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GIS Database and Discussion for the Distribution, 
Composition, and Age of Cenozoic Volcanic Rocks of the 
Pacific Northwest Volcanic Aquifer System Study Area

By David R. Sherrod and Mackenzie K. Keith

Abstract
A substantial part of the U.S. Pacific Northwest 

is underlain by Cenozoic volcanic and continental 
sedimentary rocks and, where widespread, these strata 
form important aquifers. The legacy geologic mapping 
presented with this report contains new thematic 
categorization added to state digital compilations 
published by the U.S. Geological Survey for Oregon, 
California, Idaho, Nevada, Utah, and Washington 
(Ludington and others, 2005). Our additional coding 
is designed to allow rapid characterization, mainly 
for hydrogeologic purposes, of similar rocks and 
deposits within a boundary expanded slightly beyond 
that of the Pacific Northwest Volcanic Aquifer System 
study area. To be useful for hydrogeologic analysis 
and to be more statistically manageable, statewide 
compilations from Ludington and others (2005) were 
mosaicked into a regional map and then reinterpreted 
into four main categories on the basis of (1) age, (2) 
composition, (3) hydrogeologic grouping, and (4) 
lithologic pattern. The coding scheme emphasizes 
Cenozoic volcanic or volcanic-related rocks and 
deposits, and of primary interest are the codings for 
composition and age.

Introduction
A substantial part of the U.S. Pacific Northwest 

is underlain by Cenozoic volcanic and continental 
sedimentary rocks. Where widespread, these strata 
form important aquifers. For example, the Columbia 
River Basin is underlain largely by the mostly 
middle Miocene Columbia River Basalt Group. The 
hydrogeology of the Columbia River Basalt Group 
is well studied (for example, Vaccaro, 1999; Kahle 
and others, 2011; Ely and others, 2014; Vaccaro and 
others, 2015; Burns and others, 2015), inasmuch 
as the strata are relied on heavily for irrigation and 
potable domestic water. Elsewhere in the region, 

hydrogeologic assessments of volcanic strata and their 
relation to basin groundwater are less extensive or 
lacking.

Future assessments of Pacific Northwest aquifers 
will be aided by identifying useful rock-formation 
characteristics. Two key predictors of groundwater 
flow and discharge—lithology and age of volcanic 
rocks—have been identified by numeric-modeling 
studies along the east flank of the Cascade Range 
in Oregon (for example, Gannett and others, 2001; 
Lite and Gannett, 2002). From this observation 
comes the possibility that two-dimensional statistical 
analysis, using fundamental lithologic criteria, might 
allow preliminary basin assessments to proceed 
in the absence of more sophisticated modeling. 
These criteria can be extracted from geographic 
information systems-based (GIS-based) geologic maps 
(scales 1:250,000 or 1:500,000) coded suitably for 
composition and age, similar thematically to 1970s 
geologic maps that depicted age and composition of 
volcanic rocks at regional scale (Luedke and Smith, 
1982, 1983; scale 1:1,000,000).

The legacy geologic mapping presented with this 
report contains new thematic categorization added 
to state digital compilations published by the U.S. 
Geological Survey for Oregon, California, Idaho, 
Nevada, Utah, and Washington (Ludington and others, 
2005). The 2005-series maps were, in most cases, 
digitized from printed state-scale (1:500,000) maps. 
Ludington and colleagues also added tabular data that 
brought uniformity to the classification of geologic 
units and structural features. Our additional coding 
is designed to allow rapid characterization, mainly 
for hydrogeologic purposes, of similar rocks and 
deposits within a boundary (fig. 1) encompassing the 
Pacific Northwest Volcanic Aquifer System study area 
(NVASA; https://or.water.usgs.gov/proj/geothermal/
index.html).
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Figure 1. Map showing Pacific Northwest Volcanic Aquifer 
System study area and extent of intermediate-scale 
supplemental geologic maps used to specify the age and 
composition of polygons. Short-dashed line (gray) within 
study area marks a boundary southwest of which existing 
state-map map-unit boundaries from Ludington and others 
(2005) are notably inaccurate relative to the other coverages 
and more recent mapping. Labels HLP and BR on inset map 
denote High Lava Plains and Basin and Range Provinces, 
as discussed in text.

This document describes the effort underlying the 
newly compiled map and associated tabular data. To 
be useful for hydrogeologic analysis and to be more 
statistically manageable, compilation maps from 
Ludington and others (2005) were assembled into a 
regional map and then categorized on the basis of (1) 
age, (2) composition, (3) hydrogeologic grouping, and 
(4) lithologic pattern. The coding scheme emphasizes 
Cenozoic volcanic or volcanic-related rocks and 
deposits, and of primary interest are the codings for 
composition and age. These codings were derived 
from the state maps as well as larger-scale 1:250,000- 
or 1:100,000-scale geologic maps (fig. 1). In a few 
cases, spatial and columnar data for the GIS-based 
polygons have been modified to enrich the geologic 
depiction or to correct labeling errors found in the 
source maps.

Map Compilation and Updates to Spatial 
Data
Map Area

The Pacific Northwest Volcanic Aquifer System 
study area (NVASA) includes several interior-draining 
basins in western Oregon, northeastern California, 
southwestern Idaho, northern Nevada, northwestern 
Utah, and southeastern Washington. The area is 
defined broadly by the province of volcanic rocks 
emplaced during the last 17 million years. The area 
is diverse temporally and compositionally, including 
some rocks as old as Precambrian, but the study area 
as originally defined was intended to focus on Tertiary 
and Quaternary volcanogenic rocks.

Our primary geologic map sources are digital 
compilations of statewide coverages for Oregon, 
California, Idaho, Nevada, Utah, and Washington 

(Ludington and others, 2005). These coverages were 
combined and trimmed to encompass the NVASA.

Incorporation of More Recent or Higher-Resolution 
Mapping

Maps that were digitized to make the 2005 data 
release (Ludington and others, 2005) are printed full-
color compilations dating to the 1990s, and most 
are based on map sources no more recent than the 
late 1980s. Regardless, the addition of new linework 
typically was avoided, since our goal was to add age 
and compositional information to an existing set of 
small-scale maps, not create a wholly new rendition. A 
newer California state map, published in 2010 (scale 
1:750,000; Jennings and others, 2010), concentrates its 
revisions mostly on faults and Quaternary sedimentary 
deposits useful for recognizing fault age. That map 
is little changed in the northeast corner of California 
(coincident with our study area), compared to the 
much older 1979 version that was digitized for 2005 
publication. In Oregon, an ongoing compilation of 
geologic mapping is released periodically in digital 
format by Oregon’s Department of Geology and 
Mineral Industries. The most recent release (Smith and 
Roe, 2015) favors large-scale data without alignment 
of contacts or blending of map units across individual 
map-area boundaries. Consequently, that compilation 
possesses numerous internal edge effects. In contrast, 
basin-scale analysis requires compilations that bridge, 
rather than preserve, contrasts.

Nevertheless, some minor local changes in 
geologic mapping were made by us to increase detail. 
In Oregon, for example, the Jordan Craters lava 
flows were added (from map by Hart and Mertzman, 
1983) so that all of the state’s Holocene volcanic 
rocks could be shown. And in rare cases, incomplete 
digitization of the paper maps underlying Ludington 
and others (2005) was found when trying to assign 
age or composition. For example, the line separating 
an alluvial-fan deposit and lava flow along Old Maids 
Canyon northeast of Madras (44.6800°, −120.9824°) 
on the printed Oregon state map was missed during 
digitization. For our purposes it was deemed better to 
subdivide the polygon correctly than to code the whole 
area as one or the other unit.

Elsewhere in areas lacking detailed geologic 
map data, additional published mapping could have 
supplemented the state maps, but the effort would 
have far exceeded available staff time. One example 
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lies in the southwest corner of the map area where 
recent geothermal interest in the Lassen volcanic area 
has led to updated mapping (for example, Clynne and 
Muffler, 2010).

State Boundaries Minimized
Political boundaries may follow geographic 

features, but rarely are they aligned along geologic 
features. Since state-based compilations for 
Oregon, California, Idaho, Nevada, and Washington 
(Ludington and others, 2005) underlie the geologic 
compilation and coding for this study, state borders 
formed polygon boundaries when compiling the 
maps into a single file. This provincial artifact was 
removed where possible, dependent upon the amount 

of evidence available and interpretation required 
to match adjacent polygons across state borders. 
An example of how state borders were dissolved 
through interpretation of map units is found in the 
northwesternmost corner of Utah (fig. 2), where 
valley-floor alluvium along Goose Creek forms a 
polygon of some breadth that ends abruptly at the 
Nevada-Utah state line. Mapped alluvium resumes 
along a different alignment in Utah, tapering to a point 
(losing its breadth) just south of the Idaho state line. 
In Idaho it expands in width and resumes its trace 
north downstream (fig. 2). This misalignment was 
minimized by overlaying the geologic-unit layer on 
modern 100,000-scale topographic maps and using the 
valley’s morphology to constrain positional changes in 
the geologic-unit polygons (fig. 2).

Figure 2. An example of an alluvial (Qal) map unit where Nevada, Utah, and Idaho boundaries meet. All map-unit 
boundaries from Ludington and others (2005). Goose Creek flows broadly north. Red lines show the revised alluvium 
boundaries, continuous across state lines, whose contacts rely on 100,000-scale topographic quadrangles and geomorphic 
interpretation to minimize internal edge effects.
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More common are the edge effects arising where 
somewhat differently defined lithologic units are 
mapped to the state boundaries (fig. 3). Where the 
lithologic distinctions are minimal, we combined 
polygons to remove the artificial boundary between 
them. Even so, some short residual jogs persist 
along state boundaries. State boundaries are readily 
apparent, however, where left unmodified by us in 
those places where the defined lithologic-unit contrasts 
are too great to resolve without field work.

The Snake River defines part of the boundary 
between Idaho and Oregon and between Idaho and 
Washington. The Snake is sufficiently broad to form 
open water (polygon) at scales as small as 1:500,000. 
In those cases the U.S. Geological Survey’s (2014) 
National Hydrography Dataset was used during 

the map assembly. This medium-resolution dataset 
contains 1:100,000-scale polygon (area) files that 
produced a visually attractive open-water map-unit 
polygon, the centerline of which corresponds to the 
Idaho-Oregon or Idaho-Washington state boundaries.

Structural Units Compilation
GIS files of faults represented by polylines for each 

state (Ludington and others, 2005) were also merged 
into one polyline shapefile covering the study area. No 
edits were made to increase the resolution or correct 
continuity across state and polygon boundaries. This 
file includes information such as fault or structure 
type, for example, certain normal fault or uncertain 
syncline, taken directly from Ludington and others 
(2005).

Figure 3. Internal boundary effects from compositing separate state maps. Example is along the southern Oregon-northern 
Nevada boundary. Asterisks show places where stratigraphic units have incomplete or no match across state line, resulting 
in contact that coincides with latitude of state line (just south of lat 42°N.). Quaternary sedimentary deposits bury several 
graben floors, and their contacts were generally easy to match at state line, as were widespread basalt lava sequences, 
extensive rhyolite domes, and ash-flow tuff. See table 1 for definition of age codes.
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Explanation of Coding Categories
The following sections present the components 

ascribed by us as additions to previously existing 
columnar data of the state geologic map databases. 
The methods are described briefly, and a table 
including all possibly recoded categories is provided 
for each.

Age (AgeCode)
Rock age is represented by integer values that 

represent time intervals (table 1). The intervals 
are briefer for younger rocks and deposits because 
these commonly are more narrowly defined 
stratigraphically; for example, a younger stratigraphic 
unit may comprise only one or a few lava flows 
whereas an older unit may contain thick sequences 
of lava flows. The intervals are sequential from 2 
to 9 for most rocks in the map area. A special case 
applies to Quaternary sedimentary rocks and deposits, 
which may span from the early Pleistocene (code 4) 
to the late Holocene (code 2) and are more difficult 
to categorize precisely; therefore, those ages are 
grouped together and assigned a value 1, which spans 
the periods of time otherwise distinguished by codes 
2, 3, and 4 for Quaternary volcanogenic deposits. 
Some Quaternary volcanogenic features and older 
volcanogenic or sedimentary features were assigned 
broad age-range codings in the original state maps and 
were also difficult to categorize. These polygons are 
assigned an age value of -999.

Age assignments rely on stratigraphic relations 
combined with radiometric ages. Hundreds of new 
radiometric ages and thousands of chemical analyses 
have been published in the 25–40 years since 
publication of the older state compilation maps (as 
digitized in Ludington and others, 2005); many of the 
ages and some chemical data were incorporated in 
our assignments. For categorizing ages, the following 
regional compilations of radiometric ages were 
helpful:

•	 Great Basin Geoscience Data Base (Raines and 
others, 1996);

• 	 Radiometric Ages from Rocks of the Great Basin 
(Coolbaugh, 2000);

• 	 National Geochronological Database (Sloan and 
others, 2003);

• 	 Radiometric Age Information Layer for Oregon, 
release 1 (RAILO-1) (Ricker and Niewendorp, 
2011);

• 	 Nevada Quaternary Volcanic Ages (Nevada 
Bureau of Mines and Geology, 2012).

Additionally we examined some recent 
publications encompassing areas where newer 
information allowed better estimations of age. For 
example, many broad swaths of basalt lava-flow units 
on the state-compilation maps across the High Lava 
Plains of south-central Oregon were categorized by 

Table 1. Age coding for rocks within the Northwest Volcanic Aquifer System study area
[Sparse Tertiary intrusive rocks may be assigned codes 5, 6, 7, or 8 but may actually be younger. Abbreviations: ka, thousand 
years; Ma, million years]

AgeCode Age range 
Quaternary 

1 Quaternary sedimentary rocks and deposits, age spans two or more of the 
following three time intervals 

2 0–13 ka, Holocene volcanogenic rocks 
3 13–780 ka, upper and middle Pleistocene volcanogenic rocks 
4 0.78–2.58 Ma, lower Pleistocene volcanogenic rocks 

Tertiary 
5 2.58–5.0 Ma, Pliocene igneous and sedimentary rocks 
6 5–10 Ma, upper Miocene igneous and sedimentary rocks 
7 10–17 Ma, middle Miocene igneous and sedimentary rocks 
8 17–65 Ma (remainder of the Tertiary), lower Miocene, Oligocene, 

Eocene, and Paleocene igneous and sedimentary rocks 
Pre-Tertiary 

9 Igneous, sedimentary, and metamorphic rocks 
-999 Age range not assigned 
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using ages from newer studies (for example, Jordan 
and others, 2004; Scarberry and others, 2009; and 
Wypych and others, 2011).

We sought to sharpen the age distinction for some 
units whose ages were presented broadly on the 
original state maps. Many basalt lava sequences in the 
High Lava Plains and Basin and Range provinces (see 
inset map on fig. 1 for locations) were once known 
only to be Pleistocene or Pliocene (Quaternary or 
Tertiary), which led to the mnemonic map symbol 
QTb familiar to many geologists. Today, sufficient 
ages exist to assign most polygons with confidence 
to one of our coded time periods; most are either 
Pliocene (code 5) or lower Pleistocene (code 4).

Another broad grouping, Eocene to Pliocene, 
appeared on the original maps owing to the need 
to generalize stratigraphic sequences at state-map 
scale of presentation. The widespread distribution of 
well-documented middle Miocene basalt, however, 
allows an increasingly clear distinction between 
pre- and post-middle Miocene age assignments. This 
distinction is important hydrogeologically, because 
the middle Miocene lava sequences commonly are 
(1) thick, (2) exposed as structurally high features in 
mountain ranges across the region, and (3) plunge 
into the subsurface of many basins. Also, permeability 
contrasts between pre- and post-middle Miocene 
units (between codes 8 and 5) tend to be larger than 
among many of the younger age classes owing to 
greater alteration of glass in lower Miocene and 
stratigraphically lower units.

The number of radiometric ages is insufficient, 
however, to assign rocks confidently in some areas. 
Regardless, patterns are apparent (fig. 4). In south-
central Oregon, which encompasses the central part 
of the Northwest Volcanic Aquifer study area, the 
age of exposed bedrock volcanic rocks is generally 
younger westward, from middle Miocene (code 7) 
to late Miocene (code 6) to Pliocene (code 5). This 
pattern is partly related to exposure: middle and upper 
Miocene rocks likely lie buried beneath Pliocene and 
Quaternary volcanogenic strata in the western part of 
the map area. But burial is not the entire explanation, 
inasmuch as the few younger rocks that are found in 
the eastern part of south-central Oregon form only 
isolated occurrences dotted sporadically across the 
landscape.

This overall pattern of westward youth is 
interrupted at the major fault escarpments, where 

older strata crop out in the toes of fault blocks. The 
stratigraphic layers exposed in the escarpments 
may be subdivided, but away from there, in the 
topographically gentler areas, distinguishing the ages 
of undated but compositionally similar units can prove 
vexing. In our coding, spatial boundaries may be ill 
defined between stratigraphic groups assigned to age 
class 7 versus 6 or 6 versus 5, at least at state-map 
scale. Consequently, the hydrogeologic significance of 
age assignments that differ only by one unit among the 
7-6-5 age classes (for example, coded as 7 instead of 
6) may diminish in importance.

Included along the margins of the NVASA are 
Precambrian rocks (225 polygons total: California, 
Nevada, Utah, and Idaho). These are included in 
age class 9, pre-Tertiary, in our coding. Map users 
interested in isolating them should analyze the column 
UNIT_AGE by using a search string that will return 
Proterozoic as a partial age term.

Composition (CompCode)
The polygons demarcating volcanic rock units 

were assigned composition mainly on the basis of 
designations in the original compilation (Ludington 
and others, 2005). Columnar data added for 
composition, as text abbreviations, were intended 
to match the chemical-composition scheme for 
volcanic rocks as used on previous USGS maps 
showing distribution of Cenozoic volcanic rocks by 
composition and age (for example, Luedke and Smith, 
1982, 1983). Compositional divisions are based on 
silica content: basalt, 46–54; andesite, 54–62; dacite, 
62–70; and rhyolite, >70 percent SiO2 (table 2). 
Additional abbreviations for lithology were added for 
nonvolcanic rocks or pre-Tertiary volcanic rocks to 
assign compositional data to every polygon.

The codes that indicate volcaniclastic (VC) or 
mixed-lithologic (MIX) strata are applied mainly for 
parts of Oregon Tertiary stratigraphic units Clarno or 
John Day Formations, respectively. Formations like 
these are regionally extensive groupings that lack 
detailed geologic mapping in some areas. To force a 
more restrictive compositional coding on them leads 
to overgeneralization.

Admittedly, the well-known four-part volcanic 
compositional spectrum—basalt, andesite, dacite, 
and rhyolite—is applied inexactly. For example, 
units designated on this map as basalt in the Cascade 
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Figure 4. Geologic map for the Pacific Northwest Volcanic Aquifer System study area coded by age (Age Code) to illustrate 
a general east-to-west trend in decreasing rock age. Abbreviations: CL, Crater Lake; HB, Harney Basin; MJ, Mount 
Jefferson; S, Shasta; SS, South Sister; Ma, million years; ka, thousand years. Isochrons show rhyolite age progression for 
silicic domes emplaced across High Lava Plains in Oregon (MacLeod and others, 1976; Walker and MacLeod, 1991).
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Range include many lava flows typically described as 
basaltic andesite (provincially, 52–57 or 53–58 percent 
SiO2), and those shown as andesite may include much 
basaltic andesite. Many silicic centers across eastern 
Oregon and northern Nevada, mapped originally as 

rhyolitic or silicic vent complexes and assigned a 
rhyolitic composition by us, are increasingly known to 
encompass andesite and dacite, some of which form 
extensive parts of those eruptive centers (for example, 
Johnson and Grunder, 2000; Boschmann, 2012).
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Hydrogeologic Grouping (HydroGeo)
The Hydrogeologic Grouping coding permits a 

rapid assemblage of a few rock types with broadly 
similar hydrogeologic aspect (largely owing to age and 
lithology). For example, the thick lava sequences of 
the Columbia River Basalt Group (code B_CRB) have 
been well studied for their water-bearing capacity, 
both for recharge and reservoir potential. Kahle and 
others (2011) offer this hydrologic description of the 
Columbia River Basalt Group: a series of productive 
aquifers consisting of permeable interflow zones 
separated by less permeable flow interiors. Another 
useful grouping is all Quaternary sedimentary deposits 
(Sed_Q), including units described on source maps as 
alluvium, dunes, fan deposits, surficial deposits, and 
terrace deposits. Many of the Quaternary sedimentary 
deposits are moderately to highly permeable, but 
the grouping (Sed_Q) includes less permeable units 

such as till, landslide, and playa deposits. Generally, 
older sedimentary units decrease in permeability 
with age; therefore, classifications for Tertiary and 
pre-Tertiary sedimentary groups are also included 
(Sed_T and Sed_pT). Carbonates, metamorphic 
rocks, and intrusions are assigned to separate groups 
because each has distinctive influence on the flow 
of groundwater, regardless of age (for example, see 
Toth, 2009). Extrusive volcanic rocks, aside from the 
Columbia River Basalt Group, may have trends in 
permeability associated with variation in composition. 
Those rocks are broadly grouped as extrusive (Extrus) 
here but could be divided further on basis of chemical 
composition.

The HydroGeo grouping is not as intricate or 
sophisticated as its name might imply. Instead, it 
provides a way to quickly select all the polygons 
that encompass certain rock types; for example, all 

Table 2. Composition code and description for geologic units coded from Ludington and others (2005) for the Pacific 
Northwest Volcanic Aquifer System study area

CompCode Composition (volcanic) or lithology 
B Basalt (46–54 percent SiO2) 
A Andesite (54–62 percent SiO2) 
D Dacite (62–70 percent SiO2) 
R Rhyolite (>70 percent SiO2) 
VC Volcaniclastic rocks 
S Sedimentary rocks 
MIX Mixed lithology, volcanic, volcaniclastic, sedimentary rocks 
pTv pre-Tertiary volcanic rocks 
pTi pre-Tertiary intrusive rocks 
CARB Carbonate, limestone, and marble 
META Metamorphic rocks (excluding marble) 
Ti Tertiary intrusive rocks 
G Glacier 
OW Open water 
 

Table 3. Hydrogeologic grouping and coding of rocks with broadly similar hydrogeologic aspects largely related to age 
and lithology

HydroGeo Assignment 
Sed_Q Fragmental sedimentary deposits and rock of 

Quaternary age 
Sed_T Fragmental sedimentary rock of Tertiary age 
Sed_pT Fragmental sedimentary rock of pre-Tertiary age 

(including volcaniclastic) 
B_CRB Columbia River Basalt Group, not restricted by age 
CO3 Carbonate and biologic sedimentary rock, not restricted 

by age 
Meta Metamorphic rock, not restricted by age 
Intrus Intrusive igneous rock, not restricted by age 
Extrus Extrusive igneous rock, not restricted by age 
OW Open water 
NA Not applicable, includes open water and glaciers 
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the Quaternary sedimentary units, regardless of their 
source-map designator or manner of deposition.

Lithologic Pattern (LithPatter)
It was deemed useful to add information that may 

help users understand permeability contrasts within 
some groupings. For example, permeability of basaltic 
vent rocks ranges widely. Therefore, scoria cones 
(coded as scoria cone, table 4) might be distinguished 
from tuff cones, which are often well-cemented, 
clay-rich palagonitic beds (coded palagonite tuff). 
These distinctions, for polygon assignment, were 
typically gleaned from the source-map information. As 
another example, ash-flow tuff sheets may vary from 
unwelded (AFT_u) to highly welded (AFT_w)—with 
decreasing permeability—or even so densely welded 
(AFT_d) as to be rheomorphic and hydrologically 
more like thick rhyolite lava flows than like their less-
welded pyroclastic counterparts; the latter is described 
in several publications for ash-flow tuffs in Idaho (for 
example, Ekren and others, 1984). Distinctions of 
welding are rarely available in the state-scale source-
map codings and are therefore applied only where we 
have some personal knowledge or access to suitably 
detailed map publications.

The term shield volcano applies to the many 
moderate-size, low-profile volcanoes built chiefly of 
lava flows that are broadly similar in composition. It 
applies readily to volcanoes of the open plains, where 
their geomorphic form is expressed, and to several 
of the younger volcanoes in the Cascade Range. 
The term is rarely assigned to lava-flow sequences 
in fault-block escarpments because the evidence 
of volcanic edifice is difficult to establish. Readers 
seeking parallel naming conventions might recognize 
the absence of composite volcano as a pattern term. 
Composite volcanoes comprise rocks that are diverse 
both compositionally and by way of their extrusive 
structures; for example, domes versus lava flows. 
The volcanic-structure distinctions are commonly 
discernible even at state-map scale, so those more 
specific terms typically prevail.

Relevant Notes (NotesAdded)
The “NotesAdded” field includes supporting 

radiometric-age criteria, stratigraphic or geographic 
names, source-map reference if not the state-map 
compilation, and additional lithologic notes for some 
of the polygons. These entries were added irregularly, 

but we felt they were important enough to retain with 
the re-categorized map. The lack of a data entry in 
the “NotesAdded” field does not signal the absence of 
supporting radiometric-age or other data.

Intent, Limitations, and Caveats
This newly coded map (database and fig. 4) was 

created for statistical analysis of hydrogeologic 
relations in the Pacific Northwest Volcanic Aquifer 
study area (NVASA). It is being published as a 
document of record, one we hope will be useful to 
others studying the stratigraphy and structure of the 
Pacific Northwest.

Conceptually, little is new from the broad 
categorization shown earlier by small-scale age-
composition depictions of specific temporal periods 
(for example, 1:1,000,000-scale maps by Luedke and 
Smith: late Cenozoic volcanic rocks [1982]; early and 
middle Cenozoic volcanic rocks [1983]). Of value 
here is the greater detail in tabular data for rocks and 
deposits emplaced in the past 5 million years compiled 
into a single publication. In addition, this map includes 
thematic coding for broadly similar hydrogeologic 
properties (largely owing to age and lithology) and 
lithologic patterns.

The degree of certainty for which the age, 
composition, hydrogeologic group, and lithologic 
pattern were assigned varies among polygons. Any age 
or compositional information that appears was derived 
by comparing, in GIS, a preexisting map with the 
current map and making a wholesale assignment for 
the most likely composition and age of volcanic rocks. 
Some polygons have been individually inspected, 
commonly in conjunction with intermediate-scale 
maps or information from radiometric databases. 
In other cases, polygons were assigned in bulk to 
groupings of lithologically or temporally similar units 
in close geographic proximity. Still other polygons 
were recoded entirely on the basis of already existing 
codes, for units across broad geographic reaches of a 
given state. For example, narrow valley-floor alluvial 
sedimentary deposits with an “original label” of 
Qal were assigned the character “thin fill” for their 
LithPatter because they likely are not part of moderate 
to thick basin fills that include other Quaternary 
sedimentary units.

That said, ours is a thematically oriented map. It 
may have been wiser as a first step to coalesce small 
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Table 4. Lithologic pattern categories that may influence permeability on a finer scale than age, composition, or hydrogeo-
logic grouping alone
[Abbreviations: m, meters]

LithPatter Description 
Volcanic units 

lava flows Typically several flows and interbedded flow breccia 
lava flows and tuff Heterolithic aspect reduces permeability of map unit 
AFT_u Ash-flow tuff, unwelded or poorly welded 
AFT_w Ash-flow tuff, moderately welded 
AFT_d Ash-flow tuff, densely welded (rheomorphic) 
shield volcano Landform comprises lava flows; may include overlapping 

shield within area of one polygon 
scoria cone Mostly basalt or andesite vent deposits, but includes 

rhyolite scoria at Central Pumice Cone (Oregon, 
Newberry caldera) 

palagonite tuff Palagonite tuff 
silicic vent Landform comprising mostly rhyolite lava flows and 

near-vent deposits 
dome or thick lava flows Stubby lava, probably near vent 
tuff Chiefly ash-rich fine-grained pyroclastic volcanic rocks 
tuff and tuff breccia Like tuff but includes much coarse material (tuff breccia) 
volcaniclastic Pyroclastic or epiclastic volcanic rocks 
small plug or sill Mostly basalt or andesite compositionally and commonly 

fine grained 
Sedimentary units 

alluvial fill, thin Alluvial-fill deposit, commonly less than 30 m thick 
alluvial fill, moderate Alluvial-fill deposit, 30–300 m thick 
alluvial fill, thick Alluvial-fill deposit, more than 300 m thick 
till Glacial till deposit, not restricted by thickness 
diamictite Debris-flow deposit with substantial run-out 
landslide Landslide deposit, not restricted by thickness 

Heterolithic Tertiary formations 
tuff and tuffaceous sedimentary rock Ash-rich pyroclastic and epiclastic volcanic rocks 
highly variable lithologically Areas of ill-defined strata including lava flows, 

pyroclastic and epiclastic volcanic rocks, possibly some 
intrusions 

Pre-Tertiary rocks 
pT volcanic and volcaniclastic Pre-Tertiary volcanic and volcaniclastic rocks 
coarse-grained plutonic Coarse-grained intrusions, ranging from ultramafic to 

granitic 
pT volcanic and metavolcanic Pre-Tertiary volcanic and metavolcanic rocks 
limestone, dolostone, or marble Limestone, dolostone, or marble 

Other 
plutonic Plutonic rocks 
NA Not applicable. Includes pre-Tertiary sedimentary and 

metamorphic rocks because they do not have a “pattern” 
(may include some carbonate, metasedimentary, or 
intrusive rocks). Also includes open water and glaciers 

NC Not classified 
 

polygons, such as vent deposits, into their surrounding 
lava-field polygon to simplify the presentation. Lost 
thereby, however, would have been the opportunity 
for users to deal with details of their choosing—to 
reassign age or composition to polygons of small areal 
extent. In addition, the act of simplification would 
have required greater documentation.

Herein lies the chief caveat for a user: Polygon size 
counts in the matter of age-composition assignments 

on a map of this scope and detail. The smaller the 
area of any geologic polygon on this map, the greater 
the likelihood it is miscoded—chiefly by age but 
sporadically by composition. Inspection of each small 
polygon for accuracy is unrealistic for the scope and 
application of this map. The task would be ponderous 
to examine every small polygon corresponding to 
the numerous scoria cones that dot the landscape of 
a volcanic terrane, for example. Therefore, part of 
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our workflow involved selecting polygons by area to 
ensure extensive areas were properly coded.
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