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columns are shown in figures 8§ to 12 (sheet 2) with updated stratigraphic
interpretations. Fossil ostracods that were cited as evidence by Maher
(1971) and by Brown and others (1972) for the presence of marine Upper
Jurassic strata deep in the Cape Hatteras test well (between 8,960 and
9,154 feet depth) have been reassigned as index taxa for basal Cretaceous
strata by Crawford and others (2009) and Witrock (2017). Fossil datums
from Brown and others (1972) are designated by asterisks on the
test-well stratigraphic columns (figs. 8—12) and are identified with their
original letter and number designations (starting with letters; for
example, LM-1, B-11, ME-§, and so forth). Dinocyst datum levels are
indicated by an arrow on the Esso #1 (DR-OT-01-46) test well (fig. 12)
and are designated by age names (for example, Albian-Cenomanian,
Albian-Campanian, lower Eocene, and so forth); calcareous nannofossil
datums are also indicated by arrows on the Esso #1 test well (fig. 12) and
designated by nannofossil interval abbreviations starting with CC
(Cretaceous), NP (Paleogene), or NN (Neogene) (for example, CC-9a/b,
NP17-18, NN-15, and so forth) and are based on the zonations of Martini
(1971), Sissingh (1977), and Perch-Nielsen (1985). Detailed results of
identified dinocysts and calcareous nannofossil taxa from the Esso #1
test well (fig. 12) from Cape Hatteras are summarized in figures 3 to 6. In
the Cape Hatteras test well (Esso #1 [DR-OT-01-46]), the upper Eocene
stratigraphy is updated by Weems and others (2016).

STRATIGRAPHY

The cross section A—A4 “is a sequence-stratigraphic model, reflecting
the evolutionary development of the North Carolina Coastal Plain in this
region. Ideal sequence packages would consist of a lower fining-upward
sequence, formed during a transgression across the Coastal Plain,
overlain by a coarsening-upward sequence, formed during regression of
the sea following transgression. In the Atlantic Coastal Plain, such ideal
sequences are rare. Instead, a fining-upward sequence typically is
overlain by an unconformity; the associated regressive coarsening-up-
ward cycle either never formed or was stripped away by the next succes-
sive transgression (Harris and Self-Trail, 2006). This means that nearly
all of the sequence stratigraphic packages recognized here consist of
fining-upward sequences capped by unconformities and overlain by the
base of the next fining-upward cycle. To adequately reflect the consider-
able complexity and detail that has been revealed, the primary cross
section 4—-A " was compiled with a 20X vertical exaggeration. A simpli-
fied cross section without vertical exaggeration, showing the total
sediment package (orange-yellow) over basement rocks (brown), is also
shown (below 4—A4 ") to help the viewer keep the overall spatial geometry
in true regional perspective.

Offshore work (Popenoe, 1985) indicates that Atlantic Coastal Plain
deposits continue to thicken eastward of our cross section 4—-A’, reaching
a maximum thickness of about 30,000 feet slightly east of the east end of
cross-section A—A’, where water depths are about 9,800 ft. From there,
deposits thin southeastward. As there is no stratigraphic control for these
outermost-shelf deposits other than seismic reflection data, no effort was
made here to portray them. Most or all of these deposits probably belong
to the Minden Supergroup (discussed below), which was encountered
near the bottom of the Cape Hatteras Esso #1 test well.

The strata of the Atlantic and Gulf of Mexico Coastal Plains are
divided into five regionally recognizable supergroups (Weems and
others, 2004). These supergroups currently are subdivided only partially
into groups, formations, and members based on sub-regional strati-
graphic relationships. The oldest supergroup found in the North Carolina
Coastal Plain, the Minden Supergroup, is divided here into three informal
fining-upward sequences. There are no fossil data known from these
strata, so there is no basis for correlating them with any of the Minden
Supergroup units named in the Gulf of Mexico Coastal Plain. Lower
Cretaceous plus basal Upper Cretaceous (lower Cenomanian) units
constitute the Marquesas Supergroup. Its constituent units here in this
report are given numeric designations from oldest (1) to youngest (10),
each preceded by the letters MQ (units MQ-1 to MQ-10). Unit MQ-1,
which is age-equivalent to the Berriasian-Hauterivian(?) Waste Gate
Formation of the Delmarva Peninsula (Hansen, 1984), and unit MQ-4
were both encountered as far west as test-well HY-OT-06. Units MQ-2,
MQ-3, MQ-5, and MQ-6 are less widespread, being encountered only as
far west as test-well Mobil #3 (HY-OT-01-65). In the Cape Hatteras Esso
#1 test well, the unpatterned marine strata that comprise units MQ-7 and
MQ-8 most readily correlate updip with dash-patterned onshore deltaic
strata equivalent to the Lower Cretaceous Patuxent and Patapsco Forma-
tions of Maryland and Virginia. If this correlation is correct, then marine
microfossils in units MQ-7 and MQ-8 indicate that the Patuxent and
Patapsco Formations both belong within the middle to upper part of the
Albian stage. This age determination is younger than the Barremian-Ap-
tian age that palynological workers have suggested for the Patuxent
Formation (for example, Hochuli and others, 2006). Unit MQ-9 was
encountered as far west as test-well WAS-OT-02, and unit MQ-10
pinches out west of test-well HY-OT-06.

Upper Cretaceous (upper Cenomanian through Maastrichtian),
Paleocene, and lower Eocene units consist predominantly of marine
siliciclastic sediments that constitute the Ancora Supergroup. The middle
Eocene through Oligocene units that constitute the Trent Supergroup are
predominantly carbonates, unlike other supergroups in the North Caro-

Carolina Coastal Plain (dash-pattern on cross section 4A-4”), extend
eastward to somewhere slightly east of test-well WAS-OT-02. Still
farther east, somewhere between test-wells WAS-OT-02 and HY-OT-06,
the nonmarine strata merge seaward into age-equivalent fully marine
beds, presumably by intertonguing.

The rate of deposition in the North Carolina Coastal Plain slowed
during the Late Cretaceous (Cenomanian through Santonian ages) to a
rate similar to that of the early part of the Early Cretaceous (fig. 7). In the
late Cenomanian, deposits of the Clubhouse Formation overstepped all
older coastal plain deposits toward the northwest as far as the vicinity of
test-well HAL-T-2 (Christopher, 1982). The Clubhouse Formation
contains calcareous nannofossils and marginal marine dinocysts,
indicating that marine conditions also had spread by the late Ceno-
manian across nearly the entire breadth of the Coastal Plain in northern
North Carolina. In the Santonian (fig. 7), a more localized interval of
rapid subsidence occurred and Coastal Plain deposition spread sediment
southwestward across the Cape Fear arch to the vicinity of Fayetteville.
By the end of this event, the modern geometry of the North Carolina
Coastal Plain had been established.

Starting in the Late Cretaceous (Campanian age), the rate of deposi-
tion in the North Carolina Coastal Plain slowed considerably compared
with earlier times (fig. 7). This is best reflected in the Mobil #3
(HY-OT-01-65) test well within cross-section 4—A4”. In the Cape Hatteras
area, there is a profound unconformity encompassing latest Cretaceous
through early Paleogene (Campanian through early Ypresian) time. As
this unconformity is not present to the west, it cannot be attributed to
uplift and subaerial erosion, but rather it was most likely caused by
submarine current scour. Notching of this magnitude along the eastern
margin of the Atlantic Coastal Plain almost certainly was caused by a
westward migration of the Gulf Stream path to a position at or near Cape
Hatteras (see discussion in Self-Trail and others, 2019). This model is
supported by the occurrence of exceptionally warm climates during this
stratigraphic gap, both along the northern Atlantic margins (Chandler,
1964; Tiffney, 1999; Weems and Grimsley, 1999) and as far north as
Ellesmere Island north of Greenland (Eberle and others, 2009). When the
Gulf Stream started to shift back toward the east during the late Ypresian,
the area notched out by the Gulf Stream began to fill rapidly with
sediment throughout the late-early and middle Eocene. By the late
Eocene (Priabonian), this notch had been filled with sediment.

During the late Eocene (Priabonian) through early Miocene, the
rates of deposition and subsidence were approximately in equilibrium.
The basal coarse beds of successive fining-upward sequences suggest
that small unconformities are present throughout this interval, but none
are of a magnitude great enough to show as obvious anomalies within
the overall succession of sediments. Middle and upper Miocene strata
are absent in the Cape Hatteras Esso #1 test well, though they are appar-
ently present to the west in the Mobil #3 test well. This indicates another
interval during which the Gulf Stream shifted west of its present
position, though apparently not as far west as in the early Eocene. This
erosional event occurred at a time when sea levels generally were high
across the Atlantic Coastal Plain and the Atlantic Ocean had transgressed
far into the Piedmont region (Weems and Edwards, 2007; Edwards and
others, 2018). This unconformity also correlates well with an episode of
outer-shelf margin erosion that was documented by Popenoe (1985). As
in the early Eocene, this scouring event was followed by relatively rapid
infilling of the scoured region during early Pliocene (Zanclean). The
presence of anomalously old dinocysts in the sample at an altitude of
-806 feet (in the Esso #1 test well) probably reflects reworking of
scoured older Miocene sediments into basal Pliocene sediment that
began filling the region scoured during the Miocene.

The overall rate of subsidence appears to have increased slightly
since the middle Miocene (fig. 7). This increased rate of subsidence
probably correlates with the uplift and exhumation of the modern Appa-
lachian uplands that began around this time (Huddlestun, 1988; Weems
and Edwards, 2007; Edwards and others, 2018).
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Figure 3. Occurrence chart showing the presence of selected dinoflagellate cyst (dinocyst) taxa in samples from the Esso #1 (DR-OT-01-46) test well; Early Cretaceous (Barremian?) through Pliocene stratigraphic interval (altitude -8,913 to -806 feet); sample at
-806 feet altitude contains Miocene reworked dinocysts. Symbols for the presence of taxa: X, = present; ?, questionably present; a dot ( . ) means not observed. Abbreviations for preservation quality: P, poor; F, fair; G, good; F-P, fair to poor. Abbreviations for geolog-
ic age: E, early; e, early; m, middle; I, late; Alb., Albian; Apt., Aptian; Barrem., Barremian; Berri., Berriasian; Camp., Campanian; Cenom., Cenomanian; ?, age is questionable. Abbreviations for diversity: mod., moderate; mod. high, moderately high. Other abbrevia-

tion: feet, ft.

e}
=S Y
n Ny
Qk) .2 %2} N <} (]
Y © g E 3 - 8 § e
o = “ S ) ~ S L g = S
=) £ ] S v 3 — 8 s N 2 N S 2 5 ng k& =9 S © n| o
N S 2 2 S S €85 Q 3 2 g & .2 2B 2. S 5 S 3 3 S = S 3 & g 2 8 8 5 8 3 S 2l s
= S <58 .55z, T, 8 S3Sfzgziii o =z S §28 % Z. SSS58sS8s.538 % S fg S §§§m§§~§1~:£ = S, SS¥s izt nzii
S 3 9 a3 55285588, 85 s3YSS5EC088R8SES:E S+2.% S£828 83 § Tss3fSEfssgs&gst S S sy SS5SS£32¢E s S8 .838888 TITHESSLSLFYS |«
) g S s %'g‘g“%:'ggm§§§7§§§'%-§§§§§§58§§§§§w§§=§03§§55w§§%5§ §§u§m.cg§§g§&§§~§§3§§g~w§gg-i§wa §§§¢S.§;§3&&a§§% atg%‘s-}\c-gg Q&NQQ'\Qk"Jg’é’G 2
= N = S s = S © XK =X = = = S ) I N X I 3 33 S 2 N R = Q s = N = S = 3 as 5 a = I X 3 R S 22223 33 3 3 3 12 S
g S N H S 5 S Q3I W I sERI| S VN 2929209 0T @ v 38533 N8 3 T o = LS B B T V7 N B I E R e T S P S K v v n = = S S I I I I I I T S = < 2 9 g S S =22 S S S 8 £ < ol|.©
SR IRSERS RIS Q3 S 3 3 S = S 3 N I =TT E = & S S 5§ 9 3332 03 3 B SSEESEESESS8S 8887 S S &= 7 T 3 3 98 80 g|l<
= C T I TS S ISR EEEE Y iSSPt TE IS EEERETTEEEY I i iU IUUIIUSieiESSSSESY s iTiiiiiiiiiccivicesiiiisEsssssfzlc
@ ﬁk&%8&8“%%m§§=§§§§§§b§§\ﬁ§&3\o?533Bakx:\xkxxkx:\:\kxx:\x:\33“’°\‘4§"3333@333@33@"\"363'“&@&5&:“&-%%%gﬁgﬁt::Q&::%g§§§§§§§“§%%%&&&&&&§mﬁgO
g 2 Eiquww§g§guu§§§§§§§g§§§§539@888gg&&&&&&&a&&&&&&&&&fﬁssg%§§§§§§§§§§§8§§§§§§§g:ﬁ%%§Q£:§tﬁﬁﬁﬁﬁﬁﬁﬁammmmmm:mEREE&%%%%%%ggéga
p= o Altitude of SS X2 R = =283 SEZE I I I I T T TSI TS L LETELLrEEErTEizrizrzEEf sy r oy a2 RS S EEE 08 e s s AR SER RSN TR R e SIS LSS SR 3=E|o
£ = lmidpointofuample| S S ST T T I I PETi B P I BB P I ISl II i I il Uil REi iRl ST GBI I RIS IiiC it iiiiiiiiiiiEiiffzrZETEEELyEe
) 2 = NN SRR R R R R O O XS RN O 0 O Ryl T B N I i T T i R T 09 o= S S S ST S v BEEEREEREeE s R R R I B —| O o
80 35 < ) . E E S S S S S S N T S R R S E S S S S S S 3Rzl 223232322222222288 PR320l ollllllossSSeEl3®3gssTssegssss T T T T T T8 D SSSEEEEESE <| >.5
<| £ O interval.infeet [S < A A R BB RFACOC0CO00TT0TT o000 TARIAARRAA8RAA80A8AARAARRRANRO S NS E SN TSR T ESSSSSSS20aAaddadaddcdedddddddldaddddadaadRRERRDRODDROE |
-476 R C C ™w F C F F C R R CF C C C CcC G
-596 C F R F C C ? F C M
NN15 -646 C R R F R C C F F C M
o g
5| 2 -696 F C . ct F F F F JF M
= E 2756 C . R F F C R . F C FF . .[c M
-806 F ? C . LTW . C F R . rwrw C C F A F F F F FIC M
NN14-15 -876 . F R C . ™w F R R C F F R R R R C F R F R F .|IC M
-936 F F C . ™wW . IW . . . R F F F F . TWIW . C R F C R F A . R C F F F .JC M
oéog 52 -1,583 C . F . C F R F R F F ™w . R R R F JF M
58 za | NP2 1,646 C R . R F P
o -1, ) ) ) ) ) )
-1,736 F F F FC.FRZC . CR CF R F . F . R F R F R C Cc C F CCF R F F F F .[IC G
NP17-18 -2,079 F . F F C .|[F P
-2,131 R . F R F R F F F C R RIF P
g -2,253 R R F F F FFC F R R F R R F R R R F F F F F R CR F C F R wF F R F F .|IC G
ﬁ -2,305 F F F F F F F F F F F C C F F R F R F .[C M
© aq:; -2,527 F F F F F F R CC F F R F ™w . F F F F F F F R C F R F C C F F F F F c .IC M
5| S = 2,649 R F . F R F M
o ey -2, .
S Z
- -2,710 R R F R F R ? F F F F R F F F R F F R .[F M
-2,771 R . TW . F C R F F ? C F F F F C R F F .|IC M
-2,831 F F C R R F F F R F F F F R F R F C F CR F F FIF M
c NP14 -2,893 R R R F R F R C R F F R ? F R R F F R F R R R C R F R F FR F .|IC M
ongaree —
NP14? -2,946 F R ? C ? F F R C F R F F C C ? F CcC .|C M
Nanjemoy [ NP3 -3,156 F C R F R R F R F R R F .[C M

Figure 4. Occurrence chart showing the presence of calcareous nannofossil taxa in samples from the Esso #1 (DR-OT-01-46) test well; Eocene through Pliocene stratigraphic interval (altitude -3,156 to -476 feet). Calcareous nannofossil zones are based on the zonation from Martini (1971; NN, Neogene; NP, Paleogene). Abbreviations for abundance of species in sample: A, abundant (1 specimen per field of view); C, common (1 specimen per 10 fields of view);
F, frequent (1 specimen per 11-50 fields of view); R, rare (1 specimen per 51-100 fields of view); ?, questionable identification; rw, reworked specimen; a dot ( . ) means the species was not observed. Abbreviations for “Overall nannofossil abundance in sample”: C, common (1-10 specimens per field of view); F, frequent (1 specimen per 1-10 fields of view). Abbreviations for “Sample preservation”: G, good; M, moderate; P, poor. The black bar is the first and

(or) last occurrences of a marker species.
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Figure 5. Occurrence chart showing the presence of calcareous nannofossil taxa in samples from the Esso #1 (DR-OT-01-46) test well; Turonian through Santonian stratigraphic interval (altitude
-4,591 to -3,376 feet). Calcareous nannofossil zones from Sissingh (1977) and Perch-Nielsen (1985); CC, Cretaceous. Abbreviations for abundance of species in sample: C, common (1 specimen
per 10 fields of view); F, frequent (1 specimen per 11-50 fields of view); R, rare (1 specimen per 51-100 fields of view); ?, questionable identification; ct, contamination; a dot ( . ) means the
species was not observed. Abbreviations for “Overall nannofossil abundance in sample”: A, abundant (1 specimen per field of view); C, common (1-10 specimens per field of view); F, frequent
(1 specimen per 1-10 fields of view). Abbreviations for “Sample preservation”: G, good; M, moderate; P, poor. The black bar is the first and (or) last occurrences of a marker species. The queries
(?) at bottom of columns for “Age” and “Calcareous nannofossil zone” mean indeterminate.
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Figure 6. Occurrence chart showing the presence of selected calcareous nannofossil taxa in samples from the Esso #1 (DR-OT-01-46) test well; lower Berriasian (1. Berr.) through Cenomanian stratigraphic interval
(altitude -8,913 to -4,898 feet). Nannofossil zones from Sissingh (1977) and Perch-Nielsen (1985); CC, Cretaceous. Abbreviations for abundance of species in sample: C, common (1 specimen per 10 fields of
view); F, frequent (1 specimen per 11-50 fields of view); R, rare (1 specimen per 51-100 fields of view); ?, questionable identification; ct, contamination; a dot ( . ) means the species was not observed. Abbrevia-
tions for “Overall nannofossil abundance in sample”: C, common (1-10 specimens per field of view); F, frequent (1 specimen per 1-10 fields of view); R, rare (1 specimen per 51-100 fields of view). Abbreviations
for “Sample preservation”: G, good; M, moderate; P, poor. The black bar is the first and (or) last occurrences of a marker species. “CC1b/c?” means age is probable but not certain. Other abbreviations: L. Cret.,
Lower Cretaceous; u. Berriasian, upper Berriasian.
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