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Shallow Geology, Sea-Floor Texture, and Physiographic
Zones of the Inner Continental Shelf From Aquinnah to
Wasque Point, Martha's Vineyard, and Eel Point to
Great Point, Nantucket, Massachusetts

By Elizabeth A. Pendleton, Wayne E. Baldwin, Seth D. Ackerman, David S. Foster, Brian D. Andrews,

William C. Schwab, and Laura L. Brothers

Abstract

A series of interpretive maps that describe the shallow
geology, distribution, and texture of sea-floor sediments, and
physiographic zones of the sea floor along the south and west
shores of Martha’s Vineyard and the north shore of Nantucket,
Massachusetts, were produced by using high-resolution geo-
physical data (interferometric and multibeam swath bathyme-
try, light detection and ranging [lidar] bathymetry, backscatter
intensity, and seismic-reflection profiles), sediment samples,
and bottom photographs. These interpretations are intended
to aid statewide efforts to inventory and manage coastal and
marine resources, link with existing data interpretations, and
provide information for research focused on coastal evolution
and environmental change. Marine geologic mapping of the
inner continental shelf of Massachusetts is a statewide coop-
erative effort of the U.S. Geological Survey and the Massachu-
setts Office of Coastal Zone Management.

Introduction

The geologic framework and seabed character of the
coastal zone of Massachusetts is complex, heterogeneous, and
controlled by the antecedent geology. Previous studies in the
region defined the geology and texture of the sea floor on the
basis of widely spaced geophysical tracklines and vibracores
(O’Hara and Oldale, 1980, 1987) or sediment samples (Ford
and Voss, 2010). In this study, high-resolution geophysical
datasets at full sea-floor coverage, supplemented with sedi-
ment samples and bottom photographs, provide the basis for
detailed surficial to shallow stratigraphic geologic maps, high-
resolution sediment texture maps, and physiographic zone
delineations that were previously unfeasible because of a lack
of high-quality, high-density sea-floor mapping data.

Purpose and Scope

This report describes the shallow geologic frame-
work, distribution of sea-floor texture, and physiographic
zones of the Massachusetts coastal zone between Aquinnah
and Wasque Point on Martha’s Vineyard, and between Eel
Point and Great Point on Nantucket, Massachusetts (fig. 1).
Interpretations are provided as geospatial data layers in a
companion data release (appendix 1; Pendleton and others,
2018, https://doi.org/10.5066/P9E9EFNE). This research was
carried out as part of a cooperative sea-floor mapping program
(https://woodshole.er.usgs.gov/project-pages/coastal_mass/)
between the U.S. Geological Survey (USGS) and the Mas-
sachusetts Office of Coastal Zone Management (CZM). This
cooperative effort fosters data collection and the production
of interpretive geospatial datasets that can be used by man-
agers and scientists to delineate marine resources, assess
environmental change, inventory marine habitats, and support
research concerning sea-level change, sediment supply and
budget, and coastal evolution (Massachusetts Office of Coastal
Zone Management, 2015).

The maps presented in this report are based on interpre-
tation of high-resolution seismic-reflection profiles, swath
bathymetry, acoustic backscatter, bottom photographs, and
sediment samples collected within nearshore regions (less
than about 30-meter [m] water depth; Denny and others, 2009;
Andrews and others, 2014, 2018; Ackerman and others, 2016);
bottom photographs and sediment samples (Ackerman and
others, 2016); and sediment texture databases (Ford and Voss,
2010; McMullen and others, 2012) modified by CZM (Emily
Huntley, CZM, unpub. data, 2012). This report is the fifth in a
series of geologic interpretative datasets and reports (Pendle-
ton and others, 2013, 2015; Foster and others, 2015; Baldwin
and others, 2016) about Massachusetts State waters that have
been published as part of the USGS and CZM cooperative
mapping agreement.


https://doi.org/10.5066/P9E9EFNE
https://woodshole.er.usgs.gov/project-pages/coastal_mass/
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Geographic Setting

Martha’s Vineyard and Nantucket are the two largest
islands in southeastern Massachusetts and are approximately
6 and 45 kilometers (km) south of Cape Cod, respectively
(fig. 1). The study area includes the inner continental shelf just
west and south of Martha’s Vineyard, between Aquinnah and
Muskeget Channel, and north of Nantucket Island, between
Tuckernuck Island and Great Point (fig. 1). The two sites
described in this study are (1) an area that lies along the open
Atlantic coast of Martha’s Vineyard, referred to as the Mar-
tha’s Vineyard site and (2) another mostly protected area that
lies on the north side of Nantucket within Nantucket Sound,
referred to as the Nantucket site. The Martha’s Vineyard site
occupies nearly 38 km of shoreline offshore of the south and
west of Martha’s Vineyard and has a mean water depth of
approximately 18 m (below North American Vertical Datum
of 1988 [NAVD 88]; fig. 2). This area reaches depths exceed-
ing 30 m south and east of Nomans Island. The Nantucket site
covers roughly 12 of the 17 km of Nantucket Sound that lies
between North Point and Great Point, has a mean water depth
of 12 m below NAVD 88, and gently shallows to the south
toward Nantucket Harbor.

The south coast of Martha’s Vineyard east of Chilmark
is primarily a low-relief, gently south-sloping sand and gravel
plain that is incised by linear, shore-perpendicular coastal
embayments (drowned valleys) fronted by welded barrier
beaches and spits (Uchupi and Oldale, 1994). The Atlantic
coast of Aquinnah and Chilmark, including Gay Head and
Squibnocket Point, is higher but also more variable in eleva-
tion. These areas are distinctly rockier than the southeast
coast of Martha’s Vineyard. Between cliffed areas are lower
elevation pocket and welded barrier beaches, backed by
coastal ponds.

The north coast of Nantucket, west of Nantucket Har-
bor, consists of low, unconsolidated cliffs fronted by a sandy
beach along Nantucket Sound. The coast along the east side
of Nantucket from Great Point to Coskata is a barrier spit
that shelters the study site, and another spit that builds from
Coskata to the west encloses Nantucket Harbor. The latter spit
is between 100 and 500 m wide, with a straight sandy beach
facing Nantucket sound and a sandy, cuspate coast facing into
Nantucket Harbor.

Geologic Setting

The geologic framework of Martha’s Vineyard and
Nantucket is controlled by the underlying bedrock and coastal
plain and continental shelf units, subsequent Pleistocene
glaciations, and Holocene sea-level rise (O’Hara and Oldale,
1980, 1987). Basement rocks of Triassic and Cretaceous
ages underlie the islands at depths below the land surface
of between 150 and 300 m on Martha’s Vineyard and up to
500 m on Nantucket (Oldale, 1969; Zen and others, 1983).
The basement is unconformably overlain by coastal plain and
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continental shelf deposits (Woodsworth and Wigglesworth,
1934; Kaye, 1964a, b, 1980; Oldale and others, 1973; Folger
and others, 1978; Hall and others, 1980; O’Hara and Oldale,
1980, 1987; Oldale and O’Hara, 1984). These deposits are
composed of unconsolidated to semiconsolidated sand, silty
clay, and gravel, and they represent a wedge of coastal plain
and continental shelf strata that dips and thickens to the south
(Weed and others, 1974; O’Hara and Oldale, 1980, 1987,
Siegel and others, 2012).

Glacial drift, deposited during the Illinoian and Wiscon-
sinan Ages of the Pleistocene, unconformably overlies the
basement rocks and coastal plain and continental shelf depos-
its (Woodsworth and Wigglesworth, 1934; Kaye, 1964a, b;
O’Hara and Oldale, 1980, 1987; Oldale, 1981, 1982, 2001;
Oldale and others, 1982; Uchupi and others, 1996; Masterson
and others, 1997; Stone and DiGiacomo-Cohen, 2009). The
glacial drift includes poorly sorted tills and moraines, which
suggest ice-proximal deposition, and moderately to well sorted
and stratified glaciofluvial and glaciolacustrine units, which
indicate ice-distal deposition (Kaye, 1964a; b; Oldale and
Barlow, 1986; Stone and DiGiacomo-Cohen, 2009).

Postglacial deposits primarily consist of material that has
been winnowed from the glacial drift by marine and fluvial
processes during the late Pleistocene and Holocene (O’Hara
and Oldale, 1980, 1987; Oldale, 1982, 2001). The oldest post-
glacial deposits are fluvial and estuarine units that fill glacio-
fluvial channels and other topographic lows on the surface of
the glacial drift (O’Hara and Oldale, 1980, 1987). The Holo-
cene marine transgressive unconformity separates the older
units from younger overlying postglacial marine deposits. The
marine units primarily consist of shelf sand bodies offshore
of Martha’s Vineyard, including thin and discontinuous sand
veneers, ebb-tidal deltas, and sorted bedforms (Goff and oth-
ers, 2005), but the modern marine unit on the north side of
Nantucket is a muddy sand sheet (O’Hara and Oldale, 1987).

Depositional History

Between 28 and 25.5 thousand years before present (ka),
the Buzzards Bay and Cape Cod Bay lobes of the Wiscon-
sinan Laurentide Ice Sheet reached their maximum southern
extents near Martha’s Vineyard and Nantucket (fig. 3; Uchupi
and others, 1996; Oldale, 2001; Balco and others, 2002;
Uchupi and Mulligan, 2006; Balco, 2011). The overburden of
the advancing ice front locally deformed and thrusted previ-
ously deposited glacial drift and underlying coastal plain and
continental shelf units into the terminal moraines that now
form the western and northeastern coasts of Martha’s Vineyard
and Nantucket, respectively (Woodsworth and Wigglesworth,
1934; Kaye, 1964a, b; Oldale and Eskenasy, 1982; Oldale and
O’Hara, 1984; Oldale, 2001; Stone and DiGiacomo-Cohen,
2009). The Buzzards Bay ice lobe deposited the end moraine
that makes up Nomans Island and the western side of Martha’s
Vineyard, and the Cape Cod Bay lobe deposited the end
moraines present on the eastern side of Martha’s Vineyard and
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Figure 3. Glacial moraines on land and submerged on the continental shelf (compiled from Stone and others, 2005; Boothroyd, 2008;
Stone and DiGiacomo-Cohen, 2009; and Stone and others, 2011), ice-front locations for southern New England (from Ridge, 2004), and
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four lobes of the Laurentide Ice Sheet in southeastern New England (modified from Oldale and Barlow, 1986). Figure is from Baldwin and

others (2016), modified from Foster and others (2015).
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on Nantucket (Larson, 1982; Oldale and Barlow, 1986; Oldale,
2001; Stone and DiGiacomo-Cohen, 2009). Coarse and poorly
sorted till and ice-contact material were deposited proximal to
the ice lobe termini, whereas finer grained and stratified fluvial
outwash, lacustrine, and delta material was deposited beyond
the ice front. Ice-contact deposits associated with the Buzzards
Bay lobe are around western Martha’s Vineyard, whereas
stratified drift deposits associated with the Cape Cod Bay lobe
formed the expansive outwash plains on Martha’s Vineyard
and Nantucket south and offshore of the terminal moraines
(Kaye, 1972; Oldale and Barlow, 1986; Stone and DiGiacomo-
Cohen, 2009).

The outwash plains of Martha’s Vineyard were subse-
quently incised by north-south-trending sapping valleys that
continued onto the continental shelf (O’Hara and Oldale,
1980; Uchupi and Oldale, 1994; Goff and others, 2005; Stone
and DiGiacomo-Cohen, 2009). These groundwater drainage
systems formed as a result of the high hydrostatic heads and
shallow water table associated with proglacial lakes to the
north and the high permeability of the outwash sediments
(Uchupi and Oldale, 1994). The glacial landscape south of
Martha’s Vineyard was modified as an eroding drift sheet
exposed at the surface, until approximately 10 to 8 ka when
sea level began to rise (O’Hara and Oldale, 1980; Gutierrez
and others, 2003). Subsequently, oceanographic processes
began reworking, winnowing, and redistributing fine-grained
material from the glacial drift (O’Hara and Oldale, 1980; Goff
and others, 2005). Sand bodies began accumulating on the
shelf, sandy beaches formed along the south and west coast of
Martha’s Vineyard fronting outwash plains and moraines, and
sapping valleys were progressively drowned.

In Nantucket Sound, proglacial lake deposits and a
postglacial drainage network carved through outwash, and
glaciodeltaic sediments underlie a deposit of Holocene estua-
rine and marine sediments (fig. 3; Larson, 1982; O’Hara and
Oldale, 1987; Uchupi and Mulligan, 2006). Sheltered marine
conditions along the north shore of Nantucket have resulted
in the deposition of a modern muddy sand sheet between
Great Point and North Point, and barrier spits have enclosed
Nantucket Harbor (Rosen 1972; O’Hara and Oldale, 1987).

Previous Work

O’Hara and Oldale (1980, 1987) conducted compre-
hensive geologic mapping studies of eastern Rhode Island
Sound, Vineyard Sound, and Nantucket Sound. They collected
widely spaced (approximately 2,000 m apart) boomer seismic-
reflection profiles, sidescan sonographs, and vibracores. Their
interpretations described the broad stratigraphic framework in
a series of subsurface and sea-floor geologic maps, including
structural contours of depths to the surfaces of pre-Quaternary
coastal plain and continental shelf units, Quaternary glacial
units, and isopachs of glacial and postglacial sediments.
Legacy reports by Robb and Oldale (1977) and O’Hara and
Oldale (1980, 1987) and two products of the USGS and CZM

cooperative program (Foster and others, 2015; Baldwin and
others, 2016), all of which focused on areas of Buzzards Bay
and Vineyard and Nantucket Sounds, provided a foundation
for this report. The geology and shallow structure of the south
shore of Martha’s Vineyard between Squibnocket Point and
Wasque Point have not been previously published. Surficial
geologic maps of Martha’s Vineyard and Nantucket by Oldale
and Barlow (1986) and Stone and DiGiacomo-Cohen (2009)
were used to correlate onshore and offshore geologic units
where possible.

Methods

This section describes how the interpretations presented
in this report and the companion data release (Pendleton and
others, 2018, https://doi.org/10.5066/P9E9EFNE) were gener-
ated. Detailed descriptions of software, source information,
scale, and accuracy assessments for each dataset are provided
in the metadata files for geospatial data layers in the data
release. High-resolution bathymetric, acoustic-backscatter, and
seismic-reflection data collected by the USGS, the National
Oceanic and Atmospheric Administration, and the U.S. Army
Corps of Engineers provide nearly full coverage of the sea
floor in the 265-square-kilometer (km?) study area (fig. 1,
table 1). The geophysical data, sediment samples, and sea-
floor photographs/video allowed for interpretation of sea-floor
composition and shallow subsurface stratigraphy at finer
scales and resolutions than previously possible. However, the
interpretations have limitations, which primarily arise from
the types, quality, and density of data from which they were
made. Pendleton and others (2013) provide detailed discus-
sion regarding the limitations associated with these surficial
mapping methods. Consequently, qualitative confidence levels
were assigned to some interpretations and must be considered
when surficial maps are used to guide management decisions
and research.

Bathymetric and Backscatter Composite

A continuous bathymetry and elevation model published
by Andrews and others (2018) that uses previously published
elevation data covers the entire study area (fig. 2) and pro-
vided the seamless bathymetric data source for this study. Ver-
tical resolutions of the source data range from unknown, for
lead-line soundings, to 0.1 m, for interferometric, multibeam,
and light detection and ranging (lidar) swath bathymetric data.

A seamless acoustic-backscatter image was also created
(fig. 4) from data previously published by the USGS (table 1).
All source backscatter imagery was mosaicked into a compos-
ite GeoTIFF by using PCI Geomatica (version 10.1) with a
resolution of 5 meters per pixel (mpp).


https://doi.org/10.5066/P9E9EFNE
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8 Shallow Geology, Sea-Floor Texture, and Physiographic Zones Offshore Martha’s Vineyard and Nantucket, Mass.

Table 1.

[kHz, kilohertz]

Data sources for bathymetry, backscatter, and seismic-reflection profile interpretations for the south and west shore of
Martha’s Vineyard and the north shore of Nantucket, Massachusetts.

Vessel Date Bathymetry Acoustic backscatter Seismic reflection Citation
Megan T. Miller! 2007 SEA SWATHplus 234- Klein 3000 dual- EdgeTech Geo-Star FSSB ~ Denny and others
kHz interferometric frequency sidescan subbottom profiling (2009)
sonar system sonar system and an SB-0512i
towfish
Megan T. Miller and 2009-2011 SEA SWATHplus 234- Klein 3000 dual- EdgeTech Geo-Star FSSB Andrews and others
Scarlet Isabella’ kHz interferometric frequency sidescan subbottom profiling (2014)
sonar system sonar system and an SB-0512i
towfish
Scarlet Isabella’ 2013 SWATHplus 234-kHz SWATHplus 234 kHz EdgeTech Geo-Star FSSB  Ackerman and oth-
interferometric sonar and EdgeTech 4200 subbottom profiling ers (2016)
system at 100 and 400 kHz system and an SB-0512i
towfish
Various'?? 1887-2016 Lead-line, single-beam None None Andrews and others

sonar, multibeam sonar,
interferometric sonar,
and light detection and
ranging (lidar)

(2018)

Data collected by the U.S. Geological Survey.
*Data collected by the National Oceanic and Atmospheric Administration.

3Data collected by the U.S. Army Corps of Engineers.

Seismic Stratigraphic and Surficial Geologic
Mapping

Approximately 2,800 kilometers of seismic-reflection
profiles, collected between 2007 and 2013 (table 1, fig. 5),
were interpreted in The Kingdom Suite (version 8.8). The
profiles were collected by using chirp sonars with broadband
frequencies of 0.5 to 12 kilohertz (kHz) or narrow-band fre-
quencies centered around 3.5 kHz. Legacy seismic-reflection
data (O’Hara and Oldale, 1980, 1987; McMullen and others,
2009) were used in the interpretations for general correlation
with the seismic stratigraphy interpreted in previous studies.
Interpretations of shallow stratigraphy and surficial geology
were conducted in the time domain (two-way traveltime) and
consisted of (1) identifying and defining seismic stratigraphic
units on the basis of seismic facies, and digitizing reflectors
(horizons) defining the boundaries between individual seismic
stratigraphic units; and (2) digitizing the extent over which
each of the defined seismic stratigraphic units crops out on the
sea floor.

Two-way traveltime values for the postglacial seismic
unit were exported and converted to thickness in meters by
using a constant seismic velocity of 1,500 meters per second.
The resulting isopach values were imported into ArcGIS

as point features (easting, northing, thickness) and used to
generate an interpolated digital elevation model (DEM) with
a 40-mpp resolution. The isopach map of postglacial sediment
was added to the DEM of regional swath bathymetry (fig. 2)
to produce a DEM of the unconformity defining its base of
postglacial material (40-m cell size, relative to NAVD 88).

The digitized sea-floor outcrops for each seismic unit
were imported into ArcGIS as point features (easting, north-
ing, seismic unit) and used to guide manual digitizing of
polygons representing discrete areas of seismic-unit outcrop.
The resulting polygon dataset provides a seamless representa-
tion of surficial geology for the seismic-reflection survey area.
The surficial geology polygons also provide insight into the
likely sediment texture at the sea floor based on the glacial or
postglacial origin and depositional environment inferred from
the seismic interpretation. The geologic observations were
incorporated into surficial sediment texture mapping.

High-density seismic-reflection data were collected only
within the areas surveyed by the USGS between 2007 and
2013 (table 1, fig. 5). As a result, surficial geology polygons
derived from the seismic interpretations are less extensive
than the polygons of sea-floor sediment texture and physio-
graphic zones, which cover areas equivalent to the composite
bathymetry (fig. 2).
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Sediment Samples and Sediment Texture
Classification Schemes

Sediment sample databases of Ford and Voss (2010),
McMullen and others (2012), and Ackerman and others (2016)
were supplemented with visual descriptions from National
Oceanic and Atmospheric Administration nautical charts
and sea-floor photographs compiled by CZM (fig. 6; Emily
Huntley, CZM, written commun., 2014). This study uses the
Barnhardt and others (1998) sediment texture classification
scheme (fig. 7). The Barnhardt and others (1998) system is
based on four basic, easily recognized sediment units (as mea-
sured in grain size, based on Wentworth, 1922): rock (R; grain
size greater than 64 millimeters [mm]), gravel (G; grain size
2 to 64 mm), sand (S; grain size 0.062 to 2 mm), and mud
(M; grain size less than 0.062 mm). Because the sea floor is
often not a uniform mixture of these units, the classification
is further divided into 12 composite units, which are two-part
combinations of the 4 basic units (fig. 7). This classification is
defined such that the primary texture, representing more than
50 percent of an area’s texture, is given an uppercase letter,
and the secondary texture, representing less than 50 percent of
an area’s texture, is given a lowercase letter. If one of the basic
sediment units represents more than 90 percent of the texture,
only its uppercase letter is used. The units defined under the
Barnhardt and others (1998) classification within this study
area are R, gravelly rock (Rg), sandy rock (Rs), and muddy
rock (Rm); G, rocky gravel (Gr), sandy gravel (Gs), and
muddy gravel (Gm); S, gravelly sand (Sg), muddy sand (Sm),
and rocky sand (Sr); and M, rocky mud (Mr), gravelly mud
(Mg), and sandy mud (Ms).

Sediment Texture Mapping

The texture and spatial distribution of sea-floor sediment
were mapped qualitatively in ArcGIS by using acoustic-back-
scatter intensity, bathymetry, lidar, geologic interpretations,
bottom photographs, and sediment samples. The highest data
resolution that was available was used to map sea-floor sedi-
ment texture, typically 2 to 5 m in water depths less than 30 m.
First, sediment texture polygons were outlined by using back-
scatter intensity data to define changes in the sea floor based
on acoustic return (fig. 4). Areas of high backscatter intensity
(light tones) have strong acoustic reflections, suggest boul-
ders and gravels, and generally are characterized by coarse
sea-floor sediments. Areas of low backscatter intensity (dark
tones) have weak acoustic reflections and generally are charac-
terized by fine-grained material such as muds and fine sands.

The polygons were then refined and edited by using
gradient, rugosity, and hillshaded relief images derived from
interferometric and multibeam swath bathymetry and lidar
at the highest resolution available (fig. 2). Areas of rough

topography and high rugosity typically are associated with
rocky areas, whereas smooth, low-rugosity regions tend to

be blanketed by fine-grained sediment. These bathymetric
derivatives helped to refine polygon boundaries where changes
from areas of primarily rock to areas of primarily gravel may
not have been apparent in backscatter data but could easily be
identified in hillshaded relief, rugosity, and slope data.

The third data input was the stratigraphic and geologic
interpretation of seismic-reflection profiles, which further
constrained the extent and general shape of sea-floor sedi-
ment distributions and rocky outcrops and also provided
insight concerning the likely sediment texture based on the
pre-Quaternary, glacial, or postglacial origin (figs. 5; O’Hara
and Oldale, 1980, 1987; Foster and others, 2015; Baldwin and
others, 2016).

Finally, sediment texture data and bottom photographs
were used to verify and refine the classification of the sedi-
ment texture polygons. Samples with laboratory analysis
data, rather than qualitative descriptions, were preferred for
defining sediment texture throughout the study area. Bottom
photographs were also used to qualitatively define sediment
texture, particularly in areas dominated by gravel- to boulder-
size material. Many of the sediment type polygons did not
contain sample information. For these polygons, sediment
textures were extrapolated from similar sea-floor polygons that
contained samples and produced similar acoustic-backscatter
and seismic-reflection properties.

Sediment texture polygons were assigned one of four
confidence levels on the basis of the type and quality of data
used to define them (table 2). The confidence levels were
attached as an attribute in the geographic information system
(GIS) for each sediment texture polygon (fig. 8). Level-one
confidence areas contain the widest variety of high-resolution
geophysical data and the highest quality of sediment sample
data. Level-two areas share the same variety of geophysi-
cal data but do not contain data from sediment samples that
were analyzed quantitatively in the laboratory. Many level-
two areas consist of gravel or gravelly sediment from which
there was no attempt to collect a physical sample, or sample
attempts recovered no material. This lack of samples is a
common problem because either most bottom samplers are
incapable of sampling gravel and cobble, or sufficient material
cannot be collected for accurate quantitative laboratory analy-
sis. Because level-three areas were designated in the absence
of seismic-reflection data and possibly sediment samples with
laboratory analyses, these areas are considered to have slightly
less confidence than level-one and level-two areas. Level-four
areas have substantially lower confidence because the primary
component of the Barnhardt and others (1998) classifica-
tion, acoustic reflectivity, is lacking. Consequently, levels one
through three are generally considered “high confidence,” and
level four is considered “low confidence” (table 2).
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12 Shallow Geology, Sea-Floor Texture, and Physiographic Zones Offshore Martha's Vineyard and Nantucket, Mass.

Figure 7. Barnhardt and others (1998) bottom-type classification
based on four basic sediment units: rock (R), gravel (G), sand (S),
and mud (M). Twelve additional two-part units represent
combinations of the four basic units. In the two-part units, the
primary texture (greater than 50 percent of the area) is given an
uppercase letter, and the secondary texture (less than 50 percent
of the area) is given a lowercase letter. Only the uppercase letter
is used for areas where more than 90 percent of the texture is
represented by one basic sediment unit. Figure is modified from
Barnhardt and others (1998).

Physiographic Zones

Based on geologic maps produced for the western Gulf
of Maine (Kelley and Belknap, 1991; Kelley and others, 1996;
Barnhardt and others, 2006, 2009), and western Massachusetts
Bay, the Merrimack Embayment, Cape Cod Bay, Buzzards
Bay, Vineyard Sound, and western Nantucket Sound (Pendle-
ton and others, 2013, 2015; Foster and others, 2015; Baldwin
and others, 2016), the sea floor in the Martha’s Vineyard and

Nantucket sites was divided into physiographic zones, which
are delineated on the basis of sea-floor morphology and domi-
nant sediment texture. Physiographic zone mapping allows
for efficient characterization of large areas by using a variety
of data sources that separately may not provide full sea-floor
coverage. The zones were defined qualitatively in ArcGIS by
using the same data sources and digitization techniques used
to derive sediment texture and distribution.

Results

Seismic Stratigraphy and Geologic
Interpretation

Four primary seismic stratigraphic units and three major
unconformities were interpreted within the seismic survey
area (figs. 5 and 9-14). Interpreted seismic profiles (figs. 10,
13, and 14) illustrate the typical geometry of the seismic units
and unconformities throughout the Martha’s Vineyard and
Nantucket sites. Figure 12 contains interpreted geologic cross
sections for one area north of Nantucket and two areas within
the Martha’s Vineyard study site. Figure 15 contains the sur-
ficial geologic map derived from mapping the areal extents of
geologic unit outcrops on the sea floor. Correlations between
our geologic interpretations, which are modified from Foster
and others (2015) and Baldwin and others (2016), and those
of O’Hara and Oldale (1980, 1987) for eastern Rhode Island
Sound, Vineyard Sound, and western Nantucket Sound are
summarized in figure 9. Our interpretations of the seismic stra-
tigraphy generally agree with the previous studies (O’Hara and
Oldale, 1980, 1987) where there is overlap. The higher density
and spatial resolution of the new data allowed us to build on
the previous interpretations and provide more detailed surficial
and shallow subsurface geologic maps than previously avail-
able. However, the newly acquired chirp data did not provide
adequate penetration for reliable mapping of the deep Pleis-
tocene and pre-Quaternary units; therefore, discussion of the
deeper stratigraphy mostly relies on previous interpretations
that were based on more widely spaced but more deeply pen-
etrating boomer seismic data and vibracores.

Table 2. Confidence levels assigned to sediment texture and physiographic zone polygons on the basis of the data used in the

interpretation.

[The spatial distribution of polygons and associated confidence levels are shown in figure 8. lidar, light detection and ranging]

Confidence level ~ Bathymetry Acoustic Seism_ic Sediment samplt? Se_diment sam|_)le Bottom
backscatter reflection (laboratory analysis)  (visual analysis) photograph
One (high) Swath Yes Yes Yes Yes Possible
Two (high) Swath Yes Yes No Yes Possible
Three (high) lidar No No Yes Yes Possible
Four (low) lidar No No No Yes Possible
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Figure 12. The general distributions and thicknesses of seismic stratigraphic units and major unconformities in the Martha's Vineyard
and Nantucket, Massachusetts, study sites. The geologic sections (C-C', D-D’, and E-E') were produced from chirp seismic-reflection
profile interpretations. See figure 9 for descriptions of stratigraphic units and unconformities. Geologic section locations are indicated
on figure 15. The U, fluvial unconformity is a dashed line to denote that it is discontinuous and (or) inferred.
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In ascending order, the four primary seismic stratigraphic
units are (1) undifferentiated coastal plain and continental
shelf deposits of Late Cretaceous(?), Tertiary(?), and (or) early
Pleistocene(?) age and possibly glacial drift of late Pleisto-
cene (pre-Wisconsinan?) age (QTKu?); (2) glacial drift of late
Pleistocene (Wisconsinan) age (Qd); (3) postglacial fluvial and
estuarine deposits of Holocene age (Qfe); and (4) Holocene
postglacial marine deposits (Qmn). These are separated by
three regional unconformities: U,, U, and U, (fluvial, regres-
sive, and transgressive, respectively, fig. 9). In addition, glacial
drift deposits (Qd) are divided into subunits on the basis of
seismic facies, stratigraphic position, and spatial distribution.

The lowermost stratigraphic unit mapped in previous
studies within and adjacent to this area is of coastal plain and
continental shelf deposits of Late Cretaceous(?), Tertiary(?),
and (or) early Pleistocene(?) age and possibly glacial drift
of pre-Wisconsinan(?) age (Woodsworth and Wigglesworth,
1934; Kaye, 1964a, b, 1980; Folger and others, 1978; Hall
and others, 1980; O’Hara and Oldale, 1980, 1987; Oldale and
O’Hara, 1984; Uchupi and Mulligan, 2006; Foster and oth-
ers, 2015; Baldwin and others, 2016). However, because of
the shallow penetration of the chirp seismic data used in this
study, units below the unit inferred to be deposits of late Pleis-
tocene (Wisconsinan) age (Qd) were not frequently observed.
Qd is divided into four subunits—end moraine (Qdm), glacial
till and ice-contact (Qdt), glaciolacustrine (Qdl), and glacio-
fluvial (Qdf) deposits—on the basis of their seismic facies,
defined by internal reflections as well as their relative strati-
graphic positions and spatial distributions. Qd subunits were
generally recognized in chirp profiles as outcropping units,
where they were present in the relatively shallow subsurface
(less than about 40 milliseconds two-way traveltime), or when
they were unobscured by the primary sea-floor multiple.

The end moraine (Qdm) and glacial till and ice-con-
tact (Qdt) subunits produce similar seismic facies, consisting
of irregular, high-amplitude surface reflections and chaotic
and discontinuous internal reflections with common diffraction
hyperbolae that often mask subunits (figs. 9 and 10). Chaotic
reflections within Qdm and Qdt and hyperbolic diffractions
where these units intersect the sea floor are interpreted as
acoustic signatures of poorly sorted, relatively coarse drift and
boulders. Qdm is specifically inferred to represent till associ-
ated with the Martha’s Vineyard end moraine (fig. 10). Qdt
units are present at the sea floor in discrete locations in the
western part of the Martha’s Vineyard site (fig. 15) and are
interpreted to represent outcrops of supraglacial or subglacial
stagnation till, lodgment till, or deformation till.

The glaciolacustrine (Qdl) and glaciofluvial (Qdf) sub-
units represent stratified drift of late Pleistocene age that was
deposited by glacial meltwater. The glaciolacustrine seismic
facies is characterized by vertically laminated, horizontal to
gently dipping reflections of variable amplitude. Qdl reflec-
tions are undulatory where they conformably drape the
irregular surfaces of Qdm or Qdt and where they have been
deformed. The seismic signature of Qdl is interpreted to
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represent varved, relatively fine grained, glaciodeltaic or gla-
ciolacustrine deposits. The glaciofluvial (Qdf) seismic facies

is characterized by zones of acoustic transparency along the
south shore of Martha’s Vineyard, but less continuous units are
present as undulatory, or gently to steeply dipping laminated
reflections, chaotic and discontinuous reflections, or cut-and-
fill structures (figs. 10—-13 and 14). Generally, seismic-reflec-
tion data penetration was not adequate for mapping the base
of Qdf; however, Qdf is observed to overlie other Qd subunits
locally, and its variable seismic character indicates a variety of
outwash morphologies.

The medium-to high-amplitude, irregular to undulating
seismic reflection U, (regressive) unconformity delineates the
eroded upper surface of Qd (figs. 11, 13, and 14) and repre-
sents the regressive unconformity of late Wisconsinan to early
Holocene age (fig. 16). The U, surface contains subsurface
valleys that deepen progressively offshore from the drowned
valleys of Martha’s Vineyard and toward the eastern margin
of the Nantucket site. These morphologies resulted through a
combination of glacial lake drainage, meltwater fluvial ero-
sion, and later fluvial erosion during the early Holocene. U, is
a composite unconformity that merges with the U, (transgres-
sive) unconformity outside of glaciofluvially eroded areas.

The remaining two primary stratigraphic units that
overlie the Qd unit represent primarily Holocene fluvial and
estuarine (Qfe) and nearshore marine (Qmn) deposits (figs. 9
and 17). Qfe is the lowermost of these deposits, and where
present, it fills the deepest portions of the Martha’s Vineyard
valleys and the Nantucket Sound basin formed by U.. Qfe
produces seismic signatures that include laminated, horizontal
to concave-up reflections, cut-and-fill structures, and zones
of near acoustic transparency (figs. 11, 13, and 14). Qfe units
are interpreted to consist of late Pleistocene and Holocene
fluvial deposits, as well as younger Holocene estuarine fill
related to marine transgression. Qfe deposits are thickest
where they form the youngest fills within the major channel
trunks in the Pleistocene drainage network (figs. 11 and 17). In
some locations north of Nantucket, biogenic gas, presumably
produced in the organic-matter-rich estuarine sections of Qfe,
attenuated the seismic signal and prevented interpretation of
underlying units.

Seismic reflector U, a medium-amplitude, mostly flat-
lying, and continuous reflector, is interpreted to represent the
Holocene marine transgressive unconformity and generally
defines the boundary between Holocene marine (Qmn) depos-
its and older underlying units. U, is a composite unconformity
that merges with U wherever Qfe is absent (figs. 11 and 13).

The Holocene marine (Qm) seismic facies is character-
ized by medium- to low-amplitude, flat-lying to steeply dip-
ping, laminated reflections and zones of acoustic transparency
(figs. 11, 13, and 14). Qmn deposits are composed primarily
of sand and some gravel and form the beaches and bars along
the shorelines, as well as shoals, sand ridges and sheets, and
smaller bedforms on the sea floor (figs. 15 and 17).
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Sediment Texture and Distribution

Sediment texture and distribution were mapped for more
than 265 km? of the inner shelf (fig. 18) by using the Barnhardt
and others (1998) classification (fig. 7). The data were inter-
preted at scales ranging from 1:8,000 to 1:25,000, depend-
ing on the resolution of the source geophysical grids and the
density of the sample data.

Sediments within the study area represent nearly all
particle sizes. Sediment texture ranges from muddy sands
primarily north of Nantucket to pebbles, cobbles, and boulders
where tills and moraine deposits are exposed at the sea floor
(figs. 15 and 18-20). Both coarse- and fine-grained sediment
exist in all water depths; however, rocky textures are gener-
ally most prevalent along the nearshore margin of southwest-
ern Martha’s Vineyard (figs. 18 and 19). Rocky textures are
least concentrated east of Chilmark and north of Nantucket
(figs. 18-20). Overall, the distribution of samples in the tex-
ture database for the study area is 62 percent sand, 33 percent
mud, and 5 percent gravel by weight.

Sand (greater than 0.062 mm to 2 mm) is the dominant
bottom sediment type within the study area and is interpreted
to cover 92 percent of the sea floor by area (fig. 18). Sand is
most extensive east of Chilmark. Muddy sediments, which
include silt- and clay-size particles less than 0.062 mm in
diameter, cover 1 percent of the sea floor by area within the
Martha’s Vineyard study site but are present in the Nantucket
site in nearly 70 percent of the sea floor by area. Gravel or
particles greater than 2 mm but less than 64 mm (—1 to —6 phi)
in diameter are interpreted to be the primary sediment cover in
less than 1 percent of the sea floor. Primarily rocky areas are
interpreted to cover about 7 percent of the sea floor by area
and are most prevalent adjacent to morainal headland deposits
on the western and southwestern sides of Martha’s Vineyard
(figs. 15, 18, and 19). Photographs document the presence of
gravel and cobble in rocky areas where sediment sampling
devices were unable to recover large-diameter particles, sug-
gesting that gravel and rock are underrepresented in sediment
sample data in this area.

Physiographic Zones

The areal distribution of physiographic zones in the
offshore part of the study area (265 km?) was interpreted at
a scale ranging from 1:8,000 to 1:25,000, depending on the
resolution of the source geophysical grids (fig. 21).

Rocky zones are rugged areas, which often exhibit high
bathymetric relief, ranging from ridges to relatively flat,
gravel-covered plains with boulders several meters in diam-
eter. Although coarse-grained sediments are locally present in
all physiographic zones, they dominate the sea floor in rocky
zones. Rocky zones are common from Gay Head to Chilmark

(12 percent of the sea floor by area) but are absent through-
out the rest of the Martha’s Vineyard study site and north
of Nantucket.

Zones of coastal embayments include much of the study
area north of Nantucket. Coastal embayments cover 38 km?, or
about 14 percent, of the study area.

Ebb-tidal deltas are present on the eastern edge of the
Martha’s Vineyard site, where the western edge of the large
Muskeget Channel ebb-tidal delta can be identified in the
geophysical data. Ebb-tidal delta zones compose just less than
2.5 percent of the sea floor within the entire study area.

Hard-bottom plains tend to have low bathymetric
relief and a coarse sediment texture consisting of primarily
gravel, sand, and rock. Hard-bottom plains account for about
1.5 percent of the sea floor and are on the western side of
Martha’s Vineyard, adjacent to rocky zones associated with
morainal deposits.

Nearshore ramps are areas of gently sloping sea floor
with generally shore-parallel bathymetric contours. These
zones are primarily interpreted as sand-rich sediment, although
small exposures of cobbles and boulders locally crop out on
the sea floor. Nearshore ramps are the primary physiographic
zone on the south side of Martha’s Vineyard, east of Chilmark.
Within the entire study area (Martha’s Vineyard and Nan-
tucket), nearshore ramps are the most abundant physiographic
zone, accounting for nearly half of the sea floor by area, which
is likely a result of the substantial amount of open-ocean inner
shelf offshore of southern Martha’s Vineyard (fig. 21).

Shelf valleys are elongate depressions that extend oft-
shore, often perpendicular to the trend of the coastline, and
slope gently seaward. Shelf valleys represent about 11 percent
of the study area in total, but they are absent east of Chilmark.
They likely existed there as well but may have been reworked
into a broad sand sheet during transgression. These zones are
interpreted to have formed by fluvial erosion during periods of
lower-than-present sea level and are most commonly domi-
nated by sandy textures.

Shoal/sand waves are sea-floor zones dominated by linear
to sinuous bedforms primarily composed of sandy sediments
that have been reworked from adjacent glacial deposits by
wave and tidal currents. Water depths range from approxi-
mately 10 to 30 m. Shell zones are areas that are nearly com-
pletely covered by carbonate shells. High densities of slipper
shells (Crepidula fornicata) were recognized within areas of
sea floor north of Nantucket. Shell zones (figs. 20 and 21) and
sand waves account for just over 5 percent of the sea floor by
area. Foster and others (2015), Ackerman and others (2016),
and Baldwin and others (2016) recognized similar accumu-
lations of Crepidula in the central Buzzards Bay basin and
western Nantucket Sound.
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Figure 20. A, Sediment textures offshore of northern Nantucket. B, Photograph of the seafloor covered by highly
concentrated Crepidula fornicata. The sediment below the shells is classified as primarily sand with mud (Sm).

C, Photograph of the sea floor showing sandy sediment within an area classified as primarily sand (S). D, Photograph
from a section of sea floor classified as primarily sand (S). E, Photograph from a section of sea floor classified as primarily
sand with some mud (Sm). F, Photograph from a section of sea floor classified as primarily sand with gravel (Sg) that is
also blanketed with a fairly dense covering of Crepidula fornicata. Shell zones are outlined with cross-hatching. Bottom-
type classification is from Barnhardt and others (1998).
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Discussion

Synthesis of Maps

Three of the four primary stratigraphic units (fig. 9) crop
out at the sea floor in the study area (fig. 15), and the interpre-
tations of surficial sediment texture (fig. 18) and physiographic
zones (fig. 21) are closely related to the distribution of these
units. Surficial geologic units may not directly correspond
with surficial sediment units because geologic units may be
buried beneath a sediment layer too thin to detect in the seis-
mic data (less than about 0.5 m), or the outcropping unit may
be winnowed or reworked at the sea floor.

No undifferentiated coastal plain and continental shelf
deposits of Late Cretaceous(?), Tertiary(?), and (or) early
Pleistocene(?) age and possibly glacial drift of late Pleisto-
cene (pre-Wisconsinan?) age (QTKu?) were interpreted to
crop out at the surface in the geophysical and geologic data.
Small, local areas may crop out but cannot be differentiated
from Pleistocene end moraine deposits (Qdm) in the chirp data
because of a lack of penetration, especially in the 2011 dataset
(Andrews and others, 2014). Thrusted and deformed por-
tions of QTKu(?) are known to compose much of the terminal
moraine complex along the western margin of Martha’s Vine-
yard, are exposed along the shore in the Aquinnah cliffs, and
extend west and south beneath the shallow subsurface (Wood-
sworth and Wigglesworth, 1934; Kaye, 1964a, b; O’Hara
and Oldale 1980, 1987; Oldale and O’Hara, 1984). Outcrops
of Qdm associated with the Martha’s Vineyard moraine are
mapped at the sea floor west and southwest of Martha’s Vine-
yard and are interpreted to cover underlying QTKu(?) units.
Where discontinuous reflectors of QTKu(?) units are identi-
fied and interpreted in the chirp data, they are commonly as
shallow as 5 m below the sea floor. The presence of boulders
and cobble-sized clasts in bottom photos from Qdm outcrops
suggests that these units are associated with Rg, Rs, Sr, and
G surficial sediment textures and rocky physiographic zones
(figs. 15, 18, and 21).

Late Pleistocene glacial till and ice-contact (Qdt) out-
crops are present mostly in the southwestern section of the
Martha’s Vineyard study site (fig. 15), associated with the
Martha’s Vineyard moraine. These outcrops contain boulders
and cobbles and represent sea-floor exposures of ice-contact
sediments that are buried by younger sediment in adja-
cent areas. Qdt crops out adjacent to Qdm units offshore of
Chilmark, is interpreted here as stagnation till, and is locally
covered by late Pleistocene glaciolacustrine (Qdl), glacio-
fluvial (Qdf), or Holocene nearshore marine (Qmn) deposits
(figs. 10 and 15). Qdt is primarily associated with Gs, Sg, and
S surficial sediment textures and rocky zones and nearshore
ramp physiographic zones (figs. 15, 18, and 21).

Glaciolacustrine deposits (Qdl) are typically buried
by younger units but are exposed at the sea floor and fill
depressions between Qdm and Qdt deposits just offshore of
Squibnocket Point (fig. 15). Depressions filled with Qdl units
may have been created by the melting of blocks of stagnant
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ice within or on top of the till or outwash near the ice mar-
gin. Glaciofluvial outcrops of late Pleistocene age (Qdf) are
extensive offshore beyond the extents of Qdm and Qdt and
east of Chilmark in the Martha’s Vineyard study site. The Qdf
sediments are interpreted to be primarily associated with Cape
Cod Bay ice lobe outwash deposits. Qdf and QdlI are in most
places associated with S or Sg textures and with nearshore
ramps and shelf valley physiographic zones (figs. 15, 18,

and 21).

Holocene fluvial and estuarine (Qfe) outcrops in the
Martha’s Vineyard study site are generally exposed in sublin-
ear to sinuous patterns incising outcrops of Qdf, Qdt, or Qdm
(fig. 15). Several drainage channels, some of which may also
be associated with groundwater sapping valleys (Uchupi and
Oldale, 1994), incise the outwash plain offshore and east of
Chilmark to Katama Bay (figs. 16 and 17). Qfe is primarily
associated with the Sg and S surficial sediment types and the
nearshore ramp physiographic zone (figs. 15, 18, and 21).

A Holocene nearshore marine (Qmn) unit overlies
parts of each of the other units throughout the study area
of Martha’s Vineyard and blankets the entire study site of
Nantucket (fig. 15). Qmn is composed of fine-grained sedi-
ments that we interpret to be derived from the erosion, rework-
ing, and winnowing of the older underlying glacial and post-
glacial sediments. In the Martha’s Vineyard study area, Qmn
is relatively thin (2 m or less) across much of the shelf but is
quite thick where it is associated with two large sand shoals
north and south of Nomans Island. Qmn is also thin (less than
2 m) along the western side of the Nantucket study site, where
glaciofluvial material is exposed at the surface on Tuckernuck
Island and east nearly to Nantucket Harbor (Oldale and Bar-
low, 1986), but Qmn thickens toward Great Point. Qmn units
are primarily sandy, coinciding with S, Sg, and Sm surficial
sediment types (figs. 15 and 18). These units form the sandy
inner shelf areas of nearshore ramps, coastal embayments, and
the modern mobile bedforms of ebb-tidal deltas, shell zones,
and shoal/sand wave zones (figs. 15 and 21).

Geologic History and Framework

Interpretation of the geologic framework and seismic
stratigraphy offshore of Martha’s Vineyard and north of
Nantucket was fundamental in developing a foundation for the
surficial maps presented here, and this interpretation informed
our understanding of the late Pleistocene to Holocene deposi-
tion history of the area. Our interpretations of the geologic
framework west of Martha’s Vineyard and north of Nantucket
are compatible with those of O’Hara and Oldale (1980, 1987),
respectively, and our interpretation of the geologic frame-
work for the inner continental shelf along the south shore of
Martha’s Vineyard is new. The geologic framework presented
here as a series of interpretive maps describes the glacial and
postglacial depositional history that resulted from the retreat
of the late Wisconsinan Buzzards Bay and Cape Cod Bay ice
lobes and subsequent Holocene marine transgression. These
dense, high-resolution data and mapping products refine our
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understanding of the shallow geologic framework offshore

of Martha’s Vineyard and north of Nantucket and foster new
insights about regional depositional history and the relations
between near-surface geologic units and sea-floor morphology
and composition.

Glacial Recession

This mapping describes the interaction between the ice-
contact material at the margin of the Buzzards Bay ice lobe
and the outwash plains of the Cape Cod Bay ice lobe along the
south and west coast of Martha’s Vineyard and also describes
the retreat of the Cape Cod Bay ice lobe from the terminal
moraine on Nantucket. Foster and others (2015) and Baldwin
and others (2016) presented a suite of geologic maps and inter-
pretations, equivalent to those presented here, that describe the
stepwise recession of the Cape Cod Bay and Buzzards Bay ice
lobes from the Martha’s Vineyard end moraine through Vine-
yard and Nantucket Sounds and Buzzards Bay, respectively.
They described a sequence of proglacial lacustrine, deltaic,
and fluvial outwash units that filled basins dammed by ice-
marginal ridges that were subsequently incised by a meltwater
drainage network. The interpretations presented here build
on these descriptions of the retreat of the Buzzards Bay and
Cape Cod Bay ice lobes from an earlier time at their maximum
positions (Uchupi and others, 1996; Oldale, 2001; Balco and
others, 2002; Uchupi and Mulligan, 2006; Balco, 2011).

The shallow stratigraphy of the inner continental shelf
offshore of Aquinnah on the western side of Martha’s Vine-
yard is characterized by two topographic highs that extend
southwest from Gayhead and Squibnocket Point (fig. 12).
These highs are interpreted to be undifferentiated coastal
plain and continental shelf deposits of Late Cretaceous(?),
Tertiary(?), and (or) early Pleistocene(?) age or glacial drift
of late Pleistocene (pre-Wisconsinan?) age (QTKu?) that are
draped with till associated with the late Wisconsinan Martha’s
Vineyard moraine. A valley between the till-covered highs is
filled with glaciofluvial material that was subsequently incised
by late Pleistocene to early Holocene groundwater sapping
or fluvial channels, which were subsequently capped with a
modern sand body during the Holocene transgression (figs. 12,
16, and 17).

The Buzzards Bay ice lobe is inferred to have deposited
an apron of end moraine (Qdm) material that extended from
Chilmark (Stone and DiGacimo-Cohen, 2009) to Nomans
Island, which is partially buried by stagnation till, glacio-
lacustrine, and glaciofluvial deposits along the ablating ice
front. Glaciofluvial deposits cropping out beyond the extent of
ice-contact deposits likely represent the confluence of melt-
water drainage networks of both the Buzzards Bay ice lobe
and the Cape Cod Bay ice lobe. The surficial geology of the
south shore of Martha’s Vineyard between Nomans Island and
Katama Bay transitions abruptly from ice-contact deposits,
locally capped with younger units, to a broad, massive sheet of
outwash material that is locally incised or capped by younger
units (fig. 15). The ice-contact material associated with the

Martha’s Vineyard moraine of the Buzzards Bay ice lobe(?) is
inferred to have been in place before and at a higher eleva-
tion than the outwash sediments deposited by the Cape Cod
Bay lobe. The margin of the Buzzards Bay ice lobe may have
provided a dam for a proglacial lake on the (present-day) shelf
that subsequently filled with outwash material from the Cape
Cod Bay ice lobe (fig. 10). A prominent reflector interpreted to
be coastal plain and continental shelf deposits of Late Creta-
ceous(?), Tertiary(?), and (or) early Pleistocene(?) age or gla-
cial drift of late Pleistocene (pre-Wisconsinan?) age (QTKu?)
may have served to maintain some separation between the
sediments of the ice-contact deposits from the Buzzards Bay
ice lobe and the outwash sediments from the Cape Cod Bay
ice lobe, in a way similar to a lateral moraine. Stratigraphy
within the glaciofluvial deposits of the Cape Cod Bay ice lobe
east of Chilmark is largely absent, with the exception of a
reflector within some glaciofluvial (Qdf) units interpreted to
be overlapping lobes of outwash (fig. 13).

North of Nantucket, the glacial stratigraphy visible in
the chirp data is limited to glaciofluvial material that presum-
ably overlies glaciolacustrine sediments in the area to the
north and east of Tuckernuck Island (Uchupi and Mulligan,
20006). A topographic high that is interpreted as an ice-contact
ridge deposit likely associated with late Pleistocene deposits
of Coskata and (or) Great Point (Oldale, 1982; Oldale and
Barlow, 1986) was incised and separated from the mainland
ice-contact unit by postglacial drainage along the eastern side
of the Nantucket study area (figs. 11 and 12).

Holocene Depositional Setting

Postglacial sediments are relatively thick (less than 10 m)
in a central valley filled with glaciofluvial sediments on the
inner continental shelf offshore of Aquinnah on the western
side of Martha’s Vineyard. The glaciofluvial valley cut into
Pleistocene end moraine (Qdm) and older units is incised
by a series of postglacial channels, which are truncated by
a transgressive sand sheet (Qmn; figs. 12 and 15-17). Else-
where offshore of Aquinnah, postglacial sediments are largely
absent and morainal deposits crop out at the sea floor (figs. 16
and 17). Postglacial sediments are also thick between Squib-
nocket Point and Nomans Island, where a submerged tombolo-
like sand body has accumulated to greater than 10 m thick and
rests unconformably on glacial ice-contact deposits. Another
Holocene sand sheet is partially mapped to the southeast of
Nomans Island, and two postglacial fluvial channels meander
offshore on either side of Nomans Island. Holocene marine
sediments are very thin (typically less than 1 m) and discon-
tinuous east of Squibnocket Point, except where postglacial
fluvial drainage networks are carved through the outwash to
the west and east of South Beach. Two postglacial channels
that are not exposed at the surface just west of South Beach,
coming out of Edgartown Great Pond, are likely older than
adjacent and shallower fluvial or estuarine channels and may
owe their origin to groundwater sapping processes described
by Uchupi and Oldale (1994). An ebb-tidal delta deposit



associated with Muskeget Channel caps another large postgla-
cial fluvial channel and the outwash plain on the eastern edge
of the Martha’s Vineyard study area.

The study area north of Nantucket is covered by a rela-
tively thick (about 5 m) layer of Holocene muddy sand depos-
ited in the semienclosed basin north of Nantucket (figs. 11,

12, and 17). Qmn is thinnest along the southwestern edge of
the survey area, where outwash sediments cropping out on
Nantucket are covered with less than 2 m of reworked sand
and gravel derived from the outwash. Underlying the modern
sediment sheet is another relatively thick (about 5 m) deposit
of late Pleistocene to early Holocene estuarine sediments (Qfe;
figs. 11 and 12). A vibracore collected by O’Hara and Oldale
(1987), just west of Great Point and about 100 m north of
this study area, penetrated the Qfe unit, which was described
as a peat deposit with a radiocarbon age of 6,830 +250 years
before present at a depth of 20.5 m below sea level.

The interpretations of geologic framework presented here
indicate that the topography of the glacial terrain has had a
substantial influence over patterns of deposition and erosion as
Holocene sea level has risen, but less of an influence than in
Vineyard and Nantucket Sounds (Baldwin and others, 2016),
where strong tidal currents maintain an equilibrium topogra-
phy that preserves much of the glacial terrain. Along the south
and west coasts of Martha’s Vineyard, oceanographic condi-
tions driven by wave energy rather than tidal currents modify
the sea floor by winnowing and reworking the glacial surface
into a gently sloping inner continental shelf. The net effect on
the sea floor is a smoothing of its irregularities over time, such
that topographic depressions are filled and highs are eroded.
Coincident with surface smoothing is the tendency to homog-
enize surficial sediments wherever sediment can accumulate as
a result of critical shear stress. The long-term (40-year) mean
significant wave height offshore of the Martha’s Vineyard
study site is 1.2 m (Cox and Swail, 2001). The Holocene trans-
gression across this energetic open-ocean coast has created
a sandy and relatively smooth inner shelf, where fluvial and
glaciofluvial sediments crop out or are buried beneath a thin
layer of modern shelf sands or sand waves. In areas where
ice-contact sediments exist at or near the surface, the sea floor
is more heterogeneous, such that large boulders and cobbles
associated with till are left in place and finer sediments are
reworked around the erratics. The semiprotected area between
Nomans Island and Squibnocket Point provided accommoda-
tion space for a large sand body to accumulate (greater than
12 m thick) in an area where tidal currents and waves refract-
ing around Nomans Island result in sediment accumulation.

The barrier spit that connects Coskata to Great Point
formed during the Holocene transgression (Shaler, 1889),
creating a semienclosed basin north of Nantucket that is simi-
lar to the Holocene depositional conditions in Buzzards Bay
described by Foster and others (2015). Quiescent wave and
tidal conditions have allowed thick (about 10-m) accumula-
tions of late Pleistocene and early Holocene fluvial, estuarine,
and modern marine sediments, which bury the glacial surface
locally to depths greater than 20 m.
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Summary

The U.S. Geological Survey, in cooperation with the
Massachusetts Office of Coastal Zone Management, compiled
previously published seismic-reflection, bathymetric, acoustic-
backscatter, and sea-floor sediment sample and photograph
data to investigate the surficial and shallow subsurface geol-
ogy offshore of Martha’s Vineyard and north of Nantucket.
The results are a series of composite geophysical maps with
nearly full sea-floor coverage and detailed interpretive maps
of the surficial geology and shallow geologic framework of
the area. Each of the interpretive maps contributes new insight
into the geologic framework and sedimentary environments at
a resolution that was previously impossible because of a lack
of high-resolution geophysical data. The shallow geologic
framework and surficial geology are a complex and variable
distribution of sediments and geomorphic features that can be
primarily attributed to the advances, occupations, and retreats
of Wisconsinan glaciation and to reworking and deposition
during the Holocene transgression. Glacial, marine, and terres-
trial processes have acted on this region since the late Pleisto-
cene, resulting in a complex geologic history and a heteroge-
neous sea-floor character. Glacial sediments within the entire
region are locally overlain by Holocene fluvial, estuarine, and
marine sand and mud.
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Appendix 1.

Geospatial data layers described in this report are avail-
able in a companion U.S. Geological Survey data release at
https://doi.org/10.5066/P9E9EFNE (table 1.1; Pendleton and
others, 2018). All vector data are delivered as Esri shapefiles
in the geographic coordinate system, referenced to the World
Geodetic System of 1984 (WGS 84). Raster representations of
seismic interpretation interpretations are GeoTIFF formats in
Universal Transverse Mercator projection, Zone 19N, WGS 84
datum. All spatial data are distributed with Federal Geographic
Data Committee-compliant metadata.

Appendix 1 37

Links to Geospatial Data Layers

Reference Cited

Pendleton, E.A., Baldwin, W.E., Foster, D.F., Ackerman, S.D.,
Andrews, B.D., Brothers, L.L., and Schwab, W.C., 2018,
Geospatial data layers of shallow geology, sea-floor texture,
and physiographic zones from the inner continental shelf
of Martha’s Vineyard from Aquinnah to Wasque Point, and
Nantucket from Eel Point to Great Point: U.S. Geological
Survey data release, https://doi.org/10.5066/P9E9EFNE.

Table 1.1. Links to geospatial data layers.
Filename and description Federal (_ieographlc Data Data and metadata download
Committee metadata

Backscatter mosaic: HTML MV_ACK backscatter 5Sm.zip
5-m backscatter mosaic from south and west of Martha’s Vineyard

and north of Nantucket produced from sidescan-sonar and inter-

ferometric backscatter datasets
Regressive unconformity: HTML MV_ACK depth2G.zip
Elevation of the late Wisconsinan to early Holocene regressive

unconformity (U)) offshore of western and southern Martha’s

Vineyard and north of Nantucket, Massachusetts
Holocene sediment isopach: HTML MV_ACK postGisopach.zip
Holocene fluvial and estuarine (Qfe) and nearshore marine (Qmn)

sediment thickness offshore of western and southern Martha’s

Vineyard and north of Nantucket, Massachusetts
Surficial geology: HTML MV_ACK_surfgeology.zip
Interpretation of sea floor geologic units for offshore of western

and southern Martha’s Vineyard and north of Nantucket, Mas-

sachusetts
Physiographic zones: HTML MV_ACK physiozone.zip
Physiographic Zones of the Sea Floor offshore of western and

southern Martha’s Vineyard and north of Nantucket, Massachu-

setts
Sediment texture: HTML MV_ACK sedtexture.zip

Sediment Texture of the Sea Floor offshore of western and southern
Martha’s Vineyard and north of Nantucket, Massachusetts
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