

Prepared in cooperation with the Providence Water Supply Board

Streamflow, Water Quality, and Constituent Loads and Yields, Scituate Reservoir Drainage Area, Rhode Island, Water Year 2014

U.S. Department of the Interior U.S. Geological Survey

Cover. Westconnaug Stream at Plainfield Pike, Rhode Island. Photograph by Joan Whitley.

Streamflow, Water Quality, and Constituent Loads and Yields, Scituate Reservoir Drainage Area, Rhode Island, Water Year 2014

By Kirk P. Smith

Prepared in cooperation with the Providence Water Supply Board

Open-File Report 2016–1051

U.S. Department of the Interior U.S. Geological Survey

U.S. Department of the Interior

SALLY JEWELL, Secretary

U.S. Geological Survey

Suzette M. Kimball, Director

U.S. Geological Survey, Reston, Virginia: 2016

For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS.

For an overview of USGS information products, including maps, imagery, and publications, visit http://store.usgs.gov.

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner.

Suggested citation:

Smith, K.P., 2016, Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2014: U.S. Geological Survey Open-File Report 2016–1051, 31 p., http://dx.doi.org/10.3133/ ofr20161051.

ISSN 2331-1258 (online)

Contents

Abstract1
Introduction1
Streamflow Data Collection and Estimation
Water-Quality Data Collection and Analysis
Data Collected by the U.S. Geological Survey3
Data Collected by the Providence Water Supply Board7
Estimating Daily, Monthly, and Annual Loads and Yields7
Streamflow10
Water Quality and Constituent Loads and Yields10
Sodium and Chloride Loads and Yields Estimated from Specific-Conductance Monitoring Data10
Physical and Chemical Properties and Daily Loads and Yields Estimated from Data Collected by the Providence Water Supply Board12
Physical and Chemical Properties12
Constituent Concentrations and Daily Loads and Yields12
Bacteria12
Chloride and Sodium18
Nutrients
References Cited
Appendix 1. Water-Quality Data Collected by the Providence Water Supply Board at 37 Monitoring Stations in the Scituate Reservoir Drainage Area, Water Year 201431

Figures

1.	Map showing locations of tributary-reservoir subbasins and stations in the Scituate Reservoir drainage area, Rhode Island, 2014	2
2.	Graph showing flow-duration curve and streamflow on the dates when water- quality samples were collected for the U.S. Geological Survey continuous-record streamgage on Wilbur Hollow Brook at Old Plainfield Pike near Clayville (01115297), Rhode Island, water year 2014	9
3.	Graph showing measured daily mean streamflow for October 1, 2013, through September 30, 2014, and the 10th percentile, median, and 90th percentile values of daily streamflow for October 1, 1994, through September 30, 2013, for the U.S. Geological Survey continuous-record streamgage on the Ponaganset River at South Foster (01115187) in the Scituate Reservoir drainage area, Rhode Island	.11
4.	Graph showing annual loads of chloride and sodium estimated from continuous measurements of streamflow and specific conductance for water year 2014 and associated minimum, maximum, and median annual loads for water years 2009–13 at 14 Providence Water Supply Board stations in the Scituate Reservoir drainage	
	area, Rhode Island	.18

Tables

1.	Providence Water Supply Board water-quality sampling stations, water-quality samples, and available streamflow and continuous-monitoring streamgages by tributary reservoir subbasin in the Scituate Reservoir drainage area, Rhode Island, October 1, 2013, to September 30, 2014	4
2.	Measured or estimated annual mean streamflow for tributaries in the Scituate Reservoir drainage area, Rhode Island, October 1, 2013, through September 30, 2014	6
3.	Regression equation coefficients used to estimate concentrations of chloride and sodium from values of specific conductance for each U.S. Geological Survey monitoring station in the Scituate Reservoir drainage area, Rhode Island, October 1, 2013, through September 30, 2014	8
4.	Daily loads of bacteria, chloride, nitrate, nitrite, and orthophosphate by tributary reservoir subbasin in the Scituate Reservoir drainage area, Rhode Island, October 1, 2013, through September 30, 2014.	
5.	Monthly mean concentrations of chloride and sodium estimated from continuous measurements of specific conductance in the Scituate Reservoir drainage area, Rhode Island, October 1, 2013, through September 30, 2014	13
6.	Annual mean chloride and sodium concentrations, loads, and yields by sampling station in the Scituate Reservoir drainage area, Rhode Island, October 1, 2013, through September 30, 2014.	
7.	Monthly estimated chloride and sodium loads by sampling station in the Scituate Reservoir drainage area, Rhode Island, October 1, 2013, through September 30, 2014	
8.	Median values for water-quality data collected at Providence Water Supply Board stations by tributary reservoir subbasin in the Scituate Reservoir drainage area, Rhode Island, October 1, 2013, through September 30, 2014	
9.	Median daily loads and yields of bacteria, chloride, nitrate, nitrite, and orthophos- phate by tributary reservoir subbasin in the Scituate Reservoir drainage area, Rhode Island, October 1, 2013, through September 30, 2014	

Conversion Factors

Inch/Pound to International System of Units

Multiply	Ву	To obtain
	Length	
mile (mi)	1.609	kilometer (km)
	Area	
square mile (mi ²)	2.590	square kilometer (km ²)
	Flow rate	
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second (m ³ /s)
	Mass	
ton, short (2,000 lb)	907.2	kilogram (kg)

Datum

Horizontal coordinate information is referenced to North American Datum of 1983 (NAD 83).

Supplemental Information

Concentrations of chemical constituents in water are given either in milligrams per liter (mg/L) or colony forming units per 100 milliliters (CFU/100 mL).

Loads of chemical constituents in water are given either in grams or kilograms (or millions of colony forming units for bacteria) per day or year, and yields are given in grams or kilograms (or millions of colony forming units for bacteria) per day or year per square mile.

Abbreviations

CFU	colony forming units
E. coli	Escherichia coli
MOVE.1	Maintenance of Variance Extension type 1
NTU	nephelometric turbidity units
NWIS	National Water Information System
PCU	platinum cobalt units
PWSB	Providence Water Supply Board
RIDEM	Rhode Island Department of Environmental Management
USGS	U.S. Geological Survey
WY	water year

Streamflow, Water Quality, and Constituent Loads and Yields, Scituate Reservoir Drainage Area, Rhode Island, Water Year 2014

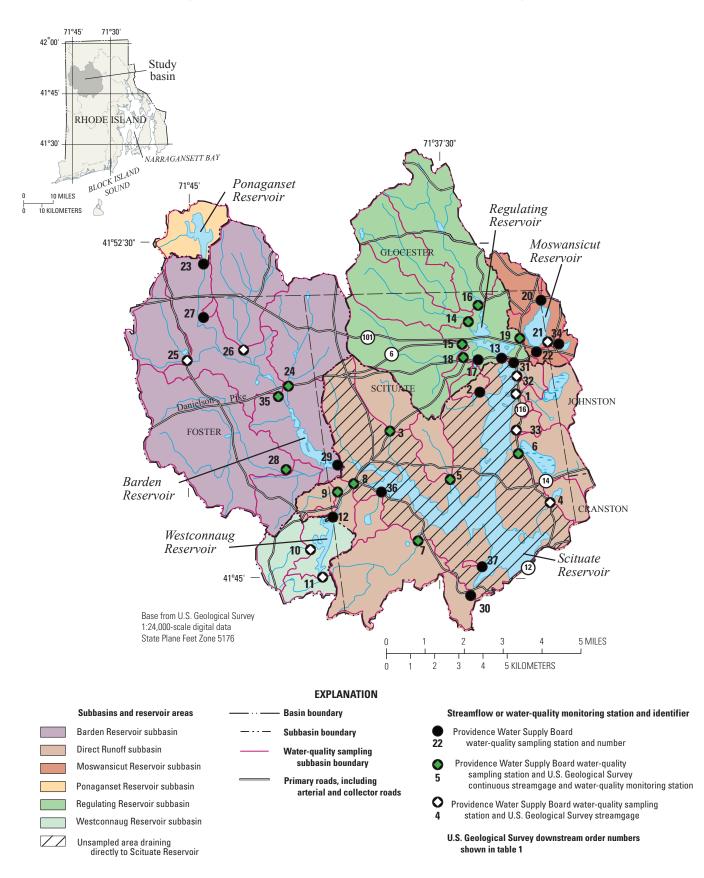
By Kirk P. Smith

Abstract

Streamflow and concentrations of sodium and chloride estimated from records of specific conductance were used to calculate loads of sodium and chloride during water year (WY) 2014 (October 1, 2013, through September 30, 2014) for tributaries to the Scituate Reservoir, Rhode Island. Streamflow and water-quality data used in the study were collected by the U.S. Geological Survey and the Providence Water Supply Board in the cooperative study. Streamflow was measured or estimated by the U.S. Geological Survey following standard methods at 23 streamgages; 14 of these streamgages are equipped with instrumentation capable of continuously monitoring water level, specific conductance, and water temperature. Water-quality samples were collected at 37 sampling stations by the Providence Water Supply Board and at 14 continuous-record streamgages by the U.S. Geological Survey during WY 2014 as part of a long-term sampling program; all stations are in the Scituate Reservoir drainage area. Water-quality data collected by the Providence Water Supply Board are summarized by using values of central tendency and are used, in combination with measured (or estimated) streamflows, to calculate loads and yields (loads per unit area) of selected water-quality constituents for WY 2014.

The largest tributary to the reservoir (the Ponaganset River, which was monitored by the U.S. Geological Survey) contributed a mean streamflow of 23 cubic feet per second to the reservoir during WY 2014. For the same time period, annual mean¹ streamflows measured (or estimated) for the other monitoring stations in this study ranged from about 0.35 to about 14 cubic feet per second. Together, tributaries (equipped with instrumentation capable of continuously monitoring specific conductance) transported about 1,200,000 kilograms of sodium and 2,100,000 kilograms of chloride to the Scituate Reservoir during WY 2014; sodium and chloride yields for the tributaries ranged from 7,700 to 45,000 kilograms per year per square mile and from 12,000 to 75,000 kilograms per year per square mile, respectively.

At the stations where water-quality samples were collected by the Providence Water Supply Board, the median of the median chloride concentrations was 24 milligrams per liter, median nitrite concentration was 0.002 milligrams per liter as nitrogen (N), median nitrate concentration was 0.01 milligrams per liter as N, median orthophosphate concentration was 0.07 milligrams per liter as phosphate, and median concentrations of total coliform bacteria and Escherichia coli were 320 and 20 colony forming units per 100 milliliters, respectively. The medians of the median daily loads (and yields) of chloride, nitrite, nitrate, orthophosphate, and total coliform and Escherichia coli bacteria were 62 kilograms per day (42 kilograms per day per square mile), 19 grams per day (6.1 grams per day per square mile), 79 grams per day (36 grams per day per square mile), 380 grams per day (150 grams per day per square mile), 13,000 million colony forming units per day (8,300 million colony forming units per day per square mile), and 1,000 million colony forming units per day (470 million colony forming units per day per square mile), respectively.


Introduction

The Scituate Reservoir is the primary source of drinking water for more than 60 percent of the population of Rhode Island. It covers about 94 square miles in parts of the towns of Cranston, Foster, Glocester, Johnston, and Scituate, Rhode Island (fig. 1). Information about the water quality of the reservoir and its tributaries is important for management of the water supply and for the protection of human health. The Providence Water Supply Board (PWSB), the agency responsible for the management and distribution of the Scituate Reservoir water supply, has been monitoring and assessing water quality in the reservoir and reservoir drainage area for more than 60 years.

Since 1993, the U.S. Geological Survey (USGS) has been cooperating with the PWSB and the Rhode Island Department of Environmental Management (RIDEM) to measure streamflow in tributaries to the Scituate Reservoir. Since 2009,

¹The arithmetic mean of the individual daily mean discharges for the year noted or for the designated period.

2 Streamflow, Water Quality, and Constituent Loads and Yields, Scituate Reservoir Drainage Area, Rhode Island, 2014

streamflow has been continuously measured at 14 streamgages in the drainage area and periodically measured at 9 additional streamgages on tributaries in the drainage area. At the nine partial-record streamgages, daily mean streamflow has been estimated by using methods developed by the USGS (Hirsch, 1982). The USGS also has been continuously measuring specific conductance at 14 monitoring stations since 2009. Equations that relate specific conductance to concentrations of sodium and chloride in streamwater were developed as part of previous USGS/PWSB cooperative studies (Smith, 2015b; Nimiroski and Waldron, 2002). These equations, updated here and used together with measured (or estimated) streamflows, allow for nearly continuous estimation of sodium and chloride loads to the reservoir.

Currently (2014), the PWSB regularly collects waterquality samples from 37 tributaries, either monthly or quarterly. Water-quality results are summarized by station number and constituent or parameter in annual reports published by the PWSB. In addition, the USGS has published reports that have compiled and tabulated streamflow (measured or estimated by the USGS) and water-quality data (collected by the PWSB) (Breault and others, 2000; Nimiroski and others, 2008; Breault, 2010; Breault and Campbell, 2010a–d; Breault and Smith, 2010; Smith and Breault, 2011; Smith, 2013, 2014, 2015a).

This report presents data on streamflow, water quality, and loads and yields of selected constituents for water year (WY) 2014² in the Scituate Reservoir drainage area. These data were collected as parts of studies done by the USGS in cooperation with the PWSB and the RIDEM. A summary of measured and estimated streamflows is presented for the 14 continuous-record and 9 partial-record streamgages in the drainage area. Estimated monthly and annual loads (and yields) of sodium and chloride are presented for the 14 streamgages at which specific conductance is continuously monitored by the USGS. Summary statistics for water-quality data collected by the PWSB for 37 sampling stations (table 1) during WY 2014 also are presented, and these data were used to calculate loads and yields of selected water-quality constituents.

Streamflow Data Collection and Estimation

Streamflow and water-quality data were collected by the USGS and the PWSB (table 1). Streamflow was measured or estimated by the USGS at 23 streamgages. Measured and estimated streamflows are necessary to estimate water volume and water-quality constituent loads and yields from tributary basins. Stream stage is measured every 10 minutes at most continuous-record streamgages. Streamflow is computed with a stage-discharge relation (known as a rating), which is

developed on the basis of periodic manual measurements of streamflow. Daily mean streamflow at a streamgage is calculated by dividing the total volume of water that passes the streamgage each day by 86,400, the number of seconds in a day. Periodic manual streamflow measurements at partialrecord streamgages are used concurrently with continuousrecord measurements from streamgages in hydrologically similar drainage areas to estimate a continuous record at the partial-record streamgage. Specifically, continuous-streamflow records for the nine partial-record sites in the Scituate Reservoir drainage area were estimated by using the Maintenance of Variance Extension type 1 (MOVE.1) method, as described by Ries and Friesz (2000); data needed to estimate streamflows at partial-record sites were retrieved from the USGS National Water Information System (NWIS; http://waterdata.usgs.gov/ nwis/). The upper and lower 90-percent confidence limits for the estimated mean annual streamflows, as described by Tasker and Driver (1988), are presented in table 2. These data indicate that there is a 90-percent chance that the estimated mean annual streamflow is somewhere between the upper and lower 90-percent confidence limits.

Continuous-record streamgages were operated and maintained by the USGS during WY 2014 in cooperation with RIDEM (USGS streamgage 01115187) and the PWSB (fig. 1, table 1). Streamflow data for these streamgages were collected at 10- or 15-minute intervals (near-real-time streamflow data), were updated at 1-hour intervals on the internet, and are available through the NWIS Web interface (NWIS Web; U.S. Geological Survey, 2007). Error associated with measured streamflows was generally within about 15 percent (U.S. Geological Survey, unpublished data).

Water-Quality Data Collection and Analysis

Water-quality data were collected by the USGS and the PWSB. Concentrations of sodium and chloride were estimated by the USGS from continuous or partial records of specific conductance from 14 of the 23 streamgages. Water-quality samples were collected monthly or quarterly at 37 sampling stations in the Scituate Reservoir drainage area by the PWSB during WY 2014 as part of a long-term sampling program (appendix 1). Daily loads of bacteria, chloride, nitrite, nitrate, and orthophosphate were calculated for 23 streamgages where streamflow data were collected by the USGS and water-quality samples were collected by the PWSB. Yields were calculated by dividing load by drainage area.

Data Collected by the U.S. Geological Survey

Water quality was monitored in a periodic water-quality sampling program that included measurements by automatic specific-conductance probes. The USGS collected and

²October 1, 2013, through September 30, 2014.

4 Streamflow, Water Quality, and Constituent Loads and Yields, Scituate Reservoir Drainage Area, Rhode Island, 2014

Table 1.Providence Water Supply Board water-quality sampling stations, water-quality samples, and available streamflow and
continuous-monitoring streamgages by tributary reservoir subbasin in the Scituate Reservoir drainage area, Rhode Island, October 1, 2013,
to September 30, 2014.

[Alternate station names are given in parentheses for stations where different historical names were used for the same sampling location by the Providence Water Supply Board (PWSB). USGS, U.S. Geological Survey; mi², square miles; QW, water quality; Na, sodium; Cl, chloride; M, monthly; Q, quarterly; Y, yes; --, none]

PWSB station num- ber	USGS station number	Station name	Drain- age area (mi²)	Frequen- cy of QW sample collec- tion	Number of samples collected by Provi- dence Water ¹	Daily estimat- ed Na and Cl loads	Streamflow availability	Specific conduc- tance availability
		Barden Res	ervoir sub	basin				
24	01115190	Dolly Cole Brook	4.90	М	9	Y	Continuous	Continuous
25	01115200	Shippee Brook	2.35	Q	2	Ν	Estimated	None
26	01115185	Windsor Brook	4.32	Q	3	Ν	Estimated	None
27	011151845	Unnamed Tributary to Ponaganset River (Unnamed Brook B, Unnamed Brook West of Windsor Brook)	0.10	Q	2	Ν	None	None
28	01115265	Barden Reservoir (Hemlock Brook)	8.72	М	10	Y	Continuous	Continuous
29	01115271	Ponaganset River (Barden Stream)	33.0	М	8	Ν	None	None
35	01115187	Ponaganset River	14.0	М	7	Y	Continuous	Continuous
		Direct Ru	noff subba	isin				
1	01115180	Brandy Brook	1.57	М	10	Ν	Estimated	None
2	01115181	Unnamed Tributary 2 to Scituate Reservoir (Unnamed Brook North of Bullhead Brook)	0.15	Q	2	Ν	None	None
3	01115280	Cork Brook	1.79	М	8	Y	Continuous	Continuous
4	01115400	Kent Brook (Betty Pond Stream)	0.85	М	9	Ν	Estimated	None
5	01115184	Spruce Brook	1.22	Q	3	Y	Continuous	Continuous
6	01115183	Quonapaug Brook	1.96	М	10	Y	Continuous	Continuous
7	01115297	Wilbur Hollow Brook	4.32	М	10	Y	Continuous	Continuous
8	01115276	Westconnaug Brook (Westconnaug Reservoir)	5.18	М	7	Y	Continuous	Continuous
9	01115275	Bear Tree Brook	0.62	Q	2	Y	Continuous	Continuous
30	01115350	Unnamed Tributary 4 to Scituate Reservoir (Coventry Brook, Knight Brook)	0.78	Q	2	Ν	None	None
31	01115177	Toad Pond	0.04	Q	1	Ν	None	None
32	01115178	Unnamed Tributary 1 to Scituate Reservoir (Pine Swamp Brook)	0.45	Q	2	Ν	Estimated	None
33	01115182	Unnamed Tributary 3 to Scituate Reservoir (Hall's Estate Brook)	0.28	Q	2	Ν	Estimated	None
36		Outflow from King Pond	0.77	Q	1	Ν	None	None
37		Fire Tower Stream	0.15	Q	1	Ν	None	None
		Moswansicut F	leservoir	subbasin				
19	01115170	Moswansicut Reservoir (Moswansicut Stream North, Moswansicut Pond)	3.25	М	9	Y	Continuous	Continuous
20	01115160	Unnamed Tributary 1 to Moswansicut Reservoir (Blanchard Brook)	1.18	М	9	Ν	None	None
21	01115165	Unnamed Tributary 2 to Moswansicut Reservoir (Brook from Kimball Reservoir)	0.29	Q	2	Ν	Estimated	None

Table 1. Providence Water Supply Board water-quality sampling stations, water-quality samples, and available streamflow andcontinuous-monitoring streamgages by tributary reservoir subbasin in the Scituate Reservoir drainage area, Rhode Island, October 1, 2013,to September 30, 2014.—Continued

[Alternate station names are given in parentheses for stations where different historical names were used for the same sampling location by the Providence Water Supply Board (PWSB). USGS, U.S. Geological Survey; mi², square miles; QW, water quality; Na, sodium; Cl, chloride; M, monthly; Q, quarterly; Y, yes; --, none]

PWSB station num- ber	USGS station number	Station name	Drain- age area (mi²)	Frequen- cy of QW sample collec- tion	Number of samples collected by Provi- dence Water ¹	Daily estimat- ed Na and Cl loads	Streamflow availability	Specific conduc- tance availability
		Moswansicut Reserve	oir subbas	sin—Continu	ied			
22	01115167	Moswansicut Reservoir (Moswansicut Stream South)	0.22	М	8	Ν	None	None
34	01115164	Kimball Stream	0.27	Q	3	Ν	None	None
		Ponaganset Re	eservoir s	ubbasin				
23	011151843	Ponaganset Reservoir	1.92	М	6	Ν	None	None
		Regulating Re	servoir sı	ıbbasin				
13	01115176	Regulating Reservoir	22.1	М	9	Ν	None	None
14	01115110	Huntinghouse Brook	6.23	М	6	Y	Continuous	Continuous
15	01115114	Rush Brook	4.70	М	8	Y	Continuous	Continuous
16	01115098	Peeptoad Brook (Harrisdale Brook)	4.96	М	12	Y	Continuous	Continuous
17	01115119	Dexter Pond (Paine Pond)	0.22	Q	1	Ν	None	None
18	01115120	Unnamed Tributary to Regulating Reservoir (Unnamed Brook A)	0.28	Q	1	Y	Continuous	Continuous
		Westconnaug F	eservoir	subbasin				
10	01115274	Westconnaug Brook	1.48	М	6	N	Estimated	None
11	01115273	Unnamed Tributary to Westconnaug Reservoir (Unnamed Brook south of Westconnaug Reservoir)	0.72	Q	2	Ν	Estimated	None
12	011152745	Unnamed Tributary to Westconnaug Brook (Unnamed Brook north of Westconnaug reservoir)	0.16	Q	2	Ν	None	None

¹Not all samples were analyzed for all water-quality properties or constituents.

6 Streamflow, Water Quality, and Constituent Loads and Yields, Scituate Reservoir Drainage Area, Rhode Island, 2014

Table 2.Measured or estimated annual mean streamflow for tributaries in the Scituate Reservoir drainage area, Rhode Island,
October 1, 2013, through September 30, 2014.

[Alternate station names are given in parentheses for stations where different historical names were used for the same sampling location by the Providence Water Supply Board (PWSB); USGS, U.S. Geological Survey; ft³/s, cubic feet per second; ft³/s/mi², cubic feet per second per square mile]

PWSB station number	USGS station number	Station name	Annual mean streamflow (ft³/s)	Upper 90-percent confidence interval (ft³/s)	Lower 90-percent confidence interval (ft³/s)	Annual mean streamflow (ft³/s/mi²)
		Barden Reservoir sub	basin			
24	01115190	Dolly Cole Brook	7.3	8.3	6.3	1.5
25	01115200	Shippee Brook	4.0	14	1.1	1.7
26	01115185	Windsor Brook	6.1	25	1.5	1.4
28	01115265	Barden Reservoir (Hemlock Brook)	14	17	12	1.7
35	01115187	Ponaganset River	23	26	20	1.6
		Direct Runoff subba	isin			
1	01115180	Brandy Brook	1.8	3.3	1.0	1.2
3	01115280	Cork Brook	2.3	2.8	1.9	1.3
4	01115400	Kent Brook (Betty Pond Stream)	1.4	6.8	0.30	1.7
5	01115184	Spruce Brook	1.8	2.0	1.6	1.5
6	01115183	Quonapaug Brook	2.8	3.2	2.5	1.4
7	01115297	Wilbur Hollow Brook	6.3	7.0	5.6	1.5
8	01115276	Westconnaug Brook (Westconnaug Reservoir)	8.1	8.8	7.4	1.6
9	01115275	Bear Tree Brook	1.1	1.2	0.98	1.7
32	01115178	Unnamed Tributary 1 to Scituate Reservoir (Pine Swamp Brook)	0.46	0.92	0.23	1.0
33	01115182	Unnamed Tributary 3 to Scituate Reservoir (Hall's Estate Brook)	0.35	0.99	0.13	1.3
		Moswansicut Reservoir	subbasin			
19	01115170	Moswansicut Reservoir (Moswansicut Stream North, Moswansicut Pond)	4.4	4.8	4.0	1.4
21	01115165	Unnamed Tributary 2 to Moswansicut Reservoir (Blanchard Brook)	0.49	1.1	0.22	1.7
		Regulating Reservoir s	ıbbasin			
14	01115110	Huntinghouse Brook	9.2	11	7.6	1.5
15	01115115	Rush Brook	7.2	8.4	6.0	1.5
16	01115098	Peeptoad Brook (Harrisdale Brook)	7.5	8.7	6.3	1.5
18	01115120	Unnamed Tributary to Regulating Reservoir (Unnamed Brook A)	0.37	0.47	0.27	1.3
		Westconnaug Reservoir	subbasin			
10	01115274	Westconnaug Brook	1.6	2.9	0.92	1.1
11	01115273	Unnamed Tributary to Westconnaug Reservoir (Unnamed Brook South of Westconnaug Reservoir)	0.95	1.6	0.56	1.3

analyzed the specific conductance data. Specific conductance was measured by the USGS at 10- or 15-minute intervals at the 14 continuous-record streamgages (fig. 1). Measurements were made by using an instream probe and standard USGS methods for continuous streamwater-quality monitoring (Wagner and others, 2006).

Concentrations of sodium and chloride were estimated from continuous measurements of specific conductance by using equations that were developed by the USGS to relate specific conductance to concentrations of sodium and chloride (equations 1 and 2). These regression equations were developed by using the MOVE.1 method (also known as the line of organic correlation; Helsel and Hirsch, 2002) on the basis of concurrent measurements of specific conductance³ along with sodium⁴ and chloride⁵ concentrations measured in water-quality samples collected by the USGS from tributaries in the Scituate Reservoir drainage area (U.S. Geological Survey, 2001):

$$C_{Cl} = (Spc^m) \times b \text{ and} \tag{1}$$

$$C_{Na} = (Spc^m) \times b, \tag{2}$$

where

- *C_{Cl}* is the chloride concentration, in milligrams per liter;
- C_{Na} is the sodium concentration, in milligrams per liter;
- *Spc* is the specific conductance, in microsiemens per centimeter;
- *m* is the slope from the MOVE.1 analysis (table 3); and
- *b* is the intercept from the MOVE.1 analysis (table 3).

MOVE.1 was chosen for regression analysis to maintain variance (Hirsch and Gilroy, 1984). Some missing values of specific conductance were estimated. In these cases, values of specific conductance were estimated by proportional distribution between recorded values.

Data Collected by the Providence Water Supply Board

Water-quality samples were collected at fixed stations on 37 tributaries by the PWSB. Sampling was conducted monthly at 19 stations and quarterly at another 18 stations (table 1) during WY 2014. Water-quality samples were not collected during specific weather conditions; instead, a strictly periodic water-quality sampling schedule was followed so

that water-quality samples would be representative of various weather conditions. However, sometimes samples could not be collected because tributaries at the sampling stations were dry or frozen. When possible, water-quality samples were collected by dipping the sample bottle into the tributary at the center of flow (Richard Blodgett, PWSB, written commun., 2005). Samples were transported on ice to the PWSB waterquality laboratory at the P.J. Holton Water Purification Plant in Scituate. Water-quality properties and constituent concentrations were measured by using unfiltered water samples. These water-quality properties included pH, temperature, acidity, alkalinity, color, turbidity, and concentrations of chloride, nitrite, nitrate, orthophosphate, and bacteria (Escherichia coli [E. coli] and total coliform). More information on samplecollection, analytical, and quality-control procedures can be found in the Providence Water Supply Board Quality Assurance Program Manual (Providence Water Supply Board Water Quality Laboratory, 2012).

Water-quality samples were collected by the PWSB during a wide range of flow conditions. The daily mean flowduration curve for Wilbur Hollow Brook at Old Plainfield Pike near Clayville (USGS streamgage 01115297) for WY 2014 is shown in figure 2. The curve represents the percentage of time that each flow was equaled or exceeded at this station. The flows at this station on days when water-quality samples were collected are represented by the plotted points superimposed on the curve. Samples were collected at flow durations ranging from the 1st percentile to the 91st percentile; this range indicates that the water-quality samples collected in WY 2014 represented a wide range of flow conditions during that water year.

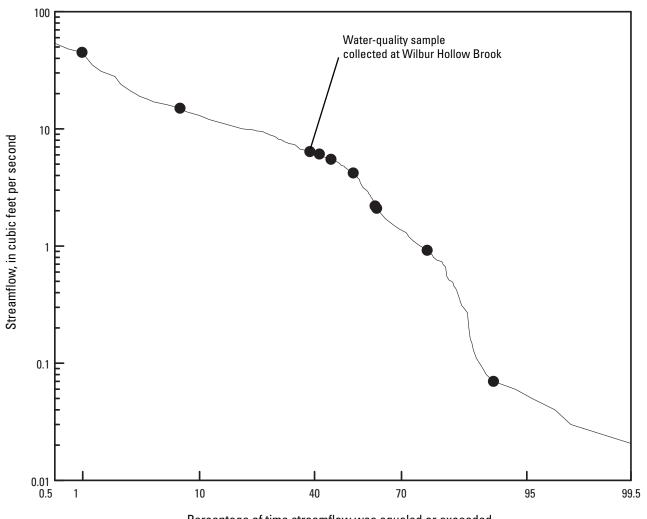
Estimating Daily, Monthly, and Annual Loads and Yields

Daily, monthly, and annual sodium and chloride loads in kilograms were estimated for all streamgages for which continuous-streamflow and specific-conductance data were available for WY 2014. Daily flow-weighted concentrations of sodium and chloride were calculated by multiplying instantaneous flows by concurrent concentrations of sodium and chloride (estimated from measurements of specific conductance) for each day and dividing by the total flow for that day. Daily sodium and chloride loads were estimated by multiplying daily flow-weighted concentrations of sodium and chloride in milligrams per liter by daily discharge (in liters per day). Daily data were summed to estimate monthly or annual loads.

Daily loads of water-quality constituents (in samples collected by the PWSB) were calculated for all sampling dates during WY 2014 (table 4, at back of report) for which periodic- or continuous-streamflow data were available (table 1). These loads were calculated by multiplying constituent concentrations in milligrams or colony forming units (CFU) per liter in single samples by the daily discharge (in liters per

³Specific conductance parameter code 90095.

⁴Sodium parameter code 00930.


⁵Chloride parameter code 00940.

8 Streamflow, Water Quality, and Constituent Loads and Yields, Scituate Reservoir Drainage Area, Rhode Island, 2014

Table 3.Regression equation coefficients used to estimate concentrations of chloride and sodium from values of specificconductance for each U.S. Geological Survey monitoring station in the Scituate Reservoir drainage area, Rhode Island, October 1,2013, through September 30, 2014.

[Parameter codes: specific conductance, 90095; chloride, 00940; sodium, 00930. PWSB, Providence Water Supply Board; USGS, U.S. Geological Survey]

DIMOD			Chlori	de		Sodiu	m	Samples used in analys	ses
PWSB station number	USGS station number	Slope	Intercept	Standard error of regressions (percent)	Slope	Intercept	Standard error of regressions (percent)	Sample data range (month/day/year)	Sample count
24	01115190	1.238	0.0751	2.78	1.205	0.0536	5.47	03/08/2000; 03/29/2005; 01/22/2009 to 07/14/2015	20
28	01115265	1.215	0.0830	3.83	1.076	0.0947	5.37	03/28/2001; 03/30/2005; 01/22/2009 to 07/13/2015	19
35	01115187	1.193	0.0903	4.35	1.120	0.0773	5.91	03/28/2001; 03/29/2005; 01/22/2009 to 07/13/2015	20
3	01115280	1.202	0.0844	3.47	1.029	0.1176	5.47	03/08/2000; 03/30/2005; 01/22/2009 to 07/08/2015	20
5	01115184	1.233	0.0680	4.36	1.070	0.0876	4.41	03/05/2009 to 07/16/2015	17
6	01115183	1.198	0.0755	4.57	1.240	0.0362	6.76	03/08/2000; 03/30/2005; 01/22/2009 to 07/07/2015	24
7	01115297	1.339	0.0427	6.50	1.297	0.0327	9.24	03/28/2001; 03/30/2005; 01/22/2009 to 07/21/2015	20
8	01115276	1.081	0.1462	2.97	1.027	0.1187	4.27	01/22/2009 to 07/08/2015	17
9	01115275	1.053	0.1808	2.91	1.063	0.1019	3.65	03/08/2000; 03/30/2005; 01/22/2009 to 07/10/2015	19
19	01115170	1.304	0.0474	3.18	1.199	0.0483	3.58	03/08/2000; 03/29/2005; 01/22/2009 to 07/16/2015	19
14	01115110	1.070	0.1246	7.37	0.902	0.1533	6.05	03/28/2001; 03/29/2005; 01/22/2009 to 07/07/2015	18
15	01115114	1.183	0.0886	2.81	1.037	0.1143	5.41	01/22/2009 to 07/15/2015	19
16	01115098	1.250	0.0608	6.54	1.046	0.1015	6.54	03/28/2001; 03/29/2005; 01/22/2009 to 07/14/2015	19
18	01115120	1.209	0.0756	2.89	1.078	0.0894	3.48	01/22/2009 to 07/10/2015	12

Percentage of time streamflow was equaled or exceeded

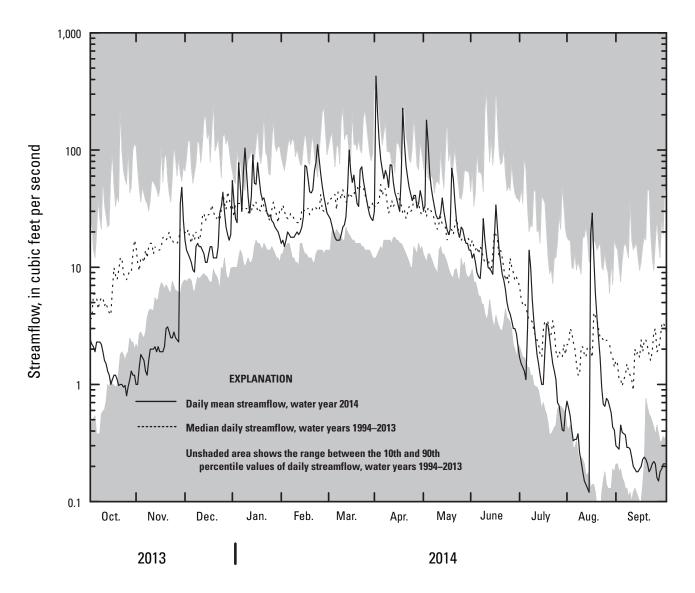
Figure 2. Flow-duration curve and streamflow on the dates (represented by points) when water-quality samples were collected for the U.S. Geological Survey continuous-record streamgage on Wilbur Hollow Brook at Old Plainfield Pike near Clayville (01115297), Rhode Island, water year 2014.

day) for the day on which each sample was collected. The flows, which in some cases were estimates, were assumed to be representative of the flow at the time of the sample collection. Loads in grams or kilograms (or millions of CFUs for bacteria) per day and yields in grams or kilograms (or millions of CFUs for bacteria) per day per square mile were calculated for bacteria, chloride, nitrite, nitrate, and orthophosphate. Censored data (or concentrations reported as less than method detection limits) were replaced with concentrations equal to one-half the method detection limit.

Streamflow

Monitoring streamflow is necessary to measure the volume of water and estimate constituent loads to the Scituate Reservoir. The Ponaganset River is the largest monitored tributary to the Scituate Reservoir. Mean annual streamflow at the streamgage on the Ponaganset River (PWSB station 35; USGS streamgage 01115187) for the entire period of its operation (mean of the annual mean streamflows for the period of record, WY 1994-2013) prior to WY 2014 was about 29 cubic feet per second (ft³/s) (http://waterdata.usgs. gov/nwis). During WY 2014, annual mean streamflow was 23 ft³/s, and daily mean streamflows for many months were less than the median daily mean streamflows for the period of record (fig. 3). Mean annual streamflow in Peeptoad Brook (PWSB station 16, streamgage 01115098), the other longterm continuous-record streamgage in the Scituate Reservoir drainage area, for its period of record (WY 1994–2013) prior to WY 2014 was about 11 ft³/s (http://waterdata.usgs.gov/ nwis). Annual mean streamflow in Peeptoad Brook during WY 2014 was 7.5 ft³/s (table 2).

Water Quality and Constituent Loads and Yields


Water-quality conditions in the Scituate Reservoir drainage area are described by summary statistics for water-quality properties, constituent concentrations, and estimated constituent loads and yields. Loads and yields characterize the rates at which masses of constituents are transferred to the reservoir by tributaries. In the case of loads, tributaries with high flows tend to have high loads because the greater volume of water can carry more of the constituent to the reservoir per unit time. Yields represent the constituent load per unit of drainage area and are calculated by dividing the load estimated for a streamgage by the drainage area to the monitoring station. Yields are useful for comparison among streamgages that have different drainage areas because the effects of basin size and therefore total streamflow volume are attenuated. Yields also are useful for examining potential differences among basin properties that may contribute to reservoir quality.

Summary statistics include means and medians. For some purposes, median values are more appropriate because they are less likely to be affected by high or low concentrations (or outliers). Medians are especially important to use for summarizing a relatively limited number of values. In contrast, continuously monitored streamflow and sodium and chloride loads (estimated from measurements of specific conductance), which include a large number of values, are better summarized in terms of means because a large dataset is more resistant to the effects of outliers. Mean values also are particularly appropriate for characterizing loads because outlier values, which typically represent large flows, are important to include in estimates of constituent masses delivered to receiving waters.

Uncertainties associated with measuring streamflow and specific conductance and with sodium and chloride sample collection, preservation, and analysis produce uncertainties in load and yield estimates. The load and yield estimates presented in the text and tables are the most likely values for sodium and chloride coming from tributaries or their drainage basins. It may be best to discuss loads and yields in terms of a range within which the true values lie; however, the most probable values of loads and yields are presented for ease of discussion and presentation. The range within which the true values lie depends on the uncertainties in individual measurements of streamflow and concentration, which are difficult to quantify with available information. The uncertainties associated with estimating streamflow are commonly assumed to affect load and yield calculations more than the errors associated with measuring specific conductance and (or) chemical analysis. The most probable values of loads and yields presented in the tables and text are sufficient for planning-level analysis of water quality in tributaries and their drainage basins.

Sodium and Chloride Loads and Yields Estimated from Specific-Conductance Monitoring Data

Sodium and chloride are constituents of special concern in the Scituate Reservoir drainage area; they are major constituents of road salt used for deicing, and several major roadways cross the drainage basin. State Routes 12 and 14 cut across the main body of the reservoir, and State Route 116 parallels the eastern limb (fig. 1). Nimiroski and Waldron (2002) indicated that tributaries in basins with state-maintained roads had substantially higher concentrations of sodium and chloride than tributaries in basins with low road density, presumably because of deicing activities. In addition, sodium is a constituent of potential concern for human health; some persons on restricted diets might need to limit intake of sodium.

Figure 3. Measured daily mean streamflow for October 1, 2013, through September 30, 2014, and the 10th percentile, median, and 90th percentile values of daily streamflow for October 1, 1994, through September 30, 2013, for the U.S. Geological Survey continuous-record streamgage on the Ponaganset River at South Foster (01115187) in the Scituate Reservoir drainage area, Rhode Island.

12 Streamflow, Water Quality, and Constituent Loads and Yields, Scituate Reservoir Drainage Area, Rhode Island, 2014

Estimated monthly mean⁶ sodium concentrations in tributaries of the Scituate Reservoir drainage area ranged from 4.9 to 50.1 milligrams per liter (mg/L), and estimated monthly mean chloride concentrations ranged from 7.5 to 83.9 mg/L (table 5). The highest monthly mean concentrations of sodium and chloride were measured in Bear Tree Brook (PWSB station 9) in September 2013 (50.1 and 83.9 mg/L, respectively; table 5). The highest annual mean⁷ concentrations of sodium and chloride also were measured in Bear Tree Brook (29.4 and 49.4 mg/L, respectively; table 6). These high concentrations are the result of residual sodium and chloride leaching from a formerly uncovered salt storage pile to groundwater (Nimiroski and Waldron, 2002) and relatively small surfacewater flows.

During WY 2014, the Scituate Reservoir received about 1,200,000 kilograms (kg) (about 1,300 short tons) of sodium and 2,100,000 kg (about 2,300 short tons) of chloride from tributaries that are equipped with instrumentation capable of continuously monitoring specific conductance. The highest sodium and chloride loads in the drainage area during WY 2014 (260,000 and 420,000 kg, respectively) were measured at the Ponaganset River station (PWSB station 35; table 6). Monthly estimated sodium and chloride loads were highest in the months of January, February, March, and April (table 7). During these 4 months, the sum of the monthly sodium and chloride loads at each station accounted for 68 percent of the annual load for the monitored area in the Scituate Reservoir drainage area. The highest annual sodium and chloride yields were 45,000 and 75,000 kilograms per square mile, respectively, measured at Bear Tree Brook (PWSB station 9; table 6). Annual loads of sodium and chloride tended to be less than the median annual loads for WY 2009-13, except at the stations on Westconnaug Brook (PWSB station 8) and Rush Brook (PWSB station 15), which were greater than the median annual loads (fig. 4).

Physical and Chemical Properties and Daily Loads and Yields Estimated from Data Collected by the Providence Water Supply Board

Physical and Chemical Properties

Physical and chemical properties including pH, turbidity, alkalinity, specific conductance, and color were routinely measured to characterize water quality in each subbasin (table 8). Specifically, pH is a measure of the acidity of the water, color can be an indirect measure of the amount of organic carbon dissolved in the water column, turbidity is an indirect measure of suspended particles, and alkalinity is a measure of the acidneutralizing capacity of water.

The median pH in tributaries in the Scituate Reservoir drainage area ranged from 5.6 to 6.9; the median of the medians for all stations was 6.3. Median values of color ranged from 12 to 150 platinum cobalt units (PCU); the median for all stations was 39 PCU. Median values of turbidity ranged from 0.27 to 3.3 nephelometric turbidity units (NTU); the median for all stations was 0.61 NTU. Median alkalinity values in tributaries were low, ranging from 2.5 to 17 mg/L as CaCO₃; the median for all stations was 6.1 mg/L as CaCO₃ (table 8).

Constituent Concentrations and Daily Loads and Yields

Fecal indicator bacteria, chloride, and nutrients such as nitrogen (N) and phosphorus are commonly detected in natural water; at elevated concentrations, these constituents can render water unfit for the intended use. Fecal indicator bacteria, which are found in the intestines of warm-blooded animals, may indicate impairment from sewage contamination or from livestock or wildlife that defecate in or near the stream margin. Chloride originates in tributary streamwater from precipitation, weathering, or human activities such as waste disposal, use of septic systems, and road deicing. Sources of nutrients in tributary streamwater include atmospheric deposition, leaching of naturally occurring organic material, discharge of groundwater that is enriched with nutrients from septic-system leachate, and runoff contaminated with fertilizer or animal waste. The ultimate intended use of water in the tributaries is drinking water, which must meet specific water-quality standards. For this reason, the PWSB and the USGS closely monitor concentrations of these constituents in tributaries. Median concentrations, loads, and yields of water-quality constituents are given in tables 8 and 9.

Bacteria

Median concentrations of total coliform bacteria were above the detection limit (10 colony forming units per 100 milliliters [CFU/100 mL]) at all sites (table 8); median concentrations of *E. coli* were equal to or greater than the detection limit (10 CFU/100 mL) at 31 of the 37 sites. Total coliform bacteria concentrations were greater than *E. coli* concentrations (as expected because total coliform is more inclusive); the medians of median concentrations for all sites in the drainage area were 320 CFU/100 mL for total coliform bacteria and 20 CFU/100 mL for *E. coli*. The median concentration of total coliform bacteria was highest at Kent Brook (PWSB station 4; table 8) at 3,700 CFU/100 mL. The median concentration of *E. coli* was highest at Unnamed Tributary #4 to Scituate Reservoir (PWSB station 30; table 8) at 350 CFU/100 mL.

⁶Monthly mean concentrations were calculated by dividing the total monthly load by the total discharge for the month.

⁷Annual mean concentrations were calculated by dividing the total annual load by the total discharge for the year.

Monthly mean concentrations of chloride and sodium estimated from continuous measurements of specific conductance in the Scituate Reservoir drainage area, Rhode Island, October 1, 2013, through September 30, 2014. Table 5.

[Alternate station names are given in parentheses for stations where different historical names were used for the same sampling location by the Providence Water Supply Board (PWSB). Monthly mean concentrations were calculated by dividing the monthly load by the total discharge for the month. USGS. U.S. Geological Survey: CL chloride: Na. sodium: mg/L, milligrams ner liter: --, no flow]

PWSB	IISGS		0ct	October	Nove	November	Dece	December	January	uary	February	uary	March	ch
station num- ber	0, E	Station name	CI (mg/L)	Na (mg/L)	CI (mg/L)	Na (mg/L)	CI (mg/L)	Na (mg/L)	CI (mg/L)	Na (mg/L)	CI (mg/L)	Na (mg/L)	CI (mg/L)	Na (mg/L)
				Barden F	Barden Reservoir subbasin	ubbasin								
24	01115190	Dolly Cole Brook	26.8	16.4	25.7	15.7	25.3	15.5	25.0	15.3	29.4	17.9	26.1	15.9
28	01115265	Barden Reservoir (Hemlock Brook)	33.2	19.1	28.1	16.4	25.3	15.0	21.4	12.9	24.2	14.4	15.7	9.76
35	01115187	Ponaganset River	22.2	13.6	21.7	13.3	22.8	13.9	22.4	13.7	24.4	14.8	19.6	12.1
				Direct	Direct Runoff subbasin	obasin								
3	01115280	Cork Brook	45.1	25.5	36.1	21.0	36.9	21.5	33.3	19.7	37.1	21.5	30.2	18.0
5	01115184	Spruce Brook	34.5	19.4	26.8	15.6	24.7	14.5	19.3	11.7	19.9	12.0	16.2	10.0
9	01115183	Quonapaug Brook	48.2	29.0	33.4	19.8	43.0	25.7	34.6	20.5	43.5	26.0	31.0	18.3
Г	01115297	Wilbur Hollow Brook	15.1	9.65	11.5	7.38	9.97	6.44	8.61	5.58	9.66	6.25	7.51	4.89
8	01115276	Westconnaug Brook (Westconnaug Reservoir)	29.6	18.4	25	15.7	25.4	15.9	17.9	11.4	18.8	12.0	17.4	11.1
6	01115275	Bear Tree Brook	77.4	46.2	58	34.6	54.6	32.5	47.4	28.2	48.9	29.1	39.9	23.7
			2	loswansic	ut Reservo	Moswansicut Reservoir subbasin	с							
19	01115170	Moswansicut Reservoir (Moswansicut Stream North, Moswansicut Pond)	36.4	21.7	36.4	21.7	37.4	22.3	38.7	23.0	41.2	24.4	38.7	23
				Regulating	Reservoi	Regulating Reservoir subbasin								
14	01115110	Huntinghouse Brook	14.2	8.30	13.7	8.06	15.3	8.83	12.4	7.37	11.7	7.03	9.81	6.05
15	01115114	Regulating Reservoir (Rush Brook)	53.0	31.1	39.4	23.9	45.6	27.2	42.5	25.6	52.7	31.0	32.3	20.0
16	01115098	Peeptoad Brook (Harrisdale Brook)	36.3	21.3	32.5	19.4	37.5	21.9	42.2	24.2	47.5	26.6	38.1	22.2
18	01115120	Unnamed Tributary to Regulating Reservoir (Unnamed Brook A)	ł	1	29.1	18.1	44.3	26.2	61.6	35.3	61.2	35.1	36.8	22.2
			S	cituate Re:	servoir dra	Scituate Reservoir drainage area	a							
		Average	36.3	21.5	29.8	17.9	32.0	19.1	30.5	18.2	33.6	19.9	25.7	15.5

Table 5. Monthly mean concentrations of chloride and sodium estimated from continuous measurements of specific conductance in the Scituate Reservoir drainage area, Rhode Island, October 1, 2013, through September 30, 2014.—Continued [Alternate station names are given in parentheses for stations where different historical names were used for the same sampling location by the Providence Water Supply Board (PWSB). Monthly mean concentra-tions were calculated by dividing the monthly load by the total discharge for the month USGS 11 S. Gaological Survey: Cl. chloride: Na. codium: moff. milliorane ner liter. 2. no flow]

PWSB	nses		Ap	April	Σ	May	٦L	June	٦٢	July	Auç	August	Septe	September
station num- ber	station number	Station name	CI (mg/L)	Na (mg/L)	CI (mg/L)	Na (mg/L)	CI (mg/L)	Na (mg/L)	CI (mg/L)	Na (mg/L)	CI (mg/L)	Na (mg/L)	CI (mg/L)	Na (mg/L)
				Barden F	Barden Reservoir subbasin	ubbasin								
24	01115190	Dolly Cole Brook	24.7	15.1	24.5	15.0	26.9	16.4	28.2	17.2	27.9	17.0	30.7	18.7
28	01115265	Barden Reservoir (Hemlock Brook)	19.2	11.7	19.5	11.9	27.4	16.1	31.0	18.0	28.9	16.8	35.8	20.4
35	01115187	Ponaganset River	19.1	11.8	19.4	11.9	20.8	12.8	22.3	13.6	23.6	14.3	34.9	20.8
				Direct	Direct Runoff subbasin	obasin								
3	01115280	Cork Brook	29.8	17.9	29.0	17.4	33.9	19.9	36.9	21.4	36.8	21.4	46.3	26.0
5	01115184	Spruce Brook	17.6	10.8	18.4	11.3	21.7	13.0	26.1	15.2	28.2	16.2	52.8	28.1
9	01115183	Quonapaug Brook	29.0	17.1	30.1	17.8	34.5	20.5	43.9	26.3	39.2	23.4	73.3	44.7
7	01115297	Wilbur Hollow Brook	7.76	5.05	8.76	5.68	11.1	7.12	15.4	9.79	12.2	7.84	14.4	9.23
8	01115276	Westconnaug Brook (Westconnaug Reservoir)	16.6	10.6	19.4	12.4	22.8	14.3	26.8	16.8	23.1	14.5	29.5	18.4
6	01115275	Bear Tree Brook	39.7	23.6	46.4	27.6	56.6	33.7	67.8	40.5	54.5	32.5	83.9	50.1
			2	oswansic	ut Reservo	Moswansicut Reservoir subbasin	ч							
19	01115170	Moswansicut Reservoir (Moswansicut Stream North, Moswansicut Pond)	40.0	23.7	41.7	24.6	42.1	24.8	43.1	25.4	43.9	25.8	46.4	27.2
				Regulating Reservoir subbasin	Reservoi	⁻ subbasin								
14	01115110	Huntinghouse Brook	11.1	6.75	11.6	6.97	14.1	8.23	14.9	8.66	15.5	8.94	17.0	9.68
15	01115114	Regulating Reservoir (Rush Brook)	36.9	22.6	35.8	21.9	51.1	30.1	63.6	36.5	49.6	29.3	ł	ł
16	01115098	Peeptoad Brook (Harrisdale Brook)	37.4	21.8	39.8	23.0	42.9	24.5	45.8	25.9	42.5	24.3	48.5	27.1
18	01115120	Unnamed Tributary to Regulating Reservoir (Unnamed Brook A)	38.3	23.1	43.8	25.9	62.2	35.6	41.6	24.9	36.1	21.9	1	ł
			S	cituate Re	servoir dra	Scituate Reservoir drainage area	m							
		Average	26.2	15.8	27.7	16.7	33.4	19.8	36.2	21.4	33.0	19.6	42.8	25.0

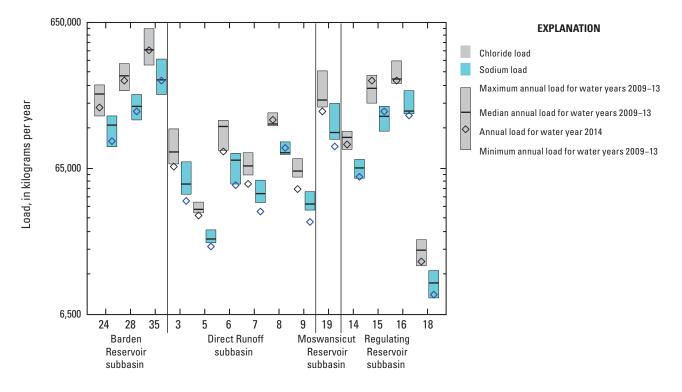
 Table 6.
 Annual mean chloride and sodium concentrations, loads, and yields by sampling station in the Scituate Reservoir drainage area, Rhode Island, October 1, 2013, through September 30, 2014.

[Alternate station names are given in parentheses for stations where different historical names were used for the same sampling location by the Providence Water Supply Board (PWSB). Annual mean concentrations were calculated by dividing the annual load by the total discharge for the year; annual mean yields were calculated by dividing the sum of individual loads by the sum of the drainage area. USGS, U.S. Geological Survey; mg/L, milligrams per liter; kg/yr, kilograms per year; kg/yr/mi², kilograms per year per square mile; Cl, chloride; Na, sodium]

PWSB	USGS		Concer	ntration	Lo	ad	Yi	eld
station number	station number	Station name	CI (mg/L)	Na (mg/L)	Cl (kg/yr)	Na (kg/yr)	Cl (kg/yr/mi²)	Na (kg/yr/mi²
		Barden Rese	ervoir subl	basin				
24	01115190	Dolly Cole Brook	25.9	15.8	170,000	100,000	34,000	21,000
28	01115265	Barden Reservoir (Hemlock Brook)	20.6	12.4	260,000	160,000	30,000	18,000
35	01115187	Ponaganset River	21.0	12.9	420,000	260,000	30,000	19,000
		Direct Run	off subba	sin				
3	01115280	Cork Brook	32.3	19.1	67,000	39,000	37,000	22,000
5	01115184	Spruce Brook	19.3	11.7	31,000	19,000	25,000	15,000
6	01115183	Quonapaug Brook	33.9	20.1	85,000	50,000	43,000	26,000
7	01115297	Wilbur Hollow Brook	9.12	5.90	51,000	33,000	12,000	7,700
8	01115276	Westconnaug Brook (Westconnaug Reservoir)	19.7	12.5	140,000	90,000	27,000	17,000
9	01115275	Bear Tree Brook	49.4	29.4	47,000	28,000	75,000	45,000
		Moswansicut R	eservoir s	ubbasin				
19	01115170	Moswansicut Reservoir, (Moswansicut Stream North, Moswansicut Pond)	40.0	23.7	160,000	92,000	48,000	28,000
		Regulating Re	servoir su	bbasin				
14	01115110	Huntinghouse Brook	11.6	6.95	95,000	57,000	15,000	9,100
15	01115114	Rush Brook	40.6	24.5	260,000	160,000	55,000	33,000
16	01115098	Peeptoad Brook (Harrisdale Brook)	39.3	22.7	260,000	150,000	53,000	30,000
18	01115120	Unnamed Tributary to Regulating Reservoir (Unnamed Brook A)	45.4	26.8	15,000	8,900	54,000	32,000
		Scituate Reserv	voir draina	ge area				
			Me	ean	То	tal	M	ean
			29.2	17.5	2,100,000	1,200,000	33,000	20,000

PWSB	SUSI		October	ber	November	mber	December	mber	January	uary	February	uary	Ma	March
station num- ber	station number	Station name	CI (kg)	Na (kg)	CI (kg)	Na (kg)	CI (kg)	Na (kg)	CI (kg)	Na (kg)	CI (kg)	Na (kg)	CI (kg)	Na (kg)
					Bard	en Reservo	Barden Reservoir subbasin							
24	01115190	Dolly Cole Brook	1,100	670	4,600	2,800	11,000	6,900	30,000	18,000	28,000	17,000	36,000	22,000
28	01115265	Barden Reservoir (Helmock Brook)	1,500	880	9,800	5,800	22,000	13,000	45,000	27,000	31,000	19,000	44,000	28,000
35	01115187	Ponaganset River	2,400	1,500	9,400	5,700	32,000	20,000	70,000	43,000	67,000	41,000	82,000	50,000
					Dir	Direct Runoff subbasin	subbasin							
e	01115280	Cork Brook	400	230	2,300	1,300	5,200	3,000	9,300	5,500	10,000	6,000	14,000	8,400
5	01115184	Spruce Brook	890	500	1,300	770	2,200	1,300	3,500	2,100	3,100	1,900	5,000	3,100
9	01115183	Quonapaug Brook	1,700	1,000	3,200	1,900	6,800	4,100	10,000	6,200	11,000	6,400	15,000	9,100
٢	01115297	Wilbur Hollow Brook	1,800	1,100	3,200	2,100	4,900	3,200	6,100	3,900	5,400	3,500	7,700	5,000
~	01115276	Westconnaug Brook (Westconnaug Reservoir)	6,800	4,200	7,000	4,400	6,400	4,000	14,000	9,200	13,000	8,400	19,000	12,000
6	01115275	Bear Tree Brook	2,700	1,600	3,100	1,900	4,100	2,400	4,600	2,700	4,000	2,400	5,400	3,200
					Moswar	Isicut Rese	Moswansicut Reservoir subbasin	sin						
19	01115170	Moswansicut Reservoir (Moswansicut Stream North, Moswansicut Pond)	1,200	690	3,000	1,800	13,000	7,600	18,000	11,000	16,000	9,600	23,000	14,000
					Regula	ting Reserv	Regulating Reservoir subbasin	Ľ						
14	01115110	Huntinghouse Brook	320	190	2,100	1,200	6,000	3,500	14,000	8,200	14,000	8,600	19,000	12,000
15	01115114	Regulating Reservoir (Rush Brook)	120	73	6,600	4,000	27,000	16,000	40,000	24,000	52,000	30,000	47,000	29,000
16	01115098	Peeptoad Brook (Harrisdale Brook)	1,800	1,100	4,800	2,900	17,000	9,800	25,000	15,000	20,000	11,000	58,000	34,000
18	01115120	Unnamed Tributary to Regulating Reservoir (Unnamed Brook A)	0	0	310	200	290	170	1,800	1,000	4,100	2,400	2,600	1,600
					Scituate	Reservoir	Scituate Reservoir drainage area	ea.						
		Total	000 00	1 000	000		1 10 000	000000	000 000	00000	0000000		0000000	

16


Table 7. Monthly estimated chloride and sodium loads by sampling station in the Scituate Reservoir drainage area, Rhode Island, October 1, 2013, through September 30, 2014.

ble 7.	Monthly estir	stimated c	d chloride and sodium load	and so	dium lc	ods bγ	y sampli	ipling statio	npling station in the Scituate Reservoir drainage area, Rhode Island, October 1, 2013, through September 3	ne Scitu	iate Re	eservoir	draina	ige are	ea, Rhc	ode Isla	nd, Oct	ober 1	tober 1, 2013, through	hroug	h Sep	temb	er 30, 2014.	014.	
-Continu	ed																								

cal	
eolog	
J.S. G	
GS, U	
). US	
WSB	
urd (P	
y Boa	
Suppl	
/ater	
nce W	
ovide	
he Pr	
n by t	
ocatio	
ling lo	
sampl	
same	
r the	
sed fo	
ere us	
nes w	
al nan	
historica	
different	
here c	
ons w	
r statio	
eses for	_
Ę.	ogram
n paren	ki.
iven i	um; kg,
are gi	, sodiu
ames	e; Na,
tion na	loride
te stat	; Cl, ch
lternat	ev
[A]	Surv

PWSB	SSSI		Ap	April	M	May	Ju	June	July	١٧	ğuA	August	September	mber
station num- ber	station number	Station name	CI (kg)	Na (kg)	CI (kg)	Na (kg)	CI (kg)	Na (kg)	CI (kg)	Na (kg)	CI (kg)	Na (kg)	CI (kg)	Na (kg)
					Bard	en Reservo	Barden Reservoir subbasin							
24	01115190	Dolly Cole Brook	32,000	19,000	18,000	11,000	4,500	2,800	1,500	890	1,300	810	200	120
28	01115265	Barden Reservoir (Hemlock Brook)	52,000	32,000	36,000	22,000	11,000	6,400	3,300	1,900	5,900	3,500	680	390
35	01115187	Ponaganset River	84,000	52,000	52,000	32,000	15,000	9,100	3,800	2,300	4,800	2,900	590	350
					Dii	Direct Runoff subbasin	subbasin							
ю	01115280	Cork Brook	13,000	7,800	7,900	4,800	2,200	1,300	069	400	1,200	710	16	9.1
5	01115184	Spruce Brook	7,200	4,400	4,900	3,000	1,600	066	630	370	520	300	120	99
9	01115183	Quonapaug Brook	15,000	8,800	12,000	7,100	4,200	2,500	2,500	1,500	2,700	1,600	110	70
٢	01115297	Wilbur Hollow Brook	8,500	5,500	7,100	4,600	3,000	1,900	1,600	1,000	1,900	1,200	62	40
∞	01115276	Westconnaug Brook (Westconnaug Reservoir)	27,000	17,000	24,000	15,000	10,000	6,600	5,000	3,100	4,900	3,100	3,500	2,200
6	01115275	Bear Tree Brook	7,300	4,300	6,300	3,800	3,400	2,100	2,000	1,200	2,200	1,300	1,600	940
					Moswa	Isicut Rese	Moswansicut Reservoir subbasin	sin						
19	01115170	Moswansicut Reservoir (Moswansicut Stream North, Moswansicut Pond)	40,000	24,000	25,000	15,000	11,000	6,200	2,800	1,600	2,300	1,400	1,100	650
					Regula	Iting Reserv	Regulating Reservoir subbasin	ii						
14	01115110	Huntinghouse Brook	21,000	13,000	13,000	7,800	3,600	2,100	910	530	940	540	1.6	06.0
15	01115114	Regulating Reservoir (Rush Brook)	45,000	28,000	24,000	15,000	8,800	5,200	3,000	1,700	4,100	2,400	0.00	0.00
16	01115098	Peeptoad Brook (Harrisdale Brook)	74,000	43,000	42,000	25,000	10,000	5,900	3,300	1,900	3,200	1,900	740	410
18	01115120	Unnamed Tributary to Regulating Reservoir (Unnamed Brook A)	3,600	2,200	1,800	1,100	240	130	27	16	150	91	0.00	0.00
					Scituate	; Reservoir	Scituate Reservoir drainage area	'ea						
										000				

Water Quality and Constituent Loads and Yields 17

Providence Water Supply Board station number

Figure 4. Annual loads of chloride and sodium estimated from continuous measurements of streamflow and specific conductance for water year 2014 and associated minimum, maximum, and median annual loads for water years 2009–13 at 14 Providence Water Supply Board stations in the Scituate Reservoir drainage area, Rhode Island.

Median concentrations of fecal indicator bacteria were lowest at sampling stations Westconnaug Brook (PWSB station 8), Ponaganset Reservoir (PWSB station 23), Outflow from King Pond (PWSB station 36, and Fire Tower Stream (PWSB station 37). Median concentrations of E. coli were below detection limits at Shippee Brook (PWSB station 25), Ponaganset River (PWSB station 29), Spruce Brook (PWSB station 5), Westconnaug Brook (PWSB station 8), Fire Tower Stream (PWSB station 37), and Dexter Pond (PWSB station 17). Median daily loads and yields of total coliform bacteria and E. coli varied by more than two orders of magnitude; the highest median daily yield of total coliform bacteria (21,000 million colony forming units per day per square mile [CFU×106/d/mi2]) was at Bear Tree Brook (PWSB station 9; table 9), and the highest median daily yield of E. coli (2,100 CFU×10⁶/d/mi²) was at Wilbur Hollow Brook (PWSB station 7; table 9). Although relatively high for sampling stations in the Scituate Reservoir subbasin, median daily bacteria yields at Bear Tree Brook are low to moderate compared to yields of indicator bacteria in sewage-contaminated streamwater or streamwater affected by stormwater runoff in an urban environment (Breault and others, 2002). The median daily

loads of total coliform bacteria for all subbasins in the Scituate Reservoir drainage area ranged from 850 to 120,000 million colony forming units per day (CFU×10⁶/d), and yields ranged from 2,900 to 21,000 CFU×10⁶/d/mi²; *E. coli* loads ranged from 34 to 9,300 CFU×10⁶/d, and yields ranged from 120 to 2,100 CFU×10⁶/d/mi² (table 9). At many stations, median daily loads for total coliform bacteria were substantially lower than in the previous water year, when the median daily loads of total coliform bacteria ranged from 440 to 200,000 CFU×10⁶/d. Median daily loads of *E. coli* also were less than loads for many stations in the previous water year, when loads of *E. coli* ranged from 100 to 14,000 CFU×10⁶/d (Smith, 2015a).

Chloride and Sodium

The highest median chloride concentration (94 mg/L) was measured in the Direct Runoff subbasin at Toad Pond (PWSB station 31; table 8). Median daily chloride loads and yields estimated from samples collected by the PWSB varied among monitoring stations in the drainage area (table 9); the median daily chloride yield for monitored areas within the

Median values for water-quality data collected at Providence Water Supply Board stations by tributary reservoir subbasin in the Scituate Reservoir drainage area, Rhode Island, October 1, 2013, through September 30, 2014. Table 8.

[Water-quality data are from samples collected and analyzed by the Providence Water Supply Board (PWSB). Alternate station names are given in parentheses for stations where different historical names were used for the same sampling location by the PWSB. USGS, U.S. Geological Survey; PCU, platinum cobalt units, NTU, nephelometric turbidity units; CFU/100mL, colony forming units per 100 milliliters; E. coli, Escherichia coli, mg/L, milligrams per liter; CaCO₃, calcium carbonate; N, nitrogen; PO₄, phosphate; --, none; <, less than]

Here the<	PWSB	30311			Properties	s			Cons	Constituents			
Barden Reservoir subbasin Barden Reservoir subbasin 1.2200 1.2200 1.21200 1.21200 1.21200 1.21200 1.21200 1.21200 1.21200 1.2100 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.200 1.000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.00000 1.00000 1.000000 1.000000000 $1.000000000000000000000000000000000000$	station num- ber	ຊຸມດວ station number	Station name	pH (units)	Color (PCU)	Turbidity (NTU)	Total coliform bacteria (CFU/100mL)	<i>E. coli</i> (CFU/100mL)	Alkalinity (mg/L as CaCO ₃)	Chloride (mg/L)	Nitrite (mg/L as N)	Nitrate (mg/L as N)	Orthophos- phate (mg/L as PO ₄)
					Barde	en Reservoir	subbasin						
	24	01115190	Dolly Cole Brook	6.3	40	0.59	400	40	4.8	24	0.002	0.01	0.05
	25	01115200	Shippee Brook	6.0	42	0.47	120	<10	2.9	13	0.002	0.01	0.19
	26	01115185	Windsor Brook	6.0	45	0.32	310	10	3.0	19	0.002	<0.01	0.09
	27	011151845	Unnamed Tributary to Ponaganset River (Unnamed Brook B, Unnamed Brook West of Windsor Brook)	5.9	13	0.27	140	30	3.5	0.60	0.001	0.01	0.05
	28	01115265	Barden Reservoir (Hemlock Brook)	6.2	78	0.61	370	30	4.4	26	0.002	0.01	0.06
	29	01115271	Ponaganset River (Barden Stream)	6.4	39	0.57	200	$<\!10$	3.7	19	0.002	0.01	0.08
Direct Rundf subbasin Direct Rundf subbasin 01115181 Umamed Tributary #2 to Scinate 6.8 53 1.1 650 10 12 7.8 0.003 01115181 Umamed Tributary #2 to Scinate 6.3 12 0.34 380 15 5.0 68 0.001 Reservoir (Umamed Brook) Bullhead Brook) 6.4 31 0.34 2.400 25 5.0 33 0.001 01115181 Spruce Brook 6.4 31 0.34 2.400 25 5.0 33 0.001 01115529 Wibur Hollow Brook 6.4 31 0.34 2.400 25 6.0 4.6 1.6 0.001 01115529 Wibur Hollow Brook 6.5 3.5 0.50 3.7 0.00 1.7 4.1 0.005 01115276 Westcomaug Brook (Westcomaug 6.1 18 0.47 6.0 4.0 1.1 0.001 11115276 Reservori Reservori 0.118<	35	01115187	Ponaganset River	6.1	34	0.54	280	20	3.1	20	0.002	0.01	0.04
					Dire	ect Runoff su	ubbasin						
	-	01115180	Brandy Brook	6.8	53	1.1	650	10	12	7.8	0.003	<0.01	0.07
Reservoir (Unmaned Brook) Builhead Brook) 0115280 Cork Brook) 6.4 31 0.34 2,400 25 5.0 33 0.001 01115400 Kent Brook 6.4 31 0.34 2,400 25 5.0 33 0.001 01115400 Kent Brook 6.5 2.6 0.60 3,700 5.0 7.0 1.6 0.003 01115184 Spruce Brook 6.5 5.0 0.67 5.00 3.7 7.0 3.4 0.003 01115173 Westcommang Brook 6.3 150 0.70 1300 17 4.1 0.005 01115276 Westcommang Brook (Westcommaug 6.1 18 0.47 6.0 3.7 7.0 1.6 0.001 01115276 Westcommaug Brook (Westcommaug 6.1 18 0.47 6.0 4.0 1.1 0.01 Reservoir) Nomaned Tributary #1 to Scituate Reser- 6.2 44 0.33 2.0 2.4 0.02	0	01115181	Unnamed Tributary #2 to Scituate	6.3	12	0.34	380	15	5.0	68	0.001	0.01	0.05
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Reservoir (Unnamed Brook North of Bullhead Brook)										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ю	01115280	Cork Brook	6.4	31	0.34	2,400	25	5.0	33	0.001	0.01	0.08
	4	01115400	Kent Brook (Betty Pond Stream)	6.6	26	09.0	3,700	50	7.0	1.6	0.001	<0.01	0.02
01115183 Quonapaug Brook 6.3 150 3.3 700 130 17 41 0.006 01115275 Wibur Hollow Brook 6.3 6.3 6.3 6.3 6.3 6.3 6.0 4.6 0.003 01115276 Westconnaug Brook (Westconnaug 6.1 18 0.47 60 85 6.0 4.6 0.003 01115275 Bear Tree Brook 6.9 34 0.54 1,300 120 8.0 66 0.002 01115375 Bear Tree Brook Unamed Tributary #1 to Scituate Reset- 6.2 44 0.33 2,000 350 5.0 24 0.02 01115370 Unamed Tributary #1 to Scituate Reset- 6.2 44 0.33 2,000 350 5.0 24 0.02 01115177 Toad Pond Interestronic (Coventry Brook) 6.6 30 17 94 0.02 01115178 Unamed Tributary #1 to Scituate 6.3 5.4 0.46 255 6.0 13 0.02 01115178 Unamed Tributary #3 to Scituate 6.3 5.4	5	01115184	Spruce Brook	6.6	45	0.76	1,300	$<\!10$	7.0	34	0.003	0.01	0.03
	9	01115183	Quonapaug Brook	6.3	150	3.3	700	130	17	41	0.006	0.01	0.06
01115276 Westconnaug Brook (Westconnaug 6.1 18 0.47 60 <10	7	01115297	Wilbur Hollow Brook	6.3	63	0.67	600	85	6.0	4.6	0.003	0.01	0.07
01115275 Bear Tree Brook 6.9 34 0.54 1,300 120 8.0 66 0.002 01115350 Unnamed Tributary #4 to Scituate Reser- 6.2 44 0.33 2,000 350 5.0 24 0.02 voir (Coventry Brook, Knight Brook) voir (Coventry Brook, Knight Brook) 6.6 39 0.75 480 30 17 94 0.002 01115177 Toad Pond 6.6 39 0.75 480 30 17 94 0.002 01115178 Unnamed Tributary #1 to Scituate 6.3 54 0.46 260 25 6.0 13 0.002 01115182 Unnamed Tributary #3 to Scituate 6.4 37 0.64 340 15 11 4.3 0.002 01115182 Unnamed Tributary #3 to Scituate 6.3 24 0.33 17 94 0.002 Reservoir (Hall's Estate Brook) 6.0 15 11 4.3 0.002 - Outflow from King Pond 6.3 24 0.33 70 10 4.0	8	01115276	Westconnaug Brook (Westconnaug Reservoir)	6.1	18	0.47	60	<10	4.0	11	0.001	0.01	60.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6	01115275	Bear Tree Brook	6.9	34	0.54	1,300	120	8.0	99	0.002	0.08	0.05
	30	01115350	Unnamed Tributary #4 to Scituate Reservoir (Coventry Brook, Knight Brook)	6.2	44	0.33	2,000	350	5.0	24	0.002	0.02	0.12
01115178 Unnamed Tributary #1 to Scituate 6.3 54 0.46 260 25 6.0 13 0.002 Reservoir (Pine Swamp Brook) Reservoir (Pine Swamp Brook) 6.4 37 0.64 340 15 11 4.3 0.002 01115182 Unnamed Tributary #3 to Scituate 6.4 37 0.64 340 15 11 4.3 0.002 - Outflow from King Pond 6.3 24 0.33 70 10 4.0 0.60 0.001 - Fire Tower Stream 5.7 23 0.62 80 <10	31	01115177	Toad Pond	6.6	39	0.75	480	30	17	94	0.004	0.01	0.06
01115182 Unnamed Tributary #3 to Scituate 6.4 37 0.64 340 15 11 4.3 0.002 < Reservoir (Hall's Estate Brook) Reservoir (Hall's Estate Brook) 6.3 24 0.33 70 10 4.0 0.60 0.001 Outflow from King Pond 5.7 23 0.62 80 <10	32	01115178	Unnamed Tributary #1 to Scituate Reservoir (Pine Swamp Brook)	6.3	54	0.46	260	25	0.9	13	0.002	0.01	0.08
Outflow from King Pond 6.3 24 0.33 70 10 4.0 0.60 0.01 Fire Tower Stream 5.7 23 0.62 80 <10	33	01115182	Unnamed Tributary #3 to Scituate Reservoir (Hall's Estate Brook)	6.4	37	0.64	340	15	11	4.3	0.002	<0.01	0.12
Fire Tower Stream 5.7 23 0.62 80 <10 3.0 0.60 0.002	36	1	Outflow from King Pond	6.3	24	0.33	70	10	4.0	0.60	0.001	0.01	0.15
	37	ł	Fire Tower Stream	5.7	23	0.62	80	<10	3.0	0.60	0.002	0.03	0.06

Table 8. Median values for water-quality data collected at Providence Water Supply Board stations by tributary reservoir subbasin in the Scituate Reservoir drainage area, Rhode Island, October 1, 2013, through September 30, 2014.—Continued [Water-quality data are from samples collected and analyzed by the Providence Water Supply Board (PWSB). Alternate station names are given in parentheses for stations where different historical names were used for the same sampling location by the PWSB. USGS, U.S. Geological Survey; PCU, platinum cobalt units; NTU, nephelometric turbidity units; CFU/100mL, colony forming units per 100 milliliters; E. coli, Escherichia coli; mg/L, milligrams per liter, CaCO,, calcium carbonate; N, nitrogen; PO₄, phosphate; --, none; <, less than]

			Properties	S			Cons	Constituents			
station station num- number ber number	Station name	pH (units)	Color (PCU)	Turbidity (NTU)	Total coliform bacteria (CFU/100mL)	<i>E. coli</i> (CFU/100mL)	Alkalinity (mg/L as CaCO ₃)	Chloride (mg/L)	Nitrite (mg/L as N)	Nitrate (mg/L as N)	Orthophos- phate (mg/L as PO ₄)
			Moswar	isicut Reserv	Moswansicut Reservoir subbasin						
19 01115170	Moswansicut Reservoir (Moswansicut Stream North, Moswansicut Pond)	6.9	16	0.81	110	20	9.5	39	0.002	0.01	0.07
20 01115160	Unnamed Tributary #1 to Moswansicut Reservoir (Blanchard Brook)	6.3	06	0.88	1,000	60	7.0	56	0.004	0.01	0.20
21 01115165	Unnamed Tributary #2 to Moswansi- cut Reservoir (Brook from Kimball Reservoir)	6.7	46	1.8	380	13	13	33	0.004	0.02	0.09
22 01115167	Moswansicut Reservoir (Moswansicut Stream South)	6.5	33	2.0	630	85	12	76	0.009	0.01	0.09
34 01115164	Kimball Stream	6.2	45	0.90	220	20	14	35	0.005	<0.01	0.06
			Ponaga	Ponaganset Reservoir subbasin	oir subbasin						
23 011151843	Ponaganset Reservoir	6.2	12	0.53	70	10	3.5	15	0.001	0.01	0.03
			Regula	Regulating Reservoir subbasin	ir subbasin						
13 01115176	Regulating Reservoir	6.6	31	0.99	210	30	10	37	0.002	0.01	0.08
14 01115110	Huntinghouse Brook	6.4	33	0.46	320	30	5.3	13	0.002	0.01	0.07
15 01115114	Rush Brook	9.9	50	0.67	280	20	7.4	44	0.003	0.01	0.07
16 01115098	Peeptoad Brook (Harrisdale Brook)	9.9	31	0.89	250	10	12	42	0.002	0.01	0.05
17 01115119	Dexter Pond (Paine Pond)	6.2	75	0.73	780	<10	8.0	44	0.022	<0.01	0.02
18 01115120	Unnamed Tributary to Regulating Reservoir (Unnamed Brook A)	6.6	80	0.85	420	10	13	14	0.002	0.01	0.09
			Westcor	inaug Reser	Westconnaug Reservoir subbasin						
10 01115274	Westconnaug Brook	5.7	24	0.31	140	10	2.5	21	0.002	0.01	0.05
11 01115273	Unnamed Tributary to Westconnaug Reservoir (Unnamed Brook South of Westconnaug Reservoir)	5.6	49	0.61	270	13	3.0	0.60	0.002	<0.01	0.14
12 011152745	U	6.0	32	0.41	140	20	6.7	45	0.002	<0.01	0.06
			Scituate	Reservoir d	Scituate Reservoir drainage area						
	Minimum	5.6	12	0.27	60	<10	2.5	09.0	0.001	<0.01	0.02
	Median	6.3	39	0.61	320	20	6.1	24	0.002	0.01	0.07
	Maximum	6.9	150	3.3	3.700	350	17	94	0.022	0.08	0.20

20 Streamflow, Water Quality, and Constituent Loads and Yields, Scituate Reservoir Drainage Area, Rhode Island, 2014

Median daily loads and yields of bacteria, chloride, nitrate, and orthophosphate by tributary reservoir subbasin in the Scituate Reservoir drainage area, Rhode Island, October 1, 2013, through September 30, 2014. Table 9.

[Water-quality data are from samples collected and analyzed by the Providence Water Supply Board (PWSB). USGS, U.S. Geological Survey; CFU×10⁶/d; millions of colony forming units per day; CFU×10⁶/mi², willions of colony forming units per day; *Escherichia coli*; kg/d, kilograms per day; kg/d/mi², kilograms per day per square mile; N, nitrogen; g/d, grams per day; g/d/mi², grams per day per square mile; PO₄, phosphate]

PWSB station	USGS	Ctotion nomo	Total coliform bacteria	oliform eria	E .	E. coli	Chlo	Chloride	Ni (a:	Nitrite (as N)	N (a	Nitrate (as N)	Orthopl (as	Orthophosphate (as PO ₄)
num- ber	-		(CFUx 10 ⁶ /d)	(CFUx 10 ⁶ /mi ²)	(CFUx 10 ⁶ /d)	(CFUx 10 ⁶ /mi ²)	(kg/d)	(kg/d/mi²)	(b/g)	(g/d/mi²)	(p/g)	(g/d/mi²)	(þ/ɡ)	(g/d/mi²)
					Barden Re	Barden Reservoir subbasin	oasin							
24	01115190	Dolly Cole Brook	39,000	8,000	1,600	330	160	33	14	2.9	61	12	880	180
25	01115200	Shippee Brook	28,000	12,000	1,000	430	290	120	34	14	200	85	4,600	2,000
26	01115185	Windsor Brook	13,000	3,000	1,100	250	24	5.6	22	5.1	17	3.9	1,700	390
28	01115265	Barden Reservoir	62,000	7,100	4,800	550	450	51	40	4.5	200	23	920	110
35	01115187	Ponaganset River	120,000	8,600	7,000	500	1,800	130	86	6.1	860	61	2,600	190
					Direct R	Direct Runoff subbasin	sin							
-	01115180	Brandy Brook	13,000	8,300	410	260	9.0	5.7	6.4	4.0	14	8.8	100	99
ŝ	01115280	Cork Brook	9,000	5,000	850	470	89	49	3.0	1.6	25	14	160	89
4	01115400	Kent Brook	4,300	5,100	270	320	4.7	5.5	2.0	2.4	8.9	10	53	62
5	01115184	Spruce Brook	13,000	11,000	510	420	29	24	4.5	3.7	19	16	120	98
9	01115183	Quonapaug Brook	20,000	10,000	2,000	066	57	29	19	9.7	54	28	260	130
7	01115297	Wilbur Hollow Brook	50,000	11,000	9,300	2,100	19	4.3	23	5.3	140	32	530	120
8	01115276	Westconnaug Brook	15,000	2,900	1,800	350	160	31	34	6.6	370	71	1,200	230
6	01115275	Bear Tree Brook	13,000	21,000	1,200	1,900	120	200	1.3	2.0	38	60	64	100
32	01115178	Unnamed Tributary #1 to Scituate Reservoir (Pine Swamp Brook)	5,600	12,000	720	1,600	34	76	3.5	7.8	18	39	180	ity and
33	01115182	Unnamed Tributary #3 to Scituate Reservoir (Hall's Estate Brook)	850	3,000	59	210	0.48	1.7	2.2	7.7	14	48	42	150
				M	oswansicut	Moswansicut Reservoir subbasin	ubbasin							
19	01115170	Moswansicut Reservoir (Moswansicut Stream North, Moswansicut Pond)	12,000	3,700	930	290	340	100	25	7.7	160	49	380	120
21	01115165	Unnamed Tributary #2 to Moswansicut Reservoir (Brook from Kimball Reservoir)	4,400	15,000	140	470	40	140	8.9	31	280	960	91	and Yiel

Water Quality and Constituent Loads and Yields 21

Table 9. Median daily loads and yields of bacteria, chloride, nitrate, nitrite, and orthophosphate by tributary reservoir subbasin in the Scituate Reservoir drainage area, Rhode Island, October 1, 2013, through September 30, 2014.—Continued

22

ň	SDSU	d	Total coliform bacteria	liform sria	Ε.	E. coli	Chloride	ride	Nit (as	Nitrite (as N)	Nit. (as	Nitrate (as N)	Orthophosp (as PO _a)	Orthophosphate (as PO ₄)
stć nur	station number	Station name	(CFUx 10 ⁶ /d)	(CFUx 10 ⁶ /mi ²)	(CFUx 10 ⁶ /d)	(CFUx 10 ⁶ /mi ²)	(kg/d)	(kg/d/mi²)	(p/ɓ)	(g/d/mi²)	(þ/ð)	(g/d/mi²)	(p/6)	(g/d/mi ²)
				Ŗ	egulating R	Regulating Reservoir subbasin	obasin							
0111	01115110	Huntinghouse Brook	65,000	10,000	5,900	940	510	81	83	13	390	63	1,500	230
011]	01115114	Regulating Reservoir (Rush Brook)	50,000	11,000	3,500	730	590	120	24	5.1	91	19	1,100	230
0111	01115098	Peeptoad Brook (Harrisdale Brook)	19,000	3,800	1,700	340	390	78	23	4.6	93	19	390	79
0111	01115120	Unnamed Tributary to Regulating Reservoir (Unnamed Brook A)	1,400	5,000	34	120	4.9	18	5.9	21.0	200	710	31	110
				We	stconnaug	Westconnaug Reservoir subbasin	ubbasin							
0111	01115274	Westconnaug Brook	8,700	5,900	006	600	62	42	12	8.0	53	36	340	230
0111	01115273	Unnamed Tributary to Westconnaug Reservoir	8,300	12,000	360	490	2.0	2.7	28	39	79	110	510	700
		(Unnamed Brook South of Westconnaug Reservoir)												
				Sci	tuate Rese	Scituate Reservoir drainage area	ge area							
		Minimum	850	2,900	34	120	0.48	1.7	1.3	1.6	8.9	3.9	31	62
		Median	13,000	8,300	1,000	470	62	42	19	6.1	79	36	380	150
		Maximum	120.000	21 000	002.6	2 100	1 800	200	86	30	860	060	1 600	000 6

drainage area was 42 kilograms per day per square mile (kg/d/mi²). Ponaganset River (PWSB station 35) had the largest median daily chloride load (1,800 kilograms per day). The largest median daily chloride yield (200 kg/d/mi²) was determined for Bear Tree Brook (PWSB station 9). The mean daily yield of chloride and sodium for the drainage areas above the 14 USGS continuous-record streamgages, which represent nearly 66 percent of the Scituate Reservoir drainage area, was 90 and 55 kg/d/mi², respectively. The mean daily yields of chloride and sodium for WY 2014 were similar to the annual mean yields for WY 2013 (94 and 57 kg/d/mi², respectively; Smith, 2015a).

Nutrients

Median concentrations of nitrite and nitrate (table 8) were 0.002 and 0.01 mg/L as N, respectively. The highest median concentration of nitrite (0.022 mg/L) was measured in a sample collected at Dexter Pond (PWSB station 17). The highest median concentration of nitrate (0.08 mg/L) was measured in a sample collected at Bear Tree Brook (PWSB station 9). The median concentration of orthophosphate for the entire study area (table 8) was 0.07 mg/L as phosphate (PO₄). The maximum median concentration of orthophosphate (0.20 mg/L as PO₄) was measured in Unnamed Tributary #1 to Moswansicut Reservoir (PWSB station 20). Median daily nitrite and nitrate loads were largest at Ponaganset River (PWSB station 35; 86 and 860 grams per day [g/d], respectively). The largest median daily phosphate load was determined for Shippee Brook (PWSB station 25; 4,600 g/d). The largest median daily yield for nitrite (39 grams per day per square mile [g/d/mi²]) was determined for Unnamed Tributary to Westconnaug Reservoir (PWSB station 11). The largest median daily yield for nitrate (960 g/d/mi²) was determined for Unnamed Tributary #2 to Moswansicut Reservoir (PWSB station 21), and the largest median daily yield for orthophosphate (2,000 g/d/mi²) was determined for Shippee Brook (PWSB station 25; table 9).

References Cited

- Breault, R.F., 2010, Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2002: U.S. Geological Survey Open-File Report 2009–1041, 25 p.
- Breault, R.F., and Campbell, J.P., 2010a, Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2003: U.S. Geological Survey Open-File Report 2010–1043, 24 p.

- Breault, R.F., and Campbell, J.P., 2010b, Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2004: U.S. Geological Survey Open-File Report 2010–1044, 24 p.
- Breault, R.F., and Campbell, J.P., 2010c, Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2005: U.S. Geological Survey Open-File Report 2010–1045, 24 p.
- Breault, R.F., and Campbell, J.P., 2010d, Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2006: U.S. Geological Survey Open-File Report 2010–1046, 25 p.
- Breault, R.F., and Smith, K.P., 2010, Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2009: U.S. Geological Survey Open-File Report 2010–1275, 24 p.
- Breault, R.F., Sorenson, J.R., and Weiskel, P.K., 2002, Streamflow, water quality, and contaminant loads in the lower Charles River watershed, Massachusetts, 1999–2000: U.S. Geological Survey Water-Resources Investigations Report 02–4137, 131 p.
- Breault, R.F., Waldron, M.C., Barlow, L.K., and Dickerman, D.C., 2000, Water-quality conditions in relation to drainage basin characteristics in the Scituate Reservoir Basin, Rhode Island, 1982–95: U.S. Geological Survey Water-Resources Investigations Report 00–4086, 46 p.
- Helsel, D.R., and Hirsch, R.M., 2002, Statistical methods in water resources: U.S. Geological Survey Techniques of Water-Resources Investigations, book 4, chap. A3, 522 p.
- Hirsch, R.M., 1982, A comparison of four streamflow record extension techniques: Water Resources Research, v. 18, no. 4, p. 1081–1088.
- Hirsch, R.M., and Gilroy, E.J., 1984, Methods of fitting a straight line to data—Examples in water resources: Water Resources Bulletin, v. 20, no. 5, p. 705–711.
- Nimiroski, M.T., DeSimone, L.A., and Waldron, M.C., 2008, Water-quality conditions and constituent loads, 1996–2002, and water-quality trends, 1983–2002, in the Scituate Reservoir drainage area, Rhode Island: U.S. Geological Survey Scientific Investigations Report 2008–5060, 55 p.
- Nimiroski, M.T., and Waldron, M.C., 2002, Sources of sodium and chloride in the Scituate Reservoir drainage basin, Rhode Island: U.S. Geological Survey Water-Resources Investigations Report 02–4149, 16 p.
- Providence Water Supply Board Water Quality Laboratory, 2012, Quality Assurance Program Manual: Providence Water Supply Board [variously paged].

24 Streamflow, Water Quality, and Constituent Loads and Yields, Scituate Reservoir Drainage Area, Rhode Island, 2014

- Ries, K.G., III, and Friesz, P.J., 2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water-Resources Investigations Report 00–4136, 81 p.
- Smith, K.P., 2013, Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2011: U.S. Geological Survey Open-File Report 2013–1127, 32 p.
- Smith, K.P., 2014, Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2012: U.S. Geological Survey Open-File Report 2013–1274, 30 p.
- Smith, K.P., 2015a, Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2013: U.S. Geological Survey Open-File Report 2015–1082, 31 p., accessed June 3, 2015, at http://dx.doi.org/10.3133/ofr20151082.
- Smith, K.P., 2015b, Water-quality trends in the Scituate reservoir drainage area, Rhode Island, 1983–2012: U.S. Geological Survey Scientific Investigations Report 2015– 5058, 57 p. [Also available at http://dx.doi.org/10.3133/ sir20155058.]

- Smith, K.P., and Breault, R.F., 2011, Streamflow, water quality, and constituent loads and yields, Scituate Reservoir drainage area, Rhode Island, water year 2010: U.S. Geological Survey Open-File Report 2011–1076, 26 p.
- Tasker, G.D., and Driver, N.E., 1988, Nationwide regression models for predicting urban runoff water quality at unmonitored sites: Water Resources Bulletin, v. 24, no. 5, p. 1090–1101.
- U.S. Geological Survey, 2001, Water data for the nation: U.S. Geological Survey National Water Information System Web site, accessed November 10, 2010, at http://waterdata.usgs.gov/nwis/.
- U.S. Geological Survey, 2007, Water-resources data for the United States, water year 2006: U.S. Geological Survey Water-Data Report WDR–US–2006, accessed November 5, 2009, at http://wdr.water.usgs.gov/.
- Wagner, R.J., Boulger, R.W., Jr., Oblinger, C.J., and Smith, B.A., 2006, Guidelines and standard procedures for continuous water-quality monitors—Station operation, record computation, and data reporting: U.S. Geological Survey Techniques and Methods, book 1, chap. D3, 8 attachments, accessed April 10, 2006, at http://pubs.water.usgs.gov/ tm1d3.

Table 4. Daily loads of bacteria, chloride, nitrate, nitrite, and orthophosphate by tributary reservoir subbasin in the Scituate Reservoir drainage area, Rhode Island, October 1, 2013, through September 30, 2014. [Water-quality data are from samples collected and analyzed by the Providence Water Supply Board (PWSB). Shaded areas indicate values that were calculated with concentration data censored at half the detection level. Alternate station names are given in parentheses for stations where different historical names were used for the same sampling location by the PWSB. USGS, U.S. Geological Survey, ft³/s, cubic data not available] feet ner second: CFU×10%d: millions of colony forming units ner day: E coli: Escherichia coli: ke/d, kilograms ner day: g/d, grams ner day: N, mitrogen: PO, whoshhate: </br>

PWSB station number	USGS station number	Station name	Date	Daily mean streamflow (ft³/s)	Total coliform bacteria (CFUx10 ⁶ /d)	<i>E. coli</i> (CFUx10 ⁶ /d)	Chloride (kg/d)	Nitrite (g/d as N)	Nitrate (g/d as N)	Orthophos- phate (g/d as P0 ₄)
				Barden Reservoir subbasin	ir subbasin					
24	01115190	Dolly Cole Brook	12/06/13	2.9	21,000	1,400	160	14	<35	13,000
			01/15/14	29	240,000	64,000	1,500	140	1,400	12,000
			03/18/14	12	32,000	5,900	760	29	290	880
			04/04/14	13	79,000	<1,600	740	64	320	2,500
			05/02/14	42	410,000	51,000	930	210	1,000	3,100
			06/17/14	2.5	53,000	2,400	160	12	61	310
			07/14/14	0.57	22,000	1,400	33	4.2	14	98
			08/22/14	0.57	39,000	420	35	1.4	14	56
			09/05/14	0.18	23,000	1,300	11	0.88	40	18
25	01115200	Shippee Brook	01/17/14	5.9	8,700	<720	140	14	140	1,000
			04/18/14	11	48,000	<1,300	440	53	260	8,200
26	01115185	Windsor Brook	10/18/13	0.30	4,600	73	18	1.5	<3.7	99
			01/17/14	8.9	13,000	<1,100	420	22	220	1,700
			04/18/14	16	12,0000	16,000	24	80	17	6,400
28	01115265	Barden Reservoir (Hemlock Brook)	10/08/13	0.71	5,400	<87	48	5.2	$\Diamond 1$	230
			11/12/13	1.7	2,900	<210	150	8.3	240	250
			12/10/13	9.9	130,000	31,000	510	73	950	1,200
			01/14/14	39	360,000	160,000	1,500	190	340	5,700
			03/11/14	14	38,000	3,400	810	34	640	4,800
			04/15/14	26	250,000	19,000	1,600	32	<160	2,500
			05/13/14	13	89,000	16,000	750	54	<67	640
			06/10/14	5.5	48,000	4,000	350	45	450	270
			07/07/14	4.6	75,000	5,600	380	0.88	44	3,700
			09/09/14	0.18	3.300	<22	12	45	<110	13

Daily loads of bacteria, chloride, nitrate, nitrite, and orthophosphate by tributary reservoir subbasin in the Scituate Reservoir drainage area, Rhode Island, October 1, 2013, through September 30, 2014.—Continued Table 4.

[Water-quality data are from samples collected and analyzed by the Providence Water Supply Board (PWSB). Shaded areas indicate values that were calculated with concentration data censored at half the detection level. Alternate station names are given in parentheses for stations where different historical names were used for the same sampling location by the PWSB. USGS, U.S. Geological Survey; ft³/s, cubic [aldelie 1040 whote. / DO nh 7 2 onli bald bild r day. F coli Fecharichia Concellance d. CEII×106/d. millions of co feet

PWSB station number r	USGS station number	Station name	Date	Daily mean streamflow (ft³/s)	Total coliform bacteria (CFUx10 ⁶ /d)	<i>E. coli</i> (CFUx10 ⁶ /d)	Chloride (kg/d)	Nitrite (g/d as N)	Nitrate (g/d as N)	Orthophos- phate (g/d as P0 ₄)
			Barden	Reservoir subt	Barden Reservoir subbasin—Continued	-0				
35 0	01115187	Ponaganset River	12/06/13	9.1	53,000	2,200	430	380	3,800	1,100
			01/15/14	78	310,000	95,000	3,100	86	860	21,000
			03/18/14	35	120,000	8,600	1,800	140	1,400	2,600
			04/04/14	57	390,000	<7,000	2,500	570	2,800	5,600
			05/02/14	120	2,300,000	570,000	4,900	7.3	24	8,500
			07/14/14	1.0	13,000	490	61	1.4	64	370
			09/05/14	0.29	61,000	1,400	21	1.8	<4.6	14
				Direct Runoff subbasin	subbasin					
1 0	01115180	Brandy Brook	10/01/13	0.38	8,200	<46	1.0	0.82	<4.1	180
			11/05/13	0.33	2,900	160	0.49	8.9	30	65
			12/03/13	1.2	11,000	4,500	40	11.0	<18	680
			01/09/14	1.5	4,300	360	2.2	33	<84	330
			04/01/14	6.8	170,000	<840	120.0	23	LL	500
			05/06/14	3.1	15,000	<380	67	17	44	<i>LL</i> >
			06/03/14	1.8	100,000	440	49	3.8	10	130
			07/01/14	0.39	32,000	950	10	1.4	<3.4	99
			08/05/14	0.28	15,000	540	7.9	1.1	5.3	20
			09/02/14	0.22	2,200	<26	0.32	0.15	1.5	37
3 0	01115280	Cork Brook	10/03/13	0.06	440	15	1.2	2.2	22	19
			12/05/13	0.91	4,900	1,100	82	3.7	37	160
			01/02/14	1.5	1,800	370	140	12	120	2,100
			04/03/14	4.8	31,000	1,200	370	230	<390	2,300
			05/01/14	32	2,100,000	230,000	1,700	5.4	27	7,000
			06/16/14	1.1	11,000	1,100	95	0.46	4.6	160
			07/18/14	0.19	6,900	46	3.6	0.29	5.9	19
			08/19/14	0.12	13,000	590	15	0.11	<0.56	18

Table 4. Daily loads of bacteria, chloride, nitrate, nitrite, and orthophosphate by tributary reservoir subbasin in the Scituate Reservoir drainage area, Rhode Island, October 1, 2013, through September 30, 2014.—Continued [Water-quality data are from samples collected and analyzed by the Providence Water Supply Board (PWSB). Shaded areas indicate values that were calculated with concentration data censored at half the detection level. Alternate station names are given in parentheses for stations where different historical names were used for the same sampling location by the PWSB. USGS, U.S. Geological Survey; ft^{3/s}, cubic feet per second; CFU×10%/d; millions of colony forming units per day; *E. coli*; *Escherichia coli*; *kg*/d, kilograms per day; *g*/d, grams per day; *N*, nitrogen; PO., phosphate; </ less than; --, data not available]

Direct Runner Continued 4 01115400 Kent Brook 1001113 0.05 4.300 530 2.00 10 1 0115400 Kent Brook 1001113 0.05 4.300 630 10 10 1 1 1 2 1001114 9.7 2500 690 10 20 40 1 1 2 5.300 12.000 12 13 41 1 1 2 5.300 1200 10 62 050614 1 2 200 200 201 60 1 0 2 1 000 200 200 60 2 0 0.01 2 4 20 20 20 20 2 1 0.02 2.00 120 20 20 20 20 2 1 0.02 2.00 2.00 2.00 20 2.00 2.00 </th <th>PWSB station number</th> <th>USGS station number</th> <th>Station name</th> <th>Date</th> <th>Daily mean streamflow (ft³/s)</th> <th>Total coliform bacteria (CFUx10⁶/d)</th> <th><i>E. coli</i> (CFUx10⁶/d)</th> <th>Chloride (kg/d)</th> <th>Nitrite (g/d as N)</th> <th>Nitrate (g/d as N)</th> <th>Orthophos- phate (g/d as PO₄)</th>	PWSB station number	USGS station number	Station name	Date	Daily mean streamflow (ft³/s)	Total coliform bacteria (CFUx10 ⁶ /d)	<i>E. coli</i> (CFUx10 ⁶ /d)	Chloride (kg/d)	Nitrite (g/d as N)	Nitrate (g/d as N)	Orthophos- phate (g/d as PO ₄)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				Direc	ct Runoff subba	sin-Continued					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	01115400		10/01/13	0.05	4,300	230	0.2	2.00	10	19
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				12/03/13	0.42	920	<51	4.7	20.0	86>	210
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				01/07/14	8.0	14,000	<980	12	1.8	<8.9	390
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				03/04/14	0.7	2,500	<89	10	24	<120	53
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				04/01/14	9.7	900,000	12,000	12	8.1	41	2,400
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				05/06/14	1.7	5,300	410	17	1.2	6.2	81
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				06/03/14	0.25	44,000	1,200	2.6	0.11	<0.27	12.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				07/01/14	0.02	2,000	270	<0.01	<0.01	0.47	<0.54
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				09/02/14	<.01	590	9.4	<0.01	2.6	8.6	0.19
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	01115184		10/15/13	0.35	11,000	<43	29	21	100	120
07/31/14 0.09 13,000 660 7.8 4.5 1 01115183 Quonapaug Brook 10/01/13 0.26 22,000 1,300 26 2.7 11/05/13 0.22 3,600 540 2.4 19 $<<$				04/28/14	4.2	14,000	<510	190	0.66	2.2	210
01115183 Quonapaug Brook $10/01/13$ 0.26 $22,000$ $1,300$ 26 2.7 $11/05/13$ 0.22 $3,600$ 540 2.4 19 <1 $12/03/13$ 1.3 $14,000$ $1,900$ 83 30 14 $01/07/14$ 6.1 $110,000$ 1900 740 100 32 $04/01/14$ 14 $150,000$ $10,000$ $1,000$ 47 5 $05/06/14$ 4.8 $18,000$ 5500 480 43 5 $06/03/14$ 2.2 $32,000$ $10,000$ 1000 1100 2 4 $06/03/14$ 2.2 $32,000$ $6,500$ 190 11 $ 08/05/14$ 0.17 $16,000$ $3,700$ 18 7.9 $ 09/02/14$ 0.12 $2.5,000$ 590.00 19 4.5 $-$				07/31/14	0.09	13,000	660	7.8	4.5	19	9.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	01115183		10/01/13	0.26	22,000	1,300	26	2.7	5.40	260
1.3 $14,000$ $1,900$ 83 30 1 6.1 $110,000$ $19,000$ 740 100 3 14 $150,000$ $10,000$ $1,000$ 47 8 4.8 $18,000$ <590 480 43 <222 $32,000$ 100 11 <7 2.2 $32,000$ $6,500$ 190 11 <7 <7 0.27 $15,000$ $2,000$ 31 $$ $ <79$ <79 <79 <79 <79 <79 <79 <79 <79 <79 <79 <79 <79 <79 <79 <79 <79 <79 <79 <79 <79 <79 <79 <79 <79 <79 <79 <79 <79 <79 <79 <79 <79 <79 <79 <79 <79 <79 <79 <79 <79 <79 <79 <79 <79 <79 <79 <79 <79 <79 <td></td> <td></td> <td></td> <td>11/05/13</td> <td>0.22</td> <td>3,600</td> <td>540</td> <td>2.4</td> <td>19</td> <td><16</td> <td>120</td>				11/05/13	0.22	3,600	540	2.4	19	<16	120
6.1 $110,000$ $19,000$ 740 100 3 14 $150,000$ $10,000$ $1,000$ 47 $<$ 4.8 $18,000$ < 590 480 43 $<$ 2.2 $32,000$ $6,500$ 190 11 $<$ 0.27 $15,000$ $2,000$ 31 $$ $ 0.17$ $16,000$ $3,700$ 18 7.9 1 0.12 $25,000$ 590.00 19 4.5 $-$				12/03/13	1.3	14,000	1,900	83	30	150	220
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				01/07/14	6.1	110,000	19,000	740	100	340	450
4.8 $18,000$ <590 480 43 2.2 $32,000$ $6,500$ 190 11 0.27 $15,000$ $2,000$ 31 $$ 0.17 $16,000$ $3,700$ 18 7.9 1 0.12 $25,000$ 590.00 19 4.5				04/01/14	14	150,000	10,000	1,000	47	<59	<340
2.2 32,000 6,500 190 11 0.27 15,000 2,000 31 0.17 16,000 3,700 18 7.9 1 0.12 25,000 590.00 19 4.5				05/06/14	4.8	18,000	<590	480	43	54	470
0.27 15,000 2,000 31 0.17 16,000 3,700 18 7.9 140 0.12 25,000 590.00 19 4.5 45				06/03/14	2.2	32,000	6,500	190	11	<3.3	270
0.17 16,000 3,700 18 7.9 0.12 25,000 590.00 19 4.5				07/01/14	0.27	15,000	2,000	31	ł	ł	1
0.12 25,000 590.00 19 4.5				08/05/14	0.17	16,000	3,700	18	7.9	140	83
				09/02/14	0.12	25,000	590.00	19	4.5	45	68

Daily loads of bacteria, chloride, nitrate, nitrite, and orthophosphate by tributary reservoir subbasin in the Scituate Reservoir drainage area, Rhode Island, October 1, 2013, through September 30, 2014.—Continued Table 4.

detection level. Alternate station names are given in parentheses for stations where different historical names were used for the same sampling location by the PWSB. USGS, U.S. Geological Survey, ft³/s, cubic feet per second; CFU×10%/d; millions of colony forming units per day; *E. coli, Escherichia coli*; kg/d, kilograms per day; g/d, grams per day; N, nitrogen; PO₄, phosphate; <, less than; --, data not available] [Water-quality data are from samples collected and analyzed by the Providence Water Supply Board (PWSB). Shaded areas indicate values that were calculated with concentration data censored at half the

station station number number	Station name	Date	Daily mean streamflow (ft³/s)	Total coliform bacteria (CFUx10 ⁶ /d)	<i>E. coli</i> (CFUx10 ⁶ /d)	Chloride (kg/d)	Nitrite (g/d as N)	Nitrate (g/d as N)	Orthophos- phate (g/d as P0 ₄)
		Direc	t Runoff subba	Direct Runoff subbasin—Continued					
7 01115297	7 Wilbur Hollow Brook	10/03/13	0.92	9,900	450	1.4	32	<53	200
		12/05/13	4.3	58,000	13,000	94	30	150	740
		01/02/14	6.1	19,000	7,500	9.0	13	130.00	2,400
		03/06/14	5.5	12,000	1,300	8.1	73	370	810
		04/03/14	15	170,000	11,000	22	330	1,100	2,900
		05/01/14	45	1,400,000	110,000	1,000	63	160	12,000
		06/16/14	6.4	100,000	19,000	110	15	51	310
		07/18/14	2.1	41,000	3,600	15	16	110.00	260
		08/19/14	2.2	180,000	27,000	33	0.34	21.00	160
		09/04/14	0.07	14,000	340	2.0	16	160.00	5.1
8 01115276	6 Westconnaug Brook	01/10/14	6.4	<780	<780	140	34	<170	1,100
		02/24/14	14	21,000	<1,700	21	37	370	6,200
		03/21/14	15	15,000	<1,800	480	39	390	1,100
		04/11/14	16	47,000	<2,000	430	42	420	7,400
		05/19/14	17	50,000	<2,100	310	12	120	1,200
		06/20/14	5.1	15,000	<620	160	4.2	370	2,200
		09/12/14	1.7	<210	17,000	160	9.8	49	370
9 01115275	5 Bear Tree Brook	04/28/14	2.0	16,000	1,500	210	0.83	58	98
		07/30/14	0.17	9,600	830	37	1.7	17	29
32 01115178	Ur	03/24/14	0.68	5,900	330	22	7.0	35	170
	(Pine Swamp Brook)	04/17/14	1.4	5,300	1,100	46	0.00	<0.17	180
33 01115182	2 Unnamed Tributary 3 to Scituate Reservoir	10/16/13	0.01	190	7.0	0.28	1.1	11	5.9
	(Hall's Estate Brook)	04/29/14	0.46	1,500	110	0.7	3.20	16	62

Table 4. Daily loads of bacteria, chloride, nitrate, nitrite, and orthophosphate by tributary reservoir subbasin in the Scituate Reservoir drainage area, Rhode Island, October 1, 2013, through September 30, 2014.—Continued [Water-quality data are from samples collected and analyzed by the Providence Water Supply Board (PWSB). Shaded areas indicate values that were calculated with concentration data censored at half the detection level. Alternate station names are given in parentheses for stations where different historical names were used for the same sampling location by the PWSB. USGS, U.S. Geological Survey; ft³/s, cubic

	Station name	Date	Daily mean streamflow	Total coliform bacteria	<i>E. coli</i> (CFUx10 ⁶ /d)	Chloride (kg/d)	Nitrite (q/d as N)	Nitrate (q/d as N)	Orthophos- phate
	-	Mos	Moswansicut Reservoir subbasin	rvoir subbasin					
19 01115170	70 Moswansicut Reservoir (Moswansicut	10/10/13	0.66	1,800	480	60	29	190	340
	Stream North, Moswansicut Pond)	12/12/13	3.9	6,700	2,900	330	25	250	570
		01/09/14	5.2	1,300	<640	470	34	170	380
		02/25/14	6.9	<840	<840	660	32	<160	3,000
		04/10/14	13	19,000	6,400	1,200	37	190	5,100
		05/08/14	7.6	30,000	<930	740	14	71	3,300
		06/12/14	2.9	18,000	1,400	290	2.0	20	140
		07/19/14	0.81	12,000	200	180	8.1	81	140
		08/14/14	3.3	54,000	2,400	340	5.2	31	<81
21 01115165	55 Unnamed Tributary 2 to Moswansicut	01/29/14	0.42	4,000	210	31	3.8	68	130
	Reservoir (Brook from Kimball Reservoir)	05/15/14	0.52	4,700	<64	48	14	490	51
		Re	Regulating Reservoir subbasin	/oir subbasin					
14 01115110	10 Huntinghouse Brook	12/02/13	2.8	41,000	2,700	92	98	440	750
		01/16/14	20	210,000	20,000	540	88	390	8,300
		03/17/14	18	88,000	13,000	610	78	390	1,300
		04/07/14	16	43,000	3,900	530	160	71	3,500
		05/05/14	16	86,000	7,800	480	7.1	<62	1,600
		06/02/14	2.9	33,000	2,100	4.3	25	680	350
15 01115114	14 Rush Brook	12/02/13	5.1	57,000	21,000	520	34	140	1,100
		01/16/14	14	72,000	6,800	110	14	270	3,100
		02/03/14	5.8	24,000	<710	650	670	230	066
		03/17/14	11	70,000	5,400	1,100	47	220	1,100
		04/07/14	9.6	100,000	4,700	1,100	420	42	2,300
		05/05/14	9.1	42,000	2,200	910	12	14	1,100
		06/02/14	1.7	12,000	<210	240	4.1	6.7>	250
		07/08/14	0.56	16.000	1 400	LL	16	< 4 2	68

Daily loads of bacteria, chloride, nitrate, nitrite, and orthophosphate by tributary reservoir subbasin in the Scituate Reservoir drainage area, Rhode Island, October 1, 2013, through September 30, 2014.—Continued Table 4.

detection level. Alternate station names are given in parentheses for stations where different historical names were used for the same sampling location by the PWSB. USGS, U.S. Geological Survey, ft³/s, cubic feet per second; CFU×10%/d; millions of colony forming units per day; *E. coli*; *Escherichia coli*; kg/d, kilograms per day; g/d, grams per day; N, nitrogen; PO, phosphate; </ less than; --, data not available] [Water-quality data are from samples collected and analyzed by the Providence Water Supply Board (PWSB). Shaded areas indicate values that were calculated with concentration data censored at half the

station station number number	Station name	Date	Daily mean streamflow (ft³/s)	Total coliform bacteria (CFUx10 ⁶ /d)	<i>E. coli</i> (CFUx10 ⁶ /d)	Chloride (kg/d)	Nitrite (g/d as N)	Nitrate (g/d as N)	Orthophos- phate (g/d as P0 ₄)
		Regulatin	g Reservoir sul	Regulating Reservoir subbasin—Continued	led				
16 01115098	8 Peeptoad Brook (Harrisdale Brook)	10/07/13	0.65	4,800	67>	54	1.2	110	95
		11/04/13	0.51	2,100	<62	43	34	730	62
		12/02/13	4.6	57,000	20,000	350	37	95	1,500
		01/16/14	15	140,000	29,000	1,500	19	<210	2,900
		02/03/14	3.9	7,600	<480	420	620	560	860
		03/17/14	17	79,000	4,200	1,800	110	390	420
		04/07/14	23	84,000	<2,800	2,000	940	91	5,100
		05/05/14	16	67,000	7,800	1,700	27	32	1,200
		06/02/14	3.7	15,000	2,700	510	6.4	12	360
		07/08/14	1.3	23,000	<160	140	0.61	16	64
		08/04/14	0.25	3,500	61	25	0.64	3.4	12
		09/17/14	0.13	11,000	640	15	0.68	29	6.4
18 01115120) Unnamed Tributary to Regulating Reservoir (Unnamed Brook A)	05/15/14	0.14	1,400	34	4.9	5.9	200	31
		Wes	Westconnaug Reservoir subbasin	rvoir subbasin					
10 01115274	4 Westconnaug Brook	12/10/13	1.2	8,800	880	63	10	68	410
		01/14/14	4.0	13,000	980	210	14	130	490
		03/11/14	2.8	4,700	<340	4.1	25	91	270
		04/15/14	5.2	8,900	1,300	7.6	14	21	890
		05/13/14	1.9	6,400	910	120	2.1	38	91
		06/10/14	0.86	8,600	<110	61	5.2	<20	63
11 01115273	U	01/28/14	1.1	8,600	520	1.6	7.6	⊲38	100
	Reservoir (Unnamed Brook South of Westconnauo Reservoir)	04/22/14	1.6	8,000	<190	2.3	49	<120	910

Appendix 1. Water-Quality Data Collected by the Providence Water Supply Board at 37 Monitoring Stations in the Scituate Reservoir Drainage Area, Water Year 2014

[Available as a separately downloaded Microsoft Excel file, at http://dx.doi.org/10.3133/ ofr20161051.]

For more information concerning this report, contact: Director, New England Water Science Center U.S. Geological Survey 10 Bearfoot Road Northborough, MA 01532 dc_nweng@usgs.gov or visit our Web site at: http://newengland.water.usgs.gov

Publishing support by: The Pembroke Publishing Service Center

ISSN 2331-1258 (online) http://dx.doi.org/10.3133/ofr20161051