

INTRODUCTION

The Atlantic Coastal Plain, one of the most physiognomically diverse areas in the United States, is underlain by strata that trend dip generally eastward and gradually thicken toward the Atlantic Ocean basin. These strata, ranging in age from Middle Jurassic to Holocene, accumulated along the eastern margin of North America after the breakup of the supercontinent Pangea during the Early Triassic (Manepraga, 1988). In the east-central United States north of Florida, Cape Hatteras is the point of land that most closely approaches the eastern edge of the Atlantic Continental Shelf of the United States (see inset map). In 1946, Esso (now part of ExxonMobil) drilled a deep oil exploration well (Esso #1) in the offshore area of Cape Hatteras (Figs. 1 and 2). No oil or gas was found there, or in any of the other test wells that were drilled within the onshore North Carolina Coastal Plain. Recent work (Mallinson and Weems, 2010; Reid, 2018) indicates that the top of the Paleogene (about 9,000 feet near the base of the Cape Hatteras-Esso #1 test well). These are any matureroleum source rocks that may be present in the North Carolina Coastal Plain are only likely to be found east of the present coastline.

Although the Cape Hatteras well did not produce oil or gas, it did produce a stratigraphic information about the outer portion of the continental shelf margin of the Atlantic Coastal Plain. Near the eastern edge of the Cretaceous (Fig. 7), the eastern margin of North America began to subside across a much wider area, resulting in westward overstepping of the older Mendenhall Shores and Powers, and rapid deposition of the older Paleogene (Brown and Cape Hatteras (Brown and Cape Hatteras, 1972; Zane, 1989). These results, when coupled with work done offshore of Cape Hatteras (Popescu, 1985), have allowed us to create a more detailed cross section of the North Carolina Coastal Plain and adjacent continental shelf previously possible.

The geological history of the Atlantic Coastal Plain includes a number of significant events besides the numerous transgressive and regressive episodes recorded by each sequence package. Early deposition in the Mid-Cretaceous (Fig. 7) was associated with regional subsidence and east of Cape Hatteras. The deposits represent only post-drift deposition that occurred shortly after the Mid-Atlantic Ridge fully developed and North America began its westward journey away from the area of the ridge (Manepraga, 1988). Rifting of North America took place in the eastern margin of the Atlantic Ocean immediately above the ridge, followed by parting and downward sinking of the eastern edge of North America as the rest of North America moved westward away from the ridge bulge. This spreading event, accompanied by rapid downward subsidence and deposition along the eastern edge of North America, was the beginning of the Atlantic Coastal Plain. Near the eastern edge of the Cretaceous (Fig. 7), the eastern margin of North America began to subside across a much wider area, resulting in westward overstepping of the older Mendenhall Shores and Powers, and rapid deposition of the older Paleogene (Brown and Cape Hatteras (Brown and Cape Hatteras, 1972; Zane, 1989). These results, when coupled with work done offshore of Cape Hatteras (Popescu, 1985), have allowed us to create a more detailed cross section of the North Carolina Coastal Plain and adjacent continental shelf previously possible.

For the early Cretaceous, during the middle and late Albian, the rate of deposition in the North Carolina Coastal Plain greatly increased (Fig. 7) and sediment of this age commonly began to accumulate as far west as the modern Atlantic Ocean (Fig. 7), which is to the west of the region where Cretaceous sediments are preserved. These Albian strata, which are wholly to predominantly nonmarine in the western North Carolina Coastal Plain (dash-pattern on cross section A-A'), extend eastward to some distance east of test wells WAS-OT-02 and HY-OT-06. Still further eastward, beneath two test wells (WAS-OT-02 and HY-OT-06, the nonmarine strata merge seaward into ag-equivalent fully marine beds, by Crawford and others (2009) and Wittrick (2017). Fossils found from Brown and others (1972) and Popescu (1985) detailed results of identified siltstones and calcareous nannofossil taxa from the Esso #1 test well (Fig. 1) and by Cape Hatteras are summarized in Figure 3 to 6. In the Cape Hatteras test well (Esso #1 (DR-OT-01-46)), the upper Eocene stratigraphy is updated by Weems and others (2016).

STRUCTURAL DEVELOPMENT

The developmental history of the Atlantic Coastal Plain includes a number of significant events besides the numerous transgressive and regressive episodes recorded by each sequence package. Early deposition in the Mid-Cretaceous (Fig. 7) was associated with regional subsidence and east of Cape Hatteras. The deposits represent only post-drift deposition that occurred shortly after the Mid-Atlantic Ridge fully developed and North America began its westward journey away from the area of the ridge (Manepraga, 1988). Rifting of North America took place in the eastern margin of the Atlantic Ocean immediately above the ridge, followed by parting and downward sinking of the eastern edge of North America as the rest of North America moved westward away from the ridge bulge. This spreading event, accompanied by rapid downward subsidence and deposition along the eastern edge of North America, was the beginning of the Atlantic Coastal Plain. Near the eastern edge of the Cretaceous (Fig. 7), the eastern margin of North America began to subside across a much wider area, resulting in westward overstepping of the older Mendenhall Shores and Powers, and rapid deposition of the older Paleogene (Brown and Cape Hatteras (Brown and Cape Hatteras, 1972; Zane, 1989). These results, when coupled with work done offshore of Cape Hatteras (Popescu, 1985), have allowed us to create a more detailed cross section of the North Carolina Coastal Plain and adjacent continental shelf previously possible.

In the Late Cretaceous, during the middle and late Albian, the rate of deposition in the North Carolina Coastal Plain greatly increased (Fig. 7) and sediment of this age commonly began to accumulate as far west as the modern Atlantic Ocean (Fig. 7), which is to the west of the region where Cretaceous sediments are preserved. These Albian strata, which are wholly to predominantly nonmarine in the western North Carolina Coastal Plain (dash-pattern on cross section A-A'), extend eastward to some distance east of test wells WAS-OT-02 and HY-OT-06. Still further eastward, beneath two test wells (WAS-OT-02 and HY-OT-06, the nonmarine strata merge seaward into ag-equivalent fully marine beds, by Crawford and others (2009) and Wittrick (2017)).

The rate of deposition in the North Carolina Coastal Plain slowed during the Late Cretaceous (Cenomanian through Santonian ages) to a minimum, with the exception of the Early Campanian (Fig. 7). In the late Cenomanian, deposition of the continental margin overthrew all older coastal plain deposits toward the northwest as far as the vicinity of test well HAL-T-2 (Christopher, 1982). The Clubhouse Formation contains calcareous nannofossils and shallow marine dinocysts, indicating that marine conditions also had been established. Cenomanian apparently marks the entire history of the Cretaceous in northern North Carolina. In the Santonian (Fig. 7), a more localized interval of rapid subsidence occurred and Coastal Plain deposition spread sediment southward in an arc to the vicinity of Fayetteville.

Following the Late Cretaceous, during the middle and late Albian, the rate of deposition in the North Carolina Coastal Plain slowed considerably compared to the Early Cretaceous, which is to the west of the region where Cretaceous sediments are preserved (Fig. 7). This is best reflected in the Mobil #3 (HY-OT-01-65) test well (Fig. 12) and is also reflected in the Esso #1 (DR-OT-01-46) test well (Fig. 12) and by Crawford and others (1972) and Popescu (1985). Detailed results of identified siltstones and calcareous nannofossil taxa from the Esso #1 test well (Fig. 1) and by Cape Hatteras are summarized in Figure 3 to 6. In the Cape Hatteras test well (Esso #1 (DR-OT-01-46)), the upper Eocene stratigraphy is updated by Weems and others (2016).

STRATIGRAPHY

The cross section A-A' is a sequence-stratigraphic model, reflecting the evolutionary development of the North Carolina Coastal Plain in the region. Idealized sequence packages would consist of a lowstand interval, a highstand interval, and a transgression. The cross section A-A' is a sequence package formed during a transgression across the Coastal Plain, overlain by a coarsening-upward sequence, formed during regression of the sea floor following transgression. In the Atlantic Coastal Plain, such ideal sequences are instead formed by a sequence of an unconformity, an unconformity, the associated regressive coarsening-upward cycle either never formed or was stripped away by the next successive transgression (Harris and Self-Trail, 2006). This means that nearly all of the sequence stratigraphic packages recognized here consist of three distinct sequence packages, separated by an unconformity at the base of the next fine-upward cycle. To adequately reflect the considerable complexity and detail that has been revealed, the primary cross section A-A' was completed with a 20 vertical exaggeration. A simplified cross section A-A' has vertical exaggeration showing total sediment thickness (orange-yellow) over basement rocks (brown), also shown in Figure 4 to help the viewer keep the overall spatial geometry in true regional perspective.

Offshore work (Popescu, 1985) indicates that the Atlantic Coastal Plain deposits continue to thicken eastward on this cross section A-A', reaching a maximum thickness of about 30,000 feet. This is consistent with cross-section A-A' test well depths are about 8,800 ft. From these depths this southward. As there is no stratigraphic control for these eastward-slope deposits other than seismic reflection data, no effort was made here to predict them. Most of all these deposits probably belong to the Paleogene, as discussed below, which was encountered near the bottom of the Cape Hatteras Esso #1 test well.

The strata of the Atlantic and Gulf of Mexico Coastal Plains are divided into five regionally recognizable supergroups (Weems and others, 2004). These supergroups currently are subdivided only partially into facies and facies units. Facies and facies units are often used to describe the lithology and depositional environment of a facies. The Calcareous nannofossil zones are divided into three formal time-stratigraphic relationships. The Calcareous nannofossil zone in the North Carolina Coastal Plain is divided into three formal time-stratigraphic units. There are no fossil data known from these strata, so there is no basis for correlating them with any of the Minden Supergroup, which is the name of the Middle Coastal Plain, Lower Cretaceous plus the Upper Cretaceous. These facies units constitute the Minden Supergroup. Its constituent units here in this report are given numerous designations from older to youngest (10), each preceded by the letters MU (MU-1 to MU-10). Unit MU-1, which is the equivalent of the Minden Supergroup, is the Cape Hatteras Formation of the Delaware Peninsula (Hansen, 1984) and unit MU-2, which is the equivalent of the Middle Coastal Plain, is the Cape Hatteras Formation of the Cape Hatteras Esso #1 test well available to us for nannofossil and dinocyst analyses. Thanks also go to Gregory S. Gove and Maryann M. Malinconico for their helpful, constructive, and insightful comments on an earlier version of this work, and Matt Smith (U.S. Geological Survey) and Ellen Steept (U.S. Geological Survey) for their drafting assistance.

ACKNOWLEDGMENTS

The authors would like to thank Charles W. Hoffman and the Coastal Plain Office of the North Carolina Geological Survey for making samples from the Cape Hatteras Esso #1 test well available to us for nannofossil and dinocyst analyses. Thanks also go to Gregory S. Gove and Maryann M. Malinconico for their helpful, constructive, and insightful comments on an earlier version of this work, and Matt Smith (U.S. Geological Survey) and Ellen Steept (U.S. Geological Survey) for their drafting assistance.

ACKNOWLEDGMENTS

The authors would like to thank Charles W. Hoffman and the Coastal Plain Office of the North Carolina Geological Survey for making samples from the Cape Hatteras Esso #1 test well available to us for nannofossil and dinocyst analyses. Thanks also go to Gregory S. Gove and Maryann M. Malinconico for their helpful, constructive, and insightful comments on an earlier version of this work, and Matt Smith (U.S. Geological Survey) and Ellen Steept (U.S. Geological Survey) for their drafting assistance.

ACKNOWLEDGMENTS

The authors would like to thank Charles W. Hoffman and the Coastal Plain Office of the North Carolina Geological Survey for making samples from the Cape Hatteras Esso #1 test well available to us for nannofossil and dinocyst analyses. Thanks also go to Gregory S. Gove and Maryann M. Malinconico for their helpful, constructive, and insightful comments on an earlier version of this work, and Matt Smith (U.S. Geological Survey) and Ellen Steept (U.S. Geological Survey) for their drafting assistance.

ACKNOWLEDGMENTS

The authors would like to thank Charles W. Hoffman and the Coastal Plain Office of the North Carolina Geological Survey for making samples from the Cape Hatteras Esso #1 test well available to us for nannofossil and dinocyst analyses. Thanks also go to Gregory S. Gove and Maryann M. Malinconico for their helpful, constructive, and insightful comments on an earlier version of this work, and Matt Smith (U.S. Geological Survey) and Ellen Steept (U.S. Geological Survey) for their drafting assistance.

ACKNOWLEDGMENTS

The authors would like to thank Charles W. Hoffman and the Coastal Plain Office of the North Carolina Geological Survey for making samples from the Cape Hatteras Esso #1 test well available to us for nannofossil and dinocyst analyses. Thanks also go to Gregory S. Gove and Maryann M. Malinconico for their helpful, constructive, and insightful comments on an earlier version of this work, and Matt Smith (U.S. Geological Survey) and Ellen Steept (U.S. Geological Survey) for their drafting assistance.

ACKNOWLEDGMENTS

The authors would like to thank Charles W. Hoffman and the Coastal Plain Office of the North Carolina Geological Survey for making samples from the Cape Hatteras Esso #1 test well available to us for nannofossil and dinocyst analyses. Thanks also go to Gregory S. Gove and Maryann M. Malinconico for their helpful, constructive, and insightful comments on an earlier version of this work, and Matt Smith (U.S. Geological Survey) and Ellen Steept (U.S. Geological Survey) for their drafting assistance.

ACKNOWLEDGMENTS

The authors would like to thank Charles W. Hoffman and the Coastal Plain Office of the North Carolina Geological Survey for making samples from the Cape Hatteras Esso #1 test well available to us for nannofossil and dinocyst analyses. Thanks also go to Gregory S. Gove and Maryann M. Malinconico for their helpful, constructive, and insightful comments on an earlier version of this work, and Matt Smith (U.S. Geological Survey) and Ellen Steept (U.S. Geological Survey) for their drafting assistance.

ACKNOWLEDGMENTS

The authors would like to thank Charles W. Hoffman and the Coastal Plain Office of the North Carolina Geological Survey for making samples from the Cape Hatteras Esso #1 test well available to us for nannofossil and dinocyst analyses. Thanks also go to Gregory S. Gove and Maryann M. Malinconico for their helpful, constructive, and insightful comments on an earlier version of this work, and Matt Smith (U.S. Geological Survey) and Ellen Steept (U.S. Geological Survey) for their drafting assistance.

ACKNOWLEDGMENTS

The authors would like to thank Charles W. Hoffman and the Coastal Plain Office of the North Carolina Geological Survey for making samples from the Cape Hatteras Esso #1 test well available to us for nannofossil and dinocyst analyses. Thanks also go to Gregory S. Gove and Maryann M. Malinconico for their helpful, constructive, and insightful comments on an earlier version of this work, and Matt Smith (U.S. Geological Survey) and Ellen Steept (U.S. Geological Survey) for their drafting assistance.

ACKNOWLEDGMENTS

The authors would like to thank Charles W. Hoffman and the Coastal Plain Office of the North Carolina Geological Survey for making samples from the Cape Hatteras Esso #1 test well available to us for nannofossil and dinocyst analyses. Thanks also go to Gregory S. Gove and Maryann M. Malinconico for their helpful, constructive, and insightful comments on an earlier version of this work, and Matt Smith (U.S. Geological Survey) and Ellen Steept (U.S. Geological Survey) for their drafting assistance.

ACKNOWLEDGMENTS

The authors would like to thank Charles W. Hoffman and the Coastal Plain Office of the North Carolina Geological Survey for making samples from the Cape Hatteras Esso #1 test well available to us for nannofossil and dinocyst analyses. Thanks also go to Gregory S. Gove and Maryann M. Malinconico for their helpful, constructive, and insightful comments on an earlier version of this work, and Matt Smith (U.S. Geological Survey) and Ellen Steept (U.S. Geological Survey) for their drafting assistance.

ACKNOWLEDGMENTS

The authors would like to thank Charles W. Hoffman and the Coastal Plain Office of the North Carolina Geological Survey for making samples from the Cape Hatteras Esso #1 test well available to us for nannofossil and dinocyst analyses. Thanks also go to Gregory S. Gove and Maryann M. Malinconico for their helpful, constructive, and insightful comments on an earlier version of this work, and Matt Smith (U.S. Geological Survey) and Ellen Steept (U.S. Geological Survey) for their drafting assistance.

ACKNOWLEDGMENTS

The authors would like to thank Charles W. Hoffman and the Coastal Plain Office of the North Carolina Geological Survey for making samples from the Cape Hatteras Esso #1 test well available to us for nannofossil and dinocyst analyses. Thanks also go to Gregory S. Gove and Maryann M. Malinconico for their helpful, constructive, and insightful comments on an earlier version of this work, and Matt Smith (U.S. Geological Survey) and Ellen Steept (U.S. Geological Survey) for their drafting assistance.

ACKNOWLEDGMENTS

The authors would like to thank Charles W. Hoffman and the Coastal Plain Office of the North Carolina Geological Survey for making samples from the Cape Hatteras Esso #1 test well available to us for nannofossil and dinocyst analyses. Thanks also go to Gregory S. Gove and Maryann M. Malinconico for their helpful, constructive, and insightful comments on an earlier version of this work, and Matt Smith (U.S. Geological Survey) and Ellen Steept (U.S. Geological Survey) for their drafting assistance.

ACKNOWLEDGMENTS

The authors would like to thank Charles W. Hoffman and the Coastal Plain Office of the North Carolina Geological Survey for making samples from the Cape Hatteras Esso #1 test well available to us for nannofossil and dinocyst analyses. Thanks also go to Gregory S. Gove and Maryann M. Malinconico for their helpful, constructive, and insightful comments on an earlier version of this work, and Matt Smith (U.S. Geological Survey) and Ellen Steept (U.S. Geological Survey) for their drafting assistance.

ACKNOWLEDGMENTS

The authors would like to thank Charles W. Hoffman and the Coastal Plain Office of the North Carolina Geological Survey for making samples from the Cape Hatteras Esso #1 test well available to us for nannofossil and dinocyst analyses. Thanks also go to Gregory S. Gove and Maryann M. Malinconico for their helpful, constructive, and insightful comments on an earlier version of this work, and Matt Smith (U.S. Geological Survey) and Ellen Steept (U.S. Geological Survey) for their drafting assistance.

ACKNOWLEDGMENTS

The authors would like to thank Charles W. Hoffman and the Coastal Plain Office of the North Carolina Geological Survey for making samples from the Cape Hatteras Esso #1 test well available to us for nannofossil and dinocyst analyses. Thanks also go to Gregory S. Gove and Maryann M. Malinconico for their helpful, constructive, and insightful comments on an earlier version of this work, and Matt Smith (U.S. Geological Survey) and Ellen Steept (U.S. Geological Survey) for their drafting assistance.

ACKNOWLEDGMENTS

The authors would like to thank Charles W. Hoffman and the Coastal Plain Office of the North Carolina Geological Survey for making samples from the Cape Hatteras Esso #1 test well available to us for nannofossil and dinocyst analyses. Thanks also go to Gregory S. Gove and Maryann M. Malinconico for their helpful, constructive, and insightful comments on an earlier version of this work, and Matt Smith (U.S. Geological Survey) and Ellen Steept (U.S. Geological Survey) for their drafting assistance.

ACKNOWLEDGMENTS

The authors would like to thank Charles W. Hoffman and the Coastal Plain Office of the North Carolina Geological Survey for making samples from the Cape Hatteras Esso #1 test well available to us for nannofossil and dinocyst analyses. Thanks also go to Gregory S. Gove and Maryann M. Malinconico for their helpful, constructive, and insightful comments on an earlier version of this work, and Matt Smith (U.S. Geological Survey) and Ellen Steept (U.S. Geological Survey) for their drafting assistance.

ACKNOWLEDGMENTS

The authors would like to thank Charles W. Hoffman and the Coastal Plain Office of the North Carolina Geological Survey for making samples from the Cape Hatteras Esso #1 test well available to us for nannofossil and dinocyst analyses. Thanks also go to Gregory S. Gove and Maryann M. Malinconico for their helpful, constructive, and insightful comments on an earlier version of this work, and Matt Smith (U.S. Geological Survey) and Ellen Steept (U.S. Geological Survey) for their drafting assistance.

ACKNOWLEDGMENTS

The authors would like to thank Charles W. Hoffman and the Coastal Plain Office of the North Carolina Geological Survey for making samples from the Cape Hatteras Esso #1 test well available to us for nannofossil and dinocyst analyses. Thanks also go to Gregory S. Gove and Maryann M. Malinconico for their helpful, constructive, and insightful comments on an earlier version of this work, and Matt Smith (U.S. Geological Survey) and Ellen Steept (U.S. Geological Survey) for their drafting assistance.

ACKNOWLEDGMENTS

The authors would like to thank Charles W. Hoffman and the Coastal Plain Office of the North Carolina Geological Survey for making samples from the Cape Hatteras Esso #1 test well available to us for nannofossil and dinocyst analyses. Thanks also go to Gregory S. Gove and Maryann M. Malinconico for their helpful, constructive, and insightful comments on an earlier version of this work, and Matt Smith (U.S. Geological Survey) and Ellen Steept (U.S. Geological Survey) for their drafting assistance.

ACKNOWLEDGMENTS

The authors would like to thank Charles W. Hoffman and the Coastal Plain Office of the North Carolina Geological Survey for making samples from the Cape Hatteras Esso #1 test well available to us for nannofossil and dinocyst analyses. Thanks also go to Gregory S. Gove and Maryann M. Malinconico for their helpful, constructive, and insightful comments on an earlier version of this work, and Matt Smith (U.S. Geological Survey) and Ellen Steept (U.S. Geological Survey) for their drafting assistance.

ACKNOWLEDGMENTS

The authors would like to thank Charles W. Hoffman and the Coastal Plain Office of the North Carolina Geological Survey for making samples from the Cape Hatteras Esso #1 test well available to us for nannofossil and dinocyst analyses. Thanks also go to Gregory S. Gove and Maryann M. Malinconico for their helpful, constructive, and insightful comments on an earlier version of this work, and Matt Smith (U.S. Geological Survey) and Ellen Steept (U.S. Geological Survey) for their drafting assistance.

ACKNOWLEDGMENTS

The authors would like to thank Charles W. Hoffman and the Coastal Plain Office of the North Carolina Geological Survey for making samples from the Cape Hatteras Esso #1 test well available to us for nannofossil and dinocyst analyses. Thanks also go to Gregory S. Gove and Maryann M. Malinconico for their helpful, constructive, and insightful comments on an earlier version of this work, and Matt Smith (U.S. Geological Survey) and Ellen Steept (U.S. Geological Survey) for their drafting assistance.

ACKNOWLEDGMENTS

The authors would like to thank Charles W. Hoffman and the Coastal Plain Office of the North Carolina Geological Survey for making samples from the Cape Hatteras Esso #1 test well available to us for nannofossil and dinocyst analyses. Thanks also go to Gregory S. Gove and Maryann M. Malinconico for their helpful, constructive, and insightful comments on an earlier version of this work, and Matt Smith (U.S. Geological Survey) and Ellen Steept (U.S. Geological Survey) for their drafting assistance.

ACKNOWLEDGMENTS

The authors would like to thank Charles W. Hoffman and the Coastal Plain Office of the North Carolina Geological Survey for making samples from the Cape Hatteras Esso #1 test well available to us for nannofossil and dinocyst analyses. Thanks also go to Gregory S. Gove and Maryann M. Malinconico for their helpful, constructive, and insightful