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Preface 
This report was developed to provide scientific and corresponding spatially explicit information 

regarding the distribution and abundance of conifers (namely, singleleaf pinyon [Pinus monophylla], 
Utah juniper [Juniperus osteosperma], and western juniper [Juniperus occidentalis]) in Nevada and 
northeastern California. Distributional expansion of conifers into sagebrush ecosystems over the past 
150 years is a significant threat to greater sage-grouse (Centrocercus urophasianus; hereinafter, "sage-
grouse") populations, as well as those of other sagebrush obligate species. Accordingly, we mapped 
conifers at a high resolution (1 meter) and derived multiple products (available at 
https://doi.org/10.5066/F7348HVC) within sage-grouse habitats of Nevada and northeastern California. 
These products are intended as decision support for land managers, policy-makers, and interested 
stakeholders to be used for a variety of management and research applications. Users also have the 
ability to set custom bins representing user-desired ranges of conifer cover for their own applications.  
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Using Object-Based Image Analysis to Conduct High-
Resolution Conifer Extraction at Regional Spatial Scales 

By Peter S. Coates, K. Benjamin Gustafson, Cali L. Roth, Michael P. Chenaille, Mark A. Ricca,  
Kimberly Mauch, Erika Sanchez-Chopitea, Travis J. Kroger, William M. Perry, and Michael L. Casazza 

Abstract 
The distribution and abundance of pinyon (Pinus monophylla) and juniper (Juniperus 

osteosperma, J. occidentalis) trees (hereinafter, "pinyon-juniper") in sagebrush (Artemisia spp.) 
ecosystems of the Great Basin in the Western United States has increased substantially since the late 
1800s. Distributional expansion and infill of pinyon-juniper into sagebrush ecosystems threatens the 
ecological function and economic viability of these ecosystems within the Great Basin, and is now a 
major contemporary challenge facing land and wildlife managers. Particularly, pinyon-juniper 
encroachment into intact sagebrush ecosystems has been identified as a primary threat facing 
populations of greater sage-grouse (Centrocercus urophasianus; hereinafter, "sage-grouse"), which is a 
sagebrush obligate species. Even seemingly innocuous scatterings of isolated pinyon-juniper in an 
otherwise intact sagebrush landscape can negatively affect survival and reproduction of sage-grouse. 
Therefore, accurate and high-resolution maps of pinyon-juniper distribution and abundance (indexed by 
canopy cover) across broad geographic extents would help guide land management decisions that better 
target areas for pinyon-juniper removal projects (for example, fuel reduction, habitat improvement for 
sage-grouse, and other sagebrush species) and facilitate science that further quantifies ecological effects 
of pinyon-juniper encroachment on sage-grouse populations and sagebrush ecosystem processes. Hence, 
we mapped pinyon-juniper (referred to as conifers for actual mapping) at a 1 × 1-meter (m) high 
resolution across the entire range of previously mapped sage-grouse habitat in Nevada and northeastern 
California.  

We used digital orthophoto quad tiles from National Agriculture Imagery Program (2010, 2013) 
as base imagery, and then classified conifers using automated feature extraction methodology with the 
program Feature Analyst™. This method relies on machine learning algorithms that extract features from 
imagery based on their spectral and spatial signatures. We classified conifers in 6,230 tiles and then 
tested for errors of omission and commission using confusion matrices. Accuracy ranged from 79.1 to 
96.8, with an overall accuracy of 84.3 percent across all mapped areas. An estimated accuracy 
coefficient (kappa) indicated substantial to nearly perfect agreement, which varied across mapped areas. 
For this mapping process across the entire mapping extent, four sets of products are available at 
https://doi.org/10.5066/F7348HVC, including (1) a shapefile representing accuracy results linked 
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to mapping subunits; (2) binary rasters representing conifer presence or absence at a 1 × 1 m resolution; 
(3) a 30 × 30 m resolution raster representing percentages of conifer canopy cover within each cell from 
0 to 100; and (4) 1 × 1 m resolution canopy cover classification rasters derived from a 50-m-radius 
moving window analysis. The latter two products can be reclassified in a geographic information system 
(GIS) into user-specified bins to meet different objectives, which include approximations for phases of 
encroachment. These products complement, and in some cases improve upon, existing conifer maps in 
the Western United States, and will help facilitate sage-grouse habitat management and sagebrush 
ecosystem restoration. 

Introduction 
The iconic "sagebrush sea" that characterizes the Great Basin of the Western United States is 

larger than 75 percent of countries worldwide (Coates, Ricca, and others, 2016) and provides habitat for 
several at-risk sagebrush-obligate species (Wisdom and others, 2005; Homer and others, 2009; Knick 
and others, 2013). Sagebrush ecosystems also support outdoor recreation valued at $1 billion annually 
(Bureau of Land Management and U.S. Forest Service, 2014) and cattle grazing, valued as high as $60 
billion in a single year (U.S. Department of Agriculture Economic Research Service, 2016). It is also 
one of the most endangered ecosystems in the United States (Noss and others, 1995), as the range of 
sagebrush has contracted by more than 50 percent since European settlement. The remaining range is 
subjected to continual fragmentation, largely from anthropogenic-related disturbances (Knick and 
others, 2003; Schroeder and others, 2004). Accordingly, sagebrush ecosystems are at the center of 
national conservation strategy (U.S. Department of Interior, 2015). 

Conifers such as pinyon (Pinus monophylla) and juniper (Juniperus osteosperma, J. 
occidentalis; hereinafter, "pinyon-juniper") are a native component of the sagebrush ecosystems in the 
Great Basin. However, the distribution and abundance of pinyon-juniper has greatly expanded following 
European settlement (Miller and Tausch, 2001), with as much as a 10-fold increase owing to a variety of 
factors, including changes in climate (Soulé and others, 2004; Romme and others, 2009), land use 
(Miller and Wigand, 1994; Miller and Rose, 1999; Romme and others, 2009), and fire regimes 
(Burkhardt and Tisdale, 1976; Miller and Rose, 1999; Miller and others, 2000; Soulé and others, 2004). 
Accordingly, encroachment of pinyon-juniper is a major factor contributing to the fragmentation and 
loss of sagebrush ecosystems and the processes that maintain them in an intact state (Davies and others, 
2011; Miller and others, 2011; Knick and others, 2013). For example, dominance of sagebrush and 
perennial grasses, which contribute strongly to sagebrush ecosystem resilience to disturbance and 
resistance to invasion (Chambers and others, 2014), decreases as cover of pinyon-juniper increases 
(Miller and others, 2005). This relationship can be categorized into three distinct phases of 
encroachment (Miller and others, 2005), where in the simplest terms, sagebrush is dominant over 
pinyon-juniper in phase 1 (> 0 and ≤ 10 percent pinyon-juniper canopy cover), sagebrush and pinyon-
juniper are co-dominant in phase 2 (> 10 and ≤ 30 percent pinyon-juniper canopy cover), and pinyon-
juniper is dominant and has replaced sagebrush in phase 3 (> 30 percent pinyon-juniper canopy cover).  
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The loss of shrub and herbaceous understory components with increasing phase of encroachment 
diminishes forage and cover for constituent wildlife (Connelly and others, 2000; Miller and others, 
2000, 2011; Beck and others, 2012) and reduces available forage for cattle (Bedell and Borman, 1997; 
Soulé and Knapp, 1999; Twidwell and others, 2013). Pinyon-juniper encroachment also reduces 
streamflow (Huxman and others, 2005; Kormos and others, 2017), depletes soil water availability 
(Huxman and others, 2005; Roundy and others, 2014; Kormos and others, 2017), and increases bare 
earth contiguity that promotes runoff and subsequent soil erosion (Davenport and others, 1998; Pierson 
and others, 2010). Perhaps most importantly, pinyon-juniper contributes to the severe wildfires that 
have escalated substantially since the 1980s (Running, 2006). The spread of pinyon-juniper into low-
elevation sagebrush ecosystems combined with infill of pinyon-juniper into new woodlands introduces 
woody biomass that fuels more intense wildfires (Running, 2006; Bradley and Fleishman, 2008; 
Romme and others, 2009). Burned pinyon-juniper stands are often replaced by invasive annual grasses 
that have a positive feedback cycle with wildfire, thereby increasing fire extent and frequency and 
spreading fire into sagebrush that would otherwise be much less likely to burn (Tausch and others, 
1999, 2009; Romme and others, 2009; Davies, 2011; Balch and others, 2013). Because of the multitude 
of economic and ecological effects from sagebrush loss, pinyon-juniper encroachment is now a primary 
challenge facing land managers in the Western United States (Barger and others, 2009; Davies and 
others, 2011; Weltz and others, 2014). 

A major impetus for sagebrush restoration efforts is the conservation of greater sage-grouse 
(Centrocercus urophasianus; hereinafter, “sage-grouse”), which is a sagebrush-obligate species that has 
declined concomitantly with the loss of sagebrush (Schroeder and others, 2004; Connelly and others, 
2011) and has been considered for listing multiple times under the Endangered Species Act of 1973 
(U.S. Fish and Wildlife Service, 2015). Sage-grouse act as an indicator-species for the health of 
sagebrush ecosystems because they require expanses of undisturbed sagebrush throughout the year to 
fulfill their life history requirements (Rowland and others, 2006; Hanser and Knick, 2011). Pinyon-
juniper encroachment, in conjunction with wildfire, is a primary threat to sage-grouse populations in 
many parts of the Great Basin (U.S. Fish and Wildlife Service, 2013, 2015). Pinyon-juniper replaces 
and subsequently fragments sagebrush used for nesting cover and forage (Connelly and others, 2004; 
Crawford and others, 2004; Doherty and others, 2008; Knick and Connelly, 2011) and can increase 
predation risk from visually acute predators such as ravens and raptors (Howe and others, 2014). Sage-
grouse strongly avoid pinyon-juniper (Doherty and others, 2008; Atamian and others, 2010; Casazza 
and others, 2011; Knick and others, 2013), which can function as impediments to gene flow among 
populations (Oyler-McCance and others, 2005, 2014). Furthermore, pinyon-juniper cover as little as 2–4 
percent can negatively affect lek persistence (Baruch-Mordo and others, 2013) and sage-grouse survival 
(Coates and others, 2017; Prochazka and others, 2017). Effects on survival can be especially important 
when scattered trees occur in highly productive cool and moist sagebrush habitats that can become 
ecological traps for sage-grouse (Coates and others, 2017). Moreover, recent studies have demonstrated 
how sage-grouse can respond positively to pinyon-juniper removal through improved nest and brood 
survival (Sanford and others, 2017; Severson and others, 2017).  
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The consequences of pinyon-juniper expansion on sage-grouse population decline are regional in 
scope, requiring cooperative conservation efforts by Federal and State agencies that total millions of 
dollars (Sanford and others, 2017). The removal of pinyon-juniper is becoming a principal component 
of conservation plans (Peters and Cobb, 2008; U.S. Fish and Wildlife Service, 2013; Miller and others, 
2014; Nevada Department of Wildlife, 2014; U.S. Department of Agriculture Natural Resources 
Conservation Service, 2014; Duvall and others, 2017; Miller and others, 2017; Severson and others, 
2017). As agencies implement restoration efforts over thousands of hectares (Miller and others, 2017), 
there is an immediate need for high-resolution conifer data over regional spatial extents to optimize 
targeted removal efforts (Connelly and others, 2004; Homer and others, 2009; Bradley, 2010; Falkowski 
and others, 2017). The resolution of such spatial data must be fine enough to precisely determine conifer 
distribution and accurately classify the concentration of conifers even at low densities. This is essential 
to the success of restoration efforts, as even a small percentage of canopy cover is detrimental to sage-
grouse populations (Baruch-Mordo and others, 2013; Coates and others, 2017). Additionally, the 
removal of low density (phases 1 and 2) pinyon-juniper is more effective at restoring intact sagebrush 
community structure, due in part to relatively intact understory community structure and soil 
characteristics (Miller and others, 2008). Moreover, spatially explicit conifer data are used in models 
underlying incentive-based programs that prioritize areas for conifer treatment based on estimated 
benefits to sage-grouse (U.S. Fish and Wildlife Service, 2013; State of Nevada Conservation Credit 
System, 2017). Accurate mapping of contemporary conifer distribution in addition to continuous 
estimates of canopy cover or categorized estimates of phases of encroachment can allow managers to 
better direct resources to areas that yield maximum improvement to sage-grouse populations or other 
sagebrush ecosystem services. 

Remote sensing offers a more efficient and less expensive approach than land-based forest and 
rangeland inventory methods for identifying conifers and classifying canopy cover across large spatial 
extents (Homer and others, 2009; Davies and others, 2010; Falkowski and others, 2017) because the 
latter efforts often require extensive human resources, time, and protocol standardization. However, the 
customary classification products derived from satellite imagery at large spatial extents generally target 
a few limited classes (Lang and Langanke, 2005) and do not have the spatial resolution necessary to 
target areas for pinyon-juniper removal based on distributions of single or sparsely scattered trees 
(Davies and others, 2010; Falkowski and Evans, 2012). For example, the resolution of Landsat-based 
mapping products (30 × 30 m, or 900 square meters [m2)] can be too coarse to identify the early stages 
of pinyon-juniper encroachment (for example, as low as 10 percent canopy cover) that often constitute 
the best candidate areas for pinyon-juniper removal (Miller and others, 2008; Baruch-Mordo and others, 
2013; Coates and others, 2017). Additionally, Landsat can overestimate stands of high density conifer 
because the cell size of the imagery often exceeds the diameter of individual trees on the landscape (fig. 
1).  
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Figure 1. Pinyon-juniper in false-color, 1 × 1 m resolution National Agricultural Imagery Program (left) and Landsat-
derived 30 × 30 m resolution pinyon-juniper class overlay (right). 

 
Recent advances in remote sensing, computing power, and feature recognition technologies such 

as object-based image analysis (OBIA) can be applied readily to very high spatial resolution (VHSR) 
imagery (< 2 × 2 m) to identify individual conifers on the landscape (Davies and others, 2010; 
Falkowski and Evans, 2012; Mishra and Crews, 2014; Falkowski and others, 2017). OBIA exploits 
VHSR imagery by segmenting cells into image-objects based on their spectral, spatial, and structural 
properties, and then classifies these image-objects to extract features of interest (Burnett and Blaschke, 
2003; Hay and others, 2003; Benz and others, 2004; Hay and Castilla, 2006; Alpin and Smith, 2008). 
Segmentation facilitates accurate conifer delineation from VHSR imagery as conifer canopies can be as 
wide as 10 m (Falkowski and others, 2017) and encompass multiple cells with variable properties. 
OBIA can also implement supervised and hierarchical learning to train algorithms and hone accuracy of 
image object outputs by iteratively correcting operator-identified artifacts of over- or under-
classification. Classification of conifer features using OBIA on VHSR imagery has been shown to 
reliably identify forest canopy in relatively small test scenarios (Davies and others, 2010; Madsen and 
others, 2011; Falkowski and Evans, 2012; Hulet and others, 2013; Roundy, 2015). 

We applied OBIA across all previously mapped sage-grouse habitat in Nevada and northeastern 
California (Coates, Casazza, Ricca, and others, 2016; Coates, Casazza, Brussee, and others, 2016) to 
identify individual conifers statewide and provide land managers with practical data that can be used in 
restoration efforts. Although pinyon-juniper comprise the majority of conifers and conifer-like 
functional types in our mapping extent, we use the term conifer when referring to map output because 
we could not distinguish among different conifer species. We mapped conifers at a resolution of 1 × 1 m 
using National Agriculture Imagery Program (NAIP; U.S. Department of Agriculture, 2014) imagery 
collected in 2010 and 2013 as our reference data and the Feature Analyst™ toolbox (Overwatch  
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Systems, Ltd., Sterling, Virginia) for Esri® ArcGIS™ Desktop (Esri, 2013, Release 10.2, Redlands, 
California). Feature Analyst™ is an accelerated feature extraction (AFE) method that semi-automates the 
extraction of target features using a machine learning algorithm trained to delineate image-objects based 
on the spectral and spatial signatures of defined cell neighborhoods (Opitz and Blundell, 2008). AFE 
outperforms pixel-based methods (Riggan and Weih, 2009; Weih and Riggan, 2010) and is recognized 
as one of the most accurate OBIA methods available (Opitz and Blundell, 2008; Tsai and others, 2011). 
We identified examples of conifer image objects to create 1 × 1 m resolution binary conifer rasters 
(gridded spatial data that represent conifer presence as cells with values of one) for each sage-grouse 
population management unit (PMU; Nevada Department of Wildlife, 2014) across the full mapping 
extent, and conducted extensive analyses of omission and commission to provide estimates of mapping 
accuracy by PMU. We then scaled the 1 × 1 m resolution data into unsmoothed (30 × 30 m) and 50-m 
radius moving-window smoothed (1 × 1 m) estimates of percent canopy cover to facilitate identification 
of pinyon-juniper encroachment phases at resolutions sought by land managers. We offer the 30 × 30 m 
product for seamless integration into current geospatial applications that use standard 30 × 30 m 
resolution products, while the 1 × 1 m product allows users to estimate conifer cover with higher 
accuracy than currently available. These products provide highly accurate depictions of pinyon-juniper 
distribution and canopy cover which inform sage-grouse habitat suitability and population response 
models (Coates, Casazza, Ricca, and others, 2016; Coates and others, 2017; Prochazka and others, 
2017), and can provide land managers with actionable metrics for assessing the efficacy of pinyon-
juniper removal projects.  

Study Methods 
Study Area Mapping and Selection 

Conifer mapping was conducted for all 61 Nevada Department of Wildlife (NDOW) sage-grouse 
PMUs (fig. 2). PMUs are population-specific spatial boundaries primarily generated from sage-grouse 
lek distributions, but they also incorporate the habitat availability and environmental factors that 
influence each sage-grouse population (Nevada Department of Wildlife Sage Grouse Conservation Plan, 
2001, appendix C). We selected PMUs because they represent the geographic extent of any NDOW 
management prescriptions and coincide with sage-grouse habitat models that are used to prioritize 
conservation areas (Coates, Casazza, Ricca, and others, 2016; Coates Casazza, Brussee, and others, 
2016). We buffered the extent of the PMUs by 10 kilometers (km) to prevent inaccurate moving 
window (or neighborhood) calculations within the study area along boundaries where "No Data" values 
would occur (fig. 2). We selected this buffer size because it exceeds the radius of any neighborhood 
calculations land managers might apply, as sage-grouse typically are not using habitat more than 8 km 
from lek locations (Holloran and Anderson, 2005; Coates and others, 2013).  
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Figure 2. Map showing study area extent of mapped conifers using automated feature extraction methods within 
sage-grouse habitat in Nevada and California. 
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Feature Extraction 
We used the NAIP digital orthophoto quarter quads (DOQQs) because they are freely available, 

orthorectified, VHSR (1 × 1 m) products that comprise four spectral bands (three visible-light bands 
[RGB] and a near-infrared band). These features are for identifying vegetation and distinguishing 
among vegetation types, including conifers. Our study extent included 6,230 DOQQs from Nevada and 
California (fig. 3), which also includes small areas along the state borders of Oregon, Idaho and Utah 
that fell within the buffered PMU boundary. A small section of our study area along the southern 
boundary was truncated by the Nevada Military Test and Training Range where the NAIP imagery was 
unavailable or redacted. We analyzed PMUs on a tile-by-tile basis by intersecting polygon boundaries 
of the DOQQs with the PMUs because inconsistencies among DOQQs such as varying image quality, 
changes in lighting, inconsistent spectral values, shadows, parallax, and processing artifacts required 
independent analysis of each tile for greatest classification accuracy. Although mosaicking tiles into 
continuous surfaces for each PMU would allow for color correction, the extent of each PMU is so large 
that a VHSR mosaic of associated DOQQs would be very time consuming and computationally 
intensive to analyze by AFE, as well as nearly impossible to inspect for classification errors. Due to 
these processing limitations, we further divided larger PMUs such as Monitor, Quinn, and Buffalo-
Skedaddle into smaller, more manageable zones. Zone boundaries followed DOQQ boundary polygons 
and were selected in low to non-conifer areas to minimize the potential for seamlines in classifications.  

We reviewed each tile initially for the presence of conifers and processed tiles individually that 
consisted of conifers using the Feature Analyst™ Supervised Learning Wizard. This tool applies a 
supervised learning algorithm that extracts features meeting the spectral and contextual specifications 
provided by the user via a set of training polygons. We digitized a representative sample of conifer 
image objects selected across the entire tile to create a polygon training set (fig. 3a). Conifers were 
identified using traditional False Color settings, which display vegetation as red. We distinguished 
conifers from other vegetation based on the hue of red and identification was verified in Google Earth™ 
(version 7.1.2.2041 2013; fig. 3a). We digitized clearly identifiable individual conifers for the training 
polygons to ensure the classification of isolated trees in low canopy density areas and used the spectral 
properties of the cells under false-color settings to delineate the conifer crown. This process trained the 
OBIA algorithm to distinguish trees from shadows and other vegetation types, preventing 
misclassification. Each digitized image object consisted of at least three cells, as we assumed tree 
heights of digitized trees were not less than 3 m. The number of samples per tile varied according to 
image quality and color variation, but always consisted of a minimum of five training polygons (fig. 3a). 

We then used the training set as the input for Feature Analyst™’s Supervised Learning Wizard to 
generate conifer features from the four-band NAIP image (fig. 3b). In the Wizard, we specified 
parameters that best represented trees in the supervised machine learning algorithm. We defined our 
search neighborhoods using the "Natural Feature" feature selector with the "Bullseye 3" parameter over 
a 5 × 5 m moving window to define the spatial and spectral context used by the algorithm to extract 
features (fig. 3b). "Natural Shape" discouraged the algorithm from using hard lines to generate image 
objects. The Bullseye search window reduced processing time by reducing the number of cells supplied 
to the learning algorithm while still representing the neighborhood.  
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Figure 3. Schematic showing conceptual model of conifer classification framework using automated feature extraction methods within greater sage-
grouse habitats in Nevada and California. Input is represented as orange diamond and green hexagon identifies products. Blue and gray boxes 
represent steps conducted in Feature Analyst™ and a GIS software, respectively. Starred items (*) denote iterated geoprocessing steps. 
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We specified a "pattern width" of 5 m to match the Bullseye moving window, and we chose 5 m in 
both instances because this width was larger than our minimum mapping unit, allowing the 
algorithm to discern features based on collective spectral qualities while still small enough to 
extract individual trees. Additionally, it allowed us to exclude smaller vegetation with similar 
spectral signatures and reduce the chance for errors of commission. Detected features less than 3 
m2 were aggregated (fig. 3b). These parameters were determined to best classify trees after several 
rounds of tests.  

We checked output conifer features for accuracy against the NAIP reference imagery. 
Typically, the initial results would be over- or under-classified. If the results were under-classified, 
more training polygons were added to the initial set and a new supervised classification was 
performed to replace the initial output. In some cases where a single learning algorithm could not 
be trained to recognize all conifer features (that is, extremely dense stands), multiple algorithms 
were run on the same tile to target the variety of feature types and these outputs were merged 
together. If the results were over-classified, the analyst would proceed with the "Hierarchical 
Learning" process in Feature Analyst™ (fig. 3). First, we digitized incorrect features for removal 
using the "Begin Removing Clutter Tool." We provided removal polygon samples of all possible 
misclassifications such as shadows, riparian vegetation, and other non-conifer features. The correct 
output features were then identified to retrain the OBIA algorithm. Finally, we digitized features 
that were missed by the previous supervised learning run and added to the training set using the 
"Begin Adding Missed Features Tool." The incorrect, correct, and missed features were all 
incorporated into a hierarchical supervised classification performed on the previous OBIA output. 
This hierarchical classification continued until misclassification errors were minimized based on 
visual comparison of feature outputs to the NAIP reference imagery. 

We carried out several post-processing steps (fig. 3c) on output feature layers for each tile 
to further improve results. First, features were run through additional geoprocessing tools to 
dissolve overlapping features, repair polygon geometry, and remove features less than 3 m2. Any 
large misclassifications that occurred due to spectral overlap (algae in standing water, irrigated 
agricultural fields, wet meadows, riparian areas, or patches of other non-conifer vegetation) were 
removed using custom polygon masks. We then converted the clean shapefiles for each tile to 2-
bit, binary VHSR rasters (1 × 1 m; fig. 3d) and reviewed for obvious errors of omission and 
commission. We also checked against neighboring tiles for acute seamlines, which were signs of 
classification disagreement resulting from tile-based analysis. If classification agreement was not 
satisfactory, then we re-analyzed tiles. Clean rasters for each zone or PMU were mosaicked in 
ERDAS Imagine (2013, Leica Geosystems, Atlanta, Georgia; fig. 3d) using the "Automatic Most 
Nadir Seam" setting, which overlaps areas where the distance to the center point of each image is 
equal and minimizes seamlines.  

Canopy Cover Study Methods 
After validation (see section, "Conifer Mapping Results"), final mosaics were used to 

calculate high resolution estimates of percent canopy cover for the entire study area in two distinct 
ways. In the first method, we simply aggregated by summing the number of 1 × 1 m conifer cells 
within a 30 × 30 m cell and divided by its area, which yielded a floating point raster of percent 
canopy cover per 30 × 30 m cell (fig. 3f). This was converted to whole numbers of percent canopy 
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cover ranging from 0 to 100. For the second method, the large file sizes of the VHSR PMU/zone 
mosaics made it necessary to perform the calculation on smaller extents (fig. 3g). Hence, we 
divided the study area into 37 grid sectors of equal extent and mosaicked PMUs that intersected 
each sector. We then calculated percent canopy cover by summing all cell values within a 50-m 
radius neighborhood (equivalent to 7,845 m2) and dividing by the total number of cells within that 
neighborhood. To accommodate land managers, we reclassified the cells according to multiple 
intervals of percent canopy cover (table 1). Canopy cover intervals were based on known 
biological significance to sage-grouse (Baruch-Mordo and others, 2013; Coates and others, 2017). 
Sage-grouse avoid canopy cover as low as 4 percent (Baruch-Mordo and others, 2013; Coates and 
others, 2017), therefore we maintained individual intervals for each percentage less than 10 
percent. 

To assess the accuracy of OBIA conifer classification, we constructed a confusion matrix 
(Congalton and Green, 2009) for each PMU. We first generated stratified random points within our 
1-m conifer and non-conifer classes and compared our classification at those locations against 
NAIP reference imagery (fig. 3e). We standardized the number of points by sampling 100 points 
per the average classified area (km2) of the PMUs. We then divided the area of each PMU (km2) 
by this km2-per-point value to weight the number of random points generated for each PMU by its 
area, with a required minimum of 25 points generated for each PMU. Each random point was 
visually inspected for errors of omission (for example, failing to identify a conifer that occurred) 
and commission (for example, incorrectly classifying a non-conifer as a conifer), and the results 
entered in the confusion matrix (fig. 3e). We calculated the overall accuracy of conifer and non-
conifer classification in each PMU, which identifies the percent of correct classifications from the 
total cases examined. To investigate bias in the OBIA towards errors of commission or omission, 
we also calculated the user’s and producer’s accuracy, respectively. The user’s accuracy represents 
errors of commission, or the inclusion of pixels that are not the specified class, while the 
producer’s accuracy reflects errors of omission, or the exclusion of pixels in the correct class. The 
user’s accuracy evaluates the reliability of the output conifer class by determining the percentage 
of cases correctly attributed to each class and the producer’s accuracy assesses the performance of 
the classification algorithm by identifying the percent detection of all cases in each class. The 
values in the confusion matrices were used to perform an estimated accuracy coefficient (kappa) 
analysis, which is generally accepted as the best means of assessing the accuracy of image 
processing products (Congalton and Green, 2009). The kappa analysis generates the kappa 
coefficient (𝐾𝐾ℎ𝑎𝑎𝑎𝑎), which represents the percent accuracy adjusted for correct classification due to 
random chance. A positive 𝐾𝐾ℎ𝑎𝑎𝑎𝑎 indicates the results in the confusion matrix are better than a 
random result (Jensen, 1996). We generated 𝐾𝐾ℎ𝑎𝑎𝑎𝑎 statistics for each PMU. We used the Landis and 
Koch (1977) interpretation of kappa, where 𝐾𝐾ℎ𝑎𝑎𝑎𝑎 greater than 60 percent indicate substantial 
agreement between classification and truth, and those greater than 80 percent are almost perfect.  
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Table 1. Canopy cover class intervals for mapped conifers at the 1-meter resolution using intensive 
automated feature extraction methods within greater sage-grouse habitat of Nevada and California.  
 
[Percentages were based on 50-meter radius neighborhood (7,845 square meters).] 
 

Class Percent canopy cover 
0 0 
1 > 0 to 1 
2 >1 to 2 
3 >2 to 3 
4 >3 to 4 
5 >4 to 5 
6 >5 to 6 
7 >6 to 7 
8 >7 to 8 
9 >8 to 9 

10 >9 to 10 
11 >10 to 15 
12 >15 to 20 
13 >20 to 25 
14 >25 to 30 
15 >30 to 35 
16 >35 to 40 
17 >40 to 45 
18 >45 to 50 
19 > 50 

 

Conifer Mapping Results 
We provide four sets of conifer classification products for the full extent of our study area 

within the State of Nevada (available for free download with accompanying metadata at 
https://doi.org/10.5066/F7348HVC): (1) a shapefile representing confusion matrix results linked to 
its respective PMU or zone; (2) binary rasters identifying conifer presence or absence at a 1 × 1 m 
resolution, available by PMU; (3) a 30 × 30 m resolution raster representing percentages of conifer 
canopy cover within each cell (fig. 4); and (4) 50-m radius moving window canopy cover class 
rasters at a 1 × 1 m resolution, available in quadrants. Importantly, the latter two products can be 
reclassified in a GIS into user-specified bins to meet different objectives, which include 
approximations for phases of pinyon-juniper encroachment into sagebrush ecosystems. These 
products complement, and in some cases improve upon, existing conifer maps in the Western 
United States, and will help facilitate sage-grouse habitat management and restoration of 
sagebrush ecosystems.  

We reported accuracy assessments for each PMU (table 2; fig. 5) and summarized accuracy 
results across all PMUs (table 3). Three of the PMUs do not have accuracy assessments because 
we did not detect any conifers within the PMU boundaries (table 2; fig. 5). Further detail of the 
error matrices for the 1 × 1 m resolution conifer classification by PMU, as well as user’s accuracy, 
producer’s accuracy, overall accuracy, and 𝐾𝐾ℎ𝑎𝑎𝑎𝑎 for each PMU is reported in appendix A and the 
embedded metadata of each mosaic raster file (https://doi.org/10.5066/F7348HVC). User’s and  
  

https://doi.org/10.5066/F7348HVC
https://doi.org/10.5066/F7348HVC
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producer’s accuracies ranged from 60 to 95.16 percent (fig. 6, left) and 71 to 100 percent (fig. 6, 
right), respectively. On average, conifer classification had higher incidence of errors of 
commission reported as conifer user’s accuracy (76.07 percent; standard deviation [SD] = 8.50 
percent; table 3) than non-conifer user's accuracy (97.11 percent; SD = 3.10 percent; table 3). 
Accordingly, errors of omission were more common for non-conifer classification (producer’s 
accuracy = 80.63 percent; SD = 5.69 percent; table 3) compared to conifer classification (96.51 
percent; SD = 3.59; table 3). The overall accuracies of all classes for individual PMUs ranged from 
79 to 97 percent (fig. 5), with a mean of 86.38 percent (SD = 4.21 percent; table 3). Mean adjusted 
accuracy showed that there was substantial agreement between classes and reference imagery 
(𝐾𝐾ℎ𝑎𝑎𝑎𝑎 = 73.17 percent; SD = 8.50 percent; table 3). Twenty-five percent of the PMUs had almost 
perfect classification (𝐾𝐾ℎ𝑎𝑎𝑎𝑎 ≥ 80 percent) and only Zone 2 of Monitor and Limbo had an adjusted 
accuracy that rated lower than substantial agreement (𝐾𝐾ℎ𝑎𝑎𝑎𝑎 ≤ 60 percent; table 2).  
 

Table 2. Accuracy results of mapping conifers at the 1-meter resolution by population management unit using 
intensive automated feature extraction methods within greater sage-grouse habitat of Nevada and California. 
 
[Khat, estimated accuracy coefficient. N/A, population management units where conifers were not detected] 
 

Population  
management unit 

Conifer 
user's 

accuracy  
(percent) 

Non-conifer 
user's 

accuracy 
 (percent) 

Conifer 
producer's 
accuracy 
(percent) 

Non-conifer 
producer's 
accuracy 
(percent) 

Overall 
accuracy 
(percent) 

Khat  
(percent) 

Battle Mountain 68.00 100.00 100.00 75.76 84.00 68.00 
Black Rock 68.00 100.00 100.00 75.76 84.00 68.00 
Buffalo-Skedaddle 70.78 92.19 90.06 75.93 81.49 62.97 
Butte/ Buck/White Pine 82.58 91.57 90.74 84.02 87.08 74.16 
Clan Alpine 78.45 99.14 98.91 82.14 88.79 77.59 
Cortez 70.00 98.33 97.67 76.62 84.17 68.33 
Desatoya 95.16 98.39 98.33 95.31 96.77 93.55 
Desert 68.00 100.00 100.00 75.76 84.00 68.00 
Diamond 80.41 95.88 95.12 83.04 88.14 76.29 
East Valley 79.17 93.52 92.43 81.78 86.34 72.69 
East Range 63.77 97.10 95.65 72.83 80.43 60.87 
Eden Valley N/A N/A N/A N/A N/A N/A 
Eugenes 68.00 96.00 94.44 75.00 82.00 64.00 
Fish Creek 65.71 100.00 100.00 74.47 82.86 65.71 
Gollaher 73.80 94.65 93.24 78.32 84.22 68.45 
Humboldt 89.74 100.00 100.00 90.70 94.87 89.74 
Islands 69.62 100.00 100.00 76.70 84.81 69.62 
Jackson 70.00 96.67 95.45 76.32 83.33 66.67 
Kawich 81.03 93.10 92.16 83.08 87.07 74.14 
Limbo 60.00 100.00 100.00 71.43 80.00 60.00 
Lincoln 78.10 89.54 88.19 80.35 83.82 67.65 
Lone Willow 64.00 100.00 100.00 73.53 82.00 64.00 
Majuba 1 and 2 84.62 100.00 100.00 86.67 92.31 84.62 
Majuba 3 and 4 69.44 100.00 100.00 76.60 84.72 69.44 
Massacre 80.61 98.98 98.75 83.62 89.80 79.59 
Nightengale 76.00 100.00 100.00 80.65 88.00 76.00 
North Fork 82.43 100.00 100.00 85.06 91.22 82.43 
O'Neil Basin 63.89 100.00 100.00 73.47 81.94 63.89 
Pine Forest 80.00 100.00 100.00 83.33 90.00 80.00 
Reese River 82.03 94.01 93.19 83.95 88.02 76.04 
Ruby Valley 66.67 96.11 94.49 74.25 81.39 62.78 
Sahwave 1 and 2 88.00 96.00 95.65 88.89 83.80 84.00 
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Population  
management unit 

Conifer 
user's 

accuracy  
(percent) 

Non-conifer 
user's 

accuracy 
 (percent) 

Conifer 
producer's 
accuracy 
(percent) 

Non-conifer 
producer's 
accuracy 
(percent) 

Overall 
accuracy 
(percent) 

Khat  
(percent) 

Santa Rosa N/A N/A N/A N/A N/A N/A 
Schell/Antelope 69.95 97.95 96.75 76.47 83.80 67.61 
Sheldon 84.48 100.00 100.00 86.57 92.24 84.48 
Shoshone 66.67 98.33 97.56 74.68 82.50 65.00 
Slumbering Hills N/A N/A N/A N/A N/A N/A 
Snake 75.71 97.14 96.36 80.00 86.43 72.86 
Sonoma 83.64 100.00 100.00 85.94 91.82 83.64 
South Fork 67.46 98.22 97.44 75.11 82.84 65.68 
Steptoe Cave 83.78 90.09 89.42 84.75 86.94 73.87 
Stillwater 75.51 91.84 90.24 78.95 83.67 67.35 
Three Bar 86.60 95.88 95.45 87.74 91.24 82.47 
Toiyabe 72.67 98.67 98.20 78.31 85.67 71.33 
Trinity 1 and 2 92.00 96.00 95.83 92.31 94.00 88.00 
Tuscarora 84.00 100.00 100.00 86.21 92.00 84.00 
Virginia-Pahrah 78.09 97.75 97.20 81.69 87.92 75.84 
Vya 72.32 93.22 91.43 77.10 82.77 65.54 
Zone 1 (Monitor) 75.47 90.57 88.89 78.69 83.02 66.04 
Zone 2 (Monitor) 61.96 96.32 94.39 71.69 79.14 58.28 
Zone 3 (Monitor) 73.83 97.99 97.35 78.92 85.91 71.81 
Zone 4 (Monitor and 

Quinn) 
75.47 100.00 100.00 80.30 87.74 75.47 

Zone 5 (Quinn) 84.97 99.35 99.24 86.86 92.16 84.31 
Zone 6 (Quinn) 87.94 97.87 97.64 89.03 92.91 85.82 
Zone 7 (Quinn) 88.00 92.00 91.67 88.46 90.00 80.00 
Spring-Snake Valley 72.92 96.35 95.24 78.06 84.64 69.27 

 

Table 3. Summarized results of mapping conifers at the 1-meter resolution across all population 
management units using intensive accelerated feature extraction methods within greater sage-grouse habitat 
of Nevada and California. 
 
[Means are shown with 1 standard deviation. Khat: Estimated accuracy coefficient.] 

 

 
Conifer user's 

accuracy 
(percent) 

Non-conifer 
user's accuracy 

(percent) 

Conifer 
producer's 
accuracy 
(percent) 

Non-conifer 
producer's 
accuracy 
(percent) 

Overall 
accuracy 
(percent) 

Khat 
(percent) 

Mean 76.07 ± 8.50 97.11 ± 3.10 96.51 ± 3.59 80.63 ± 5.70 86.38 ± 4.21 73.17 ± 8.50 
Minimum 60 89.54 88.19 71.43 79.14 58.28 
Maximum 95.16 100 100 95.31 96.77 93.55 
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Figure 4. Maps showing conifer extent (left) and percent canopy cover (right) of mapped conifers using automated feature extraction methods within 
greater sage-grouse habitat in Nevada and California.  
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Figure 5. Maps showing overall accuracy (left) and Kappa statistic (right) results by population management unit of mapped conifers at the 1-meter 
resolution using automated feature extraction methods within greater sage-grouse habitat in Nevada and California. 
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Figure 6. Maps showing user’s accuracy (error of commission; left) and producer’s accuracy (error of omission; right) by population management unit 
of mapped conifers at the 1-meter resolution using automated feature extraction methods within greater sage-grouse habitat in Nevada and California.
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Discussion 
We provide highly accurate maps of conifer distribution at the 1 × 1 m resolution and of 

continuous canopy cover at the 30 × 30 m resolution across the full extent of mapped sage-grouse 
habitat in Nevada and northeastern California. Through the process, we produced a framework for 
implementing Feature Analyst™’s AFE, a highly precise OBIA classification method that 
heretofore has had limited application at large spatial extents largely because of computational and 
time demands (Hay and Castilla, 2006; Bruce, 2008; Tsai and others, 2011), but which has proven 
to be more accurate than traditional supervised classification methods normally conducted at such 
extents (for example, O’Brien, 2003; Bruce, 2008; Opitz and Blundell, 2008; Blaschke, 2010; Tsai 
and others, 2011). To the best of our knowledge, we present the only true OBIA-based products 
across a significant part of the geographic distribution of sagebrush and sage-grouse, which will 
help facilitate conservation and restoration efforts across large spatial extents. Representation of 
conifer features in our outputs better reflect ground conditions than 30 × 30 m resolution Landsat-
derived conifer products (fig. 7), largely because of the high resolution outputs of our reference 
imagery.  

The high resolution conifer maps provided here can offer a decision support tool for land 
managers and also help to inform further ecological studies. For example, such maps can help 
refine models that predict distribution and abundance for a variety of wildlife species that respond 
to pinyon-juniper in the environment, including sage-grouse populations within Nevada and 
California (Coates and others, 2015, 2016). Additionally, high resolution conifer maps are 
necessary to understand the underlying mechanisms (Coates and others, 2017; Prochazka and 
others, 2017) of how conifers adversely influence sage-grouse population dynamics (Baruch-
Mordo and others, 2013). Our percent canopy cover output (smoothed and unsmoothed) have 
built-in flexibility that allow users to select the cutoffs that are appropriate for their purposes 

 
 
 
 
 

 

 

 

 

 

 

 
 
Figure 7. Example conifer classification output overlay (in yellow; left) and percent canopy cover calculation 
overlay (right) from conifers mapped in the same area of Nevada using automated feature extraction.  
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(Miller and others, 2000, 2005; Tausch and others, 2009; Falkowski and Evans, 2012). For 
example, demarcation of a specific cover class can be based on quantified effects of pinyon-
juniper on sage-grouse population dynamics (Baruch-Mordo and others, 2013; Coates and others, 
2017). 

Land managers can further economically value their sites by developing scenarios and 
assessing how well they meet the specific goals of each project, which can then help streamline 
allocation of time and resources currently necessary for project appraisals (Opitz and Blundell, 
2008; Boswell and others, 2017). At large spatial extents, these high-resolution products can help 
land managers evaluate and compare candidate sites for conifer removal remotely across large 
spatial extents (Falkowski and Evans, 2012; Falkowski and others, 2017). In specific regard to 
sage-grouse, high resolution conifer maps could be used to calculate ecological benefits of 
removing pinyon-juniper trees to sage-grouse populations by simulating pinyon-juniper removal 
and integrating results into sage-grouse habitat and demographic models, allowing for 
quantification of direct improvement to habitat suitability and demographic rates. This process can 
be valuable for calculating conservation credits as ecological currency for large extent programs 
such as the State of Nevada Conservation Credit System (2017). Additional use of the cover class 
settings can refine target removal areas to those within transitional phase 1, identifying areas 
where trees have the greatest adverse effects on sage-grouse survival (Coates and others, 2017) 
and, thus, allocate funds to those sites that maximize benefits to sage-grouse (Miller and others, 
2008; Baruch-Mordo and others, 2013). These mapping products also enable other non-wildlife 
related landscape-level management through traditional site-level treatments and facilitates 
managers to prioritize and efficiently implement restoration projects, which include forage for 
cattle (Bedell and others, 1997; Soulé and Knapp, 1999; Twidwell and others, 2013), changes in 
soil erosion patterns (Davenport and others, 1998; Pierson and others, 2010), or reductions of 
wildfire fuel loads, extent, and severity (Hulet and others, 2014).  

The framework we presented (fig. 3) enables the use of intensive AFE to classify target 
features across an entire region from VHSR imagery, resulting in comprehensive and highly 
accurate outputs. OBIA methods like AFE that require higher levels of automation are known to be 
time consuming (Strand and others, 2006; Tsai and others, 2011; Falkowski and Evans, 2012), 
which has restricted the scope of their application (Falkowski and Evans, 2012). Our framework 
reduces processing time and computational demand in order to make the implementation of such 
OBIA methods feasible across relatively large spatial extents. This reduction was primarily 
accomplished by leveraging Feature Analyst™’s user-friendly, semi-automated, inductive learning 
algorithms to decrease user investment and processing time (Opitz and Blundell, 2008). We also 
took advantage of parameters such as the bullseye pattern to reduce the amount of data processed 
by Feature Analyst™’s models (Opitz and Blundell, 2008). However, AFE and other semi-
automated OBIA methods require substantial operator investment (Strand and others, 2006; Tsai 
and others, 2011; Falkowski and Evans, 2012). For example, to produce our conifer classification, 
each tile required individualized training polygon development and supervised (often hierarchical) 
learning runs. The volume of work necessary to map the state required 10 analysts working 
congruently for several months.  
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Although the high operator-involvement of Feature Analyst™ promotes the extraction of 
features that are more accurate to human perception (Opitz and Blundell, 2008), the subjectivity of 
the inputs decreases reproducibility and increases analysis time (Strand and others, 2006). To 
reduce this unavoidable cost, we integrated our Feature Analyst™ workflow with many time-
saving geoprocessing steps such as analyzing imagery on a tile-by-tile basis, conducting percent 
canopy cover classification by sectors, and performing validation within PMUs. Geoprocessing 
steps such as rasterization and mosaicking were iterated within PMUs in ArcGIS using Model 
Builder (Esri, 2013, Release 10.2, Redlands, California) so that multiple classified tiles could 
undergo post-processing in quick succession and simultaneously. We also used Model Builder to 
iterate the calculation and reclassification of percent canopy cover smoothed by the 50-m radius 
neighborhood within sectors. Post-processing could be further automated by additional iteration 
across PMUs and sectors, respectively. User-investment could be reduced on the front end by 
mosaicking the NAIP tiles into a single layer. However, analysis of VHSR imagery at such a large 
spatial extent remains limited by processing power. Also, Feature Analyst™ has several features 
that facilitate further automation via batch processing, such as the ability to save training polygons 
and learning algorithms for repeated use, allowing analysts to use a single training set and model 
for all imagery and greatly reduce the user-investment and processing time required for each tile 
(Opitz and Blundell, 2008). We could not use these functions largely because of inconsistent 
quality of NAIP tiles across our mapping extent. However, such features are available for future 
applications and could easily be incorporated into this existing framework. Lastly, as improved 
reference imagery becomes available, outputs are planned to be integrated into spatially explicit 
maps of contemporary seasonal sage-grouse habitat suitability. Thus, this overarching framework 
supports the development of "living layers" that reflect existing sage-grouse habitat conditions and 
provide highly accurate, timely information to land managers operating within and responding to 
changing landscapes.  

Caveats and Comparisons 
The accuracy of our conifer classification inspires confidence in its utility for pinyon-

juniper removal efforts. However, because our accuracy assessment was not all-encompassing, 
uncaptured error or variability within PMUs that affects site-level decisions may exist. Accuracies 
for the PMUs are relatively high (Landis and Koch, 1977), but we calculated wide variability 
among scores (𝐾𝐾ℎ𝑎𝑎𝑎𝑎 = 79.1–96.7 percent, fig. 5b) driven by fluctuation in user’s accuracies for 
conifer classification (SD = 8.43; table 3) across the PMUs. Conifer class commission errors (and 
subsequent omission errors in the non-conifer class) are likely a result of the algorithms’ incorrect 
assignment of shadows and non-target vegetation to the conifer class, which was prevalent in 
dense canopy cover and riparian areas, respectively. Inclusion of shadows was most likely 
exaggerated in regions of topographic shading, causing potential overestimation of canopy cover. 
We attempted to minimize commission by digitizing misclassified features as part of the 
hierarchical learning process in order to train the learning algorithms to distinguish spectral 
signatures of conifers from background. However, NAIP DOQQ tiles with low-quality imagery 
resulted in spectral overlap between conifer and classes with similar signatures. The variation in 
user’s accuracies among PMU mosaics was caused by inconsistent lighting, spectral values, 
parallax, and processing artifacts among tiles. We addressed these inconsistencies by performing 
object training on a tile-by-tile basis in order to achieve the highest accuracy for each processed 
area possible. Unfortunately, seamlines caused by inconsistent image quality were exaggerated as 
an artifact of this process. Tiles were reclassified if necessary to reduce the seamlines and produce 
a more realistic, continuous surface.  



 

21 

Even with the relatively high accuracy of OBIA derived layers (Blaschke, 2010), improved 
accuracy of OBIA methods is particularly necessary for applications at small spatial extents. 
Higher quality reference imagery will resolve immediate issues such as spectral overlap between 
target and background features and incongruence among tiles. With the continuous improvement 
in resolution and the increasing availability of multi- and hyper-spectral imagery due to advancing 
sensor technology, we expect vast improvement in the ability to effectively extract conifers by 
spectral signature, and thereby improve image segmentation and AFE methods. Fusions of VHSR 
imagery with ancillary data sources such as lidar or canopy height models could also enhance the 
conifer classification process, which could help eliminate commission of shadows or low-growth 
vegetation by stratifying image cells by height. Lidar and lidar fusions have been used to discern 
individual trees in merged canopies from peaks in canopy structure (Hirschmugl and others, 2007; 
Sankey and Glenn, 2011; Jakubowski and others, 2013), which would benefit site-level 
management planning by estimating the number of trees to be removed. However, implementation 
of these methods across large spatial extents presents a challenge largely because of limitations on 
data availability, acquisition costs, and computational power (Tsai and others, 2011).  

We chose to use AFE as our method of OBIA because of its reported accuracy (O’Brien, 
2005; Bruce, 2008; Opitz and Blundell, 2008; Tsai and others, 2011), yet Spatial Wavelet Analysis 
(SWA) has been successfully employed for a number of conifer classification products (Falkowski 
and others, 2006; Strand and others, 2006, 2007, 2008; Falkowski and Evans, 2012). Most 
recently, Falkowski and others (2017) used SWA to produce high-resolution (1 × 1 m) canopy 
cover classification of conifers across an 11-State region that included the Great Basin. SWA 
extracts conifers from imagery by convolving various sized two-dimensional Mexican Hat 
Wavelet functions, which have a circular shape that emulates tree crowns, to capture variability in 
tree crown dimension. The output is a circular feature at the location of the detected tree with a 
diameter specified by the size of the best-fitting wavelet. Although this method has benefits related 
to less processing time, there are many known disadvantages of using SWA to classify canopy 
cover. Because SWA classifies image-objects by signal size and shape, it can confuse background 
features such as roads or streambeds for target features, and it cannot readily differentiate among 
vegetation types, so it is biased towards errors of commission that require manual correction 
(Strand and others, 2006; Falkowski and Evans, 2012; Falkowski and others 2017). AFE may not 
share this bias because it uses similarities in the focal pixel cell and training image-object spectral 
signatures to segment target features, rather than signal and wavelet pattern. Also, SWA is prone to 
under-classifying dense canopy areas (Strand and others, 2006; Poznanovic and others, 2014; 
Falkowski and others, 2017) because the wavelet loses the ability to recognize trees as a target 
feature when the shape of the signal is no longer circular (Strand and others, 2008). Therefore this 
method has been reported to be inappropriate in closed canopy systems where canopy cover 
exceeds 40 percent (Poznanovic and others, 2014; Falkowski and others, 2017). SWA has also 
been shown to omit trees in shaded regions, particularly in areas with topographic shadows 
(Falkowski and others, 2017), which represents a challenge given the terrain of Nevada. AFE in 
Feature Analyst™ does not have a high rate of omission errors in the higher conifer canopy classes 
(3 percent) because the algorithm can be parameterized to segment image-objects by target 
spectral properties rather than shape. However, AFE will return dense canopies as a single object.  
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One of the greatest advantages of using SWA is its multiscale functionality (Strand and 
others, 2006; Falkowski and others, 2017), but users can achieve the same end with AFE (albeit 
time-intensive) by using several scales to parameterize the search neighborhood. However, we 
used known characteristics of conifer size to determine the correct scale of the analysis. We 
selected the threshold scale of 5 × 5 m because it covered our assumed 3 m2 cutoff for minimum 
conifer size, and it returned the highest accuracy output in our initial tests. Also, the 5 × 5 m 
restriction allowed us to exclude many non-target species that are spectrally inseparable from 
conifers (fig. 8). This criterion inherently omitted some small conifers, but these trees are 
estimated to represent a very small percentage of woody biomass (Strand and others, 2008; 
Poznanovic and others, 2014), and we opted to reduce errors of commission to provide a more 
conservative and overall accurate classification. In contrast, SWA may misclassify other species as 
conifers because they meet requisite size and shape criteria. Therefore SWA may overestimate 
conifer cover in low to no cover areas such as riparian zones and salt flats dominated by other 
woody plant species. Accurate classification of conifers in low canopy cover areas is critical 
because sage-grouse are sensitive to small percentage increases in canopy cover, and 
overestimation can mask regions that represent ecological traps for sage-grouse and could be 
targeted for pinyon-juniper removal (Baruch-Mordo and others, 2013; Coates and others, 2017). 

Nevertheless, AFE and SWA methods have been used to produce canopy cover products 
specifically to assist managers with sagebrush ecosystem and habitat restoration within the same 
region, and both methods have inherent advantages and disadvantages. Research that focuses more 
directly on comparing the two methods at large spatial extents would be highly beneficial, 
especially regarding: (1) assessment of differences in accuracy among canopy densities to define 
potential spatial discrepancies in performance; and (2) contrasting sources of commission errors to 
understand viability and future utility of these methods at different spatial extents. These 
comparisons may reveal that in some instances, SWA and AFE complement each other, whereas in 
other instances, one method out-performs the other.  
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Appendix A. Error Matrices Results of Mapping Conifers at the 1-Meter 
Resolution across All Population Management Units Using Intensive 
Accelerated Feature Extraction Methods within Greater Sage-Grouse Habitat of 
Nevada and California  
[Khat, estimated accuracy coefficient] 
 
Battle Mountain           
  Conifer Non-conifer Total User's accuracy   
Conifer random 17 8 25 68.00%   
Non-conifer random 0 25 25 100.00%   

Total 17 33 50     
Producer's accuracy 100.00% 75.76%   84.00% Overall accuracy 

        68.00% Khat 
Black Rock           
  Conifer Non-conifer Total User's accuracy   
Conifer random 17 8 25 68.00%   
Non-conifer random 0 25 25 100.00%   

Total 17 33 50     
Producer's accuracy 100.00% 75.76%   84.00% Overall accuracy 

        68.00% Khat 
Buffalo-Skedaddle           
  Conifer Non-conifer Total User's accuracy   
Conifer random 281 116 397 70.78%   
Non-conifer random 31 366 397 92.19%   

Total 312 482 794     
Producer's accuracy 90.06% 75.93%   81.49% Overall accuracy 

        62.97% Khat 
Butte/Buck/White Pine           
  Conifer Non-conifer Total User's accuracy   
Conifer random 294 62 356 82.58%   
Non-conifer random 30 326 356 91.57%   

Total 324 388 712     
Producer's accuracy 90.74% 84.02%   87.08% Overall accuracy 

        74.16% Khat 
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Clan Alpine 

  Conifer Non-conifer Total User's accuracy   
Conifer random 91 25 116 78.45%   
Non-conifer random 1 115 116 99.14%   

Total 92 140 232     
Producer's accuracy 98.91% 82.14%   88.79% Overall accuracy 

        77.59% Khat 
Cortez           
  Conifer Non-conifer Total User's accuracy   
Conifer random 42 18 60 70.00%   
Non-conifer random 1 59 60 98.33%   

Total 43 77 120     
Producer's accuracy 97.67% 76.62%   84.17% Overall accuracy 

        68.33% Khat 
Desatoya           
  Conifer Non-conifer Total User's accuracy   
Conifer random 59 3 62 95.16%   
Non-conifer random 1 61 62 98.39%   

Total 60 64 124     
Producer's accuracy 98.33% 95.31%   96.77% Overall accuracy 

        93.55% Khat 
Desert           
  Conifer Non-conifer Total User's accuracy   
Conifer random 17 8 25 68.00%   
Non-conifer random 0 25 25 100.00%   

Total 17 33 50     
Producer's accuracy 100.00% 75.76%   84.00% Overall accuracy 

        68.00% Khat 
Diamond           
  Conifer Non-conifer Total User's accuracy   
Conifer random 78 19 97 80.41%   
Non-conifer random 4 93 97 95.88%   

Total 82 112 194     
Producer's accuracy 95.12% 83.04%   88.14% Overall accuracy 

        76.29% Khat 
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East Range 

  Conifer Non-conifer Total User's accuracy   
Conifer random 44 25 69 63.77%   
Non-conifer random 2 67 69 97.10%   

Total 46 92 138     
Producer's accuracy 95.65% 72.83%   80.43% Overall accuracy 

        60.87% Khat 
East Valley           
  Conifer Non-conifer Total User's accuracy   
Conifer random 171 45 216 79.17%   
Non-conifer random 14 202 216 93.52%   

Total 185 247 432     
Producer's accuracy 92.43% 81.78%   86.34% Overall accuracy 

        72.69% Khat 
Eugenes           
  Conifer Non-conifer Total User's accuracy   
Conifer random 17 8 25 68.00%   
Non-conifer random 1 24 25 96.00%   

Total 18 32 50     
Producer's accuracy 94.44% 75.00%   82.00% Overall accuracy 

        64.00% Khat 
Fish Creek           
  Conifer Non-conifer Total User's accuracy   
Conifer random 23 12 35 65.71%   
Non-conifer random 0 35 35 100.00%   

Total 23 47 70     
Producer's accuracy 100.00% 74.47%   82.86% Overall accuracy 

        65.71% Khat 
Gollaher           
  Conifer Non-conifer Total User's accuracy   
Conifer random 138 49 187 73.80%   
Non-conifer random 10 177 187 94.65%   

Total 148 226 374     
Producer's accuracy 93.24% 78.32%   84.22% Overall accuracy 

        68.45% Khat 
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Humboldt 

  Conifer Non-conifer Total User's accuracy   
Conifer random 35 4 39 89.74%   
Non-conifer random 0 39 39 100.00%   

Total 35 43 78     
Producer's accuracy 100.00% 90.70%   94.87% Overall accuracy 

        89.74% Khat 
Islands           
  Conifer Non-conifer Total User's accuracy   
Conifer random 55 24 79 69.62%   
Non-conifer random 0 79 79 100.00%   

Total 55 103 158     
Producer's accuracy 100.00% 76.70%   84.81% Overall accuracy 

        69.62% Khat 
Jackson           
  Conifer Non-conifer Total User's accuracy   
Conifer random 21 9 30 70.00%   
Non-conifer random 1 29 30 96.67%   

Total 22 38 60     
Producer's accuracy 95.45% 76.32%   83.33% Overall accuracy 

        66.67% Khat 
Kawich           
  Conifer Non-conifer Total User's accuracy   
Conifer random 47 11 58 81.03%   
Non-conifer random 4 54 58 93.10%   

Total 51 65 116     
Producer's accuracy 92.16% 83.08%   87.07% Overall accuracy 

        74.14% Khat 
Limbo           
  Conifer Non-conifer Total User's accuracy   
Conifer random 21 14 35 60.00%   
Non-conifer random 0 35 35 100.00%   

Total 21 49 70     
Producer's accuracy 100.00% 71.43%   80.00% Overall accuracy 

        60.00% Khat 
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Lincoln 

  Conifer Non-conifer Total User's accuracy   
Conifer random 239 67 306 78.10%   
Non-conifer random 32 274 306 89.54%   

Total 271 341 612     
Producer's accuracy 88.19% 80.35%   83.82% Overall accuracy 

        67.65% Khat 
Lone Willow           
  Conifer Non-conifer Total User's accuracy   
Conifer random 16 9 25 64.00%   
Non-conifer random 0 25 25 100.00%   

Total 16 34 50     
Producer's accuracy 100.00% 73.53%   82.00% Overall accuracy 

        64.00% Khat 
Majuba 1-2           
  Conifer Non-conifer Total User's accuracy   
Conifer random 33 6 39 84.62%   
Non-conifer random 0 39 39 100.00%   

Total 33 45 78     
Producer's accuracy 100.00% 86.67%   92.31% Overall accuracy 

        84.62% Khat 
Majuba 3-4           
  Conifer Non-conifer Total User's accuracy   
Conifer random 25 11 36 69.44%   
Non-conifer random 0 36 36 100.00%   

Total 25 47 72     
Producer's accuracy 100.00% 76.60%   84.72% Overall accuracy 

        69.44% Khat 
Massacre           
  Conifer Non-conifer Total User's accuracy   
Conifer random 79 19 98 80.61%   
Non-conifer random 1 97 98 98.98%   

Total 80 116 196     
Producer's accuracy 98.75% 83.62%   89.80% Overall accuracy 

        79.59% Khat 
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Nightengale 

  Conifer Non-conifer Total User's accuracy   
Conifer random 19 6 25 76.00%   
Non-conifer random 0 25 25 100.00%   

Total 19 31 50     
Producer's accuracy 100.00% 80.65%   88.00% Overall accuracy 

        76.00% Khat 
North Fork           
  Conifer Non-conifer Total User's accuracy   
Conifer random 61 13 74 82.43%   
Non-conifer random 0 74 74 100.00%   

Total 61 87 148     
Producer's accuracy 100.00% 85.06%   91.22% Overall accuracy 

        82.43% Khat 
O'Neil           
  Conifer Non-conifer Total User's accuracy   
Conifer random 23 13 36 63.89%   
Non-conifer random 0 36 36 100.00%   

Total 23 49 72     
Producer's accuracy 100.00% 73.47%   81.94% Overall accuracy 

        63.89% Khat 
Pine Forest           
  Conifer Non-conifer Total User's accuracy   
Conifer random 20 5 25 80.00%   
Non-conifer random 0 25 25 100.00%   

Total 20 30 50     
Producer's accuracy 100.00% 83.33%   90.00% Overall accuracy 

        80.00% Khat 
Reese River           
  Conifer Non-conifer Total User's accuracy   
Conifer random 178 39 217 82.03%   
Non-conifer random 13 204 217 94.01%   

Total 191 243 434     
Producer's accuracy 93.19% 83.95%   88.02% Overall accuracy 

        76.04% Khat 
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Ruby Valley 

  Conifer Non-conifer Total User's accuracy   
Conifer random 120 60 180 66.67%   
Non-conifer random 7 173 180 96.11%   

Total 127 233 360     
Producer's accuracy 94.49% 74.25%   81.39% Overall accuracy 

        62.78% Khat 
Sahwave 1-2           
  Conifer Non-conifer Total User's accuracy   
Conifer random 22 3 25 88.00%   
Non-conifer random 1 24 25 96.00%   

Total 23 27 50     
Producer's accuracy 95.65% 88.89%   92.00% Overall accuracy 

        84.00% Khat 
Schell-Antelope           
  Conifer Non-conifer Total User's accuracy   
Conifer random 149 64 213 69.95%   
Non-conifer random 5 208 213 97.65%   

Total 154 272 426     
Producer's accuracy 96.75% 76.47%   83.80% Overall accuracy 

        67.61% Khat 
Sheldon           
  Conifer Non-conifer Total User's accuracy   
Conifer random 49 9 58 84.48%   
Non-conifer random 0 58 58 100.00%   

Total 49 67 116     
Producer's accuracy 100.00% 86.57%   92.24% Overall accuracy 

        84.48% Khat 
Shoshone           
  Conifer Non-conifer Total User's accuracy   
Conifer random 40 20 60 66.67%   
Non-conifer random 1 59 60 98.33%   

Total 41 79 120     
Producer's accuracy 97.56% 74.68%   82.50% Overall accuracy 

        65.00% Khat 
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Snake 

  Conifer Non-conifer Total User's accuracy   
Conifer random 53 17 70 75.71%   
Non-conifer random 2 68 70 97.14%   

Total 55 85 140     
Producer's accuracy 96.36% 80.00%   86.43% Overall accuracy 

        72.86% Khat 
Sonoma           
  Conifer Non-conifer Total User's accuracy   
Conifer random 46 9 55 83.64%   
Non-conifer random 0 55 55 100.00%   

Total 46 64 110     
Producer's accuracy 100.00% 85.94%   91.82% Overall accuracy 

        83.64% Khat 
South Fork           
  Conifer Non-conifer Total User's accuracy   
Conifer random 114 55 169 67.46%   
Non-conifer random 3 166 169 98.22%   

Total 117 221 338     
Producer's accuracy 97.44% 75.11%   82.84% Overall accuracy 

        65.68% Khat 
Spring-Snake Valley           
  Conifer Non-conifer Total User's accuracy   
Conifer random 140 52 192 72.92%   
Non-conifer random 7 185 192 96.35%   

Total 147 237 384     
Producer's accuracy 95.24% 78.06%   84.64% Overall accuracy 

        69.27% Khat 
Steptoe-Cave           
  Conifer Non-conifer Total User's accuracy   
Conifer random 93 18 111 83.78%   
Non-conifer random 11 100 111 90.09%   

Total 104 118 222     
Producer's accuracy 89.42% 84.75%   86.94% Overall accuracy 

        73.87% Khat 
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Stillwater 

  Conifer Non-conifer Total User's accuracy   
Conifer random 37 12 49 75.51%   
Non-conifer random 4 45 49 91.84%   

Total 41 57 98     
Producer's accuracy 90.24% 78.95%   83.67% Overall accuracy 

        67.35% Khat 
Three Bar           
  Conifer Non-conifer Total User's accuracy   
Conifer random 84 13 97 86.60%   
Non-conifer random 4 93 97 95.88%   

Total 88 106 194     
Producer's accuracy 95.45% 87.74%   91.24% Overall accuracy 

        82.47% Khat 
Toiyabe           
  Conifer Non-conifer Total User's accuracy   
Conifer random 109 41 150 72.67%   
Non-conifer random 2 148 150 98.67%   

Total 111 189 300     
Producer's accuracy 98.20% 78.31%   85.67% Overall accuracy 

        71.33% Khat 
Trinity 1-2           
  Conifer Non-conifer Total User's accuracy   
Conifer random 23 2 25 92.00%   
Non-conifer random 1 24 25 96.00%   

Total 24 26 50     
Producer's accuracy 95.83% 92.31%   94.00% Overall accuracy 

        88.00% Khat 
Tuscarora           
  Conifer Non-conifer Total User's accuracy   
Conifer random 21 4 25 84.00%   
Non-conifer random 0 25 25 100.00%   

Total 21 29 50     
Producer's accuracy 100.00% 86.21%   92.00% Overall accuracy 

        84.00% Khat 
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Virginia-Pahrah 

  Conifer Non-conifer Total User's accuracy   
Conifer random 139 39 178 78.09%   
Non-conifer random 4 174 178 97.75%   

Total 143 213 356     
Producer's accuracy 97.20% 81.69%   87.92% Overall accuracy 

        75.84% Khat 
Vya           
  Conifer Non-conifer Total User's accuracy   
Conifer random 128 49 177 72.32%   
Non-conifer random 12 165 177 93.22%   

Total 140 214 354     
Producer's accuracy 91.43% 77.10%   82.77% Overall accuracy 

        65.54% Khat 
Zone 1 (Monitor)           
  Conifer Non-conifer Total User's accuracy   
Conifer random 80 26 106 75.47%   
Non-conifer random 10 96 106 90.57%   

Total 90 122 212     
Producer's accuracy 88.89% 78.69%   83.02% Overall accuracy 

        66.04% Khat 
Zone 2 (Monitor)           
  Conifer Non-conifer Total User's accuracy   
Conifer random 101 62 163 61.96%   
Non-conifer random 6 157 163 96.32%   

Total 107 219 326     
Producer's accuracy 94.39% 71.69%   79.14% Overall accuracy 

        58.28% Khat 
Zone 3 (Monitor)           
  Conifer Non-conifer Total User's accuracy   
Conifer random 110 39 149 73.83%   
Non-conifer random 3 146 149 97.99%   

Total 113 185 298     
Producer's accuracy 97.35% 78.92%   85.91% Overall accuracy 

        71.81% Khat 
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Zone 4 (Monitor/Quinn) 

  Conifer Non-conifer Total User's accuracy   
Conifer random 40 13 53 75.47%   
Non-conifer random 0 53 53 100.00%   

Total 40 66 106     
Producer's accuracy 100.00% 80.30%   87.74% Overall accuracy 

        75.47% Khat 
Zone 5 (Quinn)           
  Conifer Non-conifer Total User's accuracy   
Conifer random 130 23 153 84.97%   
Non-conifer random 1 152 153 99.35%   

Total 131 175 306     
Producer's accuracy 99.24% 86.86%   92.16% Overall accuracy 

        84.31% Khat 
Zone 6 (Quinn)           
  Conifer Non-conifer Total User's accuracy   
Conifer random 124 17 141 87.94%   
Non-conifer random 3 138 141 97.87%   

Total 127 155 282     
Producer's accuracy 97.64% 89.03%   92.91% Overall accuracy 

        85.82% Khat 
Zone 7 (Quinn)           
  Conifer Non-conifer Total User's accuracy   
Conifer random 22 3 25 88.00%   
Non-conifer random 2 23 25 92.00%   

Total 24 26 50     
Producer's accuracy 91.67% 88.46%   90.00% Overall accuracy 

        80.00% Khat 
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