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Abstract
As part of a U.S. Geological Survey water-quality study 

started in 2018, in cooperation with the International Joint 
Commission, North Dakota Department of Environmental 
Quality, and Minnesota Pollution Control Agency, a pub-
licly available software package called R–QWTREND was 
developed for analyzing trends in stream-water quality. The 
R–QWTREND package is a collection of functions written 
in R, an open source language and a general environment 
for statistical computing and graphics. The package uses 
a parametric time-series model to express logarithmically 
transformed concentration in terms of flow-related variability, 
trend, and serially correlated model errors. Flow-related vari-
ability captures natural variability in concentration on the basis 
of concurrent and antecedent streamflow. The trend identifies 
systematic changes in concentration in terms of potential step 
trends, piecewise monotonic trends, or user-specified trends. 
Maximum likelihood estimation is used to estimate model 
parameters and determine the best-fit trend model. This report 
describes the time-series model and statistical methodology 
behind R–QWTREND and provides formal documentation for 
installing and using the package.

Introduction
A statistical time-series modeling methodology for ana-

lyzing trends in stream-water quality, originally developed by 
Vecchia (2000) and modified as described in Vecchia (2003, 
2005), has been used in several subsequent water-quality 
studies by the U.S. Geological Survey (USGS; Galloway 
and others, 2012; Risch and others, 2014; Sando and others, 
2014a, b, 2015; Giorgino and others, 2018) and other agen-
cies (Jones and Armstrong, 2001; Johnson and others, 2009; 
Paquette, 2011; Metropolitan Council, 2014). The time-series 
methodology uses maximum likelihood estimation (Graybill, 
1976) to handle complex (nonmonotonic) trends, complex 
flow-related variability, and seasonal serial correlation struc-
ture. The software used in these previous studies for fitting the 

time-series model to water-quality monitoring data and using 
the model for parametric statistical inference (hypothesis tests, 
probability [p]-values, confidence intervals) was not publicly 
available, and the methodology was referred to informally as 
“QWTREND.”

As part of a USGS water-quality study started in 2018, 
in cooperation with the International Joint Commission, North 
Dakota Department of Environmental Quality, and Minnesota 
Pollution Control Agency, a publicly available software 
package called R–QWTREND was developed for applying 
the time-series methodology. The R–QWTREND package is 
a collection of functions written in R (R Development Core 
Team, 2019), an open source language and a general environ-
ment for statistical computing and graphics. Several enhance-
ments to the original methodology are included in the new 
package, including the ability to model step trends based on 
remark codes, improved handling of censored data, expanded 
graphical output for verifying and interpreting the model 
results, and the capability to estimate constituent flux (load).

Purpose and Scope
This report describes the time-series model and sta-

tistical methodology behind R–QWTREND and provides 
formal documentation for installing and using the package. 
This report, along with the accompanying software package, 
practice datasets, and examples, provides all of the neces-
sary materials and documentation for using R–QWTREND to 
analyze and interpret trends in stream-water quality based on 
long-term (10 or more years) datasets on constituent concen-
tration from discrete stream-water samples collected multiple 
times per year (quarterly or more frequent sampling) and for 
which the stream-water sampling location is colocated with a 
streamflow-gaging station from which a complete record of 
daily mean streamflow is available.
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Time-Series Model
The statistical time-series model used for R–QWTREND 

is a modified version of the model described in Vecchia 
(2005). Each month is divided into six approximately (~) 
5-day time intervals corresponding to days 1–5, 6–10, …, 
21–25, and 26–N, where N is the number of days in the given 
month. Thus, each year consists of 72 (6×12) time inter-
vals. Let t denote the decimal year of the midpoint of each 
time interval, let C(t) be the observed concentration from, 
at most, a single water-quality sample collected sometime 
during the interval, and let Q(t) be the average of the daily 
mean streamflow values for the interval. A complete record 
of daily mean streamflow is assumed to be available from a 
streamflow-gaging station at the water-quality sampling site, 
and Q(t) is the average of the daily mean streamflow values 
for the individual days within each time interval. Hereafter, 
Q(t) is referred to simply as “streamflow.” Each time interval 
is assumed to have, at most, a single observed concentration 
from a discrete stream-water sample collected sometime dur-
ing the ~5-day interval. If there are intervals with more than 
one sample, the sample nearest to the beginning of the interval 
is selected. For typical monitoring programs, consisting of 
weekly or less frequent sampling, C(t) may be missing for 
most of the time intervals, but there can be no missing values 
for Q(t).

The logarithmically transformed concentration for each 
time interval is expressed in terms of a constant mean, flow-
related variability, trend, and the model error, as follows:

	 log[C(t)]=MLC+FRVAR(t)+TREND(t)+E(t)� (1)

where
	 log	 is the base-10 logarithm;
	 C	 is constituent concentration, in milligrams or 

micrograms per liter;
	 t	 is the discrete time interval (72, ~5-day time 

intervals per year), in decimal years;
	 MLC	 is the mean of the logarithmically transformed 

concentration;
	 FRVAR	 is flow-related variability (dimensionless);
	 TREND	 is the concentration trend 

(dimensionless); and
	 E	 is the model error (dimensionless).

Note that in previous reports based on the model 
described in Vecchia (2005), an ~10-day time interval (3 inter-
vals per month, or 36 per year) was used. For R–QWTREND, 
the time interval was cut in half. The various model compo-
nents of equation 1 are defined in more detail in the following 
paragraphs.

FRVAR is designed to capture as much natural, flow-
related variability in logarithmically transformed concentra-
tion as possible and is a function of specially crafted variables, 
called flow anomalies, that depend on concurrent and anteced-
ent streamflow:

	 log[Q(t)]=MLQ+LTFA(t)+MTFA(t)+STFA(t)� (2)

where
	 Q	 is (daily mean) streamflow, in cubic feet 

per second;
	 t	 is the discrete time interval (72, ~5-day time 

intervals per year), in decimal years;
	 MLQ	 is the mean of logarithmically transformed 

streamflow;
	 LTFA	 is the long-term flow anomaly 

(dimensionless);
	 MTFA	 is the midterm flow anomaly 

(dimensionless); and
	 STFA	 is the short-term flow anomaly 

(dimensionless).
LTFA represents long-term (interannual) streamflow variability 
and is given by a 1-year trailing moving average of the devia-
tion of logarithmically transformed streamflow from its mean,

	
LTFA t log Q t j MLQ

j

( ) { [ ( / )] }� � �
�
�1

72
72

0

71

�
(3)

where
	 j	 is the index of summation.
MTFA represents midterm (seasonal) streamflow variability 
and is given by

	

MTFA t log Q t j MLQ

LTFA t j
j

( ) { [ ( / )]

( / )}.

� � �

� �
�
�1

9
72

72

0

8

	

(4)

STFA represents short-term (day-to-day) streamflow variability 
and is given by

    STFA t log Q t MLQ LTFA t MTFA t( ) [ ( )] ( ) ( )� � � � .	 (5)

LTFA represents variability in geometric mean stream-
flow for the previous year (72 time intervals) with respect to 
the long-term geometric mean, MTFA represents variability in 
geometric mean streamflow for the previous 45 days (9 time 
intervals) with respect to geometric mean streamflow for the 
previous year, and STFA represents variability in logarithmi-
cally transformed streamflow for the current time interval 
with respect to geometric mean streamflow for the previous 
45 days. Using the flow anomalies as potential explanatory 
variables to model flow-related variability often explains much 
more variability in concentration than using only concur-
rent flow, log[Q(t)]. Because a trailing (rather than centered) 
moving average is used to compute the anomalies, the shorter 
term (higher frequency) anomalies lead the longer term (lower 
frequency) anomalies.
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The flow anomalies (eqs. 2–5) are used as regression variables in an equation for computing flow-related variability 
as follows:

	                   

FRVAR t
LTFA t MTFA t MTFA t STFA t MTFA t

( ) �
� � � �� � � � � � � � �� � � � �

1 2 3

2

4 5 �� � �
� � � � � � � �

�
�
�

�

�

� � � �

STFA t

t t t t� � � � � � � �
6 7 8 9

2 2 4 4cos sin cos cos��

�
�
�

�� �

(6)

where
	β1, β2, …, β9	 are model coefficients.

The periodic functions (cosine and sine functions) with periods of 1 year and one-half year are included to model seasonal 
variation in concentration that is not captured by the flow anomaly terms. Other publications may distinguish between flow-
related variability and seasonality but for R–QWTREND, “flow-related variability” includes the flow variables and the sea-
sonal terms.

The flow-adjusted concentration is useful for interpreting the model output and is obtained by subtracting FRVAR from the 
observed concentration as follows:

		 FAC(t)=log[C(t)]–FRVAR(t)=MLC+TREND(t)+E(t)� (7)

where
	 FAC	 is flow-adjusted concentration.
The TREND term in equation 7 is used to model potential temporal trends in the mean of FAC and is assumed to consist of a 
linear combination of various trend functions as follows:

		                               
TREND t c F tj j

j

J

( ) ( )�
�
�

1 �
(8)

where
	 J	 is the total number of trend terms,
	 cj	 is the jth trend coefficient, and
	 Fj(t)	 is the jth trend function.
The trend functions are assumed to consist of four specified types as follows:

1.	Piecewise monotonic trends

                                          

F t

t B

t B

E B

t B

E Bj

j

j

j j

j

j

( )

/

/ ( / ) ( / )�

� �

� �
�

�
�

�

�

�

�
�

�

�
�

1 2

1 2 3 2 1 2

, if 

jj
j j

j

B t E

t E

�

�
�

�
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�

�

�

�
�

�

�
�

�

�

�
�

�

�
�

� �

� 


3

1 2

, if 

, if /
�

(9)

where
	 Bj	 is the beginning time (decimal year) for the monotonic trend and
	 Ej	 is the ending time (decimal year) for the monotonic trend.

2.	Step trends based on a specified time interval

	                                                                            
F t

B E
j

j j
( )

/

/
�

� � �

�

�
�
�

�
�
�

1 2

1 2

, if t

, otherwise �
(10)
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where
Bj	 is the beginning time (decimal year) for the 

step trend and
Ej	 is the ending time (decimal year) for the 

step trend.
3. Step trends based on specified sample attribute

	​​F​ j​​(t ) = ​{​
+ 1 / 2, if t  ∈ ​ S​ j​​​  
− 1 / 2, otherwise

​}​​� (11)

where
Sj	 is a subset of times corresponding to a 

specified sample attribute and
t ϵ Sj	 indicates that t is in the subset Sj.

4. Ancillary (user-specified) trends

Fj(t)=A(t) (12)

where
A(t)	 is a user-specified function of t.

Piecewise monotonic trends model gradual, multiyear 
changes in flow-adjusted concentration because of potential 
anthropogenic causes such as changes in land use/land cover 
(urbanization, crop acreage or type, and so on). These trends 
might occur at different times and in different directions (up 
or down). Interval-based step trends model abrupt changes in 
flow-adjusted concentration because of anthropogenic causes 
occurring at known times (for example, a sewage treatment 

upgrade or dam removal). Step trends based on sample attri-
butes model the potential bias (systematic tendency for sample 
concentrations to over or underestimate actual concentrations) 
associated with a particular collection or preservation method, 
laboratory analytical method, or another sample attribute. 
Ancillary trend variables can be any known, user-specified 
time series computed for the upstream drainage basin, such 
as total fertilizer use, percentage of the basin in a given land 
use/land cover category (urban, cropland, forested), or any 
other variable that might explain water-quality changes in the 
upstream drainage basin.

Next, consider the model error (E in eq. 1). For a standard 
parametric regression analysis, the errors are often assumed to 
be normally distributed with a mean of zero, constant variance, 
and no serial correlation. However, in practice, water-quality 
datasets rarely satisfy all these assumptions because the error 
variance often differs depending on the time of year and the 
errors often are serially correlated, especially as the sampling 
frequency increases and the spacing between adjacent samples 
decreases. Therefore, a special type of time-series model, 
called a periodic autoregressive moving average (PARMA) 
model is assumed for the model errors (Salas and others, 1985; 
Vecchia, 1985). In R–QWTREND, there are three options for 
specifying the PARMA model number (table 1). For model 1, 
the error is expressed as the product of a periodic autoregres-
sive coefficient (ϕ1[t]) times the error for the previous time 
point plus a periodic moving average coefficient (θ0[t]) times a 
Gaussian white noise process, Z(t). Z(t) is assumed to consist 
of a time series of independent and identically distributed stan-
dard normal random variables. For model 1, the autoregressive 
and moving average coefficients are expressed in terms of a 
single pair of cosine and sine functions with a period of 1 year, 

Table 1.  Periodic autoregressive moving average model choices for R–QWTREND.

[E, model error; t, discrete time interval (72, approximately 5-day intervals per year, expressed as decimal year); ϕ1 and ϕ2, periodic autoregressive coefficients; 
ϕ1j and ϕ2j (j=0,1,…,4), periodic autoregressive parameters; θ0, periodic moving average coefficient; σ and θ0j (j=0,1,…,4), periodic moving average parameters; 
Z, time series of uncorrelated standard normal random variables]

Model 
number

Model equation Model coefficients
Number of 

model  
parameters

1 E(t ) = ​ϕ​ 1​​(t ) E(t − 1 / 72 ) + ​θ​ 0​​(t ) Z(t)
​
​ϕ​ 1​​(t ) = ​ϕ​ 10​​ + ​ϕ​ 11​​ cos (2πt ) + ​ϕ​ 12​​ sin (2πt)

​   ​θ​ 0​​(t ) = σ [ 1 + ​θ​ 01​​ cos (2πt ) + ​θ​ 02​​ sin (2πt ) ]​
6

2
E(t ) = ​{​

​ϕ​ 1​​(t ) E(t − 1 / 72 ) + ​ϕ​ 2​​(t ) E(t − 6 / 72)
​   + ​θ​ 0​​(t ) Z(t) ​ }​ ​

​ϕ​ 1​​(t ) = ​ϕ​ 10​​ + ​ϕ​ 11​​ cos (2πt ) + ​ϕ​ 12​​ sin (2πt)
​   ​ϕ​ 2​​(t ) = ​ϕ​ 20​​ + ​ϕ​ 21​​ cos (2πt ) + ​ϕ​ 22​​ sin (2πt)​   

​θ​ 0​​(t ) = σ [ 1 + ​θ​ 01​​ cos (2πt ) + ​θ​ 02​​ sin (2πt ) ]
​

9

3
E(t ) = ​{​

​ϕ​ 1​​(t ) E(t − 1 / 72 ) + ​ϕ​ 2​​(t ) E(t − 6 / 72)
​   + ​θ​ 0​​(t ) Z(t) ​ }​

​

​ϕ​ 1​​(t ) = ​{​
​ϕ​ 10​​ + ​ϕ​ 11​​ cos (2πt ) + ​ϕ​ 12​​ sin (2πt)

​   + ​ϕ​ 13​​ cos (4πt ) + ​ϕ​ 14​​ sin (4πt) ​ }

    ​ϕ​ 2​​(t ) = ​{​
​ϕ​ 20​​ + ​ϕ​ 21​​ cos (2πt ) + ​ϕ​ 22​​ sin (2πt)

​   + ​ϕ​ 23​​ cos (4πt ) + ​ϕ​ 24​​ sin (4πt) ​ }    

​θ​ 0​​(t ) = σ​{​
1 + ​θ​ 01​​ cos (2πt ) + ​θ​ 02​​ sin (2πt)

​   + ​θ​ 03​​ cos (4πt ) + ​θ​ 04​​ sin (4πt) ​ }

 ​

15
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and there are six model parameters that need to be estimated 
(three parameters for the autoregressive coefficient and three 
for the moving average coefficient). For model 2, there is an 
additional autoregressive coefficient relating E(t) to itself at a 
lag of 6 time intervals (1 month) and a total of 9 parameters. 
Model 3 is the same as model 2 except the autoregressive and 
moving average coefficients are expressed in terms of sine and 
cosine functions with periods of 1 year and one-half year, for 
a total of 15 model parameters. The methods for estimating 
the model parameters and guidelines for selecting the model 
number are given later in the “Statistical Methods” section of 
this report.

Statistical Methods
This section describes the statistical methods used in 

the R–QWTREND software package to estimate the time-
series model parameters and complete statistical inference 
(hypothesis tests, p-values, and so on) useful for water quality 
trend analysis. The methods for computing model output, such 
as estimated annual geometric mean concentration, flow-
weighted average concentration, flux, and exceedance frequen-
cies, are also described. Finally, the methods used to handle 
censored concentration data and occasional short gaps in the 
streamflow record are described and guidelines are given 
regarding the minimum data requirements recommended for 
application of the time-series model.

Maximum Likelihood Estimation

Fitting the trend model requires estimation of the inter-
cept (MLC, eq. 1), nine coefficients for FRVAR (eq. 6), the 
trend coefficients (eq. 8), and the PARMA model parameters 
(table 1). These coefficients/parameters are estimated jointly 
using Gaussian maximum likelihood estimation, as described 
in Vecchia (2000). The estimation method is complicated 
because of the PARMA model for the errors (table 1) and the 
presence of missing values for log[C(t)]. A periodic Kalman 
filter (Jimenez and others, 1989) with missing data is used to 
recursively filter the data to remove serial correlation. The 
periodic Kalman filter is a linear filter, which, when applied to 
the data, filters out serial correlation:

PMF{Yi−MLC−FRVARi−TRENDi}=Ri� (13)

where
PMF{.}	 is the PARMA model filter,

	Yi=log[C(ti)]	 is the ith (nonmissing) observation,
ti	 is the observation time of the ith observation,

FRVARi	 is FRVAR (eq. 6) for the ith observation,
TRENDi	 is the trend (eq. 8) for the ith observation, and

	​​R​ i​​​	 is the PARMA model residual for the ith 
observation.

If the PARMA model assumptions are satisfied (see table 1), 
the PARMA model residuals should be uncorrelated and have 
an approximate normal distribution with a mean of zero and a 
variance that depends on i,

Ri=σsiZi (14)

where
	 σsi	 is the standard deviation of Ri and

Zi	 is the standardized PARMA model residual 
for the ith observation.

The Gaussian likelihood function is given by

� � �
� �
� �2

1 1

2ln[ ] ln[ ] [ / ( )]Lik s R s
i

N

i i i
i

N

� � (15)

where
ln	 is the natural (base-e) logarithm,

Lik	 is the Gaussian likelihood function, and
N	 is the total number of nonmissing 

concentration values.
The Gaussian maximum likelihood parameter estimates 

are obtained by minimizing equation 15 with respect to the 
intercept (MLC), the coefficients for FRVAR (the βj values in 
eq. 6), the trend coefficients (the cj values in eq. 8), and the 
PARMA model parameters (table 1). An executable FOR-
TRAN program for computing the maximum likelihood 
parameter estimates is provided as part of the R–QWTREND 
software package. A numerical method (modified Gauss-
Newton method; Dennis and Schnabel, 1996) is used to 
minimize equation 15. In general terms, if −2ln[Lik] has a 
unique, well-defined minimum with respect to the model 
parameters (as indicated by a positive definite Hessian matrix; 
Dennis and Schnabel, 1996), the data are sufficient for fitting 
the trend model. If the numerical method is unable to converge 
to a unique, well-defined minimum, the data are not sufficient 
to determine all the model parameters. Minimizing −2ln[Lik] 
is equivalent to maximizing Lik. To distinguish between the 
likelihood function (Lik in eq. 15) and its maximum value 
obtained by minimizing equation 15, LIK will be used hereaf-
ter to denote the maximized value of the likelihood function.

Trend Coefficients and Probability Values
Trend analysis involves specification of one or more 

potential trend models (combination of one or more piece-
wise monotonic trends, step trends, or user-defined ancillary 
trends; eq. 8), estimation of the trend coefficients, and evalu-
ation of the attained significance levels, or probability values 
(p-values) of the specified trend models. The overall p-value 
of a specified trend model is used to test the null hypothesis 
that all the trend coefficients equal zero versus the alterna-
tive that at least one is nonzero. The overall p-value can be 
determined using the generalized likelihood ratio (GLR) test 
(Graybill, 1976). The GLR test statistic is
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(16)     G = −2ln{LIK0/LIKJ} = (−2ln[LIK0]) − (−2ln[LIKJ]) 

where
G	 is the GLR test statistic,

LIK0	 is the maximum of the likelihood function for 
the NULL (no-trend) model, and

LIKJ	 is the maximum of the likelihood function for 
the model with J trend coefficients.

The approximate overall p-value for testing the null 
hypothesis H0: {cj=0 for all j=1,…,J} versus the alternative 
hypothesis HA: {cj≠0 for at least one j} is

P=Prob[XJ>G] (17)

where
XJ	 is a chi-square random variable with J degrees 

of freedom.
The approximate p-values of the individual trend coeffi-

cients can be determined in a similar manner by comparing the 
likelihood function for the trend model with all the coefficients 
and the likelihood function for the trend model excluding each 
individual coefficient,

           Pj = Prob[X1 > (−2ln[LIKJ]) − (−2ln[LIKJ−1|−j])]� (18)

where
Pj	 is the approximate p-value for the jth trend 

coefficient;
LIKJ−1|−j	 is the maximum value of the likelihood 

function for the model with J−1 trend 
coefficients, excluding cj; and

X1	 is a chi-square random variable with 1 degree 
of freedom.

Evaluating equation 18 for all the trend coefficients 
requires fitting J+1 trend models (the full model plus a 
reduced model for each of the J coefficients). An alternative 
approach for computing approximate individual p-values is 
based on an asymptotic (large sample size), normal approxi-
mation for the probability distribution of the maximum likeli-
hood parameter estimates:

	​​c​ j​ *​~​c​ j​​ + ​s​ j​ *​ Z​� (19)

where
	​​c​ j​ *​​	 is the maximum likelihood estimator of the jth 

trend coefficient,
	​​s​ j​ *​​	 is the approximate standard error of the 

estimated coefficient, and
Z	 is a standard normal random variable.

The approximate standard errors can be computed as part 
of the numerical minimization of the full likelihood function 
with all the trend coefficients; thus (unlike equation 18), there 
is no need to fit additional models for each j. Based on equa-
tion 19, the approximate p-value for testing H0: cj=0 versus 
HA: cj≠0 is given by

	​​​P​ j​​ ​ =  2Prob​{​​Z  > ​ |​c​ j​ *​ / ​s​ j​ *​|​​}​​​​� (20)

where
|.|	 denotes absolute value.

Although the approximate individual p-values using 
equations 18 and 20 generally should be similar, equation 18 
is more robust with respect to potential serial correlation of the 
model errors (as captured using the PARMA model).

When interpreting the trend coefficients, it is useful to 
express them in terms of raw (untransformed) concentration 
rather than logarithmically transformed concentration. The 
piecewise monotonic trends (eq. 9) are defined in such a way 
that the percentage change in flow-adjusted concentration dur-
ing the specified trend interval is given by

	​​Δ​ j​​ ​ =  100(10^cj − 1)​� (21)

where
	​​Δ​ j​​​	 is the percentage change in the geometric 

mean of FAC, in milligrams or micrograms 
per liter, from the beginning (t=Bj) to the 
end (t=Ej) of the trend,

	​​c​ j​​​	 is the trend coefficient for the jth piecewise 
monotonic trend, and

^	 denotes exponentiation.

Selecting the Best Trend Model from Several 
Alternatives

The generalized likelihood ratio tests previously 
described (eqs. 16–18) are examples of nested alternatives in 
which the simpler model (corresponding to LIK0 or LIKJ−1|−j) 
is obtained from the more complex model (corresponding to 
LIKJ) by setting one or more of the trend coefficients equal to 
zero. There often are applications in which several alternative, 
nonnested, trend models may be postulated for a given dataset, 
all of which seem to be reasonable alternatives, and the inves-
tigator wishes to determine the most appropriate, or “best,” 
model from the alternatives. The GLR test statistic (G) can be 
framed in a more general context as follows. Let

G1~2 = (−2ln[LIK1J−K]) − (−2ln[LIK2J]) 
P1~2 = Prob[XK>G1~2]�

(22)

where
G1~2	 is the GLR statistic for testing if models 1 and 

2 are equivalent,
LIK1J−K	 is the maximum of the likelihood function for 

a model 1,
J−K	 is the number of trend coefficients 

for model 1,
LIK2J	 is the maximum of the likelihood function for 

a model 2,
J	 is the number of trend coefficients 

for model 2,
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	 P1~2	 is the p-value, and
	 XK	 is a chi-square random variable with K 

degrees of freedom.
The smaller the p-value, the stronger the indication that 

the more complex model (model 2) is a better trend model 
than the less complex model (model 1). To avoid overly com-
plex models, especially when making multiple comparisons 
among several models, it is recommended that a high signifi-
cance level (low p-value), such as a p-value less than (<) 0.01, 
be used. When both models have the same number of param-
eters (K=0), the p-value is undefined. In that case, a good 
rule of thumb is to consider models 1 and 2 equivalent unless 
G1~2 is greater than (>) 1; in which case, model 2 is preferred 
over model 1.

Annual Geometric Mean Concentration
The annual geometric mean concentration is a useful 

statistic for evaluating overall water-quality conditions at a 
specified sampling location in relation to applicable aquatic 
benchmarks or in relation to overall water quality at other 
sampling locations. The annual geometric mean concentration 
for a given year can be expressed as follows:

      

log[ ] {log[ ( )]}

{log[ ( )]} ( )

GMC EV C t

EV C t MLC SFRVAR t

y
t y

�
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�
�1
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SFRVAR t y i
N

FRVAR j i

( )

( ) ( )

( / ) (

� �� �
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1

// )72
j BCY

ECY

�
�

�

(23)

where
	 GMCy	 is the annual geometric mean concentration 

for year y, in milligrams or micrograms 
per liter.

	 y	 is a specified calendar year;
	 EV{.}	 denotes the expected value (mean) of the 

quantity in braces;
	 tϵy	 indicates that the summation is for all time 

point in year y;
	 SFRVAR	 is seasonal flow-related variability;
	 i	 is the seasonal time index (i=1,…, 72);
	 j	 is an index of summation;
	BCY and ECY	 are the beginning and ending calendar years 

of the period of record; and
	N=ECY–BCY+1	 is the number of calendar years in the period 

of record.
SFRVAR is interpreted as the flow-related variability that 
would occur under the hypothetical assumption that stream-
flow conditions were the same year after year. Equation 23 can 
be expressed as
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(24)

where
	 TRGMCy	 is the trend in annual GMC for year y;
	 FRVGMCy	 is the flow-related variability in annual GMC 

for year y;
	 FABCF	 is a flow-averaged bias correction factor; and
	 TRENDy	 is the annual average of TREND(t) for year y.

The estimated value of GMCy is obtained by substituting 
the maximum likelihood estimators of the model parameters 
in place of the true parameters in equation 24. The trend in 
annual geometric mean concentration defined in equation 24 
is often called a “flow-averaged” or “flow-normalized” trend 
because it is an unbiased estimate of the annual geometric 
mean concentration that would be observed under the hypo-
thetical assumption that streamflow, and hence flow-related 
variability, was the same year after year (FRVAR=SFRVAR).

Annual Flow-Weighted Mean Concentration
When using the trend model (eq. 1) for estimating quanti-

ties such as annual flow-weighted mean concentration or 
annual mean flux, it is important to ensure that the estimates 
are approximately unbiased when expressed in terms of raw 
(untransformed) concentration or flux. Annual flow-weighted 
mean concentration is defined as

	

FWMC
EV C t Q t

Q ty
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t y

V
t y
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�
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( )

�

(25)

where
	 FWMCy	 is the annual flow-weighted mean 

concentration for calendar year y, in 
milligrams or micrograms per liter, and

	 QV(t)	 is the total flow volume, in cubic meters, for 
time interval t.

Given the trend model (eq. 1) and the PARMA model for 
the errors (table 1), concentration has a lognormal distribution 
with expected value
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where
	 Var[E(t)]	  is the error variance.

In equation 26, the error variance depends on the time of 
year and can be computed directly from the PARMA model 
(table 1) given the PARMA model parameters. The annual 
FWMC can be expressed in a similar manner to equation 24 is 
as follows:

         

FWMC TRFWMC FRVFWMC
TRFWMC MLC FABCF TREND

y y y

y y

� �

� � �10 ^{ * } �
(27)

where
	 TRFWMCy	 is the trend in in annual FWMC for year y,
	FRVFWMCy	 is the flow-related variability in annual 

FWMC for year y, and
	 FABCF*	 is a flow-averaged bias correction factor.

The trend (TRFWMCy) defined in equation 27, which 
can also be referred to as “flow-averaged ” trend, is the trend 

        

that would have occurred under the hypothetical assumption 
that flow conditions for the analysis period were the same 
every year. Because FWMC (eq. 25) is expressed in terms of a 
flow-weighted average of raw (untransformed) concentration, 
FABCF* and FRVFWMCy (eq. 27) are much more compli-
cated compared to FABCF and FRVGMCy (eq. 24), where the 
latter formulas were easily derived because GMC (eq. 23) is a 
simple average of logarithmically transformed concentration. 
In R–QWTREND, FABCF* and FRVFWMCy are computed 
internally using a numerical algorithm and explicit formulas 
are not provided.

The estimated value of FWMCy is obtained by sub-
stituting the maximum likelihood estimators of the model 
parameters in place of the true parameters in equation 25. By 
the asymptotic (large sample) properties of maximum likeli-
hood estimation (Graybill, 1976), as the sample size becomes 
large, the resulting estimated value is approximately unbi-
ased and optimal (minimum variance). However, for small 
sample sizes, the estimator may have substantial bias (Cohn 
and others, 1989). As a general rule of thumb, the estimated 
value of FWMC should be approximately unbiased for sample 
sizes of at least 60 observations and record lengths of at least 
10 years, provided the samples are reasonably spread out 
among seasons (time of year), flow conditions (as represented 
by the flow anomaly terms), and calendar years. The minimum 
data requirements recommended for the application of R–
QWTREND are described later in this section.

Annual Mean Flux
Annual mean flux (often referred to as “load”) is an 

important statistic for determining which subbasins of a large 
watershed contribute the most constituent mass (load). Annual 
mean flux is defined as

	​ FLU ​X​ y​​ ​ = ​  ​10​​ 6​ _ 365​ FWM ​C​ y​​ ×AF ​V​ y​​​� (28)

where
	 FLUXy	 is annual mean flux for calendar year y, in 

metric tons (1,000 kilograms [kg]) per day 
(if concentration is in milligrams per liter) 
or kilograms per day (if concentration is in 
micrograms per liter);

	 FWMCy	 is annual flow-weighted mean concentration 
(eq. 25), in milligrams or micrograms per 
liter; and

	 AFVy	 is annual flow volume, in cubic meters.
In a similar manner to equation 27, the annual mean flux can 
be expressed as

FLUX TRFLUX FRVFLUX
TRFLUX MLC FABCF TREND

y y y

y y

� �

� � �10 ^{ ** } 	
(29)

where
	 TRFLUXy	 is the trend in in annual flux for year y,
	FRVFLUXy	 is the flow-related variability in annual flux 

for year y, and
	 FABCF**	 is a flow-averaged bias correction factor.

As described previously for FWMC, the estimated 
value of FLUXy (obtained by substituting maximum likeli-
hood parameter estimates in place of true parameter values in 
eq. 28) should be approximately unbiased for a large sample 
size (at least 60 observations) but may have substantial bias 
for a smaller sample size.

Flow-Averaged Exceedance Probability
Flow-averaged exceedance probabilities are useful for 

determining how the likelihood of exceeding a specified 
concentration threshold during a fixed time of year changes 
through time in response to potential concentration trends. 
Given the time-series model (eq. 1) for logarithmically trans-
formed concentration, the probability of exceeding a specified 
concentration is given by
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(30)

where
	 Pe	 is the exceedance probability,
	 Ce	 is a specified exceedance level,
	 SD{E(t)}	 is the standard deviation of the error, E(t), and
	 Z	 is a standard normal random variable.

Year-to-year differences in FRVAR generally cause 
substantial interannual variability in the exceedance probabil-
ity. Therefore, alternative probabilities, called flow-averaged 
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exceedance probabilities, are computed under the hypothetical 
assumption that flow-related variability during each year is 
equal to the seasonal average flow-related variability:

	 FRVAR(t)=SFRVAR(t)� (31)

where
	 SFRVAR	 is seasonal flow-related variability (eq. 23).
Combining equations 30 and 31 yields
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where
	 FAPe	 is the flow-averaged exceedance probability.

For any given decimal time, t=y+i/72, FAPe(t) is inter-
preted as the probability that C(t) will be greater than the 
specified exceedance level given “typical” (annually averaged) 
flow conditions for that time of year.

Annual Flow-Averaged Exceedance Frequency
The flow-averaged exceedance probability (eq. 32) 

indicates the relative chance of exceeding a specified level of 
concern during any fixed 5-day time interval. For example, if 
FAPe(t)=0.9, there is a 90-percent chance that concentration 
at time t exceeds the level of concern, whereas FAPe(t)=0.1 
indicates only a 10-percent chance of exceeding the level of 
concern. Another important consideration for some applica-
tions is to determine the amount of time during a given year 
that concentration is expected to exceed the specified level 
of concern. Given the flow-averaged exceedance probabili-
ties (eq. 32), annual flow-averaged exceedance frequency is 
defined as follows:

	
FAF y FAP y ie e

i
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72
72

1

72

�
(33)

where
	 FAFe(y)	 is the annual flow-averaged exceedance 

frequency for year y.
The annual flow-averaged exceedance frequency is 

interpreted at the expected fraction of time during year y that 
concentration exceeds the specified level of concern, assum-
ing “typical” (flow-averaged) conditions. For example, if 
FAFe(y)=0.25, we would expect to see about 3 decimal months 
(18, 5-day time intervals) during year y with concentrations 
greater than the specified exceedance level. If FAFe(y)=0.001, 
which is small in relation to the model time step (1/72=0.015), 
we would expect virtually none of the 5-day intervals to 
exceed the specified level.

Censored Concentration Data
The maximum likelihood parameter estimation methods 

previously described in this report assume that the concen-
tration data used to fit the model are known (uncensored) 
values. Exact maximum likelihood parameter estimation with 
censored data and PARMA errors (table 1) is not tractable; 
however, an alternative, approximate maximum likelihood 
estimation methodology can be used when there is a moder-
ate amount (less than about 25 percent) of censored data. The 
ith observed concentration is censored if it is known to be less 
than a specified detection limit,

	 C(ti)<DL(ti)� (34)

where
	 ti	 is the time index of a censored observation,
	 C(ti)	 is the true (but unknown) concentration for 

the censored observation, and
	 DL(ti)	 is a specified detection limit.

Concentration values for censored observations are 
imputed using a preliminary trend model with uncorre-
lated errors:

        log[C(t)]=MLC+FRVAR(t)+TREND*(t)+σZ*(t)� (35)

where
	 TREND*	 is a preliminary trend model defined 

below and
	 Z*(t)	 is a time series of uncorrelated standard 

normal random variables.
The preliminary trend model consists of a quadratic 

spline with number and placement of interior knots that 
depend on the record length,

	
TREND t c F tj

j

D

j* ( ) ( )
* *�

�

�

�
1

1

�
(36)

where
	D=int[RL/10]	 is the number of full decades in the period 

of record;
	 RL	 is the record length, in calendar years;
	 int[.]	 is the greatest integer less than or equal to the 

quantity in brackets; and
	 F*j(t)	 is the jth basis function (j=1,2,…,D+1) for 

a quadratic spline with D interior knots 
where the knots are spaced 10 years apart 
and are symmetrically distributed around 
the midpoint of the record.

For example, if the beginning and ending calendar years 
of the record are BCY=1990 and ECY=2004, then RL=15, 
D=1, and there is a single interior knot at decimal year 1997.5. 
If BCY=1990 and ECY=2010, then RL=21, D=2, and there are 
two interior knots at decimal years 1995.5 and 2005.5.
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Given the preliminary trend model (eq. 35), the expected 
value for a censored observation (eq. 34) is computed using 
the following formula:

         

log[ *( )] ( ) *( )

[ | ]*

C t MLC FRVAR t TREND t
E Z Z Z

i i i

i

� � �

� ��� � �
(37)

where
	 C*(ti)	 is the expected value for the censored 

concentration (eq. 34);
	​​Z​ i​ *​ ​ = ​ log  [ DL(​t​ i​​ ) ] − MLC − FRVAR(​t​ i​​ ) − TREND * (​t​ i​​)   ___________________________  σ  ​​	 is the model error 

assuming C(ti)=DL(ti); and
	E[Z|Z<Zi*]	 is the conditional expected value of a standard 

normal random variable (Z) given Z is less 
than Zi*.

A two-step procedure is used to estimate values for cen-
sored observations:

1.	The survreg function in the Survival Analysis package 
(Therneau, 2019) is used to obtain maximum likelihood 
estimates of the model parameters for the preliminary 
trend model with censored observations (eq. 35).

2.	For censored observations, the parameter estimates from 
step 1 are used in equation 37 to compute the estimated 
concentration C*(ti). For subsequent trend analysis, the 
resulting estimated value(s) are treated the same as if 
they were known (uncensored) observations.

This approach is preferred to the naive method of substi-
tuting arbitrary values (such as one-half of the detection limit) 
for censored observations, while still being computationally 
straightforward. Because the assumed preliminary trend model 
does not depend on the actual (and a priori unknown) trend, 
nor on the actual (and a priori unknown) serial correlation 
structure, the estimated values remain the same no matter 
what the fitted trend model might look like. Allowing the 
estimated values to depend on the actual (rather than pre-
liminary) trend model is too computationally intensive to be 
feasible. However, extra care should be taken when verifying 
and interpreting the fitted trend models using this approach, 
particularly with respect to p-values, especially for moderate 
to high (greater than 25 percent) censoring rates.

Flagging Potential Outliers
The R–QWTREND methodology is based on a para-

metric time-series model (eq. 1), in which log-transformed 
concentration is modeled using a multiple linear regression 
model with Gaussian (normally distributed), serially correlated 
errors. As is the case with any parametric model, outliers must 
be carefully examined and dealt with to ensure that the fitted 
model is not unduly influenced by a very small fraction (or 
perhaps even one) of the observations. For a general discus-
sion of outliers in a multiple linear regression setting, see 
Helsel and Hirsch (1992).

Outliers can generally be grouped into two cases: outliers 
for which the reported concentration value is erroneous (for 
example, data transcription error, improper sample collection 
or preservation methods, laboratory equipment malfunction) 
or outliers for which the reported concentration is accurate 
but for which the environmental conditions at the time of 
the sample were extreme compared to the vast majority of 
samples (for example, dam failure, record flood or drought). In 
either case, outliers should be either corrected (if feasible) or 
removed before analyzing trends. For purposes of trend analy-
sis, provided a small fraction (say, less than about 2 percent) of 
the observations are removed, there should be little in the way 
of adverse consequences of removing outliers. Conversely, if 
the outliers are not removed, there can be serious adverse con-
sequences such as misidentification of trends or highly biased 
model output, depending on how influential the outliers are in 
determining the maximum likelihood parameter estimates. In 
any case, the investigator needs to carefully examine potential 
outliers and, if not removed, at least verify that they are not 
adversely affecting the model results.

Much time and effort can be saved by identifying and 
removing potential outliers before performing a rigorous trend 
analysis. The preliminary trend model for filling in censored 
concentrations (eq. 35) provides a good tool for identify-
ing potential outliers before performing a rigorous analysis. 
For R–QWTREND, an observation is flagged as a potential 
outlier if the absolute value of the standardized residual from 
the preliminary trend model (eq. 35), Z*(t)={log[C(t)]–MLC–
FRVAR(t)–TREND*(t)}/σ, is larger than 3.5 in absolute value. 
The chance that the absolute value of a standard normal ran-
dom variable exceeds 3.5 is very small (less than 1 in 2,000), 
therefore, this criterion is conservative in that it is likely to 
flag only true outliers. In general, if more than a small fraction 
(2 percent or less) of observations are flagged as potential 
outliers using this criterion, the data may not be appropriate 
for analysis using R–QWTREND.

Missing Streamflow Data
The computations previously described require that there 

be no missing values for the streamflow variable, Q(t). A small 
amount of missing streamflow data can be filled in using the 
streamflow interpolation method described in this section. 
This interpolation method should be used only if there are 
occasional short gaps (less than 6 months in duration) in the 
record. In particular, the following minimum streamflow data 
requirements are recommended:

•	 At least 80 percent (four out of five) of the calendar 
years in the period of analysis have a compete stream-
flow record, including the first and last year of the 
period of analysis.

•	 There are no streamflow gaps longer than 6 months in 
duration.
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If these recommendations hold, the following steps may 
be used to fill in missing streamflow record. Let the missing 
streamflow values for a generic gap in the record be given by

	 QMIS={Q(t), tb<t<te}� (38)

where
	 QMIS	 is the set of the missing streamflow values for 

a generic gap in the record,
	 tb, te	 are the beginning and ending times of 

the gap, and
	Q(tb), Q(te)	 are known (nonmissing) streamflow values 

bracketing the gap.
The first step for filling in the streamflow gap is to com-

pute a time series of seasonal average streamflow:

	

SAQ t k j Ave Q NM
j k BCY ECY

j( / ) { }

, ,..., ; ,...,
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� �

72

1 2 72 �
(39)

where
	 SAQ	 is seasonal average streamflow,
	 t=k+j/72	 is the decimal year,
	 k	 is the integer year,
	 j	 is the integer season,
	 NMj	 is the set of all nonmissing streamflow values 

for season j, and
	 Ave{.}	 denotes the average of the values in 

the braces.
Next, to remove seasonality in the streamflow time series, 

streamflow is divided by SAQ to obtain flow ratios,

	​ FR(t ) = Q(t ) / SAQ(t)​� (40)

where
	 FR	 is the flow ratio.
Note that the missing values for FR correspond to the missing 
values for Q. Interpolated streamflow values for the generic 
gap (eq. 38) are computed by linearly interpolating the stream-
flow ratios across the gap and multiplying the interpolated 
ratios by the seasonal average streamflow as follows:
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where
	 Q~	 is interpolated streamflow for the generic gap 

QMIS (eq. 38).
This streamflow interpolation method relies on the 

assumption that seasonal streamflow conditions (as indicated 
by the flow ratios) across an occasional short (less than 6 
month) gap are similar to conditions immediately before and 
after the gap. The method may not be appropriate when flow 

conditions during the gap are thought to be considerably more 
extreme (higher or lower) compared to conditions before or 
after the gap, or for flashy streams where flow conditions 
can vary rapidly during the gap. In such cases, more rigorous 
streamflow interpolation methods such as rainfall-runoff mod-
eling or routing/reverse routing of known streamflows from 
nearby upstream/downstream locations should be considered.

Recommended Minimum Data Requirements

The statistical methods previously described are based 
upon two general assumptions: (1) that the data can be mod-
eled using the general framework described in the “Time-
Series Model” section of this report and (2) that the data 
available to fit the model are sufficient to allow the asymptotic 
(large-sample) properties of Gaussian maximum likelihood 
estimation to be applied. Whether or not a particular dataset is 
sufficient to obtain reliable estimates of trend coefficients and 
p-values, annual flow-weighted average concentration, annual 
flux, and other quantities using R–QWTREND depend on a 
host of factors, including the number of observations, record 
length, sampling design (distribution of samples among differ-
ent years, seasons, and flow conditions), and the complexity of 
the trend model. Although there are no minimum data require-
ments that are guaranteed to provide reliable results for every 
possible water-quality constituent and sampling location, a 
few general recommendations are provided to lead to reliable 
results for most applications:

1.	At least 10 separate calendar years with 1 or more obser-
vations (water-quality samples) in each of the following 
3-month windows: January–March, February–April, 
March–May, April–June, May–July, June–August, July–
September, August–October, September–November, and 
October–December.

2.	A total of at least 60 observations.

3.	At most 25-percent censored data.

4.	Minus 2 times the logarithm of the likelihood function 
(−2ln[Lik]; eq. 15) has a well-defined minimum (posi-
tive definite Hessian matrix) with respect to the model 
parameters.

5.	The model assumptions are reasonable, judging by 
examination of diagnostic model output (see example 
applications later in this report for suggested diagnostic 
output and model verification).

These requirements ensure that observations are rea-
sonably spread out among multiple (10+) years and among 
sliding 3-month seasons within each year, starting with 
January–March and ending with October–December. For 
example, 10 years of bimonthly sampling (sampling every 
2 months, 6 samples per year, 60 observations) would satisfy 
the minimum requirements, as would 15 years of quarterly 
sampling (sampling every 3 months, 4 samples per year, 
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60 observations). However, 10 years of monthly sampling 
during April–September (60 observations) would not satisfy 
the requirements, nor would monthly sampling for 5 years 
(60 observations).

R–QWTREND Software Documentation
The R–QWTREND package is a collection of functions 

written in R (R Development Core Team, 2019), an open 
source language and a general environment for statistical 
computing and graphics. Although R can be run on a variety 
of operating systems, including Linux, Mac OS, UNIX, and 
Windows, R–QWTREND can only be run using the following 
requirements:

•	 Windows 10 operating system

•	 R (version 3.4 or later; 64 bit recommended)

•	 RStudio (version 1.1.456 or later).
A flowchart of the R–QWTREND functions, inputs, 

and outputs is shown in figure 1. In this section, instructions 
for installing the software are provided, and the components 
of figure 1 are described in detail. Examples are provided to 
illustrate the R–QWTREND commands and provide hands-
on practice using the software to analyze trends for practice 
datasets provided with the package.

Initializing R–QWTREND

The R–QWTREND software package is provided as 
an appendix to this report. The package consists of a folder 
called QWTREND2018V4, which contains the files described 
in table 2. This folder can be downloaded as described in the 
appendix. For the practice problems in this section, the files in 
this folder are assumed to be at the following pathname:

QWModPath = “C:\\RQWTREND\\QWTREND2018V4\\”
To get started, use RStudio to open the 

QWTrendV4_practice.RData workspace and the script file 
StartQWTrendV4.R (fig. 2). To initialize R–QWTREND, run 
the commands in lines 1–17 of the script file. These com-
mands load the required R packages (truncnorm, survival, 
and splines); specify the path of the QWTREND2018V4 
folder (QWModPath); and create the R–QWTREND 
functions plotQWtrend, prepQWdata, and runQWmodel 
(R Development Core Team, 2019; Therneau, 2019; fig. 3). If 
the pathname of the QWTREND2018V4 folder differs from 
the one shown above, the pathname needs to be changed to 
the correct pathname before running line 11. Four dataframes 
provided in the practice workspace are used for all practice 
problems in this section.

Input Dataframes

Two dataframes are required as inputs for R–
QWTREND: a water-quality dataframe (generic name 
QWdata) and a daily discharge (streamflow) dataframe 
(generic name DDdata). These dataframes must be in the 
format described later in this section. Users are required to 
import water-quality and streamflow data into R and may need 
to transform the data into the proper format before running 
R–QWTREND. The simplest file format for importing data 
into R is a comma delimited Excel (“.csv”) file, which can be 
imported using the read.csv() function. Users with limited R 
programming skills may wish to transform their data into the 
proper format using Excel before importing the data into R. 
Alternatively, the data can be imported first and then trans-
formed into the proper format using R commands. The exam-
ples provided in this section use four dataframes that have 
already been imported into R and transformed into the proper 
format: RRFargo_Prac_DDdata, RRFargo_Prac_QWdata, 
RRHalstad_Prac_DDdata, and RRHalstad_Prac_QWdata. 
These dataframes contain nutrient concentration data and daily 
streamflow data for the Red River of the North at Fargo, North 
Dakota (USGS streamflow-gaging station 05054000), and the 
Red River at Halstad, Minnesota (USGS streamflow-gaging 
station 05064500), for 1970–2017. The streamflow data used 
in the examples were downloaded from the USGS National 
Water Information System database (U.S. Geological Survey, 
2019) and the nutrient concentration data were downloaded 
from the National Water Quality Monitoring Council data-
base (National Water Quality Monitoring Council, 2019). The 
dataframes must be configured as follows:

•	 Water-quality input data (for example, RRFargo_Prac_
QWdata, see fig. 4):

•	 First column must have type character and name 
“date” and consists of the date of the water-quality 
sample, in “YYYY-MM-DD” format. This col-
umn should be in ascending order, but there can be 
dates with multiple rows (multiple samples on the 
same day).

•	 Concentration data must be in a column of type 
numeric with name “P_XXX,” where the first two 
characters of the name must be “P_,” “XXX” is the 
specified parameter name, and there are no spaces. 
For this example, “P_npnN” designates nitrate plus 
nitrite as nitrogen (npnN) concentration (hereafter 
referred to as nitrate plus nitrite concentration) and 
“P_PTot” designates total phosphorus (PTot) con-
centration.

•	 Immediately following each parameter column (“P_
XXX”) must be a remark column (“R_XXX”). This 
column must be of type character and have the for-
mat “YYY=” or “YYY<,” where “YYY” is a remark 
code. There can be no blanks, and the last character 
must be either “=” (if the value is not censored) or 
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QWdata, DDdata

prepQWdata()

runQWmodel()

• Graphical output file for current model run (placed in current
working directory). Contains model diagnos�c plots and “value
added” plots

• _cn (cons�tuent name) and _rn (op�onal run name)
appended to input file name

• Replaces previous file with same name (if present)

• Text file (placed in current working directory). Contains maximum
likelihood es�ma�on results for current model run. If file with the
same name already exists, current informa�on is appended to the
end of the file.

• Generic dataframes (placed in current workspace) with numerical
model output for the most recent model run.  The output contains
all the informa�on used to produce the diagnos�c plots and “value
added” plots. Previous versions are replaced with most recent
output.

Input dataframes

R–QWTREND objects Descrip�on

XXXQWP

Diagnos�c 
output

• QWdata contains concentra�on data and remark codes
• DDdata contains daily discharge (streamflow) data

• Prepares �me-series data for analysis
• Merges concentra�on and streamflow data
• Fits preliminary trend model (eq. 35)
• Es�mates values for censored data (eq. 37)
• Requires R user libraries (UL) survival, splines, and truncnorm

• Plots (RStudio graphics window) for assessing ini�al model fit,
screening for outliers, and assessing data requirements

• Generic object (list), called regmods, with preliminary parameter
es�mates and flagged outliers

• Dataframe that has been prepared for �me-series analysis

• Fits specified trend model using maximum likelihood es�ma�on
• Arguments specify water-quality cons�tuent name and configura�on of

piecewise monotonic trends (eq. 9), step trends (eqs. 10 or 11), or
ancillary trends (eq. 12)

• Requires Windows files qwtrend2018v4.exe (executable FORTRAN
code for compu�ng maximum likelihood parameter es�mates) and
salflibc.dll (dynamic link library used by qwtrend2018v4.exe)

plotQWtrend()
• Func�on used within runQWmodel() to produce graphical

output files

XXXQWP_cn_rn.pdf

XXXQWP_cn_rn.txt

QWMODOUT5D
QWMODOUTANN
QWFLUXOUT5D

QWEXPROBOUT5D

Figure 1.  Flowchart of R–QWTREND functions, inputs, and outputs.
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Table 2.  R–QWTREND software files contained in windows folder QWTREND2018V4.

File name Description

prepQWdataV4.txt Text file containing R code for creating function prepQWdata().
runQWmodelV4.txt Text file containing R code for creating function runQWmodel().
plotQWtrendV4.txt Text file containing R code for creating function plotQWtrend().
qwtrend2018v4.exe Windows executable file used for computing maximum likelihood parameter estimates.
salflibc.dll Dynamic link library required by qwtrend2018v4.exe.
QWTrendV4_practice.RData R workspace with example datasets.
StartQWTrendV4.R R script for installing and running R–QWTREND.

Figure 2.  Script file (StartQWTrendV4.R) for running R–QWTREND practice problems.
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Figure 3.  Initial workspace for running R–QWTREND practice problems.

Figure 4.  Beginning and ending rows of the water-quality dataframe, RRFargo_Prac_QWdata, and the daily discharge dataframe, 
RRFargo_Prac_DDdata, for input to the prepQWdata() function.
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“<” (if the value is left censored). Every nonmissing 
concentration must have a nonmissing remark code. 
If there is no remark code, a placeholder such as 
“_=” or “_<” can be used.

•	 Daily discharge input data (for example, RRFargo_
Prac_DDdata, see fig. 4):

•	 There must be a column named “date,” of type char-
acter, with the date in “YYYY-MM-DD” format.

•	 There must be a column named “flow,” of type 
numeric, with daily mean streamflow, in cubic feet 
per second.

•	 Unlike the concentration data, the daily streamflow 
data must consist of complete calendar years, and 
there should be only a limited number of days with 
missing streamflow values (see the earlier “Missing 
Streamflow Data” section of this report for guide-
lines regarding missing streamflow). In this case, the 
flow data consist of a complete record for calendar 
years 1970–2017.

Preparing Data for Time-Series Analysis Using 
PrepQWdata

The function prepQWdata prepares the water-quality and 
daily streamflow data for time-series analysis. This func-
tion requires as inputs the water-quality and daily discharge 
dataframes described previously. The command for running 
the function has the following form:

	 XXXQWP <- prepQWdata(QWdata, DDdata, 
yrbeg, yrend)

where
	 QWdata	 is a water-quality input dataframe,
	 DDdata	 is a daily discharge (streamflow) input 

dataframe,
	 yrbeg	 is the beginning calendar year (integer),
	 yrend	 is the ending calendar year (integer), and
	 XXXQWP	 is an output dataframe (or dataset) that has 

been prepared for analysis.
The user can assign any name for the output, but it is 

recommended to use “QWP” as the last three characters 
to indicate that the data have been prepared for time-series 
analysis; for example, executing line 23 of the practice script 
(fig. 2) produces a dataset called RRFargoQWP. Note that a 
shorter period of record can be used, if desired, by specifying 
either a beginning year later than 1970 or ending year earlier 
than 2017, or both. The format of RRFargoQWP is shown 
in figure 5, which shows the rows corresponding to June–
August 1971. Each month consists of six ~5-day time inter-
vals. The first nonmissing concentration value for this example 
was for parameter npnN from a sample collected on June 3, 

1971 (during the first interval of the month, days 1–5). A day 
of 3 (the midpoint of the interval) is assigned to this observa-
tion. The original concentration was left censored (<0.05), 
and the concentration value for that observation (0.023) is the 
estimated value from the preliminary trend model (eq. 37). 
The streamflow, or discharge, value (column name “dis”) for 
the same time interval (324.8) is daily mean streamflow, in 
cubic feet per second, for June 1–5, 1971. There are no miss-
ing values for streamflow. The next nonmissing concentration 
value for this example was for the third time interval (days 
11–15) of July 1971 and consists of an npnN concentration of 
0.430. Although the original concentration was from July 14, 
1971, day 13 (the midpoint of the interval) is used for the 
day. Columns with the remark codes are at the end of this 
dataframe (remark codes are defined below).

Several pages of rough plots are produced by  
prepQWdata (fig. 6). These plots are shown in the default 
RStudio Plots window. Page 1 of the plots shows the flow 
anomalies (eqs. 3–5, fig. 6A). The horizonal black line in all 
three plots equals MLQ. The top plot shows log[Q] (black line) 
along with MLQ+LTFA (coral line). For this site there were 
12 days with zero flow (all during 1976). To allow logarithmic 
transformation, flow values less than 0.1 cubic foot per second 
are replaced by 0.1 when running prepQWdata. The middle 
plot shows log[Q]–LTFA (black line) along with MLQ+MTFA 
(coral line). MTFA captures seasonal flow variability remain-
ing after removing LTFA. The bottom plot shows MLQ+STFA 
(coral line), which captures short-term (day-to-day) flow vari-
ability after removing LTFA and MTFA.

Two additional pages of plots are produced for each 
water-quality parameter (fig. 6B–C). Page 2 of the plots 
shows logarithmically transformed npnN concentration versus 
decimal year and decimal season or decimal month (fig. 6B). 
Colors indicate distinct remark codes detected in the input 
data. In this case, there were three distinct remark codes: 
MPCA, sample collected and analyzed by Minnesota Pollution 
Control Agency; USGSND, sample collected by USGS and 
analyzed by the North Dakota Health Department laboratory; 
and USGSNL, sample collected by USGS and no outside 
laboratory specified (generally indicating the sample was 
analyzed by the USGS National Water-Quality Laboratory). 
Open circles indicate that the original concentration value was 
left censored and was replaced by the estimated value using 
equation 37.

Page 3 of the plots (fig. 6C) is the second page of plots 
for npnN and can be used to detect and correct potential outli-
ers and spot potential concerns related to different remark 
codes, gaps in the water-quality record, or other irregularities 
that may affect the ability to analyze trends. These plots are 
based on the preliminary trend model (eq. 35). The top plot 
shows flow-adjusted concentration (log[C]–FRVAR) along 
with the preliminary trend (MLC+TREND*, eq. 35). In this 
case the water-quality record spans four complete decades, so 
the preliminary trend consists of a quadratic spline with five 
basis functions (eq. 36). The second plot shows flow-adjusted 
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and detrended concentration (log[C]–FRVAR–TREND*, 
eq. 35). The solid horizontal line corresponds to MLC. In this 
case, there were no apparent outliers or other abnormalities.

Page 5 of the output from prepQWdata (fig. 6D) is the 
second page of plots for total phosphorus (PTot). The dashed 
lines in the bottom plot correspond to plus and minus 3.5 times 
the estimated error standard deviation (these lines were outside 
of the plot limits for npnN, fig. 6C). Points outside of these 
bounds may indicate potential outliers. In this case, like npnN, 
there were no apparent outliers. However, after about 2003, 
there seems to be a higher frequency of negative errors for the 
USGSND and USGSNL remark codes and positive errors for 
the MPCA remark code (differences related to remark codes 
are explored in more detail later in this section).

Next, run line 27 of the script file (fig. 2) to create the 
practice dataset RRHalstadQWP and examine page 5 of the 
plot output (fig. 7). In this case, there were five observations 
for PTot for this site for which the flow-adjusted and detrended 
concentrations were well outside of the dashed lines, indi-
cating potential outliers. A generic list, called regmods, is 
produced in the current workspace when running prepQWdata. 
This list contains information regarding the preliminary 
regression models, including flagged outliers. The element 
of this list corresponding to the outliers for PTot is shown 

below the plots. These observations correspond to rows 12, 
44, 45, 74, and 110 of the original water-quality dataframe 
(RRHalstad_Prac_QWdata). Another observation during 
1985 (row 217) also was determined to be an outlier. Outliers 
should be carefully examined and either removed or corrected 
in the original water-quality dataframe before completing a 
formal trend analysis. For the practice problems in this sec-
tion, run lines 30–32 of the script file (fig. 2) to replace 6 outli-
ers for PTot and 2 outliers for npnN with missing values and 
rerun prepQWdata to prepare RRHalstadQWP with outliers 
removed. After removing outliers, the results for PTot for this 
site (fig. 8) were similar to the previous results for RRFar-
goQWP (fig. 6D). Although there were no remaining outli-
ers, there tended to be a higher frequency of negative flow-
adjusted and detrended concentrations for the USGSND and 
USGSNL remark codes compared to the MPCA remark code.

Analyzing Trends Using RunQWmodel

After preparing the data using prepQWdata, the next step 
is to use maximum likelihood estimation to fit alternative trend 
models, select the best model from among the alternatives, 
and verify the model assumptions for the selected trend model. 

Figure 5.  Rows of practice dataset produced by prepQWdata, RRFargoQWP, corresponding to June–August 1971.



18    Time-Series Model, Statistical Methods, and Software Documentation for R–QWTREND

A

Log—Base-10 logarithm

LTFA—Long-term flow anomaly

MTFA—Midterm flow anomaly

STFA—Short-term flow anomaly

EXPLANATION

Figure 6.  Plots produced by prepQWdata for practice dataset, RRFargoQWP. A, page 1, flow anomalies; B, page 2, nitrate plus 
nitrite (npnN) concentration data versus decimal year and decimal month; C, page 3, nitrate plus nitrite (npnN) flow-adjusted 
and flow-adjusted and detrended concentration data versus decimal year; D, page 5, total phosphorus (PTot) flow-adjusted and 
flow-adjusted and detrended concentration data versus decimal year.
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MPCA—Sample collected and analyzed by 
Minnesota Pollution Control Agency

USGSND—Sample collected by U.S. Geological Survey 
and analyzed by North Dakota Health Department

USGSNL—Sample collected by U.S. Geological Survey 
and no outside laboratory specified

EXPLANATION

Estimated values for censored concentrations
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Minnesota Pollution Control Agency

USGSND—Sample collected by U.S. Geological Survey 
and analyzed by North Dakota Health Department

USGSNL—Sample collected by U.S. Geological Survey 
and no outside laboratory specified

Nitrate plus nitrite concentration data

Figure 6.  Plots produced by prepQWdata for practice dataset, RRFargoQWP. A, page 1, flow anomalies; B, page 2, nitrate plus 
nitrite (npnN) concentration data versus decimal year and decimal month; C, page 3, nitrate plus nitrite (npnN) flow-adjusted 
and flow-adjusted and detrended concentration data versus decimal year; D, page 5, total phosphorus (PTot) flow-adjusted and 
flow-adjusted and detrended concentration data versus decimal year.—Continued
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MPCA—Sample collected and analyzed by 
Minnesota Pollution Control Agency

USGSND—Sample collected by U.S. Geological Survey 
and analyzed by North Dakota Health Department

USGSNL—Sample collected by U.S. Geological Survey 
and no outside laboratory specified

EXPLANATION
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Figure 6.  Plots produced by prepQWdata for practice dataset, RRFargoQWP. A, page 1, flow anomalies; B, page 2, nitrate plus 
nitrite (npnN) concentration data versus decimal year and decimal month; C, page 3, nitrate plus nitrite (npnN) flow-adjusted 
and flow-adjusted and detrended concentration data versus decimal year; D, page 5, total phosphorus (PTot) flow-adjusted and 
flow-adjusted and detrended concentration data versus decimal year.—Continued
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MPCA—Sample collected and analyzed by 
Minnesota Pollution Control Agency

USGSND—Sample collected by U.S. Geological Survey 
and analyzed by North Dakota Health Department

USGSNL—Sample collected by U.S. Geological Survey 
and no outside laboratory specified

EXPLANATION

Total phosphorus concentration data

Preliminary trend (quadratic spline)

D

Mean of logarithmically transformed 
concentration

Plus and minus 3.5 times estimated 
standard deviation

Figure 6.  Plots produced by prepQWdata for practice dataset, RRFargoQWP. A, page 1, flow anomalies; B, page 2, nitrate plus 
nitrite (npnN) concentration data versus decimal year and decimal month; C, page 3, nitrate plus nitrite (npnN) flow-adjusted 
and flow-adjusted and detrended concentration data versus decimal year; D, page 5, total phosphorus (PTot) flow-adjusted and 
flow-adjusted and detrended concentration data versus decimal year.—Continued



22    Time-Series Model, Statistical Methods, and Software Documentation for R–QWTREND

MPCA—Sample collected and analyzed by 
Minnesota Pollution Control Agency

USGSND—Sample collected by U.S. Geological Survey 
and analyzed by North Dakota Health Department

USGSNL—Sample collected by U.S. Geological Survey 
and no outside laboratory specified

EXPLANATION
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standard deviation

yr—Year

mo—Month

da—Day

conc—Concentration

[Table at bottom, element from generic list (regmods) showing flagged outliers]

Figure 7.  Page 5 of plots produced by prepQWdata for practice dataset, RRHalstadQWP, showing total phosphorus (PTot) 
flow-adjusted and flow-adjusted and detrended concentration data versus decimal year.
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MPCA—Sample collected and analyzed by 
Minnesota Pollution Control Agency

USGSND—Sample collected by U.S. Geological Survey 
and analyzed by North Dakota Health Department

USGSNL—Sample collected by U.S. Geological Survey 
and no outside laboratory specified

EXPLANATION
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standard deviation

Figure 8.  Page 5 of plots produced by prepQWdata for practice dataset, RRHalstadQWP, with outliers removed, showing total 
phosphorus (PTot) flow-adjusted and flow-adjusted and detrended concentration data versus decimal year.
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The function runQWmodel is used to compute maximum like-
lihood parameter estimates and specify alternative trend mod-
els. The function is executed using the following command:

runQWmodel(XXXQWP, pname, monxx=NULL,  
        stepxx=NULL, remxx=NULL, userxx=NULL, fullout=T, 
        units=1, runname=””, modnum=3, exlev=NULL) 

where
	 XXXQWP	 is a time-series dataframe (dataset) produced 

by prepQWdata;
	 pname	 is a character variable specifying the 

parameter name for analysis;
	 monxx	 specifies piecewise monotonic trends (eq. 9);
	 stepxx	 specifies step trends based on time interval 

(eq. 10);
	 remxx	 specifies step trends based on sample 

attributes, or remark codes (eq. 11);
	 userxx	 specifies trends based on ancillary, or 

user-specified, variables (eq. 12);
	 fullout	 specifies whether to provide full output 

(fullout=T) or reduced output (fullout=F);
	 units	 specifies whether concentration is in 

milligrams per liter (units=1) or 
micrograms per liter (units=2);

	 runname	 is an optional character string to append to 
output files;

	 modnum	 specifies the PARMA model number 
(table 1); and

	 exlev	 is a vector of exceedance levels for computing 
exceedance probabilities.

The first two arguments (XXXQWP and pname) are man-
datory, and the remaining arguments are optional. Default val-
ues of NULL for the specified trend components indicate there 
are no trend variables of that type in the model. The methods 
for specifying trends is described later in this section.

Example 1—Parameter NpnN for RRFargoQWP

The command on line 35 of the script file (fig. 2) fits the 
NULL (no trend) model for parameter npnN for the RRFar-
goQWP dataset created previously, with reduced output 
(fullout=F). When running this command, a message (“fitting 
the trend model …”) should appear in the commands win-
dow indicating that the maximum likelihood estimates are 
being computed. Depending on the speed of your computer, 
it typically takes a few seconds to no more than 1 minute to 
complete the estimation; at which time the message “Program 
terminated normally” will appear in the command window. 
For reduced output, a single page of plots will be produced in 
the RStudio Plots window (fig. 9). The plots are similar to the 
output from prepQWdata (see fig. 6C). The top plot in figure 9 
shows the flow-adjusted data along with the fitted trend (in 
this case, a flat line for the null model). The second plot shows 
the flow-adjusted, detrended, and PARMA filtered data (after 
removing serial correlation) along with a quadratic spline 

to help spot possible lack of fit of the specified trend model. 
The second plot in figure 9 is similar to figure 6C, except that 
the effects of serial correlation have been removed in fig-
ure 9, whereas for the preliminary model (fig. 6C), there was 
assumed to be no serial correlation.

In general, the no-trend (null) model usually is fitted first 
and the results are examined before specifying more compli-
cated trend models. The quadratic spline fitted to the flow-
adjusted, detrended, and PARMA filtered observations for 
the null model (fig. 9) can be used to help postulate potential 
piecewise monotonic trends for the data. For this example, two 
trend models were postulated, one with a single monotonic 
trend from 1975 to 2015 (see line 36 of the script, fig. 2) and 
the other with two piecewise monotonic trends from 1985 to 
2000 and from 2000 to 2015 (see line 37 of the script, fig. 2). 
Monotonic trends are specified using a character vector for the 
monxx argument. For example, the model with two piece-
wise monotonic trends (line 37) uses monxx=c(“1985x2000”, 
“2000x2015”) to specify the two trends. There can be no 
spaces in the character names of the trends and the single 
character “x” is used to separate the beginning and ending 
times of each trend. Note that the beginning and ending times 
are in decimal years; for example, the first trend starts at the 
beginning of 1985 (decimal year 1985.0) and ends at the 
beginning of 2000 (decimal year 2000.0). Character name 
“1985.5x2001”, for example, would specify a trend starting in 
the middle of 1985 (July 1, 1985) and ending at the beginning 
of 2001 (January 1, 2001). Run lines 36 and 37 of the script 
and examine the graphical output results (figs. 10 and 11A).

Next, examine the maximum likelihood estimation results 
for the three fitted trend models. These results are in the text 
file called RRFargoQWPnpnN.txt which is in the current 
working directory. The elements of each table are defined as 
follows (see text file RRFargoQWPnpnN.txt, fig. 11B):

•	 −2lnLik is minus two times the natural logarithm of the 
maximized likelihood function (the minimum value 
of eq. 15).

•	 AIC is a penalized likelihood value (not used for 
this report).

•	 ecode is the error code from the nonlinear optimiza-
tion program.

•	 Values ecode=1 (absolute convergence) or ecode=2 
(iterates within tolerance) signify that the optimiza-
tion was successful.

•	 Values ecode=3 (function too nonlinear to obtain 
convergence) or ecode=4 (iteration limit exceeded) 
indicate that the results are not reliable. If ecode=3 
or ecode=4, the PARMA model number (modnum) 
should be reduced from the default (modnum=3) 
to a lower value (modnum=2 or modnum=1) until 
convergence is achieved. If convergence can-
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MPCA—Sample collected and analyzed by 
Minnesota Pollution Control Agency

USGSND—Sample collected by U.S. Geological Survey 
and analyzed by North Dakota Health Department

USGSNL—Sample collected by U.S. Geological Survey 
and no outside laboratory specified

EXPLANATION
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moving average
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Minnesota Pollution Control Agency

USGSND—Sample collected by U.S. Geological Survey 
and analyzed by North Dakota Health Department

USGSNL—Sample collected by U.S. Geological Survey 
and no outside laboratory specified

Nitrate plus nitrite concentration data

Figure 9.  Reduced graphical output (fullout=F) from runQWmodel for nitrate plus nitrite (npnN) concentration for RRFargoQWP dataset 
for the null (no trend) model.
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MPCA—Sample collected and analyzed by 
Minnesota Pollution Control Agency

USGSND—Sample collected by U.S. Geological Survey 
and analyzed by North Dakota Health Department

USGSNL—Sample collected by U.S. Geological Survey 
and no outside laboratory specified

EXPLANATION

Estimated values for censored concentrationsPARMA—Periodic autoregressive 
moving average

-mon-—Monotonic trend
MPCA—Sample collected and analyzed by 

Minnesota Pollution Control Agency

USGSND—Sample collected by U.S. Geological Survey 
and analyzed by North Dakota Health Department

USGSNL—Sample collected by U.S. Geological Survey 
and no outside laboratory specified

Nitrate plus nitrite concentration data

Figure 10.  Reduced graphical output (fullout=F) from runQWmodel for nitrate plus nitrite (npnN) concentration for RRFargoQWP 
dataset for the model with a single monotonic trend.
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Figure 11.  Reduced output (fullout=F) from runQWmodel for nitrate plus nitrite (npnN) concentration for RRFargoQWP dataset 
for the model with two piecewise monotonic trends. A, graphical output; B, maximum likelihood estimation results from text file 
RRFargoQWPnpnN.txt.
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−2lnLik—Minus two times the natural logarithm of the maximized likelihood function

AIC—Penalized likelihood value (not used)

ecode—Error code from nonlinear optimization program

modnum—Model number (table1)

CV(log)—Estimated coefficient value

SE(log)—Approximate standard error of estimated coefficient

Pvalue—Approximate probability value of coefficient

CV(pct)—Estimated coefficient value expressed as a percentage

int—Intercept

xcos1—Cosine with period 1 year 

xsin1—Sine with period 1 year  

xcos2—Cosine with period 6 months 

xsin2—Sine with period 6 months 

falt—Long-term flow anomaly 

famt—Midterm flow anomaly 

famtsq—Square of midterm flow anomaly 

fast—Short-term flow anomaly 

fastxmt—Product of short-term and midterm flow anomalies 

m1975x2015—Monotonic trend from 1975 to 2015 

m1985x2000—Monotonic trend from 1985 to 2000 

m2000x2015—Monotonic trend from 2000 to 2015

EXPLANATION

B

[Top, null model; bottom left, model with a single monotonic trend; bottom right, model with two piecewise monotonic trends]

Figure 11.  Reduced output (fullout=F) from runQWmodel for nitrate plus nitrite (npnN) concentration for RRFargoQWP dataset 
for the model with two piecewise monotonic trends. A, graphical output; B, maximum likelihood estimation results from text file 
RRFargoQWPnpnN.txt.—Continued
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not be achieved with a lower model number, the 
data are not sufficient for trend analysis using 
R–QWTREND.

•	 Column labeled “variable” specifies the variable cor-
responding to the intercept (int or MLC, eq. 1), the 
coefficients of the model for FRVAR (eq. 6, xcos1 or 
cos(2πt), xsin1 or sin(2πt), xcos2 or cos(4πt), xsin2 
or sin(4πt), falt or LTFA, famt or MTFA, famtsq or 
MTFA2, fast or STFA, and fastxmt or STFA times 
MTFA), and coefficients for the specified trend model 
(for the NULL model, there are no trend coefficients).

•	 Column labeled “CV(log)” is the estimated coefficient 
value from the maximum likelihood estimation in 
base-10 logarithmic (log) units.

•	 SE(log) is the approximate standard error of the esti-
mated coefficient (eq. 19).

•	 Pvalue is the approximate individual p-value for the 
coefficient (eq. 20).

•	 CV(pct) is the estimated coefficient value, expressed 
as a percentage. For the flow anomaly terms (X= falt, 
famt, famtsq, fast, or fastxmt), CV(pct)= 
100(10SD(X)CV(log)–1), where SD(X) is the standard 
deviation of X. For the sine and cosine variables and 
all trend variables, CV(pct)=100(10CV(log)–1). In this 
case, all of the variables except famtsq were significant 
(Pvalue<0.05) and all of the coefficient values for the 
flow anomalies were positive, indicating that high flow 
anomalies tend to produce high npnN concentrations 
for all time scales (annual, seasonal, and daily). For 
example, for fast and the null model, CV(pct)=76.35, 
which means that concentrations tend to be about 
76 percent higher when fast is high (equal to plus one 
SD[fast]) compared to concentrations when fast is low 
(equal to negative one SD[fast]).

For the model with a single monotonic trend (figs. 10, 
11B, bottom left table), there was an estimated uptrend of 
about 35 percent from 1975 to 2015 (m1975x2015 in vari-
able column), with an approximate p-value using the normal 
approximation (eq. 19) of about 0.152. The value of −2lnLik 
for this model was −480.5 with ecode=2 compared to −478.35 
with ecode=1 for the null model. Note that an ecode of 3 or 4 
would indicate that the model is probably too complex to be 
determined from the observed data and should not be con-
sidered as a good alternative. In this case, both models are 
acceptable alternatives. The GLR test statistic for comparing 
the null and single trend models (eq. 16) was (−478.35)−
(−480.5)=2.15, and the overall p-value using the GLR test 
statistic (eq. 17) was calculated to be

P=1–pchisq(2.15, df=1)=0.142

where
	 pchisq()	 is the R function for computing probabilities 

for the chi-square distribution.
Note that this p-value is similar to the approximate p-value for 
the trend coefficient (0.152, fig. 11B) because there is a single 
trend coefficient.

For the second trend model (fig. 11A–B), there was an 
estimated uptrend of about 52 percent from 1985 to 2000 
(approximate p-value 0.039) followed by an estimated 
downtrend of about 19 percent from 2000 to 2015 (approxi-
mate p-value 0.295). The value of −2lnLik was −483.33 
compared to –478.35 for the null model, for a difference of 
−478.35–(–483.34)=4.98 and the overall p-value of the two-
trend model using the GLR test statistic was calculated to be 
P=1−pchisq(4.98, df=2)=0.083. Because the overall p-value 
of the two-trend model (0.083) was smaller compared to the 
one-trend model (0.142), the two-trend model appears to be 
a viable alternative to the one-trend model. To determine if 
the two-trend model is preferred, the GLR test for comparing 
the two models (eq. 22) can be used. The GLR test statistic 
is G1~2=(–480.5)–(–483.33)=2.83 and the p-value is P=1−
pchisq(2.83, df=1)=0.092.

Based on the GLR statistics, the two-trend model is better 
(p<0.1) than the one-trend model. Furthermore, the flow-
adjusted, detrended, and PARMA filtered observations for 
the two-trend model (fig. 11A, bottom plot) seem not to have 
any obvious trends remaining. Therefore, in this example the 
two-trend model seems to be a better alternative than the one-
trend model.

After selecting the “best,” or at least a “good,” trend 
model, the full diagnostic output should be examined to verify 
the model assumptions before using the “value-added” output 
from the model (such as estimated annual flow-weighted aver-
age concentration or annual flux). The full diagnostic output 
can be obtained by using the default (fullout=T) option (see 
line 40 of the script). After running line 40, 10 pages of plots 
are produced in a graphical output file (RRFargoQWPnpnN.
pdf) in the current working directory. The first six plots show 
detailed model diagnostic information, and the remaining plots 
show the “value-added” model output (see fig. 12A–I):

•	 Page 1: Observed data along with flow-related variabil-
ity (eq. 6).

•	 Page 2: Flow-adjusted data (eq. 7) along with the fitted 
trend (MLC+TREND).

•	 Page 3: Flow-adjusted and PARMA filtered data 
(MLC+TREND+R, where R is defined in eq. 13) along 
with the fitted trend.

•	 Page 4: Flow-adjusted, detrended, and PARMA filtered 
data (MLC+R) along with a quadratic spline to indicate 
potential residual trends.
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MPCA—Sample collected and analyzed by 
Minnesota Pollution Control Agency

USGSND—Sample collected by U.S. Geological Survey 
and analyzed by North Dakota Health Department

USGSNL—Sample collected by U.S. Geological Survey 
and no outside laboratory specified

EXPLANATION
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USGSND—Sample collected by U.S. Geological Survey 
and analyzed by North Dakota Health Department

USGSNL—Sample collected by U.S. Geological Survey 
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Figure 12.  Full graphical output from runQWmodel for nitrate plus nitrite (npnN) concentration for RRFargoQWP dataset for the model 
with two piecewise monotonic trends. A, page 1; B, page 2; C, page 3; D, page 4; E, page 5; F, page 6; G, page 7; H, page 8; I, page 9;  
J, page 10.
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MPCA—Sample collected and analyzed by 
Minnesota Pollution Control Agency

USGSND—Sample collected by U.S. Geological Survey 
and analyzed by North Dakota Health Department

USGSNL—Sample collected by U.S. Geological Survey 
and no outside laboratory specified

EXPLANATION

Estimated values for censored concentrations

MPCA—Sample collected and analyzed by 
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USGSND—Sample collected by U.S. Geological Survey 
and analyzed by North Dakota Health Department

USGSNL—Sample collected by U.S. Geological Survey 
and no outside laboratory specified
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Figure 12.  Full graphical output from runQWmodel for nitrate plus nitrite (npnN) concentration for RRFargoQWP dataset for the model 
with two piecewise monotonic trends. A, page 1; B, page 2; C, page 3; D, page 4; E, page 5; F, page 6; G, page 7; H, page 8; I, page 9;  
J, page 10.—Continued
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MPCA—Sample collected and analyzed by 
Minnesota Pollution Control Agency

USGSND—Sample collected by U.S. Geological Survey 
and analyzed by North Dakota Health Department

USGSNL—Sample collected by U.S. Geological Survey 
and no outside laboratory specified

EXPLANATION

Estimated values for censored concentrationsPARMA—Periodic autoregressive 
moving average

MPCA—Sample collected and analyzed by 
Minnesota Pollution Control Agency

USGSND—Sample collected by U.S. Geological Survey 
and analyzed by North Dakota Health Department

USGSNL—Sample collected by U.S. Geological Survey 
and no outside laboratory specified
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Figure 12.  Full graphical output from runQWmodel for nitrate plus nitrite (npnN) concentration for RRFargoQWP dataset for the model 
with two piecewise monotonic trends. A, page 1; B, page 2; C, page 3; D, page 4; E, page 5; F, page 6; G, page 7; H, page 8; I, page 9;  
J, page 10.—Continued
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MPCA—Sample collected and analyzed by 
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USGSND—Sample collected by U.S. Geological Survey 
and analyzed by North Dakota Health Department

USGSNL—Sample collected by U.S. Geological Survey 
and no outside laboratory specified

EXPLANATION
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moving average
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USGSND—Sample collected by U.S. Geological Survey 
and analyzed by North Dakota Health Department

USGSNL—Sample collected by U.S. Geological Survey 
and no outside laboratory specified
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Figure 12.  Full graphical output from runQWmodel for nitrate plus nitrite (npnN) concentration for RRFargoQWP dataset for the model 
with two piecewise monotonic trends. A, page 1; B, page 2; C, page 3; D, page 4; E, page 5; F, page 6; G, page 7; H, page 8; I, page 9;  
J, page 10.—Continued
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MPCA—Sample collected and analyzed by 
Minnesota Pollution Control Agency

USGSND—Sample collected by U.S. Geological Survey 
and analyzed by North Dakota Health Department

USGSNL—Sample collected by U.S. Geological Survey 
and no outside laboratory specified

EXPLANATION
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moving average
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USGSND—Sample collected by U.S. Geological Survey 
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Figure 12.  Full graphical output from runQWmodel for nitrate plus nitrite (npnN) concentration for RRFargoQWP dataset for the model 
with two piecewise monotonic trends. A, page 1; B, page 2; C, page 3; D, page 4; E, page 5; F, page 6; G, page 7; H, page 8; I, page 9;  
J, page 10.—Continued
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MPCA—Sample collected and analyzed by 
Minnesota Pollution Control Agency

USGSND—Sample collected by U.S. Geological Survey 
and analyzed by North Dakota Health Department

USGSNL—Sample collected by U.S. Geological Survey 
and no outside laboratory specified

EXPLANATION

Estimated values for censored concentrationsPARMA—Periodic autoregressive 
moving average
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USGSNL—Sample collected by U.S. Geological Survey 
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Figure 12.  Full graphical output from runQWmodel for nitrate plus nitrite (npnN) concentration for RRFargoQWP dataset for the model 
with two piecewise monotonic trends. A, page 1; B, page 2; C, page 3; D, page 4; E, page 5; F, page 6; G, page 7; H, page 8; I, page 9;  
J, page 10.—Continued
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G

EXPLANATION

PARMA—Periodic autoregressive moving average

Figure 12.  Full graphical output from runQWmodel for nitrate plus nitrite (npnN) concentration for RRFargoQWP dataset for the model 
with two piecewise monotonic trends. A, page 1; B, page 2; C, page 3; D, page 4; E, page 5; F, page 6; G, page 7; H, page 8; I, page 9;  
J, page 10.—Continued
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H

Figure 12.  Full graphical output from runQWmodel for nitrate plus nitrite (npnN) concentration for RRFargoQWP dataset for the model 
with two piecewise monotonic trends. A, page 1; B, page 2; C, page 3; D, page 4; E, page 5; F, page 6; G, page 7; H, page 8; I, page 9;  
J, page 10.—Continued

I

Figure 12.  Full graphical output from runQWmodel for nitrate plus nitrite (npnN) concentration for RRFargoQWP dataset for the model 
with two piecewise monotonic trends. A, page 1; B, page 2; C, page 3; D, page 4; E, page 5; F, page 6; G, page 7; H, page 8; I, page 9;  
J, page 10.—Continued
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•	 Page 5: Standardized PARMA model residuals 
(eq. 14) versus decimal year. The residuals should be 
approximately independent, standard normal random 
variables. Obvious nonsymmetrical (skewed) residu-
als, outliers (values larger than about 3.5 in absolute 
value), or nonrandom structure (systematic changes 
in central tendency or variability, excessive clumping, 
etc.) may indicate that the model results are unreliable.

•	 Page 6: Standardized PARMA model residuals (eq. 14) 
versus decimal season. These should be examined in a 
similar manner to the previous plot (page 5) to ensure 
that there is no obvious seasonal structure remaining in 
the residuals.

•	 Page 7: Same as page 3, but without the error codes 
and censoring information and with improved y-axis 
tick marks and labels.

•	 Page 8: Estimated annual geometric mean concentra-
tion along with the fitted trend (eq. 24). The trend is 
referred to as a “flow-averaged” trend because it is an 
estimate of the geometric mean concentration under 
the hypothetical assumption that flow-related variabil-
ity was the same year after year.

•	 Page 9: Estimated annual flow-weighted average con-
centration (eq. 25) along with the fitted flow-averaged 
trend (eq. 27). Note that, for this example, the annual 
flow-weighted average concentrations are much 
higher than the annual geometric mean concentrations 
(page 8) because npnN concentrations tend to be much 
higher during high-flow conditions compared to low-
flow conditions.

•	 Page 10: Estimated annual flux (eq. 28) along with 
the fitted flow-averaged trend (eq. 29). Note the high 
degree of flow-related variability in the estimated 
annual flux as indicated by large deviations of the 
annual values from the fitted trend. Flux tended to be 
much lower compared to the flow-averaged trend dur-
ing dry years such as 1977 and 1981 and much higher 
during wet years such as 1997 and 2009.

Example 2—Parameter PTot for RRFargoQWP
The second example shows how to combine monotonic 

trends with potential step trends related to differences in sam-
ple collection or laboratory analysis methods. Run lines 43–45 
of the script file (fig. 2) to obtain the full output (default argu-
ment, fullout=T) for the null model and two potential trend 
models for PTot (total phosphorus) for the RRFargoQWP 

J

Figure 12.  Full graphical output from runQWmodel for nitrate plus nitrite (npnN) concentration for RRFargoQWP dataset for the model 
with two piecewise monotonic trends. A, page 1; B, page 2; C, page 3; D, page 4; E, page 5; F, page 6; G, page 7; H, page 8; I, page 9;  
J, page 10.—Continued
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−2lnLik—Minus two times the natural logarithm of the maximized likelihood function

AIC—Penalized likelihood value (not used)

ecode—Error code from nonlinear optimization program

modnum—Model number (table1)

CV(log)—Estimated coefficient value

SE(log)—Approximate standard error of estimated coefficient

Pvalue—Approximate probability value of coefficient

CV(pct)—Estimated coefficient value expressed as a percentage

int—Intercept

xcos1—Cosine with period 1 year 

xsin1—Sine with period 1 year  

xcos2—Cosine with period 6 months 

xsin2—Sine with period 6 months 

falt—Long-term flow anomaly 

famt—Midterm flow anomaly 

famtsq—Square of midterm flow anomaly 

fast—Short-term flow anomaly 

fastxmt—Product of short-term and midterm flow anomalies

rMPCA—Step trend for remark code MPCA 

m1975x1985—Monotonic trend from 1975 to 1985

m1985x2000—Monotonic trend from 1985 to 2000 

m2000x2015—Monotonic trend from 2000 to 2015

EXPLANATION

[Top, null model; bottom left, model M1; bottom right, model M2;
MPCA, sample collected and analyzed by Minnesota Pollution Control Agency]

Figure 13.  Parameter estimation results from runQWmodel for total phosphorus concentration for RRFargoQWP dataset for the null 
model and two alternative trend models.
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dataset, and examine the parameter estimation results from the 
files RRFargoQWPPTot_null.txt, RRFargoQWPPTot_M1.txt, 
and RRFargoQWPPTot_M2.txt (see fig. 13). The optional run-
name argument is used in these commands to name the output 
files. If this command was not used, the graphical output file 
from each successive model run would have the same name 
(RRFargoQWPPTot.pdf) and would be overwritten each time 
the new output is produced. Model M2 (−2lnLik=−995.67), 
which includes the piecewise monotonic trends and a step 
trend for remark code “MPCA,” is a much better alternative 
than model M1 (−2lnLik=−984.31), which includes just the 
piecewise monotonic trends. The p-value for the GLR test for 
comparing model M2 versus M1 (G=−984.31+995.67=11.36, 
P=1−pchisq(11.36, df=1)=0.00075) is small (<0.01), indicat-
ing that the more complex model (M2) is the better alterna-
tive. The fitted trend for model M1 (fig. 14) consisted of a 
highly significant downtrend (−37 percent, p-value=0.00025) 
from 1975 to 1985, followed by a mildly significant uptrend 

(+26 percent, p-value=0.036) from 1985 to 2000 and another 
highly significant downtrend (−31 percent, p-value=0.002) 
from 2000 to 2015. For model M2 (fig. 15), there was a highly 
significant step trend for remark code MPCA (+23 percent, 
p-value=0.0038), indicating that concentrations with that 
remark code tend to be about 23 percent higher, on average, 
compared to the other two remark codes. Whenever one or 
more step trends are included in the model, there is an extra 
page of graphical output showing flow-adjusted concentrations 
with step trends included (top plot in fig. 15) and with step 
trends removed (bottom plot). Step trends based on remark 
codes are assumed to apply to the observations, not the true 
water-quality conditions, and thus need to be removed before 
analyzing true trends.

With multiple remark codes, there may be several alterna-
tive representations for the step trends that cannot readily be 
distinguished from one another based on the observations 
alone and, thus, may require expert judgement or further 

MPCA—Sample collected and analyzed by 
Minnesota Pollution Control Agency

USGSND—Sample collected by U.S. Geological Survey 
and analyzed by North Dakota Health Department

USGSNL—Sample collected by U.S. Geological Survey 
and no outside laboratory specified

EXPLANATION

Total phosphorus concentration data

Figure 14.  Flow-adjusted total phosphorus (PTot) concentration for RRFargoQWP dataset for model with piecewise monotonic trend 
(model M1).
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MPCA—Sample collected and analyzed by 
Minnesota Pollution Control Agency

USGSND—Sample collected by U.S. Geological Survey 
and analyzed by North Dakota Health Department

USGSNL—Sample collected by U.S. Geological Survey 
and no outside laboratory specified

EXPLANATION

Total phosphorus concentration data

Figure 15.  Flow-adjusted total phosphorus (PTot) concentration for RRFargoQWP dataset for model with piecewise monotonic trend 
and step trend for remark code MPCA (model M2).
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investigation before accepting the model. In this example, the 
“true” concentrations were assumed to be represented by the 
USGSNL and USGSND remark codes and concentrations with 
remark code “MPCA” were adjusted down by 23 percent to 
be consistent with the other observations. Another essentially 
equivalent alternative would be to assume observations with 
remark code MPCA represent “true” concentrations and adjust 
concentrations with the other remark codes up to be consistent 
with the MPCA data. This alternative would be completed 
by specifying remxx=c(“USGSND,” “USGSNL”). Deciding 
which alternative is best may require more investigation into 
sample collection and preservation methods and laboratory 
analysis methods used by the various agencies.

Exceedance probabilities for this example can be exam-
ined by running line 48 of the script file (fig. 2), which fits 
the same model used previously (M2) but with three speci-
fied exceedance levels of 0.1, 0.2, and 0.3 milligram per liter 
(mg/L). Exceedance levels are specified using a numeric vec-
tor for the exlev argument, in this case, exlev=c(0.1,0.2,0.3). 
After running line 48, examine the graphical output file 
(RRFargoQWPPTot_ep.pdf) and note the extra page of output 
(fig. 16) showing the flow-averaged exceedance probabili-
ties (eq. 32) and expected annual flow-averaged exceedance 
frequencies (eq. 33).

Example 3—Parameter PTot for RRHalstadQWP

Example 3 is used to reinforce some of the concepts 
illustrated in the previous examples. In addition, generic 
dataframes with detailed numerical output are described and 
the methodology for including user-defined ancillary trend 
variables is illustrated.

Run lines 51 and 52 of the script (fig. 2) to fit the same 
trend models used in the previous example for this dataset 
and examine the parameter estimation results from the text 
files RRHalstadQWPPTot_M1.txt and RRHalstadQWPPTot_
M2.txt (fig. 17). Similar to the previous example, there was a 
highly significant step trend (p-value<0.001) for remark code 
MPCA, with those observations about 45-percent higher, on 
average, compared to the other remark codes. A comparison 
of the piecewise monotonic trends with and without the step 
trend (fig. 18) indicates substantial differences in the two fitted 
trends. In particular, with the step trend included, the fitted 
trend line was shifted down overall and the monotonic trends 
were smaller and less significant compared to the model with-
out the step trend. Compared with example 2 (see fig. 15), for 
this site there was an earlier time interval from 1978 through 
1995 during which Minnesota Pollution Control Agency and 
USGS data were collected, which resulted in an even larger 
and more significant step trend for this site. With no step trend, 
the standardized PARMA model residuals for this site (fig. 19, 
top plot) clearly indicated two distinct populations of residu-
als, especially during the earlier period, with a much higher 

Figure 16.  Flow-averaged exceedance probabilities and expected annual exceedance frequencies for total phosphorus (PTot) 
concentration for RRFargoQWP dataset for model M2.
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proportion of negative residuals for remark code USGSNL 
and positive residuals for remark code MPCA. With the step 
trend included (fig. 19, bottom plot), the residual are much 
more homogeneous. In this case, further examination of the 
data for this site indicated that the step trend was likely related 
to a difference between the water-quality sampling locations 
for the Minnesota Pollution Control Agency data versus the 
USGS data.

In addition to the graphical output and parameter esti-
mation files produced by runQWmodel, several generic 
dataframes are produced with detailed numerical information 
that can be used for custom applications. These dataframes are 
named QWMODOUT5D (5-day model output), QWMOD-
OUTANN (annual model output), QWFLUXOUT5D (5-day 
flux output), and QWEXPROBOUT5D (5-day exceedance 

probabilities, produced only if argument exlev is specified). 
These are overwritten each time a new model run is com-
pleted, so the user needs to rename or save the dataframes if 
they are needed for custom applications. For the most recent 
run completed (line 52, fig. 2), the first few lines of these 
dataframes are shown in figures 20A–D.

The generic dataframe QWMODOUT5D (fig. 20A) 
contains the input data used to fit the model (in this case, these 
data are from RRHalstadQWP) along with model output for 
each 5-day time step. Columns include the flow-related vari-
ability (frvar), flow-adjusted concentration data (fadat), con-
centration trend (tnd), flow-adjusted concentration data with 
step trends removed (fadat2, same as fadat if there are no step 
trends), concentration trend with step trends removed (tnd2, 
same as tnd if there are no step trends), and the standardized 

−2lnLik—Minus two times the natural logarithm of the maximized likelihood function

AIC—Penalized likelihood value (not used)

ecode—Error code from nonlinear optimization program

modnum—Model number (table 1)

CV(log)—Estimated coefficient value

SE(log)—Approximate standard error of estimated coefficient

Pvalue—Approximate probability value of coefficient

CV(pct)—Estimated coefficient value expressed as a percentage

int—Intercept

xcos1—Cosine with period 1 year 

xsin1—Sine with period 1 year  

xcos2—Cosine with period 6 months 

xsin2—Sine with period 6 months 

falt—Long-term flow anomaly 

famt—Midterm flow anomaly 

famtsq—Square of midterm flow anomaly 

fast—Short-term flow anomaly 

fastxmt—Product of short-term and midterm flow anomalies 

rMPCA—Step trend for remark code MPCA

m1975x1985—Monotonic trend from 1975 to 1985 

m1985x2000—Monotonic trend from 1985 to 2000 

m2000x2015—Monotonic trend from 2000 to 2015

EXPLANATION

[MPCA, sample collected and analyzed by Minnesota Pollution Control Agency]

Figure 17.  Parameter estimation results for total phosphorus concentration for RRHalstadQWP dataset for piecewise monotonic trend 
model with no step trends (left) and with step trend for remark code MPCA (right).
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MPCA—Sample collected and analyzed by 
Minnesota Pollution Control Agency

USGSND—Sample collected by U.S. Geological Survey 
and analyzed by North Dakota Health Department

USGSNL—Sample collected by U.S. Geological Survey 
and no outside laboratory specified

EXPLANATION

Total phosphorus concentration data

Figure 18.  Flow-adjusted total phosphorus (PTot) concentration for RRHalstadQWP dataset for piecewise monotonic trend model with 
no step trends (model M1, top) and with step trend for remark code MPCA (model M2, bottom).
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MPCA—Sample collected and analyzed by 
Minnesota Pollution Control Agency

USGSND—Sample collected by U.S. Geological Survey 
and analyzed by North Dakota Health Department

USGSNL—Sample collected by U.S. Geological Survey 
and no outside laboratory specified

EXPLANATION

Total phosphorus concentration dataPARMA—Periodic autoregressive 
moving average

Figure 19.  Standardized periodic autoregressive moving average (PARMA) model residuals for total phosphorus (PTot) concentration 
for RRHalstadQWP dataset for piecewise monotonic trend model with no step trends (model M1, top) and with step trend for remark 
code MPCA (model M2, bottom).
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A

EXPLANATION

yr—Calendar year

mo—Month

da—Day

flow—Streamflow, in cubic feet per second

P_PTot—Concentration data for parameter PTot

R_PTot—Remark code for parameter PTot

dyr—Decimal year for midpoint of 5-day time interval

logc—Logarithmically transformed concentration
(base-10 logarithm)

frvar—Flow-related variability

fadat—Flow-adjusted concentration data

tnd—Concentration trend

fadat2—Flow-adjusted concentration data with 
step trends removed

tnd2—Trend with step trends removed

fapfdat—Flow-adjusted and PARMA filtered 
concentration data

spmres—Standardized PARMA model residual

MPCA—Sample collected by Minnesota Pollution
Control Agency

NA—Missing value

[PARMA, periodic autoregressive moving average]

Figure 20.  Generic numerical model output for total phosphorus (PTot) concentration for RRHalstadQWP dataset for model M2.  
A, model output for 5-day time step, QWMODOUT5D; B, model output for annual time step, QWMODOUTANN; C, flux estimates for  
5-day time step, QWFLUXOUT5D; D, exceedance probabilities for 5-day time step, QWEXPROBOUT5D.

B

EXPLANATION

dyr—Decimal year for midpoint of calendar year

agmc—Estimated annual geometric mean concentration,
in milligrams per liter

tagmc—Trend in agmc

frvP10—10th percentile of flow-related variability

frvP90—90th percentile of flow-related variability

amflow—Annual mean streamflow, in cubic feet per second

afwac—Annual flow-weighted average concentration,
in milligrams per liter

tafwac—Trend in afwac

aflux—Annual flux, in metric tons (1,000 kilograms) per day

taflux—Trend in annual flux

Figure 20.  Generic numerical model output for total phosphorus (PTot) concentration for RRHalstadQWP dataset for model M2.  
A, model output for 5-day time step, QWMODOUT5D; B, model output for annual time step, QWMODOUTANN; C, flux estimates for  
5-day time step, QWFLUXOUT5D; D, exceedance probabilities for 5-day time step, QWEXPROBOUT5D.—Continued
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C

EXPLANATION

dyr5d—Decimal year for midpoint of 5-day time interval

flow5d—Streamflow, in cubic feet per second

flux5d—Flux, in metric tons (1,000 kilograms)

Figure 20.  Generic numerical model output for total phosphorus (PTot) concentration for RRHalstadQWP dataset for model M2.  
A, model output for 5-day time step, QWMODOUT5D; B, model output for annual time step, QWMODOUTANN; C, flux estimates for 
5-day time step, QWFLUXOUT5D; D, exceedance probabilities for 5-day time step, QWEXPROBOUT5D.—Continued

D

[Trailing integers (1, 2, 3) for column names designate three different specified exceedance levels]

EXPLANATION

dyrout—Decimal year

exlev—Exceedance level, in milligrams per liter

exprfav—Flow-averaged exceedance probability

exprann—Flow-averaged annual exceedance frequency, 
as expected fraction of time during dyrout−0.5 to 
dyrout+0.5 with concentration above the exceedance
level

Figure 20.  Generic numerical model output for total phosphorus (PTot) concentration for RRHalstadQWP dataset for model M2.  
A, model output for 5-day time step, QWMODOUT5D; B, model output for annual time step, QWMODOUTANN; C, flux estimates for 
5-day time step, QWFLUXOUT5D; D, exceedance probabilities for 5-day time step, QWEXPROBOUT5D.—Continued
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PARMA model residuals (spmres). For example, the bottom 
plot in figure 18 can be reproduced by plotting the decimal 
year versus fadat2 (points) and the decimal year versus tnd2 
(line) and the bottom plot in figure 19 can be reproduced by 
plotting the decimal year versus spmres.

The dataframe QWMODOUTANN (fig. 20B) contains 
annual model output used for producing plots such as those 
shown in figure 12H–J. Columns include the estimated annual 
geometric mean concentration (agmc, the points in fig. 12H) 
and associated trend (tagmc, the line in fig. 12H), the esti-
mated annual flow-weighted average concentration (afwac, 
the points in fig. 12I) and associated trend (tafwac, the line 
in fig. 12I), and the estimated annual flux (aflux, the points in 
fig. 12J) and associated trend (taflux, the line in fig. 12J).

The dataframe QWFLUXOUT5D (fig. 20C) contains flux 
estimates for each 5-day time step and can be used for custom 
applications that require more detained flux estimates than 
the annual values provided in QWMODOUTANN. Variables 
include streamflow (flow5d, in cubic feet per second) and 
estimated flux (flux5d, in metric tons).

The dataframe QWEXPROBOUT5D (fig. 20D) contains 
information on exceedance probabilities used to produce plots 
such as figure 16. Variables include, for each specified exceed-
ance level, the flow-averaged exceedance probability (exprfav, 
used to produce the thin lines in fig. 16) and the flow-averaged 
annual exceedance frequency (exprann, used to produce the 
heavy lines in fig. 16, where the annual values are plotted for 
the midpoint of each decimal year).

The next part of this example shows how to include user-
specified trend variables using the optional argument userxx in 
the runQWmodel() function:

userxx=list(nu, ancxx, vnms)

where
	 nu	 is the number of user-specified trends,
	 ancxx	 is a dataframe with a row dimension identical 

to the input dataframe (XXXQWP) and 
one or more columns with user-specified 
ancillary trend variables, and

	 vnms	 is a character vector of length nu specifying 
the column names of the trend variables to 
select from ancxx.

The columns of ancxx corresponding to ancillary trend 
variables must be numeric and have no missing values, and 
the dates of the rows must correspond to the “date” column 
of XXXQWP.

Run lines 55–56 of the script file (fig. 2) to create a 
dataframe called ancxx with 8 columns, where the first column 
is the decimal year and the remaining 7 columns are basis 
functions for a cubic spline with the specified knots. Then, run 
line 57 to fit a trend model with user-specified trend variables 
consisting of the seven basis functions and step trend for 
remark code MPCA (model M3). The graphical output for 
model M3 (see RRHalstadQWPPTot_M3.pdf, fig. 21) was 
similar to the output for model M2 (fig. 18, bottom plot) and 
the value of −2lnLik for model M3 (−497.56, see RRHal-
stadWQWPPTot_M3.txt) was less than the value for M2 
(−495.94). However, using the GLR principal, the p-value 
for judging if the more complicated model (M3) is better 
than the less complicated model (M2) is P=1−pchisq(1.62, 
df=4)=0.805. The large p-value indicates that the less compli-
cated model (M2) is preferred over M3.

Occasionally, when runQWmodel() is computing the 
maximum likelihood parameter estimates, a runtime error can 
occur. The most likely cause for the error is a misspecified 
trend model; for example, in line 59 of the script file (fig. 2), 
there are 3 monotonic trends specified, but the first two are 
identical. When running this command, an error window will 
appear (fig. 22). When this happens, simply close the error 
window, correct the trend model, and continue. On rare occa-
sions, a similar error window may appear even if the trend 
model is not misspecified. This usually means that either the 
trend model, PARMA model, or both are too complicated to 
allow the maximum likelihood estimates to be computed. If 
the error cannot be avoided by either simplifying the trend 
model or lowering the PARMA model number (for example, 
trying modnum=2 or modnum=1 rather than the default, mod-
num=3), the data cannot be analyzed using R–QWTREND.
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MPCA—Sample collected and analyzed by 
Minnesota Pollution Control Agency

USGSND—Sample collected by U.S. Geological Survey 
and analyzed by North Dakota Health Department

USGSNL—Sample collected by U.S. Geological Survey 
and no outside laboratory specified

EXPLANATION

Total phosphorus concentration data

Figure 21.  Graphical output for total phosphorus (PTot) concentration for RRHalstadQWP dataset for model with user-specified trend 
(model M3).

Figure 22.  Runtime error window produced by runQWmodel when an error is detected during the maximum likelihood estimation.
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Summary
As part of a U.S. Geological Survey water-quality study 

started in 2018, in cooperation with the International Joint 
Commission, North Dakota Department of Environmental 
Quality, and Minnesota Pollution Control Agency, a pub-
licly available software package called R–QWTREND was 
developed for analyzing trends in stream-water quality. The 
R–QWTREND package is a collection of functions written 
in R, an open source language and a general environment 
for statistical computing and graphics. The package uses 
a parametric time-series model to express logarithmically 
transformed concentration in terms of flow-related variability, 
trend, and serially correlated model errors. Flow-related vari-
ability captures natural variability in concentration on the basis 
of concurrent and antecedent streamflow. The trend identifies 
systematic changes in concentration in terms of potential step 
trends, piecewise monotonic trends, or user-specified trends. 
Maximum likelihood estimation is used to estimate model 
parameters and determine the best-fit trend model.

This report describes the time-series model and sta-
tistical methodology behind R–QWTREND and provides 
formal documentation for installing and using the package. 
This report, along with the accompanying software package, 
practice datasets, and examples, provides all of the neces-
sary materials and documentation for using R–QWTREND to 
analyze and interpret trends in stream-water quality based on 
long-term (10 or more years) datasets on constituent concen-
tration from discrete stream-water samples collected multiple 
times per year (quarterly or more frequent sampling) and for 
which the stream-water sampling location is colocated with a 
streamflow-gaging station from which a complete record of 
daily mean streamflow is available.
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Appendix 1  R–QWTREND Software Package
A folder, QWTREND2018V4, can be downloaded at 

https://doi.org/​10.3133/​ofr20201014. The folder contains the 
files described in table 1.1.

Although the files and data have been processed suc-
cessfully on a computer system at the U.S. Geological Survey 
(USGS), no warranty expressed or implied is made regarding 
the display or utility of the data for other purposes, nor on all 
computer systems, nor shall the act of distribution constitute 
any such warranty. The USGS or the U.S. Government shall 
not be held liable for improper or incorrect use of the data and 
files described and (or) contained herein.

This software has been approved for release by the 
USGS. Although the software has been subjected to rigorous 
review, the USGS reserves the right to update the software 
as needed pursuant to further analysis and review. No war-
ranty, expressed or implied, is made by the USGS or the 
U.S. Government as to the functionality of the software and 
related material nor shall the fact of release constitute any 
such warranty. Furthermore, the software is released on condi-
tion that neither the USGS nor the U.S. Government shall be 
held liable for any damages resulting from its authorized or 
unauthorized use.

Table 1.1.  Name and description of files in QWTREND2018V4 folder.

  File name   Description

Readme.doc Word document with instructions for using R–QWTREND.
prepQWdataV4.txt Text file containing R code for creating function prepQWdata().
runQWmodelV4.txt Text file containing R code for creating function runQWmodel().
plotQWtrendV4.txt Text file containing R code for creating function plotQWtrend().
qwtrend2018v4.exe Windows executable file used for computing maximum likelihood parameter estimates.
salflibc.dll Dynamic link library required by qwtrend2018v4.exe.
QWTrendV4_practice.RData R workspace with example datasets.
StartQWTrendV4.R R script for installing and running R–QWTREND.

https://doi.org/10.3133/ofr20201014
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