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Potential Effects of Climate Change on Ambystoma 
barbouri (Streamside Salamander)

By Marta P. Lyons, Olivia E. LeDee, and Ryan Boyles

Abstract
Ambystoma barbouri (streamside salamanders) are 

stream-breeding mole salamanders that rely on seasonally 
intermittent, fishless streams for egg and larval development 
but are primarily fossorial as adults. Climate-driven changes 
are likely to alter streamflow duration, peak, and seasonality 
within the range of A. barbouri, reducing reproductive habitat 
and larval survival. Although future changes in precipita-
tion volume within the geographic range of A. barbouri are 
uncertain, in the next 90 years, increasing temperatures will 
likely increase potential evapotranspiration. Decreasing ratio 
of precipitation to potential evapotranspiration will likely 
shorten flow duration for intermittent streams, potentially 
causing earlier stream dry downs before larval metamorphosis. 
Increased temperatures may also shorten developmental peri-
ods buffering A. barbouri larvae from the effects of increased 
stream no-flow days. Additionally, precipitation in the future 
will increasingly fall in heavy rainfall events. Heavy rain and 
subsequent flooding during early larval stages may displace A. 
barbouri larvae from fishless pools into downstream reaches 
with vertebrate predators that can reduce survival. Finally, 
agriculture and urban land cover may amplify the stresses of 
climate change on A. barbouri, altering reproductive habitat 
and reducing survival of larval, juvenile, and adult life stages.

Purpose and Scope
The purpose of this report is to provide an overview of 

potential direct and indirect effects of climate change on the 
Ambystoma barbouri (streamside salamander) life cycle and 
habitat based on peer-reviewed literature and government 
reports (table 1). This report focuses on A. barbouri popu-
lations and climate change within the States of Kentucky, 
Illinois, Indiana, Ohio, Tennessee, and West Virginia based on 
existing species range maps (USGS GAP, 2018; fig. 1).

Climate Context
A. barbouri occupies areas of southeast Indiana, south-

west Ohio, and central Kentucky, with disjunct populations 
in Illinois, Tennessee, and West Virginia (fig. 1). Kentucky, 
the State with the majority of A. barbouri’s distribution, has 
a seasonal climate with warm summers and cool winters 
(Runkle and others, 2022). The Frankfort, Kentucky, weather 
station, at the center of A. barbouri’s distribution (Micheletti 
and Storfer, 2015), recorded climate normals for 1991–2020 
with an average daily high temperature in July of 30.9 °C and 
average daily low of −3.8 °C in January (fig. 2). Precipitation 
in Kentucky, southeast Indiana, and southwest Ohio is abun-
dant throughout the year. Monthly precipitation normals in 
Frankfort, Ky., ranged from a low of 80.0 millimeters (mm) 
per month in August to 129.5 mm per month in May. Climate 
normals for the three disjunct populations in Illinois, West 
Virginia, and Tennessee are similar to the core of the range; 
precipitation is approximately constant throughout the year 
peaking in the spring and early summer and lowest in the late 
summer and early fall. Between 1900 and 2020, weather sta-
tions in Kentucky experienced an average of 2.3 days per year 
with more than 50.8 mm of precipitation (Runkle and others, 
2022). Heavy rainfall events already appear to be increasing. 
Since 1970, 59 percent of years have been at or above average, 
potentially related to a general trend of increasing precipita-
tion in the eastern United States since 1970 (Strong and others, 
2020). In the 5-year period of 2010–2014, there were on aver-
age more than 3.5 days per year with more than 50.8 mm of 
precipitation (Runkle and others, 2022).
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Table 1. Potential direct and indirect effects of climate change on Ambystoma barbouri.

Effect Climate factor Direct mechanisms Indirect mechanism Compounding stressors Citations

Decreased  
reproduction and 
recruitment

Decreasing precipitation 
to evapotranspiration 
ratio

Larval mortality 
Early metamor-
phosis

Increased predator access Undetermined Petranka (1984b), Petranka, (2010), 
Semlitsch and Wilbur (1988), 
Semlitsch and others (1988), 
Holomuzki (1991), and Micheletti 
and Storfer (2017).

Heavy precipitation 
events

Physical trauma to 
larvae from flood-
ing

Larval drift to fish-occupied habitats 
Fish corridors to access larval 
pools

Undetermined Sih and others (1992), Segev and 
Blaustein (2014), and Petranka 
(1984b).

Decreased survival Increasing temperature Desiccation Not applicable Atrazine exposure in agri-
cultural streams reducing 
salamander water conser-
vation behavior

Rothermel and Luhring (2005), 
Rothermel and Semlitsch (2006), 
and Rohr and Palmer (2005).

Reproductive  
habitat degrada-
tion in urban 
environments

Decreasing precipitation 
to evapotranspiration 
ratio

Streams dry faster 
Larval mortality 
Early metamor-
phosis

Not applicable Increased salinity in urban 
environments

Hammond and others (2021), Mosley 
(2015), Drayer and others (2020), 
and Kaushal and others (2017).

Heavy precipitation 
events

Higher peak flows 
Physical trauma to 
larvae

Increased runoff of pollutants 
Larval drift to fish-occupied 
habitats

Undetermined Wu and others (2013), and Drayer 
and others (2020).
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Figure 1. Range of Ambystoma barbouri (streamside salamander).



Hydrological Context
A. barbouri reproduces in first and second order (Micheletti 

and Storfer, 2015) primarily intermittent limestone streams (Drayer 
and others, 2020) that alternate pools and riffles that form natural 
barriers to fish upstream movement (Petranka, 2010). A. barbouri 
occasionally breeds in ponds (Petranka, 2010) and streams with 
permanent pools containing predatory sunfish (Storfer and oth-
ers, 1999).

For intermittent streams in the contiguous United States, the 
ratio of precipitation to potential evapotranspiration is an impor-
tant predictor of the timing and duration of no-flow conditions 
((Hammond and others, 2021). Within the A. barbouri range, flows 
tend to be highest in late winter/early spring and lowest in the late 
summer/early autumn, with intermittent streams commonly running 
dry in the autumn (Eng and others, 2016; Hammond and others, 
2021). In Kentucky, Illinois, and Ohio, heavy autumn precipitation 
events are infrequent and not large enough to counter evapotranspi-
ration and low groundwater levels during this season. During typi-
cal years, autumn has days with no flow. Historically, during drier 
years, the number of no-flow days were observed earlier and more 
frequently, with more dry periods in the late summer and autumn. 
For more information, see Eng and others (2016).

Climate Change Projections
To explore potential future climate conditions in the 

study area, we analyze downscaled projections based on 
Intergovernmental Panel on Climate Change Coupled Model 
Intercomparison Project Phase 5 models for two greenhouse gas 
emissions scenarios: a moderate emissions scenario (representative 
concentration pathway 4.5 [RCP4.5]) and a high emissions scenario 
(representative concentration pathway 8.5 [RCP8.5]). The output 
from 20 global climate models with the necessary variables is sta-
tistically downscaled using the Multivariate Adaptative Constructed 
Analogs version 2 (MACAv2) method; this is a multistep con-
structed analog approach that establishes relations between global 
climate model output and historical climate observations. Outputs 
are bias corrected by climate variable to develop higher resolution 
and localized projections with about a 4-kilometer spatial resolu-
tion. The first realization (r1i1p1) of each model is used except for 
CCSM4 where the sixth realization (r6i1p1) is used. Output can 
be accessed through h ttps://www .climatolo gylab.org/ maca.html 
(Abatzoglou and Brown, 2012). MACAv2 was chosen because it is 
widely vetted and used to explore climate change effects, provides 
adequate spatial resolution to distinguish differences across A. 
barbouri’s distribution, and has been documented to better capture 
signals in rainfall extremes and frequency compared to other down-
scaled products (Wang and others, 2020; Wootten and others, 2021).

In the distribution of A. barbouri, most global climate models 
(GCMs) suggest that precipitation will increase during winter and 
spring by the end of the century under moderate (RCP4.5) and 
high (RCP8.5) emission scenarios (fig. 3). Changes in summer 
and fall precipitation volume are more uncertain; climate models 

project both wetter and drier future conditions (fig. 3). In the lower 
Midwest and upper Southeast, more frequent heavy precipitation 
events will likely reflect a larger proportion of precipitation volume 
under both RCP4.5 and RCP8.5 emissions scenarios (Reidmiller 
and others, 2018). Increasing temperature, especially in the sum-
mer, will lead to increased rates of evapotranspiration (fig. 4). For 
the region occupied by A. barbouri, climate projections suggest an 
increase in drought frequency, severity, and duration (Jeong and 
others, 2014).

Future Hydrology
With precipitation increasingly falling in heavy events and 

increasing temperatures (see the “Climate Change Projections” 
section), regional and national hydrology models predict changes 
in timing and flow for intermittent streams used by A. barbouri. 
As future precipitation increasingly falls in variable, high-volume 
events, peak flow and frequency of high-water conditions are 
likely to increase. In the continental United States, the number 
of no-flow days for an intermittent stream is inversely correlated 
with the ratio of precipitation and potential evapotranspiration (P/
PET) (Hammond and others, 2021). Increasing summer evapo-
transpiration (fig. 4) without equal increases in seasonal precipita-
tion (fig. 3) will likely lead to earlier and more no-flow days in 
intermittent streams (Hammond and others, 2021). Most GCMs 
project a decrease in P/PET across the distribution of A. barbouri 
for summer, fall, and winter; some models indicate slight increases 
in spring under a moderate emissions scenario (fig. 5). A decrease 
in P/PET may advance the first no-flow date, increase the duration 
of no-flow conditions for intermittent streams, or both (Hammond 
and others, 2021).

Simulations from the Variable Infiltration Capacity model 
using 16 GCMs and 2 emissions scenarios (RCP4.5 and RCP8.5) 
predict that in the Northeast and Midwest, increasing heavy rainfall 
events will lead to increased peak flows and more frequent high 
flow conditions (Demaria and others, 2016). Even in areas with 
increasing annual precipitation, increasing atmospheric demand 
on water resources will likely lead to longer low flow seasons as 
soil moisture is reduced in the summer and autumn (Demaria and 
others, 2016).

Chattopadhyay and others (2017) used the Soil and Water 
Assessment Tool to quantify future changes in water yield and 
surface runoff in the Kentucky River Basin. Consistent with the 
other studies in the broader region, they predict decreasing water 
yield and increasing soil moisture deficit in the summer. Further 
work in Indiana using both the Variable Infiltration Capacity model 
and the Soil and Water Assessment Tool supports future decreases 
in runoff and increases in short sudden droughts in the summer as 
PET exceeds soil water availability (Cherkauer and others, 2021). 
Within the distribution of A. barbouri, warming in the summer 
(fig. 6) not offset by increasing precipitation (fig. 3) will likely 
lead to increasing soil water deficit and low flow. Multiple models 
across the distribution of A. barbouri indicate that the length of no-
flow periods in breeding streams is likely to increase.

4  Potential Effects of Climate Change on Ambystoma barbouri (Streamside Salamander)

https://www.climatologylab.org/maca.html


Future Hydrology  5

Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

Month
Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

Month

Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

Month
Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

Month

Average monthly precipitation Average monthly maximum temperature Average monthly minimum temperature

Te
m

pe
ra

tu
re

, i
n 

de
gr

ee
s 

Ce
ls

iu
s

Te
m

pe
ra

tu
re

, i
n 

de
gr

ee
s 

Ce
ls

iu
s

Pr
ec

ip
ita

tio
n,

 in
 m

ill
im

et
er

s
Pr

ec
ip

ita
tio

n,
 in

 m
ill

im
et

er
s

30

20

10

0

30

20

10

0

200

150

100

50

0

200

150

100

50

0

A. Frankfort, Kentucky B. Rosiclare, Illinois

C. Dunlow, West Virginia D. Gladeville, Tennessee

EXPLANATION

Figure 2. Summary of historical average monthly temperature and precipitation normals from 1991 to 2020 at weather stations in 
the core and three disjunct distribution areas for Ambystoma barbouri. A, Frankfort, Kentucky, the center of the core of A. barbouri’s 
distribution; B, Rosiclare, Illinois; C, Dunlow, West Virginia; and D, Gladeville, Tennessee.



GCM
 projected values from

 M
ACAv2-M

ETDATA (Abatzoglou and Brow
n, 2012)

Accessed from
 Clim

ate Toolbox (Hegew
isch and Abatzoglou, undated)

EXPLANATION

Scenario 8.5

Median

Smallest value within 1.5 times interquartile range below 25th percentile
Outlier beyond 1.5 times the interquartile range

Outlier beyond 1.5 times the interquartile range
Largest value within 1.5 times interquartile range above 75th percentile

First quartile

Third quartile

Scenario 4.5

Median

Smallest value within 1.5 times interquartile range below 25th percentile
Outlier beyond 1.5 times the interquartile range

Outlier beyond 1.5 times the interquartile range
Largest value within 1.5 times interquartile range above 75th percentile

First quartile

Third quartile

250

300

350

200

250

300

350

400

300

350

400

450

250

300

350

400

Pr
ec

ip
ita

tio
n,

 in
 m

ill
im

et
er

s 
pe

r s
ea

so
n

1971
to

2000

2010
to

2039

2040
to

2069

2070
to

2099

1971
to

2000

2010
to

2039

2040
to

2069

2070
to

2099

1971
to

2000

2010
to

2039

2040
to

2069

2070
to

2099

1971
to

2000

2010
to

2039

2040
to

2069

2070
to

2099

B. Rosiclare, IllinoisA. Frankfort, Kentucky C. Dunlow, West Virginia D. Gladeville, Tennessee

Dec.–Jan.–Feb.
M

ar.–Apr.–M
ay

June–July–Aug.
Sept.–Oct.–N

ov.

Year

Figure 3. Projected seasonal precipitation for four 30-year periods from 1971 to 2099 in the distribution areas for Ambystoma barbouri. 
Projections are centered on weather station points used for climate normals (figs. 1 and 2). A, Frankfort, Kentucky, the center of the core 
of A. barbouri’s distribution; B, Rosiclare, Illinois; C, Dunlow, West Virginia; and, D, Gladeville, Tennessee.
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Figure 4. Projected seasonal potential evapotranspiration for four 30-year periods from 1971 to 2099 in the distribution areas for Ambystoma 
barbouri. Projections centered on weather station points used for climate normals (figs. 1 and 2). A, Frankfort, Kentucky, the center of the core of 
A. barbouri’s distribution; B, Rosiclare, Illinois; C, Dunlow, West Virginia; and, D, Gladeville, Tennessee. Potential evapotranspiration represents 
maximum water demand for a well-watered grass surface using Penman-Monteith method (Allen and others, 1998; Abatzoglou, 2013).
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Figure 5. Projected seasonal ratio of precipitation volume to potential evapotranspiration for four 30-year periods from 1971 to 2099 in the 
distribution areas of Ambystoma barbouri. Projections centered on weather station points used for climate normals (figs. 1 and 2). A, Frankfort, 
Kentucky, the center of the core of A. barbouri’s distribution; B, Rosiclare, Illinois; C, Dunlow, West Virginia; and, D, Gladeville, Tennessee.
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Figure 6. Projected seasonal average temperature for four 30-year periods from 1971 to 2099 in the distribution areas of Ambystoma 
barbouri. Projections centered on weather station points used for climate normals (figs. 1 and 2). A, Frankfort, Kentucky, the center of 
the core of A. barbouri’s distribution; B, Rosiclare, Illinois; C, Dunlow, West Virginia; and, D, Gladeville, Tennessee.

Reproduction and Recruitment
Adult A. barbouri are fossorial and secretive. Current avail-

able knowledge of this species’ ecology is primarily focused on 
periods of reproduction and larval development. During the egg 
and larval period, A. barbouri relies on specific aquatic habitats. 
As a result, these early life stages are likely very sensitive to 
changes in the environment.

Earlier Stream Dry Down Reduces Larval 
Survival

A. barbouri eggs and larvae require submergence for sur-
vival. Eggs hatch in 29–82 days; larvae take 6–10 weeks to reach 
metamorphosis (Petranka, 2010). The length of the incubation and 
larval period is related to environmental conditions experienced 
during development; higher temperatures foster faster development 
(Petranka, 1984b). Like other members of the genus, larvae of A. 

barbouri likely respond to environmental cues including tempera-
ture and stream depth. These responses can advance metamorpho-
sis and help avoid desiccation for larvae in the stream (Semlitsch 
and Wilbur, 1988). Earlier metamorphosis in other Ambystoma 
species can reduce body size (McMenamin and Hadly, 2010) and 
fitness (Semlitsch and others, 1988). Larval survival of A. barbouri 
decreases with earlier dry down (Holomuzki, 1991). Low water 
levels increase the risk of desiccation and predation for larvae (that 
is, facilitating access for terrestrial predators like raccoons and 
birds; Petranka, 2010). This sensitivity to stream dry down may 
explain the western and southern range limits of A. barbouri based 
on evidence from a correlative niche model (Micheletti and Storfer, 
2015) and a gene flow model (Micheletti and Storfer, 2017).

Future climate change will likely alter the timing and number 
of no-flow days in intermittent streams. Increased no-flow duration 
in intermittent streams may reduce larval survival if streams dry 
before metamorphosis. However, these effects may be buffered 
if warming temperatures shorten the egg and larval develop-
ment period.



Survival
Like most biphasic salamanders, the early aquatic life 

stages of A. barbouri are likely the most sensitive to changes 
in the environment. Because of their low energetic demands 
and use of burrows, adult salamanders can behaviorally ther-
moregulate. Where it has been studied, adult salamanders only 
leave burrows during optimal conditions. Salamanders avoid 
unsuitable conditions by emerging for food acquisition and 
reproduction at night (Semlitsch and Pechmann, 1985) and 
when surface temperature is cool and moisture is high (McEn-
tire and Maerz, 2019).

Increasing Temperature May Decrease Survival 
for Recently Metamorphosized Salamanders

Adult A. barbouri retreat into burrows to avoid desicca-
tion; however, recently metamorphosized salamanders need 
to find or create burrows, leaving them exposed to the surface 
environment. In areas where landcover change limits burrow 
availability, juvenile Ambystoma desiccation-related mortal-
ity increases (Rothermel and Luhring, 2005; Rothermel and 
Semlitsch, 2006). Juvenile A. barbouri emerge from aquatic 
habitats and seek refuge during the late summer and early fall 
when temperatures are high and precipitation is low (fig. 2). 
With future increases in summer and fall temperature (fig. 6), 
juvenile mortality may increase in marginal habitats with low 
burrow availability; however, A. barbouri occupy agricultural 
habitats (Drayer and others, 2020) and may be less sensitive to 
open habitats than other Ambystoma that rely exclusively on 
forested habitat for terrestrial life stages.

Exposure to Agriculture Chemicals and Higher 
Temperatures Increases Desiccation Risk

While behavioral avoidance of water loss is critical to 
adult and juvenile A. barbouri survival, exposure to certain 
agricultural chemicals may disrupt these behaviors and reduce 
survival. A. barbouri frequently occupy catchments with 
agriculture (Drayer and others, 2020). Atrazine, an herbicide 
commonly applied in corn production, readily washes from 
agricultural land into waterbodies (Solomon and others, 1996). 
The distribution of A. barbouri overlaps areas of heavy atra-
zine use and atrazine groundwater concentrations (DeSimone 
and others, 2015). If exposed to atrazine during development, 
A. barbouri have increased desiccation risk as adults; this is a 
result of increased salamander activity at the expense of water 
saving behaviors like huddling to decrease surface area expo-
sure (Rohr and Palmer, 2005). A. barbouri exhibit a decrease 
in water saving behavior even 8 months after atrazine expo-
sure (Rohr and Palmer, 2005).

Future increases in heavy precipitation events may 
increase atrazine runoff into streams (Ryberg and others, 
2020). This increased runoff may result in more A. barbouri 

atrazine exposure during egg and larval development. Climate 
change and atrazine exposure will likely increase the risk of 
desiccation and impair behavioral plasticity to conserve water, 
respectively; these changes are likely to further decrease body 
condition, reduce fitness, and increase mortality.

Biotic Interactions

Increased Streamflow can Lead Larvae to Drift 
into Fish-Occupied Pools

To avoid depredation of larvae and eggs, A. barbouri 
exhibits selective ovipositing in fishless streams (Drayer and 
others, 2020; Kats and Sih, 1992). In intermittent stream sys-
tems, heavy precipitation and the consequent high discharge 
can result in larval drift (Segev and Blaustein, 2014). Young 
larvae are particularly prone to drift, which can cause physical 
trauma and wash the larvae into stream reaches occupied by 
predatory fish (Petranka, 1984b). Sih and others (1992) deter-
mined that only 6–8 percent of larvae that drifted into pools 
occupied by fish survived. Using a correlative niche model, 
Micheletti and Storfer (2017) identified increased growing-
season precipitation as a possible barrier to northward range 
expansion and hypothesized that this may be because of 
heavy-rainfall-induced larval drift.

Heavy precipitation (defined here as the amount of pre-
cipitation falling in the heaviest 1 percent of events) in the A. 
barbouri range has already increased in the last century and 
is projected to increase by more than 40 percent by the end 
of the 21st century under a high emissions scenario (RCP8.5; 
Reidmiller and others, 2018). During A. barbouri’s larval 
stage, increased heavy precipitation events will likely cause 
larval drift to suboptimal habitat and decreased larval survival.

Phenology

Uncertainty in the Effects of Climate Change on 
Breeding Onset

Adult A. barbouri start migrating to breeding streams as 
early as October and breed from December to April (Anderson 
and others, 2014; Petranka, 1984a). Though not directly 
studied in A. barbouri, breeding migrations of congeners 
often correspond to weather cues like temperature thresholds 
coinciding with rainfall events, likely reflecting a reliance on 
ephemeral waterbodies (Holomuzki, 1991). Once at the breed-
ing sites, Petranka (1984a) determined that A. barbouri adults 
increased surface activity with rainfall. Unlike explosive pond 
breeding observed in other Ambystoma spp., breeding activity 
for A. barbouri does not appear to be closely tied to specific 
rainfall or temperature conditions (Petranka, 1984a). Breeding 
activity starts during the coldest part of the year (fig. 2); it is 
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unlikely that warming temperatures alone will shift breeding 
timing earlier in the year. If A. barbouri breeding cues are 
related to specific temperature and precipitation interacting 
cues, the timing of breeding may shift, demonstrating adap-
tive capacity. Based on current understanding of A. barbouri 
ecology, it is unclear if this species will shift breeding timing, 
compensating for potential earlier stream dry down.

Habitat

Climate Change Intensifies Stressors in an 
Urban Environment

A. barbouri’s distribution overlaps the metropolitan 
areas of Nashville, Louisville, Lexington, and Cincinnati 
(fig. 1), inhabiting areas in and around these urban areas. In 
urban streams, A. barbouri are present at much lower densi-
ties compared streams in rural and natural areas (Drayer and 
others, 2020). Drayer and others (2020) determined that both 
occupancy and abundance of larval A. barbouri were signifi-
cantly lower in urban environments compared to environments 
with more forest or agricultural land. Drayer and others (2020) 
estimated abundance of A. barbouri at 35.3 individuals per 
10 meter reach transect in forested sites, 22.5 in agricultural 
sites, and only 0.66 in urban sites. Reduced salamander popu-
lations in urban areas may result from changes to hydrology 
and increased presence of environmental contaminants (Diaz 
and others, 2020). Roads in urban areas contribute not only 
to increased contaminants and habitat fragmentation but also 
mortality as adult salamanders cross roads in search of suit-
able breeding habitat (Niemiller and others, 2009). Increased 
urbanization has been linked with reduced larval survival and 
reduced adult colonization in other salamanders with similar 
life histories (Price and others, 2012). In the Drayer and others 
(2020) study, streams with higher sodium concentration had 
lower A. barbouri larval abundance likely from sodium dis-
rupting osmoregulation. Urban areas often have high sodium 
concentrations from road salting on impervious surfaces 
(Kaushal and others, 2017).

A. barbouri populations in and around metropolitan 
areas are likely to face compound threats of climate change 
and urbanization (Niemiller and others, 2006). In urban areas, 
heavy rainfall, which is projected to increase in frequency 
and intensity, is less likely to be absorbed into soil due to 
prevalence of impervious surfaces before reaching waterways 
(Wu and others, 2013). Urban areas will therefore experience 
increased runoff, higher peak flows, and increased contami-
nant loads (Wu and others, 2013). Compared to scenarios 
for climate or landcover change alone, models indicate that 
scenarios with both climate and landcover change result in 
higher runoff (Barlage and others, 2002; Wu and others, 2013). 
Increased nutrient, pollutant, and sediment movement will 
make urban watersheds less suitable for A. barbouri (Drayer 
and others, 2020).

The effects of increased future dry periods on A. barbo-
uri are also expected to be more severe in urban watersheds. 
Intermittent streams in watersheds with more impervious 
surfaces dry more rapidly (Hammond and others, 2021), 
which may exacerbate the effects of decreasing future ratio 
of precipitation to evapotranspiration (fig. 5). Shorter flow 
periods in urban intermittent streams may decrease availability 
of A. barbouri breeding habitat and decrease larval survival. 
Additionally, dry periods may increase stream salinity because 
of a lack of dilution (Mosley, 2015) and decrease salamander 
abundance (Drayer and others, 2020).
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