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By Nicholas M. Beeler 

Abstract 
Changes in fault roughness with scale, “scaling,” is the 

topic of this report; changes are considered using a general 
power law relation between some measure of surface height, 
H, and another of length, L, H=kLn, where k is a constant 
and n is an exponent that characterizes the scaling. Extensive 
profile measurements of natural fault surfaces show that the 
ratio of average surface height to profile length decreases with 
scale. Average height is defined using the root mean squared 
height, Rq. For this analysis, fault surfaces are smoother at 
long wavelengths (have smaller average height to profile 
length ratios) than they are at shorter wavelengths. These and 
other statistical properties of natural fault surfaces hold for 
more than five orders of magnitude, a huge range from tens 
of micrometers to 10 meters. However, a different rough-
ness metric, the average height (amplitude) that is specifi-
cally associated with a wavelength shows the opposite sense 
of scaling. The ratio of average amplitude to wavelength 
increases with wavelength. Thus, the same fault surface can 
be deemed rougher at long wavelength, or smoother, depend-
ing on the chosen metric. This apparent contradiction is a 
curiosity of the statistics of rough surfaces that have scaling 
exponents that relate profile length to Rq between 0.5 and 1, as 
most natural faults do. To add context, the implied roughness 
scaling for reference synthetic surfaces is determined. These 
span the natural range of scaling exponents and have moderate 
to strong point to point amplitude correlation. The potential 
payoff of expanded descriptions of natural fault roughness and 
of reference surfaces are improved constraints on physical 
mechanisms that generate and modify roughness during shear. 

Introduction
Roughness is widely thought to contribute significantly to 

the shear strength of natural faults (for example, Chester and 
Chester, 2000). For simplified model faults, such as two bare 
rock surfaces in contact, the fault shear resistance consists of 
two components, that due to frictional slip on a planar fault 
surface, and that which results from the roughness (Chester 
and Chester, 2000; Dieterich and Smith, 2009; Dunham and 
others 2011; Fang and Dunham 2013). For more realistic 
model faults, such as those containing a finite thickness of 

granular fault gouge bounded by rough surfaces, the roughness 
likely influences the degree of shear localization within a shear 
zone, contributing to sliding stability as well as shear strength. 
Despite these important considerations, little is known about 
the actual mechanical contributions of roughness to fault slip 
and earthquake faulting. Much work has focused on charac-
terizing the roughness of exhumed fault surfaces (Power and 
Tullis, 1991; Candela and others, 2009), and a notable char-
acteristic of fault roughness is that it changes with the spatial 
scale of observation (for example, Candela and others, 2009). 
Much less is known about what particular physical mecha-
nisms determine natural fault roughness, and virtually nothing 
is known about how physical processes lead to the observed 
changes in roughness with scale of observation (Brodsky and 
others, 2011). The purpose of this report is to improve meth-
ods of characterizing fault roughness and to better define how 
roughness changes with spatial scale.

The Scale Dependence of Surface Roughness

Throughout this report roughness refers to a ratio of 
surface height, H, to length, L. As you will see using this 
definition, roughness (H/L) is a property that depends critically 
on the definitions of height and length used. Changes in fault 
roughness with scale, “scaling,” is the topic of this report; 
changes are considered using a general power law relation 
between surface height and length,

(1)
 

where k is a constant and n is an exponent that characterizes 
the scaling roughness metrics (for example, see Brodsky and 
others, 2011). 

Early modern work on scaling suggested that surfaces 
were self-similar (Power and Tullis, 1991). Self-similarity, 
described in more detail in the Natural Fault Roughness section 
of this report, is a theoretical construct of Mandelbrot (1967), 
which for surface roughness requires the average height to pro-
file length ratio remain constant—in other words, roughness is 
scale independent. This definition can be accommodated in the 
general form of roughness scaling (eq. 1) by replacing H with 
the average, Ĥ, and L with the profile length, Lp, across which 
the average is taken (Brodsky and others, 2011),

H kLn=
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	 (2) 

with scaling exponent, ζ. For these choices of representative 
average height, profile length, and if the average is equated 
with the root mean square (RMS; see below), then ζ is known 
as the Hurst exponent (Mandelbrot and van Ness, 1968). Self-
similar surfaces have ζ = 1. Equation 2 with RMS average 
height is the most common and standard metric to define the 
scaling of roughness (Power and Tullis, 1991; Candela and 
others, 2012). 

For contrast and comparison, we use a different rough-
ness metric, the average height or amplitude, â, of points on 
the fault surface averaged over a particular wavelength, λ. 
If fault roughness is not exactly self-similar, it changes with 
scale. So, in addition to profile length-dependent heights 
there is value in specific surface amplitudes, and specific 
wavelengths as well as, if not more so than, profile lengths. 
To contrast with the scaling defined in equation 2, here is an 
alternative form of the general power law (eq. 1),

	 (3)

with scaling exponent m. Note that comparing the rough-
ness scaling of profiles using equation 2 to that of equation 3 
implies no judgment about which is “correct;” they both are 
correct but use different descriptions of the profile or surface. 
Throughout this report, equations 2 and 3 are referred to as 
different scaling metrics.

Synthetic Rough Surfaces 

To illustrate roughness scaling and some of the statistical 
and signal analyses that can be used to determine the scaling 
exponents, reference synthetic profiles are constructed and 
analyzed. The three different types of synthetics are designed 
to have known values of the scaling exponents ζ (0 to 1) in 
equation 2 and m (1/2 to 3/2) in equation 3. Unlike prior stud-
ies, where synthetic fault profiles were generated using one of 
the same techniques used to analyze them (for example, the 
Fourier transform; Candela and others, 2009), here the profiles 
are generated from random numbers.

A highly correlated but randomly generated synthetic 
profile can be constructed by assuming a random walk  (fig.  1A): 
the synthetic trace is produced by sequentially assigning the 
amplitude of each point, a(i), to be the amplitude of the prior 
point a(i−1) plus a random amplitude. The random component 
is the product of a chosen scaling value, ac and a value selected 
from a uniform distribution between −1 and 1 using a random 
generator. Thus, the walk increments are uniformly distributed 
between −ac and +ac. This is a well-known procedure to 
produce Brown noise (for example, Voss and Clarke, 1978). 
The example reference profile has 6,400 points, ac = 0.3 
micrometers (µm), Lp = 215 µm, and a linear trend has been 
removed so that the mean profile normal distance is 0. 

A less but still notably correlated synthetic profile can 
be constructed from the running sum of a fixed number of 
random sequences, where each sequence has a different 

Figure 1
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Figure 1 ( pages 2–3).  Plots of simulated synthetic profiles. A, Brownian noise. The profile was generated using a random walk along 
a profile length of 215.5 micrometers (µm), with a walk step taken every 0.34 µm. There are 6,400 points in the profile. The steps are 
chosen randomly from a uniform distribution between −0.3 and 0.3 µm. Once the profile generation is complete, any overall linear trend 
is removed. B, Pink noise. The profile was generated using the Voss-McCartney algorithm (see Gardner, 1978), as described in the 
appendix. C, Self-similar profile generated from integrating the pink noise in part B and rescaling the amplitudes.
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Figure 1 ( pages 2–3).—Continued

update frequency. The algorithm, which is in part described by 
Gardner (1978), originates from Voss and Clarke (1978) and is 
intended to produce pink noise. This implementation, detailed 
in the appendix, is a modification of Voss’s original based 
on one by James McCartney.1 The strategy is to reduce the 
Brownian correlation but not to the degree that adjacent points 
in the profile are entirely independent (white noise). Instead of 
following the Brownian sequence, where a random increment 
is added to the cumulative sum at each step, the sum for the 
Voss-McCartney algorithm is continuously and incrementally 
altered at a comprehensive range of update periods (fig. 1B). 
In the figure 1B example, each random number is selected 
from a Gaussian distribution that has a standard deviation of 
0.4 µm. This profile has 16,383 (=212−1) points, Lp = 215 mm, 
and the linear trend has been removed so that the mean profile 
normal distance is 0.

A more strongly correlated profile can be generated by 
numerically integrating the amplitude of an existing synthetic 
profile across length and rescaling or redimensioning the 
resulting amplitudes. Doing so increases the scaling expo-
nent by 1. The exponent determines the degree of correlation 
between adjacent points along the profile length, and correla-
tion increases with the exponent. For example, for equation  3 
with m = 0, amplitudes would be completely uncorrelated. 
The third reference is generated by integrating the pink noise 
profile, resulting in a profile (fig. 1C) that is more correlated 
than pink or brown noise. The result has 16,383 (= 212−1) 

1Refers to an unpublished correspondence from J. McCartney addressed to 
the Music and Digital Signal Processing mailing list from September 1999.

points, Lp = 215 mm, and the amplitude has been rescaled/
redimensioned by normalizing by Lp/5. The rescale choice is 
so that the amplitude range is like the other references but is 
otherwise arbitrary.

Analysis Methods and Scaling of the Synthetics

Throughout this section and in subsequent parts of this 
report, different analysis techniques are used to characterize 
scaling. These are methods to evaluate the metrics (eqs. 2 and 
3) that define the aspects of roughness scaling. Of interest are 
the scaling exponents, ζ and m, in these equations. To infer 
the scaling exponent for the profile-length-averaged height 
metric (eq. 2), requires first removing the mean height at each 
profile length (for example, Schmittbuhl and others, 1995, and 
references therein). Qualitatively, the necessary procedure is 
to define some measure of the average deviation of the surface 
across the profile length, such as in formal statistical defini-
tions of variance. Using the uncorrected standard deviation

	 (4)

at each possible profile length (wavelength) between 2 and N/2 
points and averaging all values at each length produces a good 
estimate of the expected exponent for the Brown noise profile 
(fig. 2A) (for example, Schmittbuhl and others, 1995). How 
the average amplitude changes with profile length is con-
trolled by the Hurst exponent, ζ. Here, ai is the amplitude at 
each point, N is the total number of points in the profile length 
of interest, and ā is the average amplitude across the profile 
length,

	      .

Similarly, the corrected standard deviation,

	 (5)

and the average deviation about the mean,

	 (6)

retrieve viable estimates of the scaling exponent (fig. 2A), as 
do several other approaches (for example, Schmittbuhl and 
others, 1995; Candela and others, 2009). For all deviation 
methods (eqs. 4, 5, and 6), the slopes agree and are consistent 
with the expected exponent for the Brown surface at profile 
lengths between 0.1 and 10 µm. At longer wavelengths, the 
exponent is not resolved. At shorter wavelengths, the standard 
deviation fails to resolve the exponent. 

For the Brown profile, the Hurst exponent is essentially 
1/2, as expected for a random walk (Mandelbrot and van Ness, 
1968). The pink profile has a weak and poorly defined scaling 
exponent using these analysis methods (fig. 2B, see discussion 
in Candela and others, 2009). In marked contrast, the third ref-
erence has a Hurst exponent of approximately 1 (fig. 2C) and 
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Figure 2
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Figure 2.  Plots of synthetic profile scaling exponents. Plots are 
of the deviation from the mean profile amplitude as a function 
of the profile length. The slope of the plot is an estimate of the 
scaling exponent relating profile length to average height (see 
eq. 2). Three estimates of the deviation are shown: the standard 
deviation (dotted line), the uncorrected standard deviation (solid 
black line), and the average deviation about the mean (solid gray 
line). A, Brownian noise with reference slope of 1/2 (dashed line). 
B, Pink noise. C, Self-similar with reference slope of 1 (dashed 
line). µm, micrometers.

is self-similar (Mandelbrot, 1967). Allowing that a pink profile 
is uncorrelated (ζ = 0) for this metric (eq. 2), the self-similar 
profile would be consistent with its genesis, namely that the 
integral of the profile with no scaling requires a scaling expo-
nent of 1. Though this remains to be seen, the integrated result 
is a highly correlated profile. The Hurst exponents of the three 
synthetic profiles are summarized in table 1 where subsequent 
analysis (see below) is used to infer the scaling of pink noise.

Rather than using an average deviation across the profile 
length to determine the scaling exponent of equation 2, the 
scaling exponent for the metric that relates specific amplitudes 

and wavelengths, equation 3, is determined using the Fourier 
transform (fig. 3). Throughout this report, the transforms shown 
are untapered (raw) and therefore have not accounted for the 
effects of spectral leakage. Leakage can lead to substantial bias 
in estimates of the scaling exponent (for example, Barbour and 
Parker, 2014). This report is limited to a qualitative discussion 
of scaling, rather than precise determinations of the exponent. 

For well-resolved spectra, the scaling exponent in the 
physical realm, m, is preserved in the spatial frequency 
domain (see section on Ratios of Amplitude to Wavelength, 
below, for a detailed example): 
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Figure 3

A. Brown noise

10–2

A
m

pl
itu

de
 (µ

m
2 )

0.01 0.1 1 10

10–4

B.  Pink noise

C. Self-similar

10–3

10–4

10–5

Frequency (1/µm)
A

m
pl

itu
de

 (µ
m

2 )

10–1

10–4

10–5

0.01 0.1 1 10

Frequency (1/µm)

0.01 0.1 1 10

Frequency (1/µm)

10–1

10–3

10–2

10–1

10–3

10–6

10–7

10–2

100

A
m

pl
itu

de
 (µ

m
2 )

Figure 3.  Plots of spectra of synthetic profiles. Plots are of the 
Fourier amplitude (in square micrometers [µm2]) as a function of 
spatial frequency (in inverse micrometers [1/µm]). The slope of 
the plot, shown by the dashed line, is an estimate of the scaling 
exponent relating wavelength to average height (see eq. 3). 
A, Brown noise with reference slope of 1. B, Pink noise with 
reference slope of 1/2. C, Self-similar with reference slope of 3/2.

	 (7)

where A is the amplitude of the transform, referred to 
throughout as Fourier amplitude to distinguish it from the 
physical average, wavelength-specific amplitude . Noting the 
inverse relation between wavelength and spatial frequency, 
fs=1 ⁄  λ, Brown noise has a Fourier amplitude spectrum that 
depends on frequency as 1⁄ fs (proportional to λ). Therefore, 
in equation 7, m = 1 and A / λ∝1 for the moderately correlated 
profile. Equivalently, the ratio of amplitude to wavelength, 
a /  λ, is independent of wavelength (see fig. 3A). Pink noise has 
a Fourier amplitude spectrum that depends on frequency  as   

                  (see fig. 3B). In this case in equation 7,  
m = 1/2 and A /  λ                for the moderately correlated pro-
file. Equivalently, the ratio of amplitude to wavelength, 
                   , depends on wavelength (fig.  3B). For this rough-
ness metric, pink profiles have roughness that decreases with 
wavelength. The self-similar profile has Fourier amplitudes 
that depend on frequency as       (as λ3/2) such that A / λ          ,  
equivalently                . By this metric, roughness of a self-
similar profile increases with wavelength, rather than being 
independent of scale, as required by the standard metric in 
equation 2. The scaling exponents m of the three synthetic 
profiles are summarized in table 1.

ˆ

1 fs ( )as λ
�  1 �

a � ��1ˆ

fs
−

3

2 � �
a � ��ˆ

A m�∝ 
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Table 1.  Scaling exponents for synthetic surfaces, in descending 
degree of correlation (descending exponent). 

[ζ is the exponent in the scaling relation between average surface height and  
profile length,             (see eq. 2). m is the exponent in the scaling relation 
between average amplitude and specific wavelength, a ∝λm (see eq. 3)]

Case ζ = m − 1/2 m = ζ + 1/2

Self-similar 1 3/2
Brown noise 1/2 1

Pink noise 0 1/2

Natural Fault Roughness  
Whereas Power and Tullis (1991) inferred that natural 

faults were self-similar, subsequent work using higher resolu-
tion and a broader range of wavelengths shows that self-simi-
larity does not strictly hold and instead of being constant, Ĥ / Lp 
changes with scale (Candela and others, 2012). The most widely 
used analysis technique to determine scaling of fault surface 
profiles, which relates to standard roughness metrics (for exam-
ple, Rq, defined below), self-similarity, and the Hurst exponent, 
is to calculate the power spectral density (Psd) of the profile 
(fig.  4). Power spectral density is the square of the magnitude 
of the Fourier transform of the profile normalized by the profile 
length, Lp. The surface Psd (fig. 4) also follows a power law 

	 (8)

where c and α are empirically determined. Note that since m 
is the amplitude to wavelength slope measured in the Fourier 
transform of the profile (fig. 3), and the power spectral density 
is the normalized square of the transform, then the exponents 
m (eqs. 3 and 7) and α (eq. 8) relate as m=α/2.

The relations among the generic Psd (eq. 8), the standard 
scaling relation (eq. 2), its scaling exponent ζ, and the justi-
fication for using RMS as the average height come from an 
application of Parseval’s theorem (Power and Tullis, 1991; 
Chatfield, 1975). The theorem states that the integral of a func-
tion squared is equal to the integral of its transform squared. 
In this case, taking a profile of surface amplitude g(λ) and its 
transform G(fs), where fs is the spatial frequency fs=1 / λ, the 
theorem requires

	 (9)

Here, as is inevitable in signal processing of finite series, the 
infinite limits in the formal definition of the transform (−∞ to 
+∞) are replaced with the finite bounds of the profile (0 to Lp). 
This is equivalent to assuming that the spatial series entirely 
defines the frequency content of interest—for example, if 
the finite signal repeats infinitely in the positive and negative 
directions beyond the ends of the profile, or, alternatively, that 

Figure 4
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Figure 4.  Summary power spectral density plot for the 
assumption Ĥ=Rq. Two natural fault surfaces area shown 
schematically in black (Brodsky and others, 2015; Thom and 
others, 2017). Example spectra of self-similar surfaces are 
shown as dashed lines of slope α = 3, corresponding to constant 
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height; Rq, root mean square average roughness ; m, meters.
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the series is truly infinite but that there is zero amplitude at 
distances less than zero and longer than Lp.

The square root of the left-hand side of equation 9 nor-
malized by Lp is the definition of the RMS roughness, Rq, a 
standard engineering surface measure. On the right-hand side, 
G(fs)

2 normalized by profile length is Psd. Thus, making these 
substitutions results in

	 (10)

As noted in the Introduction section, the standard approach 
(for example, Brodsky and others, 2011, 2015) is to equate Rq 
(eq. 10) with the average height Ĥ, and substituting equation 8 
into equation 10 results in

	 (11)

Carrying out the integration and evaluating yields (Brodsky 
and others, 2011, 2015):

	 (12)

To complete the relations, equating the exponents in equations 
2 and 12, α=1+2ζ, shows that Psd can be recast to infer the 
Hurst exponent from a plot of the power spectra density versus 
wavelength (Power and Tullis, 1991; Brodsky and others, 
2011, 2015),

	 (13)

Here the exponent has been substituted back into equation 2.
Recalling that the requirement for scale independence 

(self-similarity) is that the scaling exponent is 1, on the power 
spectral plot, self-similar surfaces have a slope of 3 (Power 
and Tullis, 1991). Increasing ratios (increasing values of  
Ĥ/Lp) correspond to increasing Psd, as shown in figure 4. In 
contrast, high resolution studies of natural fault surfaces have 
power spectral slopes that are less than 3 (Brodsky and others, 
2011; Candela and others, 2012), requiring scaling exponents 
less than 1. Schematic representations of recently published 
results in figure 4 are ζ = 0.6 (Candela and others, 2012; Brod-
sky and others, 2015) and ζ = 0.75 (Thom and others, 2017), 
corresponding to α = 2.2 and α = 2.5, respectively. If these sur-
faces are considered in the context of fixed Ĥ/Lp ratios, such as 
the three dashed example lines in figure 4, higher wavelengths 
correspond to smaller height-to-length ratios. By this metric, 
the surfaces are smoother at long wavelengths than they are at 
shorter wavelengths. 

Models of the evolution or genesis of natural fault 
roughness and its scaling are contingent on assumptions about 
rock fracture, initial roughness, and surface wear, among other 
things (Renard and Candela, 2017). However, there are only a 
few observations of the roughness of laboratory shear failures 
in rock or observations of the slip dependence of roughness 
in the laboratory or field. Chen and Spetzler (1993) found that 

R P dfq L sd sp
� ��1/

H cf dfL s sp

 � �� �
1

�

H c Lp �
�

�

�
�

1

1 2( )

P csd �
�� �( )1 2

shear fractures of Westerly Granite generated under modest 
confinement of 100 megapascals (MPa) are Brownian with  
α = 2 (ζ = 1/2); subsequent slip on these fractures was between 
100 and 800 µm, a small amount on the order of the grain 
size, and did not alter the scaling. Amitrano and Schmittbuhl 
(2002) produced shear fractures in Sidobre granite at confining 
pressures between 20 and 80 MPa, resulting in higher scaling 
exponents in the shearing direction than in the previous 
study, such that α = 2.5 (ζ = 0.74). They also report a slight 
increase in the scaling exponent with slip. Noting that many 
natural faults originate from tensile fractures, notably joints, 
Davidesko and others (2014) sheared mated 15-centimeter-
long tensile fractures of fine-grained limestone as much as 
15 millimeters (mm) of slip (unconfined) and found scaling 
exponents approaching self-similarity, such that α = 2.7–2.95 
(ζ = 0.85–0.98). The roughness decreased at all wavelengths 
progressively with slip, but the scaling exponent did not 
change appreciably. Smoothing of fault surfaces, with no 
change in the scaling exponent, is also observed in the field 
(Brodsky and others, 2011), and most comprehensively by 
Dascher-Cousineau and others (2018) for faults in sandstone 
with ζ = 0.4 in the direction of shear. Noting that the largest 
dimension faults have the largest displacements, a strong 
argument that scaling is independent of shear displacement are 
observations that scaling is independent of fault length  
(for example, Renard and Candela, 2017).

This report’s interest in characterizing the scaling 
notwithstanding, it is the absolute amplitude of roughness 
that affects the shear resistance in simulations (for example, 
Dunham and others, 2011, and references therein), at least for 
initially mated surfaces at short displacement. Accordingly, on 
Earth the absolute fault surface amplitude and how it changes 
with slip is thought to determine the structure (shear zone 
and adjacent damage zone thicknesses) and to influence the 
strength and other physical properties of natural shear zones. 
Comparisons between natural faults (fig. 4) and the synthetic 
profiles (figs. 1, 2, and 3) using equation 2 are useful since 
the synthetic profiles span the fairly wide and somewhat 
inconsistent range of natural and experimental scaling 
exponents (ζ = 0.4–0.98), and because much is known about 
the genesis of the synthetic profiles and less for the natural 
cases. In addition to the self-similar curves that correspond 
to the scaling of the integrated pink noise synthetic profile 
(dashed line in fig. 4), superimposed on the power spectra 
schematic plot in figure 4 are reference lines that represent the 
scaling for pink (α = 2m = 1) (pink-striped line) and Brown 
noise (α = 2m = 2) (brown-striped line). 

Taking the point of view that the random walk doesn’t 
correspond to any known physical mechanism of roughness 
generation, it is reassuring that natural fault examples 
generally do not show the same scaling. Most natural faults 
are more correlated than a random walk, suggesting even more 
structure to their genesis, keeping in mind that a random walk 
is a highly correlated random profile. The natural examples 
in figure 4, which are typical for faults in crystalline rock, are 
not dramatically different than Brownian surfaces, particularly 
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those of Brodsky and others (2015) and Candela and others 
(2012). Considering their scaling exponents, natural fault 
surfaces with ζ = 0.6 to 0.75 (α = 2.2 to 2.5) (Candela and 
others, 2012; Brodsky and others, 2015; Thom and others, 
2017) are arguably more similar to a Brownian surface  
(ζ = 0.5, α = 2) than they are to a self-similar surface (ζ = 1,  
α = 3). Since self-similarity (scale independence) is not 
consistent with natural fault surfaces, is a mathematical 
construct, and has no associated mechanical significance, a 
comparison with self-similarity may provide less constraints 
on process than the random walk example. Perhaps more 
revealing in this context is reconsideration of the pink profile 
and the apparent inconsistency between its construction and 
the standard analysis procedure. Whereas equation 2 requires 
ζ = 0 for a pink surface, the synthetic profile is constructed 
to have a specific scale dependence and, even visible to the 
eye, it has an obvious correlated roughness. A similar problem 
arises when considering synthetic white noise (not shown), 
which, according to its construction, has truly uncorrelated 
amplitudes (m = 0). Using the standard roughness metric 
(eq. 2), the Hurst exponent of a white noise profile is −1/2, 
meaning its profile-length-averaged height is anticorrelated. 

Ratios of Amplitude to Wavelength
To restate a point made in the Introduction section, 

seemingly inconsistent Hurst exponents of synthetic surfaces 
relative to their method construction is not a question of 
validity; that pink noise has a Hurst exponent of 0 is a fact. 
Rather, the issue is whether Hurst exponents are the only 
valuable representation of roughness scaling. In considering 
physical mechanisms that control fault roughness and faulting 
itself, there may be use in metrics that are not cast as profile 
length averages or depend intrinsically on profile length. 
For instance, the necessary condition for frictional failure at 
a point on a fault depends on the stress state, fault strength, 
and local surface orientation. Local surface orientation about 
asperities is more directly related to the local slope via the 
amplitude to wavelength ratio than it is to profile-length-
averaged height. Accordingly, consider the scaling associated 
with the physical amplitude at specific wavelengths (eq. 3). 
The following section contrasts scaling with equation 3 to the 
standard approach (eq. 2). 

Imagine an idealized one-dimensional surface profile in 
the x-direction, that is made up of the sum of cosine functions 
at all wavelengths (Power and Tullis, 1991). At any value of λ, 
the contribution to the profile is

	 (14)

where a is the amplitude, here allowed to depend on wave-
length, and f is a random phase shift. Estimates of the corre-
sponding Fourier amplitude at each wavelength and scaling with 
wavelength can be made analytically. The Fourier transform of 
a profile of length Lp at a specific frequency (wavelength) is

	 (15)

where ω is the angular spatial frequency, ω=2π ⁄ λ. In the 
general case, the transform results in a complex series in the 
frequency domain, G(ω). However, for this example con-
struction, the imaginary part can be avoided. Using Euler’s 
formula, equation 15 can be decomposed into the real and 
imaginary parts,

	 (16)

Here, on the right-hand side of equation 16 from left to right, 
the integrals are the real (R, for short below) and imaginary 
parts (I, for short) of the transform, respectively. The 
amplitude, A, of the transform is the quantity of interest,

	 (17)

Equation 17 is the formal definition of the Fourier 
amplitude referred to previously in equation 7. Fourier 
amplitude is independent of the phase shift, f. Therefore, for 
the choice of cosines and for simplicity, taking f = 0 makes 
equation 14 an even function. Then there is no imaginary part 
in the transform and A = R. Substituting equation 14 into 16 
and then into 17 yields

(18)

with the Fourier amplitude

(19)

For the length scales that are not aliased, such as λ ⁄4 π<<Lp, 
equation 19 is 

	 (20)

Thus, if the amplitudes a(λ) of the parts of the profile depend 
on wavelength, as in equation 3, kλ λ

m, then from equation 20, 
the Fourier amplitudes are

	 (21)

Figure 5 shows these relations between the physical 
amplitudes a and Fourier amplitudes A for an example where 
the total profile length Lp is 1 mm. The synthetic profile  
(fig. 5A and B) is made up of 21 specific wavelengths that are 
approximately equally spaced logarithmically between 1 and 
1,000 µm. The amplitudes are shown in figure 5C and obey 
the power law relation with kλ = 0.01, m = 1, and a = 0.01λ. 
The individual wavelengths also have random phase shifts. 
The analytical estimates of Fourier amplitude (eqs. 19 and 20) 
from the prescribed physical amplitudes and wavelengths are 
shown in figure 5D, as are those estimated numerically from 
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Figure 5
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Figure 5.  Simulated profile of length L = 1 millimeter (mm). Parts A and B (note scale difference) were constructed from summing 21 
equally, logarithmically spaced cosine functions using equation 18 with a = 0.01λ. The assigned physical amplitudes are shown in part 
C. In D, the corresponding Fourier amplitudes, A, are estimated three different ways: with a numerical transform of the profile (eq.  15) 
at each of the 21 wavelengths, and using the analytical (eq. 19) and the approximate (eqs. 20 and 21) solutions of the specified parts. a, 
amplitude; λ, wavelength; µm, micrometer; µm2, square micrometer.
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the constructed profile using the transform equation 15. The 
estimated (eq. 20) and actual amplitudes (eq. 15) in this single 
realization are very similar. However, this is a single example 
with a specific set of random phases; in general, equations 18, 
19, 20, and 21 are only estimates. Collectively, they approxi-
mate the overall scaling (eq. 21) better than individual ampli-
tudes at each of the chosen wavelengths. Included in figure 
5D in red symbols are the resulting amplitudes of the average 
for 100 different realizations of the construction (100 different 
sets of 21 random amplitudes), showing consistency but not 
identical values to the estimates. As the wavelengths approach 
Lp, the actual Fourier amplitudes begin to deviate notably from 
the estimates—this arises when the wavelength is not λ/4π<< 
Lp and therefore is not well resolved in equation 19. Note that 
the actual transform amplitude is also inconsistent with the 
assigned amplitudes in the construction at long wavelength. 
These are issues in interpreting fits to transforms of natural 
profiles at wavelengths near the profile length. 

For representative profiles, since the Psd is the square of 
equation 18 normalized by profile length, Lp, the estimated 
dependence of Psd on wavelength relates to the dependence of 
the actual profile amplitudes on wavelength as 

	 (22)

Reemphasizing a prior result, the exponent m that controls  
the amplitude scaling of the actual profile is half of Psd and  
m = α ⁄ 2. So, in addition to having a scale-independent ratio 
of average height to length (ζ = 1; α = 3), equation 22 implies 
that a self-similar surface has a scale-dependent ratio of ampli-
tude to wavelength, m = 3/2. This requires that in the average 
sense, a self-similar surface has scale-independent roughness, 
but in the specific sense it does not. 

The dependence of specific amplitude on wavelength is a 
requirement of self-similarity. That is, for the square root of the 
integral in the definition of Rq to be scale independent requires 
a specific continuous scale dependence of amplitudes. In detail, 
equating the RMS height with the average surface height (as 
done in the standard approach from Power and Tullis [1991]) in 
equation 2 and substituting in equation 22 results in

(23)

recalling that the spatial frequency fs = 1/λ. Carrying out the 
integration and evaluating results in

(24)

For the ratio of average height to profile length to be indepen-
dent of profile length (Ĥ∝Lp) requires m = 3/2, such that the 
specific amplitudes increase more rapidly with wavelength 
than wavelength itself.

This sense of the specific amplitude-to-wavelength 
scale dependence seems to conflict with the standard view of 

self-similar or natural fault surfaces. For example, for self-
similar surfaces, m exceeds 1; this means that the specific 
amplitude to wavelength ratio is higher at long wavelengths 
than it is at short wavelengths. As shown in figure 6, a self-
similar trace is steeper than lines of constant A/λ. To a lesser 
degree, the same is true for natural fault surfaces, for which 
the examples shown in figure 4 are thought to be typical 
(Candela and others, 2015; Brodsky and others, 2015) and 
their slopes are slightly steeper than constant A/λ. These are 
reshown in figure 6 in the context of A/λ, where m = 1.1 (Can-
dela and others, 2015; Brodsky and others, 2015) and m = 1.3 
(Thom and others, 2017). Thus, in the specific sense, self-sim-
ilar and natural fault surfaces are rougher at long wavelength 
than they are at short wavelength, in marked contrast to their 
profile-length-averaged properties. 

Figure 6
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Figure 6.  Summary Fourier amplitude plots for the assumption 
Ĥ=Rq. Two natural fault surfaces are shown schematically in 
black (Brodsky and others, 2015; Thom and others, 2017). Here, 
since the trace lengths used to construct figure 4 are unknown, 
these are normalized assuming a length of 1 meter (m) for each; 
their slopes are correct, but their locations are arbitrary. Example 
spectra of self-similar surfaces are shown as dotted lines of slope 
m = 3/2, corresponding to constant average-height-to-profile-
length ratios. Dotted lines are constant average-amplitude-to-
specific-wavelength ratios with slope of m = 1. Ĥ, average surface 
height; Rq , root mean square average roughness; H, surface 
height; L, surface length; A, fourier amplitude; λ, wavelength; m, 
scaling exponent in the physical realm; α, power spectral density 
scaling exponent; ζ, Hurst exponent; µm, micrometer.
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Discussion
Generally, equations 20 and 21 emphasize that specific 

amplitudes of a rough fault surface can be approximately 
extracted from the transform normalized by half the profile 
length. Figure 7 shows a normalized transform, our Brown 
profile with the actual RMS height (0.0022 µm, large open 
circle) plotted at the profile length. Having the profile 
amplitudes displayed in wavelength is conceptually useful 
for two reasons. First, amplitude at a particular wavelength 
is hard to visualize or measure in the physical domain except 
at long wavelengths. Average amplitude over a particular 
profile length from equation 2 is a more difficult concept. 
A normalized transform allows those to be reasonably well 
defined at all wavelengths. Second, for the unnormalized 
transform and for the standard power spectra approach, the 
resulting amplitudes depend on an arbitrary choice of profile 
length. Spectral amplitude from measurements made on the 

Figure 7
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Figure 7.  Plot of normalized Fourier amplitudes (in square 
micrometers [mm2]) versus wavelength (in micrometers [mm]). 
Amplitude spectra are normalized by half the profile length at 
5,000 logarithmically spaced wavelengths. Shown for reference 
are the root mean squared average roughness (Rq) calculated 
from the profile (large open circles), 16 logarithmically spaced 
average amplitudes (small open circles), and a fit to the average 
amplitudes, plotted in log(A) versus log(λ) space (dashed line). 
The fit values, calculated using equation 21 and normalized by half 
the profile length, are kλ = 1.66 x 10−5 mm, m = 0.95. Rq, root mean 
square average roughness; A, Fourier amplitude; µm, micrometers.

same fault or from measurements of different faults aren’t 
clearly tied to the actual roughness; this makes comparisons 
beyond the scaling exponent less straightforward. In addition 
to the scaling, presumably actual amplitudes and roughness 
resulting from fault creation and modification by shear reflect 
the underlying processes. For the normalized transform in 
figure 7, using equation 21, estimates of scaling exponent 
m and the coefficient kλ (often called the “pre-factor” in 
the roughness scaling literature; for example, Renard and 
Candela [2017]) are available from a fit to the normalized 
amplitudes An=kλ(λ ⁄ λ0 )m. Here λ0 is an arbitrary reference 
wavelength. Standard fast Fourier transform routines typically 
do not distribute amplitudes uniformly in wavelength; 
this can produce bias in any fit. In the example in figure 7, 
the transform is calculated at Fourier amplitudes at 5,000 
equally spaced logarithmic increments (lines). Those are then 
averaged across 16 equally (logarithmically) spaced bins 
(open circles), so that the fit (gray dashed line) is weighted 
uniformly across the range.

Table 2 summarizes the scaling relations with wavelength 
for average height, power spectral density, and actual surface 
amplitude for all the cases discussed in this report. Of note are 
the conditions where the profile length-averaged height and 
wavelength-average amplitude show opposite scaling, corre-
sponding to Hurst exponents 0.5<ζ<1. These are profiles in the 
range between Brownian and self-similar. This is a curiosity of 
the statistics of rough surfaces that applies to nearly all natural 
fault surfaces.

Table 2.  Summary of scaling exponents in descending degree of 
correlation (descending exponent) for different cases under the 
standard assumption that average surface height (Ĥ) is the root 
mean square average roughness (Rq).

[ζ is the exponent in the scaling relation between average surface height and 
profile length,               (see eq. 2). α is the exponent in the scaling relation 
between power spectral density and wavelength, Psd ∝ λv α (see eq. 8). m is 
the exponent in the scaling relation between average amplitude and specific 
wavelength, a ∝ λm (see eq. 3)]

Case
ζ = (α – 1)/2
ζ = m – 1/2

α = 1 + 2ζ
α = 2m

m = ζ + ½
m = α /2

Self-similar 1 3 3/2

Ĥ decreasing with 
wavelength

<1 <3 <3/2

Thom and others 
(2017)

0.75 2.5 1.25

Candela and others 
(2012); Brodsky 
and others (2015)

0.6 2.2 1.1

Brown noise 1/2 2 1

a decreasing with 
wavelength

<1/2 <2 <1

Pink noise 0 1 1/2

ˆ

H Lp
 � �

ˆ
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Are natural fault surfaces smoother at long wavelength? 
The answer clearly depends on the metric, which should 
be chosen based on the fault property of interest. In this 
regard, using additional roughness metrics may be useful 
in evaluating existing models of roughness genesis. For 
example, to explain the decrease in the ratio of average 
height to profile length with scale (fig. 4), Brodsky and 
others (2015) appeal to the scale-dependent intact strength 
of rocks and minerals, such as observed in laboratory failure 
experiments on samples of increasing specific size (Mogi, 
1962; Pratt and others, 1971; see summary by Scholz, 1990). 
The standard interpretation of this scale-dependent strength is 
that failure occurs at a stress level that reflects a combination 
of the theoretical strength of the material and the number of 
flaws. Small samples have a smaller number of flaws and, in 
principal, can reflect the true theoretical material strength, 
whereas increasing sample size leads to progressively lower 
and lower values of failure strength (for example, Mogi, 
1962). Using this scale-dependent strength to explain natural 
fault roughness only works if sample size in the experiments 
corresponds to profile length in an application to faulting and 
that size-dependent strength measured in the experiments 
corresponds to the size-dependent RMS strength of a rough 
fault. Foremost, of course, the argument requires that fault 
surfaces are smoother at long wavelength.

The motivation for exploring alternative roughness 
metrics and analysis procedures in this report is preliminary 
work to be applied to understand the evolution of natural and 
experimental fault surfaces during frictional sliding. For faults 
in laboratory experiments, our ultimate interests are in how 
roughness influences the degree of localization within the 
shear zone, absolute strength, and the rate dependence of fault 
slip. However, there are likely pitfalls to using spectral slopes 
alone to compare models to natural and laboratory data. For 
instance, the random walk profile has the same spectral slope 
(fig. 3A) as the example where amplitude varies linearly with 
wavelength (fig. 5). Their similarity in the amplitude spectral 
domain neither well reflects the notable differences in their 
synthetic genesis nor differences that are well defined in the 
physical domain. This is a common problem in interpreting 
amplitude spectrum representations without consideration 
of their series representation (for example, source models 
in seismology). Distinguishing between these two examples 
requires a broader view not used in standard roughness 
analyses. Some approaches would be to use phase information 
and additional roughness metrics, such as those developed in 
engineering studies of manufactured surfaces.

Conclusions
Prior studies of natural fault surfaces show that the 

ratio of surface average height to profile length decreases 
with scale, where average height is defined using the root 
mean squared roughness, Rq. According to this approach, 
fault surfaces are smoother at long wavelength than they 
are at shorter wavelengths. However, a different roughness 

metric—the average heights that are specifically associated 
with a wavelength—shows the opposite sense of scaling. The 
ratio of amplitude to wavelength increases with wavelength. 
This apparent contradiction is a curiosity of the statistics of 
rough surfaces that have Hurst scaling exponents, ζ, that relate 
profile length to Rq in the range of 0.5 < ζ < 1, as natural 
faults most commonly do. This expanded description of fault 
roughness is intended to provide usable constraints on physi-
cal mechanisms that generate and modify roughness during 
frictional sliding in laboratory experiments and the Earth. 
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Appendix. Voss-McCartney Algorithm for Pink Noise
At every point along a discrete profile, the pink noise 

algorithm produces an amplitude that is the sum of j +1 
random numbers, where j is an integer. The total number of 
points in the profile is N = 2 j+1–1, and for a profile length of 
Lp the point spacing is Lp /(N−1). All of the random numbers 
in the sum are updated at different periods such that, following 
J. McCartney (written commun., September 1999), there is an 
update at each point. To illustrate, a scalable example is shown 
in figure 1.1 where j = 3, producing total points in the profile 
N = 15, and j + 1 = 4 random numbers. In this implementation, 
each generator selects numbers from a Gaussian distribution. 
The first step in the algorithm is to select initial values of 
all j+1 random numbers. Then, the amplitude at each point 
on the profile is determined sequentially by altering one of 
the j+1 values in the sum. Figure 1.1 shows the points in the 
profile horizontally from left to right and the random generator 
numbers from top to bottom. The first update positions and 
update periods are also shown, as follows.

The first update position for generators 1 to j are at points 
2 j−i, where i is the generator of interest. So, in the example 
shown in figure 1.1, j = 3 and for generator 1 the first update 
position is point number 4 (= 23−1). For generator 2, the first 
update is at point number 2 (= 23−2), and so on. The single 
update position for generator 0 is at point 2 j, point number 
8 in the example. The first update positions for the four 
generators 0 to 3 are labeled along the top of grid in figure 1.1.

Similarly, for generators 1 to j the update periods in num-
ber of points are 2 j−i+1, where i is the generator of interest. 
So, in the example, the update period for generator 3 is two 
points (= 23−3+1) and for generator 2 is four points (= 23−2+1). 
The update periods are labeled along the bottom of the grid in 
figure 1.1. Once the raw profile is produced from the proce-
dure, the mean surface is removed by fitting a line to the raw 
synthetic and then subtracting the fit.

Figure 1.1
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Figure 1.1  Schematic diagram 
showing the Voss-McCartney pink 
noise algorithm. Point position along 
the profile is shown horizontally at 
the top and the random generators 
are shown vertically. In this example, 
j = 3. There are N = 2 j + 1 − 1 points 
(= 15) and j +1 (= 4) random number 
generators. The initial update position 
for generators 1 to j are at points 2 j − i, 
where i is the generator number; their 
update period in number of points is 
2 j−i +1. The single update position for 
generator 0 is 2 j. The update points for 
each generator are labeled along the 
top of the grid and the update periods 
are labeled along the bottom.
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