the center of the grid cell because they 
have good context in all horizontal directions. However, the algorithm sometimes fails near the edges of 
the grid cell because it lacks the nearby context on the other side of the grid line and instead compares to 
values on the far side of the cell. The multi-gridded RCF algorithm mitigates this deficiency by shifting 
grid lines so that each point has an opportunity to be closer to the grid cell’s center. The algorithm thus 
allows the underlying gridded-RCF parameters to be tightened to remove more noise while reducing the 
elimination of valid data near grid lines.

Figure 14.  Example of points that pass (blue dots) and fail (black dots) the gridded Random Consensus Filter (RCF) algorithm using param-
eters width=0.5, buf=10, n=3. The figure represents a 10-meter cross-section of a point cloud (corresponding to a single row of grid cells). The red 
boxes represent 10-by-10-by-0.5-meter volumes containing the points that passed the filter.
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Coordinate Transformations
Geographic data can be projected into numerous coordinate systems and referenced to numerous 

datums. The ALPS software has basic support for three types of transformations: Universal Transverse 
Mercator (UTM) to/from geographic coordinates; World Geodetic System 84 (WGS84) to/from the 
North American Datum of 1983 (NAD83); and NAD83 ellipsoid heights to/from the North American 
Vertical Datum of 1988 (NAVD88).

The conversion between UTM and geographic coordinates uses math formulas presented by 
Snyder (1987). When working with data in WGS84, the ellipsoid parameters are a semi-major axis of 
6378137 and a semi-minor axis of 6356752.3142. When working with data in NAD83, the ellipsoid 
parameters are a semi-major axis of 6378137 and a semi-minor axis of 6356752.3141.

The conversion between WGS84 and NAD83 uses a 7-parameter Helmert transformation as 
described by Land Information New Zealand (2007). The x,y,z rotations used are (-0.0275, -0.0101, 
-0.0114), the x,y,z translation factors used are (0.9738, -1.9453, -0.5486), and the scale factor used is 0.

Conversion between NAD83 ellipsoid heights and NAVD88 geoid heights is performed by 
adding elevation offsets derived from a 2-dimensional parabola-fit interpolation against geoid model 
files provided by the National Geodetic Survey (2015). ALPS requires the user to decide which geoid 
model to use and currently supports models GEOID96, GEOID99, GEOID03, GEOID06, GEOID09, 
GEOID12, GEOID12A, and GEOID12B.

The U.S. National Imagery and Mapping Agency notes that “an important distinction is needed 
between the definition of a coordinate system and the practical realization of a reference frame” (U.S. 
National Imagery and Mapping Agency, 2004, p. 2-2). Multiple realizations have been published for 
WGS84 and NAD83 because of changing data from reference stations due to tectonic movement and 
improved data collection methods (National Geodetic Survey, 2010). ALPS does not support working 
with different realizations of WGS84 or NAD83 because the magnitude of difference between realiza-
tions is below the accuracy level of EAARL. Although that assumption is held for EAARL–A, analysis 
by Wright and others (in press) suggests that the accuracy for EAARL–B has improved enough that 
realizations may need to be accounted for in the future.

Gridding
Point cloud data is gridded in ALPS by invoking IDL (Exelis Visual Information Solutions) to 

create a DEM saved in the Georeferencing Tagged Image File Format (GeoTIFF) file format. Most of 
the work is performed by standard IDL functions. The process has the following steps:

1.	 Use IDL’s triangulate function to generate a triangulated irregular mesh based on the Delaunay 
triangulation method.

2.	 Remove triangles from the mesh whose area exceeds a specified threshold.

3.	 Remove triangles from the mesh whose longest side exceeds a specified threshold.

4.	 Use IDL’s trigrid function to grid the data.

5.	 Use IDL’s write_tiff function to save the data as a GeoTIFF.
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Manual Editing
The ALPS processing workflow also incorporates significant manual editing of the lidar point 

cloud. The RCF algorithm does not remove all noise, and in some cases it may remove good data that 
must then be restored. To further improve the quality of the point cloud, analysts can supplement the 
RCF filter with manual editing using interactive tools built into ALPS, as documented by Bonisteel and 
others (2009).

These manual editing tools are also used for other tasks. For example, ALPS does not have any 
built-in methods for determining which waveform analysis algorithms to use for a given area. When 
processing an area containing a mixture of topographic and submerged features, both algorithms are 
used over the entire region. Analysts must manually edit the two datasets based on their delineation of 
the land-water interface. The datasets can then be merged to create a seamless topobathymetric product 
(Tyler and others, 2007). Submerged regions often have significant algorithm parameter variation de-
pending on factors such as water depth and turbidity, even during a single flight. For such areas, analysts 
must use the manual editing tools to selectively reprocess sub-regions using alternate parameter configu-
rations.
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Appendix A.  Source Code
This appendix provides Yorick source code implementations for many of the algorithms 

described in the report. This code was derived from the implementations used in ALPS (revision 
a1b3d73abd2a).

Some of the algorithms reference hard-coded constants. These constants are defined as follows.
// Speed of light in space, in meters per nanosecond

C = 0.299792458;

// Refractive index for air (oxygen, as a gas)

K_AIR = 1.000276;

// Refractive index for water (at approx. 20 degrees C)

K_H2O = 1.333;

// Speed of light through air, in m/ns

C_AIR = C/K_AIR;

// Speed of light through water, in m/ns

C_H2O = C/K_H2O;

// Factor for converting degrees to radians

DEG2RAD = pi / 180;

Centroid

func centroid(wf) {

  sum_power = wf(sum);

  if(!sum_power) return -1;

  weighted_idx = wf * indgen(numberof(wf));

  weighted_sum = weighted_idx(sum);

  return weighted_sum / double(sum_power);

}

Smooth Waveform

func smooth_waveform(wf, factor) {

  nwf = numberof(wf);

  smoothed = array(double, numberof(wf));

  // factor is points on either side; bin is total size of neighborhood

  bin = factor * 2 + 1;

  // For each point that has a big enough neighborhood, sum its neighbors

  // then divide by the binsize.
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  if(bin <= nwf) {

    lo = factor + 1;

    hi = nwf - factor;

    for(i = 1; i <= bin; i++) {

      smoothed(lo:hi) += wf(i:i-bin);

    }

    smoothed /= bin;

  }

  // Smooth out the remaining leading/trailing points using the largest

  // balanced neighborhood possible.

  count = min(factor, (nwf+1)/2);

  for(i = 0; i < count; i++) {

    pts = 2 * i + 1;

    smoothed(i+1) = wf(:pts)(avg);

    smoothed(-i) = wf(1-pts:)(avg);

  }

  return smoothed;

}

Leading Edge

func leading_edge(wf, thresh, noiseadj) {

  nwf = numberof(wf);

  // Discrete first derivative of waveform

  wfd1 = wf(dif);

  // Find the starting points where the first derivative exceeds the

  // thresholds. These are the locations of the pulse edges.

  edges = where((wfd1 >= thresh)(dif) == 1);

  if(!numberof(edges)) return -1;

  // Determine the length of the section of the waveform that represents the

  // last return (starting from the last edge). Assume 18ns to be the longest

  // duration for a complete last return. But truncate based on length of

  // waveform.

  max_ret_len = min(18, nwf - edges(0) - 1);

  // Assume less than 5ns to be a noise pulse

  if(max_ret_len < 5) return -1;

  // Noise adjustment. Advance beyond any minor fluctuations that occur in

  // next 3 samples.



37

  if(noiseadj) {

    noise = where(wfd1(edges(0):edges(0)+3) < 0);

    if(numberof(noise)) {

      edges(0) = edges(0) + noise(1);

      max_ret_len = min(max_ret_len, nwf - edges(0) - 1);

    }

  }

  // Find where the bottom return pulse changes direction after its trailing

  // edge.

  rng = edges(0)+1:edges(0)+max_ret_len;

  wneg = where(wfd1(rng) < 0);

  if(!numberof(wneg)) return -1;

  return edges(0) + wneg(1);

}

Detect Surface

func detect_surface(wf, maxint, sfc_last, wantlen) {

  nwf = numberof(wf);

  saturated = where(wf == maxint);

  numsat = numberof(saturated);

  if(numsat > 1 && saturated(1) <= sfc_last) {

    if(saturated(dif)(max) == 1) {

      surface = saturated(0);

    } else {

      surface = saturated(where(saturated(dif) > 1))(1);

    }

  } else {

    if(nwf > wantlen + 8) {

      surface = wf(1:wantlen)(mxx);

    } else {

      surface = min(wantlen, nwf);

    }

  }

  return surface;

}
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Compensate for Exponential Decay
func compensate_decay_exp(wf, maxint, laser, water, surface, agc_factor) {
  nwf = numberof(wf);
  attdepth = indgen(0:nwf-1) * C_H2O * .5;

  laser_decay = exp(laser * attdepth) * maxint;
  secondary_decay = exp(water * attdepth) * maxint;

  shift = 0 - surface + 1;
  decay = laser_decay + secondary_decay * .25;
  agc = 1 - exp(agc_factor * attdepth);

  decay(surface:) = decay(:shift);
  decay(:surface+1) = maxint;

  agc(surface:) = agc(:shift);
  agc(:surface) = 0;

  bias = (1 - agc) * -5;
  wf_decay = (wf - decay) * agc + bias;

  return wf_decay;
}

Compensate for Log-Normal Decay
func compensate_decay_lognorm(wf, mean, stdev, xshift, xscale, tiepoint, 
agc_factor, surface) {
  nwf = numberof(wf);
  if(nwf < tiepoint) {
    return wf * 0;
  }

  x = (indgen(1:nwf) - xshift) / double(xscale);
  decay = log_normal(x, mean, stdev);
  decay *= (wf(tiepoint) / decay(tiepoint));

  attdepth = indgen(0:nwf-1) * C_H2O * .5;
  agc = 1 - exp(agc_factor * attdepth);
  agc(surface:) = agc(:0-surface+1);
  agc(:surface) = 0;

  bias = (1 - agc) * -5;
  wf_decay = (wf - decay) * agc + bias;

  return wf_decay;
}
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Log Normal

func log_normal(x, mean, stdev) {

  variance = stdev^2;

  // The exp function will not work on values <= 0, so force them to 0 and

  // only calculate where values are positive.

  y = array(0., dimsof(x));

  w = where(x > 0);

  if(numberof(w)) {

    y(w) = exp(-(log(x(w))-mean)^2/(2*variance)) / (x(w)*sqrt(2*pi*variance));

  }

  return y;

}

Detect Bottom

func detect_bottom(wf, first, last, thresh) {

  offset = first - 1;

  last = min(last, numberof(wf));

  last = offset + remove_noisy_tail(wf(first:last), thresh);

  

  // waveform too short after removing noisy tail

  if(last - first < 4) return -1;

  peaks = extract_peaks_first_deriv(wf(first:last), thresh);

  // no significant inflection in backscattered waveform after decay

  if(!numberof(peaks)) return -1;

  bottom = peaks(0) + offset;

  return bottom;

}

Remove Noisy Tail

func remove_noisy_tail(wf, thresh) {

  w = where(wf > wf(min) + thresh);

  if(!numberof(w)) return numberof(wf);

  return min(numberof(wf), w(0)+1);

}
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Extract Peaks with First Derivative

func extract_peaks_first_deriv(wf, thresh) {

  wfd1 = wf(dif);

  // By subtracting a small amount from the first derivative, we force the

  // algorithm to ignore very tiny positive slopes. This often occurs where

  // two successive samples have the same value in the raw waveform, but AGC

  // boosts the second ever-so-slightly more than the first.

  wfd1 -= 0.05;

  wfd1_sign = sign(wfd1);

  wfd1_sign_d1 = wfd1_sign(dif);

  peaks = where(wfd1_sign_d1 == -2);

  if(!numberof(peaks)) return [];

  // Fix indexes caused by successive dif operations

  peaks += 1;

  idx = where(wf(peaks) >= thresh);

  if(!numberof(idx)) return [];

  peaks = peaks(idx);

  return peaks;

}

Saturation Check

func saturation_check(saturated, bottom) {

  is_sat = saturated(bottom);

  // occasionally, AGC pushes the peak off the saturated section by a sample

  if(!is_sat && saturated(bottom-1)) {

    is_sat = 1;

    bottom--;

  }

  sat0 = sat1 = bottom;

  while(sat0 > 1 && saturated(sat0-1)) sat0--;

  while(sat1 < numberof(saturated) && saturated(sat1+1)) sat1++;

  return long(0.5*(sat0+sat1));

}
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Validate Bottom

func bottom_validate(wf, bottom, thresh, first, last, lw_dist, rw_dist, 

lw_factor, rw_factor) {

  lw_idx = bottom - lw_dist;

  rw_idx = bottom + rw_dist;

  if(wf(bottom) <= thresh || last < rw_idx) {

    // Below threshold

    return 0;

  }

  if(lw_idx < first || rw_idx > last) {

    // Too close to edge gate

    return 0;

  }

  lw_thresh = lw_factor * wf(bottom);

  rw_thresh = rw_factor * wf(bottom);

  if(wf(lw_idx) > lw_thresh || wf(rw_idx) > rw_thresh) {

    // Bad pulse shape

    return 0;

  }

  return 1;

}

Point Projection

func project_point(arZ, arX, arY, maZ, maX, maY, laZ, laX, laY, d, g, mag, 

&p) {

  // Parameters:

  // arZ, arX, arY - aircraft rotations vs real world

  // maZ, maX, maY - mirror rotations vs aircraft

  // laZ, laX, laY - laser rotations vs aircraft

  // d - displacement vector from GPS to mirror

  // g - GPS coordinates for GPS unit

  // mag - magnitude of the laser vector from mirror to target (distance)

  // p - output coordinate for target point coordinates

  Rar = rotation_matrix(arZ, arX, arY);

  Rla = rotation_matrix(laZ, laX, laY);

  Rma = rotation_matrix(maZ, maX, maY);
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  m = calc_mirror(Rar, d, g);

  I = calc_incidence(Rar, Rla);

  N = calc_normal(Rar, Rma);

  S = calc_reflection(I, N);

  p = calc_target(S, mag, m);

}

Rotation Matrix

func rotation_matrix(Z, X, Y) {

  z = Z * DEG2RAD;

  x = X * DEG2RAD;

  y = Y * DEG2RAD;

  Rx = Ry = Rz = array(double, 3, 3);

  Rx(1,) = [1, 0, 0];

  Rx(2,) = [0, cos(x), -sin(x)];

  Rx(3,) = [0, sin(x), cos(x)];

  Ry(1,) = [cos(y), 0, sin(y)];

  Ry(2,) = [0, 1, 0];

  Ry(3,) = [-sin(y), 0, cos(y)];

  Rz(1,) = [cos(z), -sin(z), 0];

  Rz(2,) = [sin(z), cos(z), 0];

  Rz(3,) = [0, 0, 1];

  return Rz(,+) * (Rx(,+) * Ry(+,))(+,);

}

Calculate Mirror Location

func calc_mirror(Rar, d, g) {

  return Rar(,+) * d(+,) + g;

}

Calculate Incidence Vector

func calc_incidence(Rar, Rla) {

  return Rar(,+) * (Rla(,+) * [0,-1,0](+))(+,);

}
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Calculate Normal Vector

func calc_normal(Rar, Rma) {

  return Rar(,+) * (Rma(,+) * [0,0,1](+))(+,);

}

Calculate Reflection Vector

func calc_reflection(I, N) {

  return 2 * (I*N)(sum) * N - I;

}

Calculate Target Location

func calc_target(S, d, m) {

  return S * d + m;

}

Water Corrections

func water_correction(sx, sy, sz, bx, by, bz, &cx, &cy, &cz) {

  // Calculate uncorrected deltas

  dx = bx - sx;

  dy = by - sy;

  dz = bz - sz;

  // Calculate total displacement

  dist = sqrt(dx^2 + dy^2 + dz^2);

  // Calculate horizontal displacement

  horiz = sqrt(dx^2 + dy^2);

  // Calculate vertical displacement and note which direction it is in

  height = dz;

  hsign = sign(dz);

  // Calculate angle of x and y components of horizontal displacement

  theta = atan(dy, dx);

  // To avoid divide-by-zero issues, replace zero distances with very small

  // distances

  w = where(!dist);

  if(numberof(w)) dist(w) = 1e-10;

  // Calculate angle of incidence for laser intercepting water surface

  phi_air = acos(height/dist);
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  // Use Snell’s law to determine angle in water

  phi_water = asin(sin(phi_air)/K_H2O);

  // Adjust distance for the change in speed of light

  dist *= (C_H2O / C_AIR);

  // Calculate adjusted height and horizontal displacement

  height = cos(phi_water) * dist;

  horiz = sin(phi_water) * dist;

  // Calculate corrected deltas

  cdx = horiz * cos(theta);

  cdy = horiz * sin(theta);

  cdz = height * hsign;

  // Add corrected deltas to surface to derive corrected bottom

  cx = sx + cdx;

  cy = sy + cdy;

  cz = sz + cdz;

}

One-Dimensional RCF

func rcf(jury, width) {

  jury = jury(sort(jury));

  jurysize = numberof(jury);

  bestvote = bestidx = 0;

  for(i = 1, j = 1; j <= jurysize; i++) {

    upper = jury(i) + width;

    while(j <= jurysize && jury(j) < upper) j++;

    vote = j - i;

    if(vote >= bestvote) {

      bestvote = vote;

      bestidx = i;

    }

  }

  return jury(bestidx);

}
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Gridded RCF

func gridded_rcf(x, y, z, width, buf, n) {

  xgrid = long(x/buf);

  ygrid = long(y/buf);

  xgrid_min = xgrid(min);

  xgrid_max = xgrid(max);

  ygrid_min = ygrid(min);

  ygrid_max = ygrid(max);

  

  pass = array(0, dimsof(x));

  for(xgi = xgrid_min; xgi <= xgrid_max; xgi++) {

    for(ygi = ygrid_min; ygi <= ygrid_max; ygi++) {

      idx = where(xgrid == xgi & ygrid == ygi);

      if(!numberof(idx)) continue;

      low = rcf(z(idx), width);

      w = where(z(idx) >= low & z(idx) < low + width);

      if(numberof(w) < n) continue

      pass(idx(w)) = 1;

    }

  }

  return pass;

}

Multi-Gridded RCF

func multi_gridded_rcf(x, y, z, width, buf, n, factor) {

  pass = array(0, dimsof(x));

  for(i = 0; i < factor; i++) {

    for(j = 0; j < factor; j++) {

      xshift = buf * (i / double(factor));

      yshift = buf * (j / double(factor));

      cur = gridded_rcf(x+xshift, y+yshift, z, width, buf, n);

      pass = pass | cur;

    }

  }

  return pass;

}
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