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Systems-Deposits-Commodities-Critical Minerals Table 
for the Earth Mapping Resources Initiative

By Albert H. Hofstra and Douglas C. Kreiner

Abstract
To define and prioritize focus areas across the United 

States with resource potential for 35 critical minerals in a 
few years’ time, the U.S Geological Survey Earth Mapping 
Resources Initiative (Earth MRI) required an efficient 
approach to streamline workflow. A mineral systems approach 
based on current understanding of how ore deposits that 
contain critical minerals form and relate to broader geologic 
frameworks and the tectonic history of the Earth was used 
to satisfy this Earth MRI need. This report describes the 
rationale for, and structure of, a table developed for Earth 
MRI that relates critical minerals and principal commodities 
to the deposit types and mineral systems in which they are 
concentrated. The hierarchical relationship between systems, 
deposits, commodities, and critical minerals makes it possible 
to define and prioritize each system-based focus area once for 
all of the critical minerals that it may contain. This approach 
is advantageous because mineral systems are much larger 
than individual ore deposits and they generally have geologic 
features that can be “imaged” by the topographic, geologic, 
geochemical, and geophysical mapping techniques deployed 
by Earth MRI.

Background
The President and Secretary of the Interior issued orders 

(Executive Office of the President, 2017; U.S. Department of 
the Interior, 2017) that directed the U.S. Geological Survey 
(USGS) to develop a plan to improve the Nation’s understand-
ing of domestic critical mineral resources. In response, a list 
of 35 critical minerals with a high risk for supply disruption 
were identified by the National Minerals Information Center 
(Fortier and others, 2018). The 35 critical minerals that were 
identified are aluminum (Al), antimony (Sb), arsenic (As), 
barite (BaSO4), beryllium (Be), bismuth (Bi), cesium (Cs), 
chromium (Cr), cobalt (Co), fluorspar (CaF₂), gallium (Ga), 
germanium (Ge), graphite (C), hafnium (Hf), helium (He), 
indium (In), lithium (Li), magnesium (Mg), manganese (Mn), 
niobium (Nb), platinum group elements (PGEs), potash (KCl), 
rare earth elements (REE), rhenium (Re), rubidium (Rb), 

scandium (Sc), strontium (Sr), tantalum (Ta), tellurium (Te), 
tin (Sn), titanium (Ti), tungsten (W), uranium (U), vanadium 
(V), and zirconium (Zr).

In 2018, Congress allocated funds to the USGS Mineral 
Resources Program for the Earth Mapping Resources Initiative 
(Earth MRI), which is a partnership between the USGS, the 
Association of American State Geologists, and other Federal, 
State, and private-sector organizations. The goal of Earth MRI 
is to generate maps and data that aid in increasing the domes-
tic inventory of critical minerals (Day, 2019). To reach this 
goal, focus areas with critical mineral resource potential must 
be defined and prioritized for new topographic, geologic, geo-
chemical, and geophysical mapping; and funds must be allo-
cated to States and contractors to conduct the work. The new 
maps of high priority focus areas are designed to (1) advance 
understanding of, or “image,” the three-dimensional geologic 
framework, (2) stimulate exploration and development of 
domestic resources of critical minerals, and (3) decrease the 
Nation’s reliance on foreign sources of critical minerals.

During Phase 1, focus areas with potential for REE-
bearing deposit types were targeted and classified by geologic 
environment (Dicken and others, 2019; Hammarstrom and 
Dicken, 2019). In 2019, funds were allocated to map the pri-
oritized REE-focus areas and several studies were underway in 
2020. During Phase 2, focus areas with potential for Al, C, Co, 
Li, Nb, PGE, Sn, Ta, Ti, and W were targeted and classified 
into mineral systems (explained in the “Mineral Systems” sec-
tion) that generate ore deposits containing the aforementioned 
critical minerals. The plan for Phase 3 is to target and classify 
all or most of the remaining critical minerals (As, BaSO4, Be, 
Bi, CaF₂, Cr, Cs, Ga, Ge, He, Hf, In, KCl, Mg, Mn, Re, Rb, 
Sb, Sc, Sr, Te, U, V, and Zr).

Problem and Solution
To define and prioritize Earth MRI focus areas across the 

United States for 35 critical minerals in a few years’ time, an 
efficient method was needed that minimized the number of 
focus areas and the number of times that each focus area was 
considered. Application of the commodity-based approach uti-
lized for REE in Phase 1 to the remaining 34 critical minerals 
would be redundant and inefficient because, unlike REE and 
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a few other exceptions (Al, BaSO4, C, PGE), critical minerals 
generally do not constitute the major part of any single mineral 
deposit. Instead, they are more commonly present as minor 
constituents in deposits mined for principal commodities, such 
as gold (Au), silver (Ag), lead (Pb), zinc (Zn), copper (Cu), 
molybdenum (Mo), nickel (Ni), iron (Fe), and phosphorus (P).

The solution to this problem, employed in Phases 2 and 
3 of Earth MRI, was to take advantage of the hierarchical 
relationship that exists between mineral systems, ore deposits, 
principal commodities, and critical minerals (described in the 
“Table Rationale and Explanation” section) and define focus 
areas that correspond, more or less, to the footprint of mineral 
systems, and then prioritize each system-based focus area once 
for the entire suite of critical minerals that it may contain. 
An important advantage of this approach is that the scale of 
mineral systems is much larger than individual ore deposits 
and they generally have key geologic features that can be 
“imaged” by the Earth MRI mapping techniques described 
previously. The number of focus areas can be further reduced 
by prioritizing only the largest and most prospective systems 
in the United States because, in most (but not all) cases, small 
systems are unlikely to generate deposits that are large enough 
to contain significant quantities of critical minerals. Another 
way to minimize the number of focus areas is to group mineral 
systems that occur in clusters or belts into one focus area. 
Similarly, because well-endowed mineral systems are known 
to form in specific tectonic settings and during specific time 
periods of Earth history, such settings that have been identi-
fied in frontier areas or under cover can be designated as 
focus areas.

In the following sections, we describe mineral systems 
and the rationale for, and structure of, the systems, deposits, 
commodities, and critical minerals information compiled in 
table 1 (PDF file) and show how it can be used to streamline 
workflow for Earth MRI.

Mineral Systems
The mineral systems concept is based on current under-

standing of how ore deposits form and relate to broader 
geologic frameworks and the tectonic history of the Earth 
(for example, Wyborn and others, 1994; McCuaig and oth-
ers, 2010; Huston and others, 2016; and Geological Survey 
of Western Australia, 2019). Mineral systems encompass 
all of the components required to form ore deposits (fig. 1). 
These components are (1) an optimum geotectonic setting, 
(2) energy to drive the system (heat, gravity), (3) source rocks 
for ligands and metals (igneous, metamorphic, or sedimentary 
rocks; preexisting mineralization), (4) a transport medium 
(melts, aqueous fluids-liquids-vapors, petroleum-natural gas), 
(5) transport pathways (channels, permeable structures and 
lithologies), (6) chemical and physical traps that concentrate 
metals to ore grades (deposits), and (7) distal expressions 
(mineral, chemical, or thermal anomalies) that extend to the 
limit of the system. In a given geotectonic setting, variations in 

these components, produce mineral systems and ore deposits 
of different types that are enriched in different principal com-
modities and byproducts, of which some are critical minerals.

Mineral systems with genetically related ore deposits 
generally form during an episode of magmatism, metamor-
phism, deformation, sedimentation, weathering, or erosion in 
specific geotectonic settings (fig. 1). The geotectonic setting 
includes the actual tectonic configuration as well as aspects of 
crustal evolution and (or) climatic conditions that are required 
for a system to produce significant deposits. If a setting lacks 
one or more key ingredients, such as dilatant structures, 
enriched source rocks, an arid climate, or appropriate physical 
or chemical conditions, a mineral system may operate without 
producing significant ore deposits. Systems generally require 
a trigger to get them started. Triggers can be sudden, such as 
volcanism above a mantle plume (for example, Ni-Cu-PGE 
deposits in a mafic magmatic system), or barely noticeable, 
such as formation of a peneplain in a tropical climatic zone (for 
example, bauxite deposits in a chemical weathering system).

The vertical and lateral extents of mineral systems are 
quite variable. For example, a system may have large verti-
cal extents, as in porphyry Cu-Mo-Au systems that extend 
from the subduction zone to the surface (fig. 2C), or short 
vertical extents, such as chemical weathering systems that 
are restricted to the vadose zone between the surface and the 
water table. Mineral systems can have large lateral extents, as 
in basin brine path systems that extend from marine evaporite 
basins, across passive margins, to shelf-slope breaks where 
they discharge into the ocean (fig. 3). Other mineral systems 
can have small lateral extents, such as in carbonatites. Most 
systems are spatially zoned such that deposits with different 
commodities and critical minerals occur at different levels or 
in proximal to distal positions (for example, figs. 2A and 3). 
In some systems, critical minerals are enriched on the periph-
ery of the system or deposit types within it, or they occur in 
unconventional deposit types (for example, alunite altered 
lithocaps). Some deposit types are mined for a single com-
modity, such as tungsten skarn deposits, whereas others are 
mined for several commodities, such as placer deposits mined 
for Au, REE, Ti, and Zr-Hf. In some deposit types, the princi-
pal commodity is a critical mineral, but in most cases critical 
minerals have been, or may only be, produced as byproducts 
of principal commodity deposits (Hayes and McCullough, 
2018), such as REE from sedimentary phosphate deposits.

Detailed information on each system and deposit type is 
provided in the references cited in table 1.

Table Rationale and Explanation
Table 1 was populated with principal commodity and 

critical mineral information gathered from ore deposit models 
published by the USGS, other government organizations, and 
scientific journals. This information was classified into mineral 
systems using the concept outlined in the “Mineral Systems” 
section. This classification consisted of grouping deposit types 

https://doi.org/10.3133/ofr20201042
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Figure 1.  Mineral system concepts. A, Modified from Knox-Robinson and Wyborn (1997). 
B, Modified from Geoscience Australia (2019). (≤, less than or equal; km, kilometer)
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Figure 2.  Schematic cross sections of a porphyry copper (Cu)-molybdenum (Mo)-gold (Au) system (with critical minerals in 
blue) at various scales. A and B, Modified from Sillitoe (2010). C, Modified from Tosdal and others (2009). (Ag, silver; Al, aluminum; 
As, arsenic; Be, beryllium; Bi, bismuth; Co, cobalt; dissem., disseminated; Ga, gallium; Hg, mercury; In, indium; K, potassium; km, 
kilometer; Li, lithium; MASH, melting, assimilation, and homogenization; Mn, manganese; Pb, lead; PGE, platinum group elements; 
Re, rhenium; Sb, antimony; SLM, subcontinental lithospheric mantle; Sn, tin; Te, tellurium; W, tungsten; Zn, zinc)
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Figure 3.  Schematic model of a basin brine path system (with critical minerals in blue), modified from Emsbo, 2009. (>, greater than; %, percent; Ba, barium; Bi, bismuth; 
Co, cobalt; Cs, cesium; Cu, copper; Fe, iron; Ga, gallium; Ge, germanium; In, indium; K, potassium; km, kilometer; km2, square kilometer; Li, lithium; Mg, magnesium; Mn, 
manganese; MVT, Mississippi Valley-type; Na, sodium; Pb, lead; PGE, platinum group elements; PO4, phosphate; Rb, rubidium; Re, rhenium; REE, rare earth elements; U, 
uranium; V, vanadium; Sb, antimony; Sr, strontium; TOC, total organic carbon; Zn, zinc)
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that share a fundamental genetic relationship to geologic con-
trols that are characteristic of each system type. Thus, if one 
part (for example, deposit type) of a system is identified, then 
the other parts (for example, other deposit types) of the system 
may be present nearby.

As table 1 was being constructed, it became clear that it 
could be simplified and made more useful for Earth MRI by (1) 
grouping deposit types with similar mineral assemblages that 
contain similar element suites, and (or) (2) splitting out deposit 
types with distinct mineralogies and elements. This decision 
was based on the common mineral associations that occur in 
certain deposit types and the typical element substitutions that 
occur in each mineral. For example, in porphyry Cu-Mo-Au 
systems (fig. 2A–B), polymetallic skarn, replacement, vein, 
and intermediate sulfidation (SRVIS) deposits all contain 
various proportions of Cu-, Zn-, and Pb-sulfides and As- and 
Sb-sulfosalts with variable proportions of the same principal 
commodities (Cu, Zn, Pb, Ag, Au) and critical minerals (Ge, 
Ga, In, Bi, Sb, As, W, Te). Thus, an overarching deposit name 
was devised to encompass them, “polymetallic SRVIS.” In 
an analogous way, Cu-sulfides in porphyry and skarn copper 
deposits typically contain PGE, Te, and Bi; molybdenite in 
porphyry and skarn molybdenum deposits contains Re; pyrite 
in distal disseminated silver-gold deposits contains As and Sb; 
and alunite in lithocap deposits contains Al, K, and Ga. Placers 
are more complex because the assemblage of ore minerals 
that they contain reflects the assemblage of source rocks and 
mineralization exposed in the catchment area. Consequently, it 
is important to understand that the distinctions made in table 1 
are idealized and that in nature the deposit types grade into, or 
overlap with, one another. Nevertheless, the deposit groupings 
and distinctions can be used to identify the parts or aspects of a 
mineral system that are likely to be enriched in specific princi-
pal commodities and critical minerals.

Table Structure

The table consists of six columns (with headers in bold 
type). The first is the “System name.” In some cases, an estab-
lished name was used, for example, “Placer.” In other cases, 
a name was selected that emphasizes an aspect of the system 
that is characteristic of, and distinct from, the other systems, 
for example, “Chemical Weathering.” One system was named 
after the principal deposit type within it, namely “Porphyry 
Cu-Mo-Au.” In this case, it is important to realize that porphyry 
Cu-Mo-Au systems are much larger than porphyry Cu-Mo-Au 
deposits and encompass key aspects of the tectonic framework 
and all of the deposit types that occur within the system, as 
shown in figure 2. The second column is a brief “Synopsis” that 
provides information on the geotectonic setting of the system 
and a description of how it operates to form ore deposits con-
taining various principal commodities and critical minerals. The 
third column is “Deposit types.” As described in the previous 
section, in some cases, different deposit types were grouped 
together under an overarching deposit name because they 

contain a similar assortment of principal commodities and criti-
cal minerals whereas those with distinct principal commodities 
and critical minerals were split out. The fourth column is a list 
of “Principal commodities” that generally are produced from, 
or explored for, in the deposit type. These are the commodities 
that govern the economics of mining and mineral processing. 
The fifth column is a list of “Critical minerals.” Those that have 
actually been produced from the deposit type are highlighted in 
bold type (for example, REE), whereas those that are enriched 
in the deposit type, but have not yet been produced, are listed in 
italics (for example, PGE). Critical minerals that are principal 
commodities, are listed in both columns. The sixth column is 
“Reference(s),” which cites publications that contain detailed 
descriptions of the system and deposit types upon which the 
entries in table 1 are based.

Table Use

The hierarchical relationship between systems, deposits, 
commodities, and critical minerals in table 1 can be used to 
help define and prioritize Earth MRI focus areas for mapping 
projects in four ways.

First, if any part of a mineral system has been recognized 
by previous work, table 1 can be used to deduce the assortment 
of deposit types, principal commodities, and critical minerals 
that may be present in adjacent areas and under cover. Because 
information generally exists on the principal commodities and 
deposit types that are present in well-explored areas with a his-
tory of mining, table 1 can be used to infer the system type(s) 
and the critical minerals that may be present in mine waste, 
unmined resources, concealed deposit types under cover, or in 
deposit types that were removed by erosion. In areas with his-
torical mining and exploration, these inferences have a higher 
degree of certainty because the known deposit types confirm 
that a mineral system actually operated in the area. The deposit 
types recognized at or near the surface also provide an indica-
tion of the level of exposure or tilting of the system.

Second, for system-based focus areas of the same type (for 
example, porphry Cu-Mo-Au), the attributes of each area can 
be compared to identify those that are well endowed and (or) 
would benefit the most from Earth MRI mapping techniques.

Third, in some parts of the country, systems of differ-
ent types and ages occur in the same geographic area, such 
that the system-based focused areas overlap. These areas are 
highly prospective and may benefit the most from Earth MRI 
mapping efforts.

Fourth, in frontier areas (for example, Alaska) or areas 
with extensive cover (for example, U.S. mid-continent), if a 
geotectonic setting, or terrane, is recognized that is known to 
host mineral systems of a given type elsewhere in the world 
(for example, Mesoproterozoic magmatic provinces), table 1 
can be used to infer the deposit types, principal commodities, 
and critical minerals that may be present. In this case, Earth 
MRI maps of such terranes may detect evidence of mineral 
systems and lead to new discoveries.
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[±, present (absent); —, not applicable; ?, maybe; Ag, silver; Al, aluminum; As, arsenic; Au, gold; B, boron; Ba, barium; Be, beryllium; Bi, bismuth; Br, bromine; Ca, calcium; Cd, cadmium; Co, cobalt; CO2, 
carbon dioxide; Cs, cesium; Cr, chromium; Cu, copper; F, fluorine; Fe, iron; Ga, gallium; Ge, germanium; Hf, hafnium; Hg, mercury; I, iodine; In, indium; IOA, iron oxide-apatite; IOCG, iron oxide-copper-gold; 
IS, intermediate sulfidation; K, potassium; LCT, lithium-cesium-tantalum; Li, lithium; Mg, magnesium; Mn, manganese; Mo, molybdenum; Na, sodium; Nb, niobium; Ni, nickel; NYF, niobium-yttrium-fluorine; 
P, phosphorus; Pb, lead; PGE, platinum group elements; R, replacement; Rb, rubidium; Re, rhenium; REE, rare earth elements; S, skarn; Sb, antimony; Sc, scandium; SE, selenium; Sn, tin; Sr, strontium; Ta, tanta-
lum; Te, tellurium; Th, thorium; Ti, titanium; Tl, thallium; U, uranium; V, vanadium (in “Commodity” column; V, vein (in “Deposit type” column); W, tungsten; Y, yttrium; Zn, zinc; Zr, zirconium]

System name Synopsis Deposit types Principal commodities Critical minerals1 Reference(s)

Placer (riverine-marine, 
residual-eluvial-alluvial-
shoreline, paleo)

Placer systems operate in drainage 
basins and along shorelines where 
there is either topographic relief and 
gravity-driven turbulent flow of sur-
face water or tidal and wind-driven 
wave action. Placer systems con-
centrate insoluble resistate minerals 
liberated from various rock types 
and mineral occurrences by the 
chemical breakdown and winnowing 
away of enclosing minerals by the 
movement of water. The distribu-
tion of insoluble resistate minerals is 
controlled by their size, density, and 
the turbulence of fluid flow.

Gold Au — Levson, 1995; Van 
Gosen and others, 
2014; Sengupta 
and Van Gosen, 
2016; Jones and 
others, 2017

Uraninite, autunite-group minerals U U
PGE PGE PGE
Cassiterite Sn Sn
Wolframite/scheelite W W
Barite Barite Barite
Fluorite Fluorite Fluorite
Monazite/xenotime REE, Y, Th REE
Columbite/tantalite Nb, Ta Nb, Ta, Mn
Zircon Zr, Hf Zr, Hf
Ilmenite/rutile/leucoxene Ti Ti
Diamond Diamond gems and abrasive —
Sapphire Sapphire gems —
Garnet Garnet gems and abrasive —

Chemical weathering (un-
saturated zone, in situ)

Chemical weathering systems operate 
in stable areas of low to moder-
ate relief with sufficient rainfall to 
chemically dissolve and concentrate 
elements present in various rock 
types and mineral occurrences by 
the downward percolation of surface 
water in the unsaturated zone. 
Chemical gradients cause differ-
ent elements to be concentrated at 
different positions in the weather-
ing profile and at the water table. 
Bauxite, Ni-laterite, and carbonatite 
laterite are restricted to tropical 
climatic zones; others form in tem-
perate and arid climates.

Nickel-cobalt laterite Ni, Co Co, Sc Marsh and others, 
2013; Foley and 
Ayuso, 2015; 
Bruneton and 
Cuney, 2016; 
Sanematsu and 
Watanabe, 2016

Bauxite Al Al, Ga, REE
Clay Kaolin Ga, Li, REE
Carbonatite laterite Nb, REE Nb, REE
Regolith (Ion adsorption) REE REE REE
Surficial uranium U U
Supergene (and laterite) gold Au —
Supergene silver Ag ?
Supergene lead Pb ?
Supergene zinc Zn ?Ge, Ga, In?
Supergene (and exotic) copper Cu ?Te, Bi?
Supergene cobalt Co Co
Supergene PGE PGE PGE
Supergene manganese Mn Mn, Co
Supergene iron Fe Mn
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Table 1.  Systems-Deposits-Commodities-Critical Minerals Table for the Earth Mapping Resources Initiative. —Continued

[±, present (absent); —, not applicable; ?, maybe; Ag, silver; Al, aluminum; As, arsenic; Au, gold; B, boron; Ba, barium; Be, beryllium; Bi, bismuth; Br, bromine; Ca, calcium; Cd, cadmium; Co, cobalt; CO2, 
carbon dioxide; Cs, cesium; Cr, chromium; Cu, copper; F, fluorine; Fe, iron; Ga, gallium; Ge, germanium; Hf, hafnium; Hg, mercury; I, iodine; In, indium; IS, intermediate sulfidation; K, potassium; LCT, 
lithium-cesium-tantalum; Li, lithium; Mg, magnesium; Mn, manganese; Mo, molybdenum; Na, sodium; Nb, niobium; Ni, nickel; NYF, niobium-yttrium-fluorine; P, phosphorus; Pb, lead; PGE, platinum group 
elements; R, replacement; Rb, rubidium; Re, rhenium; REE, rare earth elements; S, skarn; Sb, antimony; Sc, scandium; SE, selenium; Sn, tin; Sr, strontium; Ta, tantalum; Te, tellurium; Th, thorium; Ti, titanium; 
Tl, thallium; U, uranium; V, vanadium; W, tungsten; Y, yttrium; Zn, zinc; Zr, zirconium]

System name Synopsis Deposit types Principal commodities Critical minerals1 Reference(s)

Meteoric recharge Meteoric recharge systems operate 
where oxidized meteoric ground-
water displaces reduced connate 
water in sandstone aquifers that 
often contain volcanic ash or where 
such groundwater evaporates at the 
surface. As oxidized water descends 
through sandstone aquifers, it 
scavenges uranium and other ele-
ments from detrital minerals and (or) 
volcanic glass. Uranium and other 
elements precipitate at the redox 
front with reduced connate water, 
on carbonaceous material in the 
aquifers, or at the surface in calcrete 
by evaporation.

Sandstone uranium U, V U, V, Re, Sc, 
REE, Co, PGE

Skirrow and others, 
2009; Breit, 2016; 
Bruneton and 
Cuney, 2016; Hall 
and others, 2019

Calcrete uranium U, V U, V, Sr

Lacustrine evaporite Lacustrine evaporite systems operate 
in closed drainage basins in arid to 
hyperarid climatic zones. Elements 
present in meteoric surface, ground, 
and geothermal recharge water are 
concentrated by evaporation. As 
salinity increases, evaporite minerals 
typically precipitate in the follow-
ing sequence: gypsum or anhydrite, 
halite, sylvite, carnallite, borate. 
Nitrates are concentrated in basins 
that accumulate sea spray. Residual 
brines enriched in lithium and other 
elements often accumulate in aqui-
fers below dry lake beds. Li-clay 
and Li-zeolite deposits form where 
residual brine reacts with lake sedi-
ment, ash layers, or volcanic rocks.

Trona Soda ash (Na2CO3) — Dyni, 1991; 
Sheppard, 
1991a,b; 
Williams-Stroud, 
1991; Orris, 
1995; Warren, 
2010; Bradley 
and others, 2013; 
Hofstra and 
others, 2013b; 
Munk and others, 
2016; Bradley and 
others, 2017b

Gypsum Gypsum (CaSO4•2H2O) —
Salt Salt (NaCl) —
Potash Potash (KCl) Potash
Carnallite Carnellite (KMgCl3•6H2O) Potash, Mg
Borate Borax, boric Acid Li
Nitrate [Na, K, Ca, Mg][NO3 nitrate, 

IO3 iodate, BO3 borate]
Mg

Residual brine Salt, potash, borax, boric acid, 
soda ash, sodium sulfate, Li, 
Rb, Cs, Mg, Mn, Sr, Br, I, 
W, Zn

Potash, Li, Mn, 
Rb, Cs, Mg, 
Sr, W

Lithium clay Li Li
Lithium-boron zeolite Zeolite, B, Li Li
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Table 1.  Systems-Deposits-Commodities-Critical Minerals Table for the Earth Mapping Resources Initiative. —Continued

[±, present (absent); —, not applicable; ?, maybe; Ag, silver; Al, aluminum; As, arsenic; Au, gold; B, boron; Ba, barium; Be, beryllium; Bi, bismuth; Br, bromine; Ca, calcium; Cd, cadmium; Co, cobalt; CO2, 
carbon dioxide; Cs, cesium; Cr, chromium; Cu, copper; F, fluorine; Fe, iron; Ga, gallium; Ge, germanium; Hf, hafnium; Hg, mercury; I, iodine; In, indium; IS, intermediate sulfidation; K, potassium; LCT, 
lithium-cesium-tantalum; Li, lithium; Mg, magnesium; Mn, manganese; Mo, molybdenum; Na, sodium; Nb, niobium; Ni, nickel; NYF, niobium-yttrium-fluorine; P, phosphorus; Pb, lead; PGE, platinum group 
elements; R, replacement; Rb, rubidium; Re, rhenium; REE, rare earth elements; S, skarn; Sb, antimony; Sc, scandium; SE, selenium; Sn, tin; Sr, strontium; Ta, tantalum; Te, tellurium; Th, thorium; Ti, titanium; 
Tl, thallium; U, uranium; V, vanadium; W, tungsten; Y, yttrium; Zn, zinc; Zr, zirconium]

System name Synopsis Deposit types Principal commodities Critical minerals1 Reference(s)

Marine evaporite Marine evaporite systems operate in 
shallow restricted epicontinental 
basins in arid to hyperarid climatic 
zones. Elements present in seawater 
are concentrated by evaporation. As 
salinity increases, evaporite minerals 
typically precipitate in the follow-
ing sequence: gypsum or anhydrite, 
halite, sylvite. Residual basin brines 
are enriched in conserved elements, 
such as Mg and Li. Incursion of 
freshwater or seawater can produce 
halite dissolution brines.

Gypsum Gypsum (CaSO4•2H2O) — Raup 1991a, b; 
Warren, 2010Salt Salt (NaCl) —

Potash Potash (KCl) Potash
Dissolution brine Petroleum, salt (NaCl) —

Basin brine path Basin brine path systems emanate from 
marine evaporite basins and extend 
downward and laterally through 
permeable strata to discharge points 
in the ocean. Basin brines evolve 
to become ore fluids by scaveng-
ing metals from various rock types 
along gravity-driven flow paths. The 
mineralogy of the aquifers controls 
the redox and sulfidation state of 
the brine and the suite of elements 
that can be scavenged. Cu- and 
Pb-Zn sulfide deposits form where 
oxidized brines encounter reduced 
S. Unconformity U deposits form
where oxidized brines are reduced.
Ba and Sr deposits form where
reduced brines encounter marine
sulfate or carbonate.

Basin brine Petroleum, salt, potash, Li, Rb, 
Cs, Mg, Sr, Br, I, Zn

Potash, Li, Rb, 
Cs, Mg, Sr

Cox and Singer, 
2007; Skirrow 
and others, 2009; 
Alpine, 2010; 
Leach and others, 
2010; Hayes and 
others, 2015; 
Emsbo and others, 
2016a; Marsh 
and others, 2016; 
Johnson and 
others, 2017; 
Manning and 
Emsbo, 2018

Hydrothermal dolomite Building stone, aggregate Mg
Zinc-lead (MVT and sedex) Zn, Pb, Ag, Cu, Co Sn, Ge, Co, Ga, In
Copper (sed-hosted and replace-

ment)
Cu, Co, Ag, Pb, Zn Co, PGE, Re, 

Ge, Ga, V, U
Uranium (unconformity and brec-

cia pipe)
U, V, Cu, Co, Mo, Re, Se, Sc, 

REE
U, V, Re, Sc, 

REE, Co
Barite (replacement and bedded) Barite (witherite) Barite
Strontium (replacement and bed-

ded)
Sr (celestite, strontianite) Sr
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Table 1.  Systems-Deposits-Commodities-Critical Minerals Table for the Earth Mapping Resources Initiative. —Continued

[±, present (absent); —, not applicable; ?, maybe; Ag, silver; Al, aluminum; As, arsenic; Au, gold; B, boron; Ba, barium; Be, beryllium; Bi, bismuth; Br, bromine; Ca, calcium; Cd, cadmium; Co, cobalt; CO2, 
carbon dioxide; Cs, cesium; Cr, chromium; Cu, copper; F, fluorine; Fe, iron; Ga, gallium; Ge, germanium; Hf, hafnium; Hg, mercury; I, iodine; In, indium; IS, intermediate sulfidation; K, potassium; LCT, 
lithium-cesium-tantalum; Li, lithium; Mg, magnesium; Mn, manganese; Mo, molybdenum; Na, sodium; Nb, niobium; Ni, nickel; NYF, niobium-yttrium-fluorine; P, phosphorus; Pb, lead; PGE, platinum group 
elements; R, replacement; Rb, rubidium; Re, rhenium; REE, rare earth elements; S, skarn; Sb, antimony; Sc, scandium; SE, selenium; Sn, tin; Sr, strontium; Ta, tantalum; Te, tellurium; Th, thorium; Ti, titanium; 
Tl, thallium; U, uranium; V, vanadium; W, tungsten; Y, yttrium; Zn, zinc; Zr, zirconium]

System name Synopsis Deposit types Principal commodities Critical minerals1 Reference(s)

Marine chemocline (bath-
tub rim)

Marine chemocline systems operate 
where basin brines discharge into 
the ocean. Consequent increases in 
bioproductivity produce metallifer-
ous black shales. Changes in ocean 
chemistry (oceanic anoxic events) 
and development of chemoclines 
result in chemical sedimentation of 
phosphate and Mn and Fe carbon-
ates and oxides.

Black shale Stone coal, petroleum, V, Ni, 
Mo, Au, PGE

V, Re, PGE Lefebure and 
Coveney, 1995; 
Force and others, 
1999; Emsbo, 
2000; Emsbo 
and others, 2015, 
2016b; Cannon 
and others, 2017

Phosphate Phosphate fertilizer F, REE, U
Iron-manganese Fe, Mn, Co Mn, Co
Superior iron Fe —

Hybrid magmatic REE/
basin brine path

This hybrid system operates where 
CO2- and HF-bearing magmatic vol-
atiles condense into basinal brines 
that replace carbonate with fluorspar 
± barite, REE, Ti, Nb, and Be as 
in the Illinois-Kentucky Fluorspar 
District and Hicks Dome.

Fluorspar Fluorite Fluorite, barite, 
REE, Ti, Nb, Be

Plumlee and others, 
1995; Denny and 
others, 2015, 
2016; Hayes and 
others, 2017

Arsenide Arsenide systems form in continental 
rifts where deep-seated, oxidized, 
metal-rich, metamorphic basement 
brines ascend to shallow levels. 
Native elements (Ag, Bi, As), Ni-, 
Co- and Fe-mono-, di- and sulf-
arsenides precipitate by reduction as 
hydrocarbons, graphite, or sulfide 
minerals are oxidized to form car-
bonates and barite.

Five element veins Ag, As, Co, Ni, Bi, U, Sb Co, Bi, U, As, Sb Kissin, 1992, Markl 
and others, 2016; 
Burisch and 
others, 2017; 
Scharrer and 
others, 2019
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Table 1.  Systems-Deposits-Commodities-Critical Minerals Table for the Earth Mapping Resources Initiative. —Continued

[±, present (absent); —, not applicable; ?, maybe; Ag, silver; Al, aluminum; As, arsenic; Au, gold; B, boron; Ba, barium; Be, beryllium; Bi, bismuth; Br, bromine; Ca, calcium; Cd, cadmium; Co, cobalt; CO2, 
carbon dioxide; Cs, cesium; Cr, chromium; Cu, copper; F, fluorine; Fe, iron; Ga, gallium; Ge, germanium; Hf, hafnium; Hg, mercury; I, iodine; In, indium; IS, intermediate sulfidation; K, potassium; LCT, 
lithium-cesium-tantalum; Li, lithium; Mg, magnesium; Mn, manganese; Mo, molybdenum; Na, sodium; Nb, niobium; Ni, nickel; NYF, niobium-yttrium-fluorine; P, phosphorus; Pb, lead; PGE, platinum group 
elements; R, replacement; Rb, rubidium; Re, rhenium; REE, rare earth elements; S, skarn; Sb, antimony; Sc, scandium; SE, selenium; Sn, tin; Sr, strontium; Ta, tantalum; Te, tellurium; Th, thorium; Ti, titanium; 
Tl, thallium; U, uranium; V, vanadium; W, tungsten; Y, yttrium; Zn, zinc; Zr, zirconium]

System name Synopsis Deposit types Principal commodities Critical minerals1 Reference(s)

Volcanogenic seafloor Volcanogenic seafloor systems are 
driven by igneous activity along 
spreading centers, back-arc basins 
and magmatic arcs. In spread-
ing centers and back-arc basins, 
seawater evolves to become an ore 
fluid by convection through hot 
volcanic rocks. In magmatic arcs, 
ore fluids exsolved from subvolcanic 
intrusions may mix with convecting 
seawater. Ore deposits form where 
hot reduced ore fluids vent into cool 
oxygenated seawater. Sulfides and 
sulfates precipitate in or near vents. 
Mn and Fe precipitate at chemo-
clines over wide areas in basins with 
seafloor hydrothermal activity .

Copper-zinc sulfide Cu, Zn Co, Bi, Te, In, Sn, 
Ge, Ga, Sb

Levson, 1995; 
Shanks and 
Thurston, 2012; 
Monecke and 
others, 2016; 
Cannon and 
others, 2017

Zinc-copper sulfide Zn, Cu Ge, Ga, Sb, Co, 
Bi, Te, In, Sn

Polymetallic sulfide Cu, Zn, Pb, Ag, Au Sn, Bi, Te, In, Ge, 
Ga, Sb, As

Barite Barite Barite
Manganese oxide (layers, crusts, 

nodules)
Mn, Fe, Ni Mn, Co, Ge

Algoma iron Fe ?

Orogenic Metamorphic dewatering of sulfidic 
volcanic and (or) sulfidic, carbona-
ceous, and (or) calcareous siliciclas-
tic sequences during exhumation 
with fluid flow along dilatant struc-
tures. Iron minerals in host rocks are 
often sulfidized. Metavolcanic host 
rocks often contain volcanogenic 
seafloor sulfide deposits.

Gold Au, Ag W, Te, As, Sb Groves and others, 
1998; Gray and 
Bailey, 2003; 
Goldfarb and 
others, 2005, 
2016; Luque and 
others, 2014

Antimony Sb, Au, Ag Sb
Mercury Hg, Sb Sb
Graphite Graphite (lump) Graphite (lump)

Coeur d’Alene-type Metamorphic dewatering of moder-
ately oxidized siliciclastic se-
quences during exhumation with 
fluid flow along dilatant structures. 
Metasedimentary host rocks may 
contain basin brine path Pb-Zn and 
Cu±Co deposits.

Polymetallic sulfide Ag, Pb, Zn, Cu Sb, Co, Ge, Ga, 
In

Leach and others, 
1988, 1998; 
Beaudoin and 
Sangster, 1992, 
1995; Balistrieri 
and others, 2002; 
Hofstra and others, 
2013a; Seal and 
others, 2017

Antimony Sb Sb



12  
System

s-Deposits-Com
m

odities-Critical M
inerals Table for the Earth M

apping Resources Initiative
Table 1.  Systems-Deposits-Commodities-Critical Minerals Table for the Earth Mapping Resources Initiative. —Continued

[±, present (absent); —, not applicable; ?, maybe; Ag, silver; Al, aluminum; As, arsenic; Au, gold; B, boron; Ba, barium; Be, beryllium; Bi, bismuth; Br, bromine; Ca, calcium; Cd, cadmium; Co, cobalt; CO2, 
carbon dioxide; Cs, cesium; Cr, chromium; Cu, copper; F, fluorine; Fe, iron; Ga, gallium; Ge, germanium; Hf, hafnium; Hg, mercury; I, iodine; In, indium; IS, intermediate sulfidation; K, potassium; LCT, 
lithium-cesium-tantalum; Li, lithium; Mg, magnesium; Mn, manganese; Mo, molybdenum; Na, sodium; Nb, niobium; Ni, nickel; NYF, niobium-yttrium-fluorine; P, phosphorus; Pb, lead; PGE, platinum group 
elements; R, replacement; Rb, rubidium; Re, rhenium; REE, rare earth elements; S, skarn; Sb, antimony; Sc, scandium; SE, selenium; Sn, tin; Sr, strontium; Ta, tantalum; Te, tellurium; Th, thorium; Ti, titanium; 
Tl, thallium; U, uranium; V, vanadium; W, tungsten; Y, yttrium; Zn, zinc; Zr, zirconium]

System name Synopsis Deposit types Principal commodities Critical minerals1 Reference(s)

Metamorphic Metamorphic systems recrystallize 
rocks containing organic carbon or 
REE phosphate minerals.

Graphite (coal or carbonaceous 
sed)

Graphite (amorphous and flake) Graphite (amor-
phous and 
flake)

Sutphin, 1991a,b,c; 
Luque and others, 
2014; McKin-
ney and others, 
2015; Sutherland 
and Cola, 2016 
Robinson and 
others, 2017

Gneiss REE (monazite, xenotime) Th, U, REE, Y REE, U

Porphyry Cu-Mo-Au Porphyry copper-molybdenum-gold 
systems operate in oceanic and 
continental magmatic arcs with 
calc-alkaline compositions. Aqueous 
supercritical fluids exsolved from 
felsic plutons and the apices of 
subvolcanic stocks form a variety of 
deposit types as they move upward 
and outward, split into liquid and 
vapor, react with country rocks, and 
mix with groundwater. The broad 
spectrum of deposit types results 
from the large thermal and chemical 
gradients in these systems.

Greisen Mo, W, Sn W, Sn Seedorff and others, 
2005; John and 
others, 2010, 
2017; Sillitoe, 
2010; Taylor and 
others, 2012; John 
and Taylor, 2016; 
London, 2016

S-R-V tungsten W W, Bi, Mn
Porphyry/skarn molybdenum Mo, W, Sn W, Re, Bi
Porphyry/skarn copper Cu, Au, Ag, Mo PGE, Te, Re, Co, 

Bi, U
Skarn iron Fe, Cu Ge
Polymetallic sulfide S-R-V-IS Cu, Zn, Cd, Pb, Ag, Au Mn, Ge, Ga, In, 

Bi, Sb, As, 
W, Te

Distal disseminated silver-gold Ag, Au Sb, As
High-sulfidation gold-silver Cu, Ag, Au As, Sb, Te, Bi, Sn, 

Ga
Lithocap alunite Al, K2SO4 Al, K2SO4, Ga
Lithocap kaolinite Kaolin Ga

Alkalic porphyry Alkalic porphyry systems form in oce-
anic and continental magmatic arcs 
and in continental rifts by similar 
processes from fluids exsolved from 
more fractionated alkalic plutons 
and stocks. Resulting ore deposits 
tend to be more enriched in Au, Te, 
Bi, and V.

Greisen Mo, Bi Bi Jensen and Barton, 
2000; Kelley and 
Spry, 2016

S-R-V Tungsten W W, Bi, Mn
Porphyry/skarn copper-gold Cu, Mo, Au PGE, Te, Bi
Polymetallic sulfide S-R-V-IS Au, Ag, Pb, Zn, Cu Ge, Ga, In, Bi, Te
Distal disseminated silver-gold Ag, Au Sb, As
High sulfidation Cu, Ag, Au Te, Bi, As, Sb
Low sulfidation Au Te, Bi, V, F
Lithocap alunite? Al, K2SO4 Al, K2SO4, Ga
Lithocap kaolinite? Kaolin Ga
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Table 1.  Systems-Deposits-Commodities-Critical Minerals Table for the Earth Mapping Resources Initiative. —Continued

[±, present (absent); —, not applicable; ?, maybe; Ag, silver; Al, aluminum; As, arsenic; Au, gold; B, boron; Ba, barium; Be, beryllium; Bi, bismuth; Br, bromine; Ca, calcium; Cd, cadmium; Co, cobalt; CO2, 
carbon dioxide; Cs, cesium; Cr, chromium; Cu, copper; F, fluorine; Fe, iron; Ga, gallium; Ge, germanium; Hf, hafnium; Hg, mercury; I, iodine; In, indium; IS, intermediate sulfidation; K, potassium; LCT, 
lithium-cesium-tantalum; Li, lithium; Mg, magnesium; Mn, manganese; Mo, molybdenum; Na, sodium; Nb, niobium; Ni, nickel; NYF, niobium-yttrium-fluorine; P, phosphorus; Pb, lead; PGE, platinum group 
elements; R, replacement; Rb, rubidium; Re, rhenium; REE, rare earth elements; S, skarn; Sb, antimony; Sc, scandium; SE, selenium; Sn, tin; Sr, strontium; Ta, tantalum; Te, tellurium; Th, thorium; Ti, titanium; 
Tl, thallium; U, uranium; V, vanadium; W, tungsten; Y, yttrium; Zn, zinc; Zr, zirconium]

System name Synopsis Deposit types Principal commodities Critical minerals1 Reference(s)

Porphyry Sn (granite-
related)

Granite-related porphyry Sn systems 
form in back-arc or hinterland 
settings by similar processes from 
fluids exsolved from more crustally 
contaminated S-type peraluminous 
plutons and stocks. At deep levels, 
LCT pegmatites emanate from 
plutons. Resulting ore deposits tend 
to be Cu and Mo poor and enriched 
in Li, Cs, Ta, Nb, Sn, W, Ag, Sb, 
and In.

Pegmatite LCT Li-Cs-Ta Li, Cs, Ta, Nb, 
Sn, Be

Panteleyev, 1996; 
Sillitoe and 
others, 1998; 
Černý and Ercit, 
2005; Martin and 
De Vito, 2005; 
London, 2008, 
2016; Bradley 
and others, 
2017a; Kamilli 
and others, 2017; 
Hulsbosch, 2019

Greisen Sn, W, Be Sn, W, Be
Porphyry/skarn Sn, W, Be Sn, W, Be
Polymetallic sulfide S-R-V-IS Cu, Zn, Pb, Ag, Au Sn, Mn, Ge, Ga, 

In, Bi, Sb, As
Distal disseminated silver-gold Ag, Au Sb, As
High sulfidation Cu, Ag, Au Sn, Sb, As, Te, Bi
Lithocap alunite Al, K2SO4 Al, K2SO4, Ga
Lithocap kaolinite Kaolin Ga

Reduced intrusion-related Reduced intrusion-related systems 
form in continental magmatic arcs 
by similar processes from fluids 
exsolved from calc-alkaline plutons 
and stocks that assimilated car-
bonaceous pyritic country rocks. 
Resulting ore deposits tend to be 
poor in Cu, Mo, and Sn and enriched 
in W, Au, Ag, Te, Bi, Sb, and As.

Gold Au, Ag Te, Bi, Sb, As Hart, 2007; Nutt and 
Hofstra, 2007; 
Luque and others, 
2014

Skarn copper-molybdenum-
tungsten

W, Mo, Cu, Au, Ag W, Te, Bi, Re

Polymetallic sulfide S-R-V-IS Au, Ag, Pb, Zn, Cu Mn, Ge, Ga, In, 
Bi, Sb, As

Distal disseminated silver-gold Ag, Au Te, Bi, Sb, As
Intermediate sulfidation Au, Ag, Pb, Zn, Cu Mn, Ge, Ga, In, 

Bi, Sb, As
Graphite Graphite (lump) Graphite (lump)
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Table 1.  Systems-Deposits-Commodities-Critical Minerals Table for the Earth Mapping Resources Initiative. —Continued

[±, present (absent); —, not applicable; ?, maybe; Ag, silver; Al, aluminum; As, arsenic; Au, gold; B, boron; Ba, barium; Be, beryllium; Bi, bismuth; Br, bromine; Ca, calcium; Cd, cadmium; Co, cobalt; CO2, 
carbon dioxide; Cs, cesium; Cr, chromium; Cu, copper; F, fluorine; Fe, iron; Ga, gallium; Ge, germanium; Hf, hafnium; Hg, mercury; I, iodine; In, indium; IS, intermediate sulfidation; K, potassium; LCT, 
lithium-cesium-tantalum; Li, lithium; Mg, magnesium; Mn, manganese; Mo, molybdenum; Na, sodium; Nb, niobium; Ni, nickel; NYF, niobium-yttrium-fluorine; P, phosphorus; Pb, lead; PGE, platinum group 
elements; R, replacement; Rb, rubidium; Re, rhenium; REE, rare earth elements; S, skarn; Sb, antimony; Sc, scandium; SE, selenium; Sn, tin; Sr, strontium; Ta, tantalum; Te, tellurium; Th, thorium; Ti, titanium; 
Tl, thallium; U, uranium; V, vanadium; W, tungsten; Y, yttrium; Zn, zinc; Zr, zirconium]

System name Synopsis Deposit types Principal commodities Critical minerals1 Reference(s)

Carlin-type Carlin-type systems occur in continen-
tal magmatic arcs but are remote 
from subjacent stocks and plutons. 
Consequently, ore fluids consist 
largely of meteoric water contain-
ing volatiles discharged from deep 
intrusions. Ore fluids scavenge 
elements from carbonaceous pyritic 
sedimentary rocks as they convect 
through them. Gold ore containing 
disseminated pyrite forms where 
acidic reduced fluids dissolve carbon-
ate and sulfidize Fe-bearing minerals 
in host rocks. As, Hg, and Tl minerals 
precipitate by cooling. Stibnite pre-
cipitates with quartz by cooling from 
Au-, As-, Hg-, and Tl-depleted fluids.

Gold Au, Ag, Hg As, Sb Hofstra and Cline, 
2000; Goldfarb 
and others, 2016; 
Muntean, 2018

Antimony Sb Sb
Arsenic-thallium-mercury As, Tl, Hg As

Climax-type Climax-type systems occur in conti-
nental rifts with hydrous bimodal 
magmatism. Aqueous supercritical 
fluids exsolved from A-type topaz 
rhyolite plutons, and the apices of 
subvolcanic stocks form a variety of 
deposit types as they move upward 
and outward, split into liquid and 
vapor, react with country rocks, and 
mix with groundwater. The broad 
spectrum of deposit types results 
from the large thermal and chemical 
gradients in these systems. At deep 
levels, NYF pegmatites emanate 
from plutons.

Pegmatite NYF Nb, Y, F, Be Nb, Ta, Be Černý and Ercit, 
2005; Martin and 
De Vito, 2005; 
London, 2008, 
2016; Ludington 
and Plumlee, 
2009; Breit 
and Hall, 2011; 
Foley and others, 
2012; Hofstra 
and others, 2014; 
London, 2016; 
Audétat and Li, 
2017

Greisen Mo, W, Sn W, Sn, Bi
Porphyry molybdenum Mo, W, Sn W, Sn, Re
Skarn molybdenum Mo, W, Sn W, Sn
Polymetallic sulfide S-R-V-IS Cu, Zn, Pb, Ag, Au Mn, Ge, Ga, In, 

Bi, Sb, As
Distal disseminated silver-gold Ag, Au Sb, As
High sulfidation Cu, Ag, Au Sn, Sb, As, Te, Bi
Lithocap alunite Al, K2SO4 Al, K2SO4, Ga
Lithocap kaolinite Kaolin Ga
Fluorspar Fluorite Fluorite
Volcanogenic beryllium Be, U Be, U, Li
Volcanogenic uranium U U, Li, Be
Rhoylite tin Sn Sn
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[±, present (absent); —, not applicable; ?, maybe; Ag, silver; Al, aluminum; As, arsenic; Au, gold; B, boron; Ba, barium; Be, beryllium; Bi, bismuth; Br, bromine; Ca, calcium; Cd, cadmium; Co, cobalt; CO2, 
carbon dioxide; Cs, cesium; Cr, chromium; Cu, copper; F, fluorine; Fe, iron; Ga, gallium; Ge, germanium; Hf, hafnium; Hg, mercury; I, iodine; In, indium; IS, intermediate sulfidation; K, potassium; LCT, 
lithium-cesium-tantalum; Li, lithium; Mg, magnesium; Mn, manganese; Mo, molybdenum; Na, sodium; Nb, niobium; Ni, nickel; NYF, niobium-yttrium-fluorine; P, phosphorus; Pb, lead; PGE, platinum group 
elements; R, replacement; Rb, rubidium; Re, rhenium; REE, rare earth elements; S, skarn; Sb, antimony; Sc, scandium; SE, selenium; Sn, tin; Sr, strontium; Ta, tantalum; Te, tellurium; Th, thorium; Ti, titanium; 
Tl, thallium; U, uranium; V, vanadium; W, tungsten; Y, yttrium; Zn, zinc; Zr, zirconium]

System name Synopsis Deposit types Principal commodities Critical minerals1 Reference(s)

IOA-IOCG IOA-IOCG systems form in both 
subduction- and rift-related mag-
matic provinces. IOA deposits 
form as hot brine discharged from 
subvolcanic mafic to intermedi-
ate composition intrusions reacts 
with cool country rocks. Albitite 
uranium deposits form at deeper 
levels where brines albitize country 
rocks. IOCG deposits form on the 
roof or periphery of IOA mineraliza-
tion at lower temperatures, often 
with involvement of external fluids. 
Polymetallic skarn, replacement, and 
vein deposits occur outboard from 
IOCG deposits. Mn replacement and 
lacustrine Fe deposits form near or 
at the paleosurface.

Albitite uranium U U Williams and others, 
2005; Cox and 
Singer, 2007; 
Groves and others, 
2010; Slack, 2013; 
Barton, 2014; 
Slack and others, 
2016

Iron oxide apatite Fe REE
Iron oxide copper gold Cu, Au, U, Co, Se U, Co
Skarn iron Fe, P REE, Ge
Polymetallic sulfide S-R-V Ni, Co, Mo, Cu, Zn, Pb, Ag, Au Co, Re, Ge, Ga, 

In, Bi, Te, Sb, 
As

Replacement manganese Mn Mn, Co
Lacustrine iron Fe —

Magmatic REE Magmatic REE systems typically occur 
in continental rifts or along trans-
lithospheric structures. REE and 
other elements in mantle-derived 
ultrabasic, alkaline, and peralkaline 
(agpaitic) intrusions are enriched by 
fractionation and separation of im-
miscible carbonatite melts ± saline 
hydrothermal liquids.

Peralkaline syenite/ granite/rhyo-
lite/ alaskite/pegmatites

REE, Y, Zr, Hf, Nb, Ta, Be, U, 
Th, Cu

REE, Zr, Hf, Nb, 
Ta, Be, U

Verplanck and others, 
2014, 2016; 
Dostal, 2016Carbonatite REE, P, Y, Nb, Ba, Sr, U, Th, 

Cu
REE, Nb, Sc, U, 

Sr, Ba, P, Cu, 
Zr, magnetite, 
vermiculite

Phosphate REE, P —
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Table 1.  Systems-Deposits-Commodities-Critical Minerals Table for the Earth Mapping Resources Initiative. —Continued

[±, present (absent); —, not applicable; ?, maybe; Ag, silver; Al, aluminum; As, arsenic; Au, gold; B, boron; Ba, barium; Be, beryllium; Bi, bismuth; Br, bromine; Ca, calcium; Cd, cadmium; Co, cobalt; CO2, 
carbon dioxide; Cs, cesium; Cr, chromium; Cu, copper; F, fluorine; Fe, iron; Ga, gallium; Ge, germanium; Hf, hafnium; Hg, mercury; I, iodine; In, indium; IS, intermediate sulfidation; K, potassium; LCT, 
lithium-cesium-tantalum; Li, lithium; Mg, magnesium; Mn, manganese; Mo, molybdenum; Na, sodium; Nb, niobium; Ni, nickel; NYF, niobium-yttrium-fluorine; P, phosphorus; Pb, lead; PGE, platinum group 
elements; R, replacement; Rb, rubidium; Re, rhenium; REE, rare earth elements; S, skarn; Sb, antimony; Sc, scandium; SE, selenium; Sn, tin; Sr, strontium; Ta, tantalum; Te, tellurium; Th, thorium; Ti, titanium; 
Tl, thallium; U, uranium; V, vanadium; W, tungsten; Y, yttrium; Zn, zinc; Zr, zirconium]

System name Synopsis Deposit types Principal commodities Critical minerals1 Reference(s)

Mafic magmatic Mafic magmatic systems generally 
form in large igneous provinces re-
lated to mantle plumes or meteorite 
impacts. Nickel-copper sulfide ores 
with PGEs result from settling and 
accumulation of immiscible sulfide 
liquids in mafic layered intrusions 
and ultramafic magma conduits. In 
layered intrusions, Fe-Ti oxides, 
chromite, and PGE minerals crystal-
ize from evolving parental magmas 
and are concentrated by physical 
processes in cumulate layers. In 
anorthosites, Fe-Ti oxides ± apatite 
crystalize from residual magmas 
entrained in plagioclase-melt diapirs. 
In convergent settings, Alaskan-type 
intrusions with Fe-Ti oxides and 
PGE form from mantle melts.

Chromite Cr Cr Ash, 1996; Schulte 
and others, 2012; 
Ernst and Jowitt, 
2013; Woodruff 
and others, 2013; 
Zientek and 
others, 2017; 
Mondal and 
Griffin, 2018

Nickel-copper-PGE sulfide Ni, Cu, Co, PGE, Ag, Au, Se, Te Co, PGE, Te
PGE (low sulfide) PGE PGE
Iron-titanium oxide Fe, Ti, V, P Ti, V, REE

1Elements in bold have been produced from some deposits, whereas those in italics are potential critical minerals.
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