U.S. Department of the Interior U.S. Geological Survey

New Geologic Mapping of the Northwestern Willamette Valley, Oregon, and its American Viticultural Areas (AVAs)— A Foundation for Understanding Their Terroir

By Ray E. Wells, ¹ Ralph Haugerud, ¹ Alan Niem, ² Wendy Niem, ² Lina Ma, ³ Ian Madin, ³ and Russell Evarts ¹

A new geologic map of the greater Portland, Oregon, metropolitan area is planned that will document the region's complex geology. The geology contributes to the varied terroir of four American Viticultural Areas (AVAs) in the northwestern Willamette Valley: the Yamhill-Carlton, Dundee Hills, Chehalem Mountains, and Ribbon Ridge AVAs. Terroir is defined as the environmental conditions, especially climate and soils, that influence the quality and character of a region's crops—in this case, grapes for wine.

The new geologic map will consist of 51 7.5' quadrangles covering more than 2,500 square miles, and it will represent more than 100 person-years of geologic mapping and studies. The map (currently in review: "Geologic map of the greater Portland metropolitan area and surrounding region, Oregon and Washington" by Wells, R.E., Haugerud, R.A., Niem, A., Niem, W., Ma, L., Evarts, R., Madin, I., and others) is planned to be published as a U.S. Geological Survey Scientific Investigations Map. The region was mapped at the relatively detailed scale of 1:24,000 to improve understanding of its geology and its earthquake hazards. More than 100 geologic map units will record the 50-million-year history of volcanism, sedimentation, folding, and faulting above the Cascadia Subduction Zone.

On this poster we present the map (Map A) at a reduced scale (about 1:175,000) to show the general distribution of geologic map units, and we highlight, discuss, and illustrate six major geologic events that helped shape the region and form its terrior. We also discuss the geologic elements that contribute to the character of each of the four AVAs in the northwestern Willamette Valley.

Map A. The geologic map (to right) records evidence of six major geologic events that have shaped the northwestern Willamette Valley. The circled numbers on Map A show the general areas where the evidence for these events can be found. In the Correlation of Map Units, the numbers indicate which map units show such evidence. The numbers in the boxes below correlate to the circled numbers on the map:

About 50 million years ago, an ancient basaltic ocean-island chain collided with North America

to today's Hawaiian Islands (shown in gray shaded relief, Iava is erupted beneath for scale reference), collided with the North America Plate the ocean

and was accreted (welded) to it. Base from Google Earth sediments were deposited on the accreted Siletzia

of sand and mud (depicted by yellow "fan" shapes) in the fore-arc basin offshore of the string of burgeoning volcanoes (red triangles), the future

Between about 40 million years ago and the present, the > sedimentary deposits and the accreted Siletzia Terrane

were buried beneath volcanic rocks and deposits

volcanoes in the Cascade Volcanic Arc (2-40 million years old; light-orange shading). Younger volcanic rocks (0-2 were erupted from vents near the modern Cascade Arc volcanoes (red triangles)

Mount St. Helens shows that volcanic activity continues to the present day

Oregon Lambert NAD 83 UTM Zone 10

Between about 17 and 6 million years ago, stretching of 4 the continental crust caused it to crack, releasing a flood of basaltic lava flows that blanketed the region

were once buried beneath younger flat-lying strata, were folded and uplifted into an arch. Then they were exposed after the overlying strata were eroded side are tilted to the east (righ away. The dotted line shows the original extent of the section, which is topped by the Columbia River Basalt (CRB). See the List of Map Units (in Map A above) for an explanation of the map-unit symbols, names, and ages Dotted line shows the (inferred) former upper limit of the Columbia Rive Basalt before part of it was eroded away. The area between the dotted line and the cross section profile shows the amount removed by erosion Siletz River Volcanics bmarine and subaerial basalt flows, volcaniclastic and sedimentary rocks] otograph of the Columbia River Basalt at

50-million-year-old

Siletz River Volcanics

5 Starting about 20 million years ago, strata in the Coast Range were folded into a broad arch

– Bracket in Map A above shows where on the map the right side of the cross section below is

Between about 20 and 15 thousand years ago, much of the region was covered by deposits from glacial-outburst floods located; the strata on the righ

Photograph of an outcrop of rhythmically bedded flood deposits (silt), which record 26 catastrophic loods from ancient Glacial Lake Missoula. The outcrop, which had been exposed by construction activities, is located on Highway 26 at Cornell Road, near Beaverton, Oregon

¹U.S. Geological Survey; ²Oregon State University ³Oregon Department of Geology and Mineral Indus

Figure 1. Map showing the location of the geologic map (Map A, below) in the Pacific Northwest region. The green dashed line shows the general location of the schematic cross section shown in figure 2.

Figure 2. Schematic cross section through the Cascadia Subduction Zone (red line), showing how the Juan de Fuca Plate dives beneath the North America Plate along the subduction zone. As the Juan de Fuca Plate sinks in the Earth's deep mantle, it causes earthquakes (depicted by colored dots), an it also produces the magma (depicted by a yellow triangle) that forms the chair of volcanoes known as the Cascade Volcanic Arc. in today's Cascade Range. It is this tectonic activity that is the source of the region's rocks, landscape, and geologic hazards, as well as its terroir. Base from Google Earth.

Dundee Hills AVA

of Newberg, Oregon. The Dundee Hills are mostly underlain by 16- to 15-million-year-old lava flows of the Columbia River Basalt. The lava flows typically form thick red Ultisols such as the Jory soil complex, which is derived from deep weathering of the basalt. The "Dundee bench" is made up of basalt blocks, as much as 1 mile across, deposited by an

Several formations and members of the Columbia River Basalt Group are recognized in the Dundee Hills, mainly by the presence or absence of plagioclase phenocrysts (some as large as 1") in the lava flows, as well as by the chemistry and paleomagnetic directions of

Traveling eastward though the AVAs is like taking a trip through geologic time Yamhill-Carlton AVA This schematic cross section across the eastern part of a section of folded and uplifted Coast Range strata (also depicted in box

West of Yamhill, Oregon, upland areas consist of siltstone and sandstone of the Yamhill Formation, which underlies soils such as the Goodin-Dupee-Chehulpum and Melbourne soil complexes. Basaltic sills (sheetlike intrusions) that intruded the sediments about 45 million years ago form the higher hills and are the parent material for the Saum-Parrett and Jory-Bellpine soil complexes.

East of Yamhill, feldspathic, micaceous sandstone of the Cowlitz Formation (about 40 million years old) forms the hills that are capped by the Wellsdale-Willakenzie-Dupee soil complex. East of the Willakenzie Estate winery, outside of Yamhill, lies tuffaceous volcaniclastic mudstone and sandstone of the overlying Keasey and Pittsburg Bluff Formations (about 35 to 29 million years old). These rocks also underlie soils such as the

5, below left) shows the approximate boundaries of the AVAs (dotted lines). Note that the rocks decrease in age from west to east. flows of the Columbia River Basalt, which were erupted between 16 and 15 million years ago. Several geological formations and their members are recognized in the Chehalem Mountains See the List of Map Units (in Map A, to left) for an explanation of the map-unit symbols, names, and ages of basalt, are overlain by a cap of glacial loess (wind-blown silt) of variable thickness, producing the Laurelwood soil complex and related soils (as shown below in the upper **Dundee Hills AVAs** photograph). The "Chehalem bench" is made up of basalt blocks, as large as 1 mile across, deposited by an ancient megalandslide. Qf Missoula Flood deposits (15 ka) [silt]

Map B. Below is part of Map A, enlarged to highlight the AVAs (outlined in red) and the map units that underlie them. See the List of Map Units (in Map A, to left) for an explanation of the map-unit symbols, names, and ages

Chehalem Mountains AVA

Thick red Ultisols such as the Jory soil complex, derived from the deep weathering

EXPLANATION

Ribbon Ridge member—Fine sandstone

The Chehalem Mountains, located north of Newberg, Oregon, are underlain by lava

Ribbon Ridge AVA Ribbon Ridge, located northwest of Newberg, Oregon, east of Chehalem Creek, is largely underlain by fine-grained oceanic sandstone, siltstone, and tuff of the Scappoose Formation (29 to 16 million years old), which is the parent material for the Wellsdale loam soils. Lag deposits consisting of basalt cobbles (from the Columbia River Basalt) are found on some ridgetops.

vineyards

5 MILES

8 KILOMETERS

1 2 3 4 5 0

The presence of such distinctive plagioclase

as belonging to the basalt of Ginkgo subunit

Photograph of a hand sample of the basalt of Ginkgo

Wanapum Basalt), showing a large (2-3 cm) phenocryst

of plagioclase (the light-colored inclusion) in the basalt.

(a subunit of the Frenchman Springs Member of the

phenocrysts in the basalt flows helps to identify them

Ribbon Ridge member of the Scappoose Formation samples of the silicic tuffaceous mudstor subunit of the

Scappoose

Formation

Cross-laminated, fine-grained, oceanic sandstone and siltstone; contains leaf

Tuffaceous mudstone—Poorly exposed, silicic volcanic tuff from the Cascade Volcanic Arc, deposited in an oceanic basin. Forms lower slopes on north and west sides of

Ridge, showing a deep red paleosol (that is, an old, buried soil layer) overlain by a younger, tan loess deposit

Photograph of an outcrop on Ribbon

ap or plate is offered as an online-only, digital publication. Users should be aware igital files available at https://doi.org/10.3133/ofr20181044 Suggested citation: Wells, R.E., Haugerud, R., Niem, A., Niem, W., Ma, L., Madin, I., and Evarts, R., 2018, New geologic mapping of the northwestern Willamette Valley, Oregon, American Viticultural Areas (AVAs)—A foundation for understanding their te ological Survey Open-File Report 2018–1044, https://doi.org/10.3133/ofr201810

Base from Oregon Lidar Consortium

Approximate Area of Map B

Below is a schematic cross section across a section of the Coast Range. The oldest rocks in the center (the formerly flat-lying Siletz River Volcanics), which

30-million-year-old marine (oceanic)

sandstone and mudstone

Armstrong Canyon memb N2 and R2 flows, undivided R2 flows, undivided Grouse Creek member Wapshilla Ridge member

Waters from glacial lakes that had ponded behind glaciers north of the region were released in glacial-outburst floods as the glacier "dams" failed catastrophically at least 40 times, filling the Tualatin, Willamette, and Lower Columbia Basins with floodwaters (blue shading) and leaving a thick blanket of silt to an elevation as high as about 400 feet (120 meters). Map by Minervini and others (2003; https://pubs.usgs.gov/of/2003/of03-408/)

Landslide deposits, undivided (Holocene and Pleistocene

Deposits of Ape Canyon and older age (Pleistoce

SEDIMENTARY FILL AND VOLCANIC ROCKS OF THE PORTLAND TUALATIN, AND NORTHERN WILLAMETTE BASINS

Hyaloclastite sandstone member

N2 flows, undivided
Sentinel Bluffs Member
Winter Water member
Umtanum member
Ortley member
Buttermilk Canyon member

Sandy River Mudstone (Pliocene and Miocene)

Rhododendron Formation (Pliocene? and Miocene) ROCKS OF THE HIGH CASCADE RANGE

unt Hood-derived deposits (Holocene and Pleistocen

ungest terrace deposits (Holocene) der, post-Missoula deposits (Holocene and (or) Pleisto

Older landslide deposits

Talus deposits (Holocene and Pleistocene)

Gus Creek conglomerate Windy Ridge member Ivy Creek conglomerate

Intrusive Wanapum Basalt (Miocene) Intrusive Grande Ronde Basalt (Miocene)

Intrusive rocks of the Coast Range (Eocene)

Tuffaceous mudstone (Oligocene) Oak Ranch Creek member (Oligocene)

East Fork member (Oligocene and Eocene) Stimson Mill member (Eocene)—Contains:

Leasey Formation, undivided (Eocene)—Locally, divided into

Cowlitz Formation, undivided (Eocene)—Also includes the

C&W sandstone member

Hamlet formation, undivided (Eocene)—Also includes the

Mactucea Formation. Divided into:

Yamhill Formation (Eocene)

Siletz River Volcanics (Eocene)—Divided into:

Submarine flows and breccias

Basalt Basaltic andesite of Elkhorn Mountain

Basaltic andesite

Subaerial flows
Fine-grained sedimentary rocks associated with subaeria

lcanic rocks, undivided (Oligocene)—Mostly divided into

YOUNGER ROCKS OF THE WESTERN CASCADE RANGE

OLDER ROCKS OF THE WESTERN CASCADE RANGE

Volcaniclastic sedimentary rocks (Oligocene and Eocene)

Tov Volcanic rocks, undivided (Oligocene and Eocene)—Locally

VOLCANIC AND SEDIMENTARY ROCKS OF THE COAST RANGE

Scappoose Formation, undivided (Miocene and Oligocene)-

Clatskanie River member (Miocene and Oligocene)
Ribbon Ridge member (Oligocene)

Younger intrusions of the western Cascade Range (Miocene and Oligocene)
Older intrusions of the western Cascade Range (Oligocene and

subdivided into: Tovr Rhyolite Tovd Dacite Tova Andesite Tovba Basaltic andesite Tovb Basalt Ttdp Tuff of Davis Peak (Eocene)