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Morphologic Evolution of the Wilderness Area Breach at 
Fire Island, New York: 2012–15
Introduction

Hurricane Sandy, which made landfall on October 29, 2012, near Atlantic City, New Jersey, had 
a significant impact on the coastal system along the south shore of Long Island, New York. A record 
significant wave height of 9.6 meters (m) was measured at wave buoy 44025 (National Oceanic and 
Atmospheric Administration, 2012), approximately 48 kilometers offshore of Fire Island, New York 
(fig. 1, inset). Surge and runup during the storm resulted in extensive beach and dune erosion (Hapke 
and others, 2013) and breaching of the Fire Island barrier island system at two locations, including a 
breach that formed within the Otis Pike Fire Island High Dune Wilderness area on the eastern side of 
Fire Island (figs. 1, 2).

The U.S. Geological Survey (USGS) has a long history of conducting morphologic change 
and processes research at Fire Island. One of the primary objectives of the current research effort is to 
understand the morphologic evolution of the barrier system on a variety of time scales (from storm scale 
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Figure 1.  Location map of Fire Island, New York, showing the area where the wilderness breach formed during Hurricane 
Sandy. 
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Figure 2. A, Pre-storm and B, post-storm aerial photographs of the area where the breach formed after Hurricane Sandy, 
Fire Island, New York.

to decade(s) to century). A number of studies that support the project objectives have been published 
(Hapke and others, 2010; Lentz and Hapke, 2011; Kratzmann and Hapke, 2012; Lentz and others, 2013; 
Schwab and others, 2013; Hapke and others 2016). Prior to Hurricane Sandy, however, little informa-
tion was available on specific storm-driven change in this region. The USGS received Hurricane Sandy 
supplemental funding (project GS2–2B: Linking Coastal Processes and Vulnerability, Fire Island, New 
York, Regional Study) to enhance existing research efforts at Fire Island. The existing research was 
greatly expanded to include inner continental shelf mapping and investigations of processes of inner 
shelf sediment transport (Schwab and others, 2013, 2014; Warner, and others, 2014); beach and dune re-
sponse and recovery (Hapke and others, 2013, 2015, 2016); and observation, analysis, and modeling of 
the newly formed breach in the Otis Pike High Dune Wilderness area (van Ormondt and others, 2015), 
herein referred to as the wilderness breach. The breach formed at the site of Old Inlet, which was open 
from 1763 to 1825 (Leatherman and Allen, 1985). The location of the initial island breaching does not 
directly correspond with topographic lows of the dunes, but instead the breach formed in the location of 
a cross-island boardwalk that was destroyed during Hurricane Sandy (fig. 3).

From 2013 to November 2015, bathymetric data were collected by the USGS St. Petersburg 
Coastal and Marine Science Center during three surveys of the breach channel and tidal shoals, and 
shoreline positions on each side of the breach (also collected by the National Park Service). Addition-
ally, pre-storm topography/bathymetry EAARL–B light detection and ranging (lidar) data (Wright 
and others, 2014) were collected by the USGS the day prior to Hurricane Sandy’s landfall. These data 
serve as a baseline for change analyses during four subsequent periods: June 2013 (Brownell and 
others, 2014), June 2014 (Nelson and others, 2016), October 2014 (Nelson and others, 2017a), and 
May 2015 (Nelson and others, 2017b). The June 2013 single-beam bathymetry data were collected 
in collaboration with the U.S. Army Corps of Engineers (USACE), using the Lighter Amphibious 
Resupply Cargo (LARC) vessel, and included the ebb shoal and breach channel. The USGS collected 
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and processed the three additional bathymetric datasets using personal watercraft equipped with single-
beam echo sounders and backpack Global Positioning System (GPS) over shallow flood shoals.

Eastern and western breach shorelines were surveyed weekly to monthly beginning on Novem-
ber 6, 2012 (by the National Park Service [NPS], and USGS St. Petersburg Coastal and Marine Science 
Center), with measurements made every few weeks for the first year and every few months after Octo-
ber 2013. The NPS and researchers from Stony Brook University monitored the breach by collecting 
field data of the breach channel bathymetry, conducting aerial photographic overflights, and performing 
water-quality analyses (see http://po.msrc.sunysb.edu/GSB/). The aerial photography collected and rec-
tified by Stony Brook University is used extensively in our morphologic change description to examine 

Figure 3.  Aerial photographs showing A, the pre-storm location of an existing cross-island boardwalk and a manmade cut 
on the bay side of the island corresponding with B, where the breach formed and C, island topography prior to Hurricane 
Sandy. The topography shows that the breach formed in a location with higher dune elevations than the surrounding areas.
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changes to breach shorelines (supplementing shoreline data collected in the field), channel width, and 
orientation. Due to the uncertainties and the variation in survey methods, a rigorous quantitative analysis 
was not performed. However, average calculations of various breach metrics allow a qualitative analysis 
of breach development and evolution.

This report presents an overview of the data collected and a summary discussion of the ob-
served changes to the breach system and the seasonal wave climatology associated with the breach 
morphodynamic response.

Methods
Bathymetric Change

Digital elevation models (DEMs) were created from pre-storm bathymetric lidar data and post-
storm bathymetric data (Brownell and others, 2014; Wright and others, 2014; Nelson and others, 2016, 
2017a, b). Due to differences in survey point density, the DEM gridded cell size varied: 1 m for the 2012 
EAARL–B lidar and the 2013 USGS-USACE survey, 25 m for the USGS June 2014 and May 2015 sur-
veys, and 50 m for the USGS October 2014 survey. To qualitatively assess the morphologic changes to 
the flood and ebb shoals and the breach, channel difference plots were created using the “raster minus” 
functions in ArcMap. Morphologic change was determined by extracting the bathymetry along three 
cross-channel transects from the DEMs (fig. 4). Rates of change were calculated between each field sur-
vey, as well as net change from pre-storm to May 2015 (fig. 4). Due to changes in access and ability to 
collect data from time period to time period within the highly dynamic system, volumetric changes were 
not included in the analyses.
Morphologic Changes

The metrics used to quantify the morphologic change of the breach are from remote sensing and 
field data collection and include net shoreline migration, changes in breach width, changes in the length 
of a seasonally persistent spit on the western side of the breach, and the orientation of the primary dis-
charge channel. 

Breach shorelines were derived from three sources: alongshore mean high water (MHW) Digi-
tal GPS (DGPS) data collected by the USGS, alongshore DGPS data collected by the NPS (low water), 
and high water line (HWL) shorelines interpreted from aerial photography (table 1) (Henderson and 
others, 2017). The breach shoreline surveys were initiated shortly after the opening of the breach and 
provide a baseline for breach growth. The uncertainty with the shoreline position is high, due primar-
ily to the inclusion of different proxies defining the shoreline position. The USGS shorelines (MHW) 
are likely higher on the beach than the NPS shorelines (low water) but lower than the HWL interpreted 
from the aerial photographs. Therefore, the results of this study are intended to describe broad trends of 
breach evolution and not to provide absolute positional information. 

The breach metrics were calculated in Matlab by using a series of barrier island shore parallel 
transects (fig. 5, gray lines) spaced 5 m apart. Points on the eastern and western breach shorelines were 
selected at the intersection between transects and the shoreline. To prevent multiple intersecting points 
where a shoreline loops back, the westernmost intersection was used for the eastern shoreline, and the 
easternmost intersection was used for the western shoreline. Migration distance was determined as the 
displacement of each shoreline point relative to the first survey. A positive displacement indicates a 
westward migration; a negative displacement indicates an eastward migration. Width was calculated 
as the distance between matching eastern and western shoreline intersections along the same transect 
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(shoreline pair). The metrics are averages from each shoreline pair along the length of the breach, and 
the uncertainty represents the ±1 standard deviation of these values. The orientation of the breach is the 
slope of a line fit through the midpoint (average) between the western and eastern shoreline pairs.

On the western side of the breach, a north-northwest-oriented spit formed, evolved, and eroded 
over two seasonal cycles and appears to be correlated to changes in the orientation of the main discharge 
channel (fig. 6). In order to track the formation, growth, and erosion of the spit, aerial photographs  
(http://po.msrc.sunysb.edu/GSB/) were georectified in ArcMap, and the wet/dry shoreline of the spit was 
digitized. The spit was defined as the sandy extension from the vegetated backside of the barrier island to 
a point roughly along a shoreline pair on the breach channel side. The length of the spit was taken as the 
linear distance from the most southern baseline with an intersecting pair to the most northern pair (fig. 5). 

Figure 4.  Map of U.S. Geological Survey-collected breach bathymetry for A, June 2013, B, June 2014, C, October 2014, 
and D, May 2015.
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Table 1.  Dates, types of surveys, and metrics for bathymetric data collected or extracted for the wilderness 
breach for the study period, 2012–15.
[lidar, light detection and ranging; GPS, Global Positioning System]

Date Data type Metric 
Oct. 27, 2012 Topographic and bathymetric lidar Shoreline, upper beach, shoreface
Nov. 3–6, 2012 GPS Shoreline
Nov. 10–11, 2012 GPS Shoreline
Nov. 14–15, 2012 GPS Shoreline
Jan. 3–4, 2013 GPS Shoreline
Jan. 8–10, 2013 GPS Shoreline
Jan. 15–17, 2013 GPS Shoreline
Jan. 23–24, 2013 GPS Shoreline
Jan. 27, 2013 Aerial image Shoreline and spit
Jan. 30–31, 2013 GPS Shoreline
Feb. 2, 2013 Aerial image Shoreline and spit
Feb. 6–7, 2013 GPS Shoreline
Feb. 13–14, 2013 GPS Shoreline
Feb. 14, 2013 Aerial image Shoreline and spit
Feb. 20–21, 2013 GPS Shoreline
Feb. 26–28, 2013 GPS Shoreline
Mar. 10, 2013 Aerial image Shoreline and spit
Mar. 13–22, 2013 GPS Shoreline
Mar. 27–28, 2013 GPS Shoreline
Mar. 29, 2013 Aerial image Shoreline and spit
Apr. 3–4, 2013 GPS Shoreline
Apr. 10–11, 2013 GPS Shoreline
Apr. 15–17, 2013 GPS Shoreline
Apr. 17, 2013 Aerial image Shoreline and spit
Apr. 23–24, 2013 GPS Shoreline
May 1–2, 2013 GPS Shoreline
May 6–7, 2013 GPS Shoreline
May 12, 2013 Aerial image Shoreline and spit
May 31, 2013 Aerial image Shoreline and spit
June 16, 2013 Aerial image Shoreline and spit
July 7, 2013 Aerial image Shoreline and spit
Aug. 5, 2013 Aerial image Shoreline and spit
Sept. 15, 2013 Aerial image Shoreline and spit
Oct. 19, 2013 Aerial image Shoreline and spit
Oct. 21–22, 2013 GPS Shoreline
Nov. 4, 2013 GPS Shoreline
Nov. 6, 2013 Aerial image Shoreline and spit
Nov. 13–15, 2013 GPS Shoreline
Dec. 8, 2013 Aerial image Shoreline and spit
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Date Data type Metric 
Dec. 19, 2013 Aerial image Shoreline and spit
Jan. 21, 2014 Aerial image Shoreline and spit
Feb. 20, 2014 Aerial image Shoreline and spit
Mar. 17–Apr. 3, 2014 GPS Shoreline
Mar. 24, 2014 Aerial image Shoreline and spit
Apr. 22, 2014 Aerial image Shoreline and spit
Apr. 24–25, 2014 GPS Shoreline
May 18, 2014 Aerial image Shoreline and spit
June 12–19, 2014 GPS and single beam Profiles
June 24, 2014 Aerial image Shoreline and spit
July 23–25, 2014 GPS Shoreline
July 31, 2014 Aerial image Shoreline and spit
Aug. 28, 2014 Aerial image Shoreline and spit
Sept. 23–26, 2014 GPS Shoreline
Sept. 26, 2014 Aerial image Shoreline and spit
Oct. 5–10, 2014 GPS and single beam Profiles
Oct. 7, 2014 GPS Shoreline
Oct. 9–10, 2014 GPS Shoreline
Oct. 30, 2014 Aerial image Shoreline and spit
Nov. 30, 2014 Aerial image Shoreline and spit
Dec. 14, 2014 Aerial image Shoreline and spit
Dec. 29, 2014 Aerial image Shoreline and spit
Jan. 21, 2015 GPS Shoreline
Feb. 28, 2015 Aerial image Shoreline and spit
Mar. 19, 2015 GPS Shoreline
Mar. 29, 2014 Aerial image Shoreline and spit
Apr. 26, 2015 Aerial image Shoreline and spit
May 13–19, 2015 GPS and single beam Profiles
May 26, 2015 Aerial image Shoreline and spit
June 30, 2015 Aerial image Shoreline and spit
July 23, 2015 Aerial image Shoreline and spit
July 29, 2015 GPS Shoreline
Aug. 12, 2015 Aerial image Shoreline and spit
Aug. 28, 2015 Aerial image Shoreline and spit
Oct. 7, 2015 Aerial image Shoreline and spit
Oct. 7–10, 2015 GPS Shoreline
Nov. 24–27, 2015 GPS Shoreline

Table 1.  Dates, types of surveys, and metrics for bathymetric data collected or extracted for the wilderness breach for the 
study period, 2012–15.— Continued
[lidar, light detection and ranging; GPS, Global Positioning System]
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Figure 5.  Description of breach metrics used to monitor breach evolution including transects (gray, only showing every 
15th baseline) used for calculating metrics, shorelines (blue), breach width (red arrow in breach channel), channel orientation 
(green arrow in breach channel), and spit length (red arrow on spit). 

Figure 6.  Aerial photographs of the breach from A, prior to the development of a sand spit on the northwestern side of the 
breach, and B, a developed and C, growing spit. The growth of the spit corresponds to the development of a primary flood 
shoal channel along the western side of the breach. The red arrow in B and C indicates the length of the spit as measured in 
this analysis.

Base from SUNY Stony Brook
Great South Bay Project
October 19, 2013
North American Datum of 1983

0 0.1 0.2 0.3 0.4 KILOMETER

0 0.1 0.2 MILE

EXPLANATION
Shoreline
Baseline

Width

Spit
length

Channel
   orientation

Migration
40°43'30"

40°43'15"

40°43'45"

72°54'00" 72°53'45" 72°53'30"

Base from SUNY Stony Brook
Great South Bay Project
November 6, 2013
North American Datum of 1983

Base from SUNY Stony Brook
Great South Bay Project
October 19, 2013
North American Datum of 1983

Base from SUNY Stony Brook
Great South Bay Project
March 29, 2013
North American Datum of 1983

CBA

40°43'30"

40°44'00"

72°54'00" 72°53'30" 72°54'00" 72°53'30" 72°54'00" 72°53'30"

1 KILOMETER

0 0.2 0.4 0.6

0 0.2 0.4 0.6 0.8

 MILE



9

Seasonal Wave Climatology

To examine the relation between the changes to the breach morphology and the processes driv-
ing change, wave direction and height were compiled from the National Oceanic and Atmospheric 
Administration WAVEWATCH III (WW3, http://polar.ncep.noaa.gov/waves/index2.shtml) hindcast data 
from October 1, 2012, to October 31, 2015 (table 2). Wave heights were interpolated to a point offshore 
of the breach at approximately the 20-m depth contour. The distribution of seasonal wave directions and 
heights are shown in rose diagrams in figure 7. Seasonal boundaries were defined as winter (January–
March), spring (April–June), summer (July–September), and autumn (October–December). 

Results
Bathymetric Change

The elevation difference between the pre-Hurricane Sandy and the June 2013 bathymetry shows 
the development of the breach channel and the ebb delta, with substantial erosion of the barrier island 
where the breach formed and deposition in the nearshore immediately seaward of the breach opening 
(fig. 8A). The June 2013 survey did not include the flood shoals; therefore, the change map does not 
include the flood shoals but does capture the ebb shoal, which is relatively symmetrical 8 months after 
formation. By June 2014, the ebb shoal expanded and became less symmetrical, with an elongation to 
the west and offshore (fig. 8B). 

The June 2014 bathymetry is the first to capture the flood-shoal complex, as well as the main 
breach channel and ebb delta (fig. 9A). Elevation differences between June 2014 and October 2014 show 
the shifting of the main channel to the east within the throat and the dynamic nature of channel forma-
tion and shoaling within both the ebb delta and flood shoals. The dataset also captures the formation of 
a spit on the northwestern side of the breach, which is also well documented in the shoreline analysis in 
the discussion that follows. By May 2015, the main channel within the breach had shifted westward and 
lengthened, extending farther into Great South Bay and into the ebb shoal where the northeast-south-
west-oriented channel connects with a northwest-southeast channel in the flood shoal (fig 9B).

The evolution of the primary channel is shown in a time series of cross-breach profiles from each 
of the bathymetry datasets (fig. 10). Within the flood shoal, the channel is relatively shallow and stable 
in position (fig. 10A). In the central portion of the breach (fig.10B), the channel shows a slight eastern 
migration. The most dynamic portion of the channel is on the seaward side, immediately adjacent to the 
ebb delta (fig. 10C), where the channel continually migrated westward and shallowed through time.

Table 2.  Overall and seasonal averages of wave height, period, and direction from the north for October 1, 2012, through 
October 31, 2015, from WAVEWATCH III hindcast data for Fire Island (National Weather Service, 2009). 
[The top 10 percent of wave heights and associated period and direction are shown in parentheses. m, meter; s, seconds; °N, degrees north]

 Average Winter Spring Summer Autumn 
Height (m) 1.0 1.0 (2.2) 1.1 (2.2) 1.0 (1.9) 1.1 (2.6)
Period (s) 7.9 7.4 (8.7) 7.7 (8.1) 8.5 (8.7) 8.3 (9.8)
Direction (ºN) 112 102 (111) 111 (107) 115 (107) 116 (122)

http://polar.ncep.noaa.gov/waves/index2.shtml


10

Figure 7.  Rose diagrams of significant wave height (Hs) and direction from WAVEWATCH III hindcast data, interpolated to 
the 20-meter isobath offshore of the breach for the period October 1, 2012, to October 31, 2015. The largest waves occurred 
between autumn and spring, with autumn dominated by large waves out of the southeast, and winter and spring variable 
with more southerly waves.
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Figure 8.  Aerial photographs overlain with elevation difference maps based on the available bathymetric data for the 
breach: A, pre-Hurricane Sandy to June 2013, no data were collected for the flood shoal; B, June 2013 to June 2014. 
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Figure 9.  Aerial photographs overlain with elevation difference maps based on the available bathymetric data for the 
breach: A, June 2014 to May 2015; B, May 2015 to October 2015. Aerial photograph from New York Statewide Digital Ortho-
imagery Program from 2013 (https://orthos.dhses.ny.gov/).
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Shoreline and Width Change

The wilderness breach grew rapidly between November 2012 and April 2013, widening from 
54±19 m on November 6, 2012 (1 week after formation), to 255±60 m by April 11, 2013 (fig. 11A). The 
width increase is primarily a function of westward migration of the western breach shoreline (fig. 11B). 
The eastern breach shoreline position changed little during the study period, migrating less than 100 m 
to the west (fig. 11C). The western shoreline continued to migrate westward until the winter of 2014, 
when the main channel throat reached a maximum width of 573±173 m on December 29, 2014. From 
winter 2014 to autumn 2015, the western shoreline oscillated east and west with some seasonal relation. 
Between the winter of 2014 and November 2015, the breach did not exhibit an overall increase in aver-
age width, indicating that a quasi-stable configuration was reached in winter 2014. 
Channel Orientation and Spit Length

Beginning in April 2013 a northeast-southwest-oriented spit started to form on the northwestern 
side of the breach (fig. 6). The spit exhibited cyclic, seasonal behavior wherein it formed in late winter/
early spring, reached a maximum length in summer to autumn, and rapidly eroded in late autumn or 
early winter, generally in response to storms (fig. 12A). In 2015, the spit eroded in late summer during 
Hurricane Joaquin.

The growth of the spit is associated with changes in the orientation of the primary breach chan-
nel (fig. 12B). Prior to spit development in the spring of 2013, the orientation of the channel was north-
northwest, roughly perpendicular to the orientation of the barrier island. Through time, when the spit 
developed, the channel rotated to a northeast-southwest orientation, and when the spit eroded, the chan-
nel shifted back to the island-perpendicular orientation.
Wave Climatology 

The wave climate of Fire Island during the study period was characterized by waves propagat-
ing to the north and northwest with heights typically less than 1.5 m (table 2; fig. 7). The highest waves 
occurred from the autumn to early spring with smaller waves during summer. Wave periods were rela-
tively consistent throughout the year, and the wave direction was more northward during the winter and 
north-northeast during the other seasons. 
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Figure 11.  Plots showing A, breach width and B, net western shoreline migration and C, eastern shoreline migration from 
November 2012 to November 2015. Colors highlight the season with winter (W) in blue, spring (SP) in green, summer (SU) in 
yellow, and autumn (A) in red. Blue dots represent data collected using field surveys, and red dots represent metric-derived 
data obtained from aerial photographs. The black dashed line shows the trend using both aerial and ground-based surveys, 
and error bars are shown by vertical lines associated with each point.

Figure 12.  The time series of A, spit length and B, breach channel orientation, which indicates that the presence of the spit 
on the northwest side of the breach is closely associated with the orientation of the main breach channel and that it oscillates 
seasonally. Colors highlight the season with winter (W) in blue, spring (SP) in green, summer (SU) in yellow, and autumn (A) 
in red. The purple line shows the orientation perpendicular to the barrier island shoreline. 
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Discussion and Summary
The wilderness breach initially formed in a north-northeast orientation, essentially orthogonal 

to the barrier island and in the general location of the Old Inlet breach, which was open for more than 
60 years in the 1800s (Leatherman and Allen, 1985). The location and orientation of the breach fol-
lowed the path of an elevated boardwalk that connected the beachside of the island to the bayside where 
a manmade embayment existed (fig. 3A, B). The center of the breach channel corresponded to an area 
of higher elevation dunes than surrounding areas (fig. 3C), and we speculate that its formation may be 
due to a combination of factors, including the narrowness of the island at this location, lower flow fric-
tion beneath the boardwalk due to the lack of vegetation, and the increased erodibility of the Old Inlet 
channel-fill substrate. The breach widened and migrated westward through the spring of 2013, with 
substantial movement likely in response to high wave energy out of the southeast. Wave heights greater 
than 3 m were observed during seven nor’easter storms during the winter and spring following Hur-
ricane Sandy (Hapke and others, 2013) (figs. 7, 11). Westward channel migration is driven by erosion 
of the western side of the breach (fig. 11B) with the breach channel remaining oriented orthogonally 
to the island. The eastern side of the breach was remarkably stable through the period of the analysis. 
Although no core data have been published at the time of this report, preliminary results from field data 
collection and visual inspection in the walls of the breach channel indicate the presence of multiple lay-
ers of lagoonal (blue) clay interbedded with sand layers on the eastern side that are not present on the 
western side and may influence the stability of the eastern side by making it more resistant to erosion. 

Following the winter of 2013–14, the trend of increasing width and westward migration largely 
ceased, indicating the breach had reached a state of quasi-equilibrium. The western side began a sea-
sonal eastward and westward oscillation through the recurring formation and erosion of a spit on the 
northwest side and seasonal variation of the channel orientation.

The most significant morphologic changes (changes in width and orientation) typically occurred 
during the autumn and winter, when high waves were larger and predominantly out of the southeast 
(fig. 7) and were manifested in the dynamic western side of the breach that changed in response to spit 
formation and erosion. The spit appeared to influence the channel orientation within the breach throat 
and played a controlling role in the development of flood channels. Prior to development of the spit, nu-
merous flood channels were present at various orientations. When the spit formed and extended into the 
bay, the western flood channels became cut off and slowly in-filled with sediment, diverting more dis-
charge to the eastern side of the channel and causing a clockwise rotation of the channel. By necessity, 
this process diverted more flow into the eastern channel and reduced the efficiency of the flow by creat-
ing a highly sinuous channel. The cycles of spit formation and erosion, and rotation of channel orienta-
tion, demonstrate the nested dynamics within an overall quasi-stable system, but do not lend information 
on what processes may eventually lead to closing of a breach.

The wilderness breach at Fire Island is a highly dynamic and complex system, driven by feed-
backs between wave and wind forcing, and tidal flow (not discussed in this analysis). The data summa-
rized in this report provided the foundation for modeling efforts of the breach (van Ormondt and others, 
2015), and the analyses described herein provide insight into the physical evolution of a breach during 
3 years of monitoring.
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