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Abstract
Low-streamflow statistics, such as the annual minimum 

7-day streamflow (which is the 7-day streamflow likely to 
be exceeded in 9 out of 10 years on average [7Q10]), that 
are computed by using the full historical streamflow record 
may not accurately represent current conditions at sites with 
statistically significant trends in low streamflow over time. 
Recent research suggests that using a contemporary subset of 
the historical streamflow record (specifically, the most recent 
30 years) to compute an estimate of 7Q10 more accurately 
represents current streamflow conditions when a statistically 
significant trend in the streamflow record is present. This 
report presents the results of a Monte Carlo simulation experi-
ment on artificial low-streamflow records, derived from the 
characteristics of streamflows at 174 U.S. Geological Survey 
streamgages, to test whether a similar approach is appropriate 
for the computation of the annual minimum 7-day streamflow 
exceeded in 1 out of 2 years on average (7Q2) and the annual 
minimum 7-day streamflow exceeded in 19 out of 20 years on 
average (7Q20). The results indicate that using the most recent 
30-year subset of the low-streamflow record also may be the 
best approach when computing 7Q2 and 7Q20 at sites where a 
statistically significant trend in low streamflows is detected.

Introduction
Historical observations of streamflows are often used to 

estimate the frequency of occurrence of future streamflows 
in some quantifiable way. Under an assumption of stationar-
ity, the frequency at which a particular streamflow occurred 
in the past is representative of its probable present and future 
frequency of occurrence, and it is taken for granted that all his-
torical values should have equal weight in the computation of 
such streamflow statistics. Stationarity is commonly assumed 
when streamflow-frequency statistics are computed by using 
the full period of recorded streamflow; however, assuming 

stationarity when it does not exist may yield inaccurate results 
in the statistic (for example, see Yu, 2017, for peak-streamflow 
statistics).

The environmental drivers of nonstationarity at a site are 
many and complex. Researchers have sought to explain trends 
in low streamflows using interdependent hydrologic processes 
in copula models (Jiang and others, 2015; Ahn and Palmer, 
2016), climatological variables demonstrated to be hydro-
logic predictors for particular regions (Liu and others, 2015), 
and antecedent sea-surface temperatures (Steinschneider and 
Brown, 2012). However, the precise influence that any one of 
these processes may exercise on change in hydrologic sta-
tistics is quantitatively uncertain, as has been demonstrated 
in studies of urbanization (Price, 2011; Allaire and others, 
2015; Dudley and others, 2020). When some of the drivers of 
hydrologic change are dependent on others in complex ways, 
attributing hydrologic change—or even portions of it—to any 
single causal variable (Hirsch, 2011; Allaire and others, 2015) 
becomes difficult and presents a challenge to adequate model-
ing of the observed variability of low streamflows.

The presence of nonstationarity at a site calls into ques-
tion exactly how much of the historical record is representa-
tive of present or future conditions and to what degree. For 
example, the use of low-streamflow statistics for regulatory 
purposes related to energy production, effluent dilution, 
drinking water, irrigation, or maintenance of minimum flow 
standards to support in-stream ecological health requires 
water-resource managers to know whether those statistics 
adequately represent current or future conditions pertinent to 
their application. Studies have indicated that low-streamflow 
statistics based on the recent past rather than the full record 
may more satisfactorily represent present or near-future values 
(Riggs, 1972; Gebert and others, 2016). Using data from 174 
selected U.S. Geological Survey (USGS) streamgages in the 
Chesapeake Bay watershed, Blum and others (2019) sought 
to quantify which subset of the recent low-streamflow record 
was most suitable for computing what may be considered 
the most accurate or least biased low-streamflow statistics 
under nonstationary conditions for the 7Q10 low-streamflow 
statistic (the annual minimum 7-day streamflow exceeded in 
9 out of 10 years on average). Practitioners in water-quality 
management, water-supply planning, industrial regulation, 
and agriculture commonly make decisions based on 7Q10 (for 
example, U.S. Environmental Protection Agency, 1986, 2018). 
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Blum and others (2019) found that the optimal approach for 
computing 7Q10 was to use the most recent 30 years of the 
record when a statistically significant trend was detected and 
to use the full historical record when no significant trend was 
detected.

Other statistical measures of low streamflow are also 
of interest to hydrologists and decision makers. Performing 
such an analysis on other statistics similar to 7Q10 may yield 
greater insight into the results of the 7Q10 analysis by Blum 
and others (2019). This study uses the same data and experi-
mental methodology as Blum and others (2019) to determine 
which subset of the recent low-streamflow record is most suit-
able for computing the most accurate or least biased estimates 
of alternate low-streamflow statistics: the annual minimum 
7-day streamflow likely to be exceeded in 1 out of 2 years on 
average (7Q2) and the annual minimum 7-day streamflow 
likely to be exceeded in 19 out of 20 years on average (7Q20).

Data
The same data used by Blum and others (2019) were 

used in this study. For the 174 USGS streamgages in the 
Chesapeake Bay watershed in the mid-Atlantic region of 
the United States, daily streamflow values for the period 
of record ending in water year 2013 (October 1, 2012, to 
September 30, 2013) were obtained from the USGS National 
Water Information System (USGS, 2016). These sites repre-
sented a diversity of low-streamflow characteristics and geol-
ogy, included sites that were affected by changes in regulation 
or land use (or both), and had from 56 to 75 years of data. 
Dudley and others (2019) provided (1) USGS streamgage 
identification numbers; (2) the beginning and ending years for 
the period of streamflow record tested; (3) Sen slope trends in 
the annual minimum 7-day streamflow for the period of record 
tested; (4) the p-values (significance) of the trends; and (5) the 
trend Sen slopes standardized by the standard deviations of the 
residual errors, defined as the difference between observations 
and the Sen slope lines (hereafter, “standardized trends”). The 
standardized trends varied from −0.033 to 0.029.

Reference should be made to Blum and others (2019) 
for an in-depth discussion of the source and derivative data. 
However, the definition of the standardized trend is repeated 
here because of its frequent use in this report. Dudley and oth-
ers (2019) provided a nonparametric Sen slope computed for 
each of the 174 streamgages as the median slope of all slopes 
computed between every pair of points in that streamgage’s 
annual minimum 7-day flow (7Q) time series. The slope was 
then divided by the standard deviation of the residual error 
from the 7Q data to produce the standardized trend value for 
each streamgage. A positive standardized trend indicates a 
wetting trend (an increase in 7Q magnitude over time) at a 
streamgage, and a negative standardized trend indicates a dry-
ing trend (a decrease in 7Q magnitude over time).

Methods
For this study, we followed Blum and others (2019) to 

estimate 7Q2 and 7Q20 statistics, to evaluate their accuracy 
and bias, and to identify the best approach for computing the 
statistics from full-record or recent-record subsets. The two-
parameter lognormal probability distribution (LN2) was used 
to generate the synthetic 7Q records. This distribution was 
favored because of (1) its simplicity; (2) its relation to both the 
three-parameter lognormal distribution (LN3) and the log-
Pearson type 3 distribution (LP3), both of which are widely 
used for this purpose; (3) its proven applicability for describ-
ing low-streamflow distributions in previous studies (Vogel 
and Kroll, 1989, 1990; Dingman and Lawlor, 1995; Modarres, 
2008; Grandry and others, 2013; Jiang and others, 2015); and 
(4) the confirmation—through L-moment ratio diagrams—that 
it approximates the probability distribution of 7Q at gaged 
sites (Blum, 2017).

For each of the 174 standardized trends, a true 7Q2 value 
and a true 7Q20 value in the last year of record were com-
puted by using a nonstationary LN2 quantile function (Vogel 
and others, 2011) and assuming a log-linear trend (eq. 1, 
reproduced from equation 1 in Blum and others, 2019). These 
values were the true values of the statistics as derived from 
the statistical models used to generate the synthetic records, 
as opposed to hypothetical “true” values of the statistics at a 
real-world streamgage, which—given nonstationarity and data 
limitations—cannot be known and were estimated instead.

 (
_ _

 7Q x = e   μy+β (n−n   )+zx√  σ 2
y −β2sn 2) , true    (1)

where
xtrue is the true recurrence interval (2 for 7Q2, 20 

for 7Q20);
µy is the mean of the log-transformed 7Q record 

y, with y equal to ln(7Q);
β is the magnitude of the standardized trend, 

assumed to be the true slope;
n is the record length (75 years for all synthetic 

records);_
n     is the mean year (38);
zx is a standard normal variable with an annual 

exceedance probability of 1/x (0.5 for 7Q2, 
0.05 for 7Q20);

σy is the standard deviation of y; and
s 2

n  is the variance of record length, which 
has been derived for a nonrandom time 
variable so that 12s 2

n  is equal to n(n+1).

The mean µy was set to 0, and the standard deviation σy 
was set to 1. This equation assumes that a log-linear function 
of 7Q is representative; Blum and others (2019) found this 
assumption to fit well in the study area.
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In addition to the true 7Q2 and 7Q20 values computed as 
above for each of the 174 standardized trends, a set of 10,000 
synthetic 75-year annual series of 7Q values was simulated 
for each of the 174 standardized trends by using equation 2 
(reproduced from equation 3 in Blum and others, 2019):

yi = μy + β ( ni − n   )  +  εi
_

(2),

where
yi is the log-transformed 7Q value in year i, with 

y equal to ln(7Q);
ni is the year i from 1 to 75;_
 n     is the mean year (38); and
εi is the residual error in year i, where εi has a 

normal distribution with a mean of 0 and a 
standard deviation of 1.

Estimating 7Q2 and 7Q20 Statistics

A nonparametric estimator is appropriate for the low-
streamflow statistics 7Q2 and 7Q20 on a record length of 
75 years because (1) the true distribution of 7Q would be 
unknown in practice and (2) record lengths are constrained 
to equal or exceed the return intervals of interest (Blum and 
others, 2019). For the return interval of 2 years (that is, 7Q2), 
statistics were estimated for eight subsets of the synthetic 
records, all exceeding the return interval: the most recent 3, 
5, 10, 20, 30, 40, and 50 years of record and the full 75 years. 
For the 20-year return interval (that is, 7Q20), the subsets of 
the most recent 3, 5, and 10 years of record were excluded 
because they were all less than the return interval of the statis-
tic being estimated. Therefore, 7Q20 was estimated for only 
five subsets of the synthetic records. Equation 3 (reproduced 
from equation 4 in Blum and others, 2019) was used for the 
7Q2 and 7Q20 estimations:

7Q  xest = (1 − θ) qi   + θ  qi+1   , (3)

where
xest is the estimated recurrence interval (2 for 

7Q2, 20 for 7Q20);
qi is the value from the 7Q series with ranking 

i based on sorting the entire record from 
smallest (i equals 1) to largest (i equals 
record length);

i is also computed as the integer portion of 
(n + 1)p;

θ is the remainder after rounding down in the 
calculation of i, such that θ is equal to [(n 
+ 1)p  − i];

n is the record length for the subset; and
p is the annual exceedance probability 

corresponding to recurrence interval x, 
such that p is equal to 1/x.

Accuracy and Bias of 7Q2 and 7Q20 Estimates

The values produced by equation 3 are considered to 
be “estimated” 7Q2 and 7Q20 values, in contrast to the true 
values computed by using equation 1 for each of the 174 
standardized trends. For each of the 174 standardized trends, 
there were 10,000 simulations, and 7Q2 was estimated from 
each synthetic record by using the full 75-year record and the 
most recent 3, 5, 10, 20, 30, 40, and 50 years of record (eight 
record subsets). This produced 13,920,000 estimates of 7Q2 
(1,740,000 for each of the eight record subsets), each of which 
corresponds to the true 7Q2 value for the standardized trend 
upon which the synthetic record was established. Similarly, 
there were 8,700,000 estimates of 7Q20 (1,740,000 for each of 
the five record subsets used for 7Q20), each corresponding to 
a true 7Q20 value.

The error of each 7Q2 and 7Q20 estimate is simply the 
difference between the estimated 7Q2 or 7Q20 statistic result-
ing from each simulation and the corresponding true statistic. 
This per-point error was computed for all estimates, but the 
abundance of data points precludes producing plots with any 
usefulness or efficiency. Instead, the entire set of 1,740,000 
error values for each record subset and each statistic (that is, 
7Q2 and 7Q20) was divided into 100 bins of equal size, each 
containing 17,400 error values. The root mean-square error 
(RMSE) was computed for each bin for each of the shorter 
record subsets (for the 3, 5, 10, 20, 30, 40, and 50 most recent 
years for 7Q2; for the 20, 30, 40, and 50 most recent years 
for 7Q20) and compared to the same bin’s RMSE for the 
full 75-year record to produce an “improvement factor.” The 
improvement factor was computed as the ratio of the RMSE 
for the full record to the RMSE of the partial record (see equa-
tion 6 in Blum and others, 2019). Therefore, an improvement 
factor of 2 indicates that the RMSE of the full record is twice 
as large as that of the partial record; in other words, the 7Q2 
(or 7Q20) computed from the partial record could be consid-
ered twice as accurate—on average—as that computed from 
the full record for the bin under consideration. An improve-
ment factor of 1 indicates that the 7Q2 (or 7Q20) computed 
from the partial record is as accurate as that computed from 
the full record.

The mean bias was computed for the 7Q2 and 7Q20 
estimation approaches by using the full record, using subsets 
of the most recent observation years, and using the most recent 
years of record with adaptive approaches (see next section) 
from statistical significance levels of p<0.01, p<0.05, and 
p<0.1. As with the computations for improvement factor, bias 
also was computed for each bin as the average over 17,400 
points of the difference between the estimated 7Q2 or 7Q20 
statistic and the corresponding true 7Q2 or 7Q20 value (see 
equation 7 in Blum and others, 2019).
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Adaptive Approach

We also analyzed “adaptive” approaches for the record’s 
subset selected as the best suited for computing 7Q2 and 
7Q20 at trend-affected sites. The analyses described above 
are termed “nonadaptive” because the selected record subset 
was used for estimating the low-streamflow statistic at all 
sites, even sites where the full record outperformed the subset 
record in accuracy (that is, improvement factors less than 1, 
which was the case for sites with little to no trend). In contrast, 
the adaptive approach adapted to the presence of a trend at 
a site by using the full 75-year record where a trend was not 
detected and by using the chosen subset record where a trend 
was detected. We identified whether a trend existed according 
to the Mann-Kendall test with significance levels of p<0.01, 
p<0.05, and p<0.1 for each of the 1,740,000 synthetic 7Q data-
sets. For each of the significance levels, each of those syn-
thetic datasets was categorized as either trend-affected or not 
trend-affected. For trend-affected datasets, the 7Q2 or 7Q20 
statistic was computed by using the selected record subset; for 
datasets that were not trend-affected, the statistic was com-
puted by using the full 75-year record.

Results
The range of improvement factors in the 7Q2 analysis 

(fig. 1) was found to be greater than those in the original 7Q10 
analysis (Blum and others, 2019) or in the 7Q20 analysis 
(fig. 2). Improvement factors as a function of standardized 
trend had a roughly parabolic shape for all 7Qx analyses (x 
= 2, 10, 20), with a minimum at or near a standardized trend 
magnitude of 0 and maxima at or near the extreme standard-
ized trend values (figs. 1 and 2; reference fig. 3 in Blum and 
others, 2019). All series also followed the general rule that the 
parabolic shape is shallowest for the longest record subsets 
and deepest for the shortest record subsets; that is, the longest 
record subsets had the greatest minimum improvement factors 
but the least maximum improvement factors. Inversely, the 
shortest record subsets had the most extreme minimum and 
maximum improvement factors of all record subsets.

The subsets of the most recent 20 and 30 years were 
the two most optimal options for estimating the 7Q2 statistic 
under the considered trend characteristics (fig. 1, appendix 1). 
The subsets of the most recent 10, 40, and 50 years each had 
narrow ranges of standardized trend magnitudes for which 
they were superior to other subsets. The subset of the most 
recent 20 years offered more improvement than the subset of 
the most recent 30 years for a wider range of standardized 
trend magnitudes, but those magnitudes were at the extremes 

of all those considered; the subset of the most recent 30 years 
was superior for more of the bins that correspond to the most 
commonly occurring standardized trends.

The subset of the most recent 30 years may be the most 
optimal option for estimating the 7Q20 statistic under the 
considered trend characteristics (fig. 2, appendix 1). This 
subset outperformed the subset of the most recent 20 years for 
almost all bins except those corresponding to the most extreme 
standardized trends. Compared with the subsets of the most 
recent 40 and 50 years, the subset of the most recent 30 years 
offered less improvement at trend magnitudes close to 0, but it 
surpassed their improvement factors as absolute trend magni-
tudes became greater than about 0.015.

Adaptive Approach

The subset of the most recent 30 years was chosen for 
improvement-factor analysis by using an adaptive-record-
subset approach for comparison to the nonadaptive approaches 
for both the 7Q2 and 7Q20 statistics. The adaptive approach 
used the full record for computation at sites with no statisti-
cally significant trend present in low-streamflow magnitude 
and only the most recent 30 years of the record at sites where 
a statistically significant trend was detected. This approach 
combined the accuracy of the full-record analysis at sites with 
little to no trend with that of the subset-record analysis at sites 
with a greater trend so that there were few scenarios where the 
improvement factor was less than 1.

For datasets without statistically significant trends, the 
improvement factor was precisely 1 because the adaptive-
subset 7Qx and full-record 7Qx were identical (figs. 3 and 4). 
Datasets with statistically significant trends, on the other hand, 
had improvement factors greater than 1 because the adaptive-
subset 7Qx was equal to the nonadaptive-subset 7Qx, not to 
the full-record 7Qx.

Each of the three selected trends’ significance levels for 
the adaptive approach (p<0.01, p<0.05, p<0.1) produced a 
curve that was flat, with an improvement factor of 1, at and 
near the point of no trend and that rose and met the nonadap-
tive data series as the improvement factor increased above 1. 
For all three analyses, more of the data points for the signifi-
cance level of p<0.1 (inclusive of the most trends) matched 
those of the nonadaptive data series—and thus resulted in 
greater improvement factors for a given standardized trend 
magnitude—than data points for the other two significance 
levels, although the differences were minor. These results 
suggest that p<0.1 may be the best significance level to use 
when testing a site for the presence of a trend for the adaptive 
approach, although little accuracy would be lost by using a 
different significance level.
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Figure 1. Accuracy of 7Q2 estimators based on subsets of the most recent 3, 5, 10, 20, 30, 40, and 
50 years of record, relative to 7Q2 estimators calculated by using a full 75-year record. Improvement 
factor is defined as the ratio of the root mean-square error (RMSE) for 7Q2 estimated by using the full 
75-year record relative to the RMSE for 7Q2 estimated by using the specified subset. Standardized 
trend magnitude refers to the nonparametric Sen slope standardized by residual errors relative to the 
Sen slope line. To focus on the large amount of data near the origin, where the differences among the 
seven record-subset series can be most clearly seen, bins with improvement factors greater than 5 
are not shown. Above the y-axis limit, all series continue upward along a rough continuation of the 
same shape as the visible portions of their series. 7Q2, annual minimum 7-day streamflow exceeded 
in 1 out of 2 years on average.

Bias

In addition to the improvement factor, the bias of each 
7Q2 and 7Q20 estimator compared to the true 7Q2 and 7Q20 
can indicate which estimator is the most accurate. For the 7Q2 
analysis, there were eleven 100-bin series for which the bins 
of average bias were plotted against the standardized trend 
magnitude: the nonadaptive subsets of the most recent 3, 5, 10, 
20, 30, 40, and 50 years; the nonadaptive full 75-year record; 
and the adaptive series for the subset of the most recent 30 
years with significance levels of p<0.01, p<0.05, and p<0.1 

(fig. 5). For the 7Q20 analysis, there were eight 100-bin series: 
all the nonadaptive series from the 7Q2 analysis except the 
subsets of the most recent 3, 5, and 10 years; and the adaptive 
series for the subset of the most recent 30 years with signifi-
cance levels of p<0.01, p<0.05, and p<0.1 (fig. 6).

The bias for the full record and all adaptive variations 
of record subsets, which were equivalent to the full record 
at trend magnitudes close to 0, always intersected the origin; 
that is, the mean bias was 0 for no-trend scenarios. All other 
record subsets had biases other than 0 at no standardized trend. 
Most, though, were near 0 for no standardized trend, with 
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Figure 2. Accuracy of 7Q20 estimators based on subsets of the most recent 20, 30, 40, and 50 years 
of record, relative to 7Q20 estimators calculated by using a full 75-year record. Improvement factor is 
defined as the ratio of the root mean-square error (RMSE) for 7Q20 estimated by using the full 75-year 
record relative to the RMSE for 7Q20 estimated by using the specified subset. Standardized trend 
magnitude refers to the nonparametric Sen slope standardized by residual errors relative to the Sen 
slope line. 7Q20, annual minimum 7-day streamflow exceeded in 19 out of 20 years on average.

standardized trend magnitude and bias generally increasing 
together in absolute value. The full record was the least biased 
only at and very near a trend magnitude of 0; the shorter 
record subsets outperformed the full record at larger standard-
ized trend magnitudes. The longer record subsets displayed 
greater absolute mean bias for almost all the bins that were 
considered. Bias was generally minimized across all trend 
magnitudes by using the shortest record subsets.

Discussion

The threshold value of the standardized trend magnitude 
at which the 30-year-record subset became favorable to the 
full record (that is, the improvement factor became greater 
than 1) varied slightly among the three low-streamflow 

statistics (7Q2, 7Q10, 7Q20) and among the trends’ signifi-
cance levels (p<0.01, p<0.05, p<0.1). Generally, however, a 
standardized trend magnitude of 0.01 may be considered a 
reasonable threshold upon which to consider using only the 
most recent 30 years of record for computing low-streamflow 
statistics.

For all three statistics, the 30-year-record subset pro-
duced less bias than the full record when a significant trend 
was detected at any tested significance level. The biases of 
the 30-year-record subset and its three adaptive approaches 
(significance levels of p<0.01, p<0.05, p<0.1) were quite 
similar to each other for almost all the bins. Differences were 
observed only very close to a trend magnitude of 0. Of the 
three adaptive approaches, the significance level of p<0.1 
appeared to be most favorable in this analysis, showing less 
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Figure 3. Accuracy of 7Q2 estimators based on adaptive approaches, where the subset of the 
most recent 30 years of record is only used when a statistically significant trend is detected at the 
p<0.01, p<0.05, and p<0.1 significance levels, relative to 7Q2 estimators calculated by using a full 
75-year record. Improvement factor is defined as the ratio of the root mean-square error (RMSE) for 
7Q2 estimated by using the full 75-year record relative to the RMSE for 7Q2 estimated by using the 
specified subset. Standardized trend magnitude refers to the nonparametric Sen slope standardized 
by residual errors relative to the Sen slope line. 7Q2, annual minimum 7-day streamflow exceeded in 
1 out of 2 years on average.

absolute mean bias than the other adaptive approaches in bins 
in which they differed and matching the nonadaptive curve for 
the subset of the most recent 30 years more quickly than the 
other adaptive approaches as the trend magnitude increased.

The difficulty of choosing between the subsets for the 
most recent 20 years and the most recent 30 years for the 
7Q20 analysis suggested that an adaptive approach with more 
than the two options proposed here (full 75-year record and 
a subset of the most recent 30 years) might provide the most 
accuracy for all the analyzed ranges of trend magnitudes, 
although the complexity of such an algorithm could make 
it unwieldy for many practitioners. To demonstrate, for all 
analyses (figs. 1 and 2, and see Blum and others, 2019), there 
was a range of standardized trend magnitudes for which each 
record subset provided the largest improvement factors. The 

longest record subsets provided the greatest improvement fac-
tors for trend magnitudes closest to 0, and the shortest record 
subsets provided the greatest improvement factors for trend 
magnitudes furthest from 0; the intervening record subsets 
provided the greatest improvement factors for certain ranges 
of trend magnitudes between the extremes. The exceptions to 
this general observation were the subsets of the most recent 
3 and 5 years in the 7Q2 analysis, which did not provide the 
greatest improvement factors for any of the ranges in standard-
ized trend magnitudes tested in this analysis. In a multiple-
choice adaptive approach, a practitioner might (1) compute 
a site’s standardized trend in low-streamflow magnitude at a 
significance level of p<0.1; (2) use appendix 1 to determine 
which of the analyzed subsets (or the full record) provides 
the greatest improvement factor at that magnitude; and (3) 
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Figure 4. Accuracy of 7Q20 estimators based on adaptive approaches, where the subset of the 
most recent 30 years of record is only used when a statistically significant trend is detected at the 
p<0.01, p<0.05, and p<0.1 significance levels, relative to 7Q20 estimators calculated by using a full 
75-year record. Improvement factor is defined as the ratio of the root mean-square error (RMSE) for 
7Q20 estimated by using the full 75-year record relative to the RMSE for 7Q20 estimated by using the 
specified subset. Standardized trend magnitude refers to the nonparametric Sen slope standardized 
by residual errors relative to the Sen slope line. 7Q20, annual minimum 7-day streamflow exceeded in 
19 out of 20 years on average.

proceed to compute that statistic using that subset. However, 
in most ranges of trend magnitude and for most bins analyzed, 
the differences in improvement factor between similar subsets 
are so slight that the simple two-choice adaptive approach 
recommended by Blum and others (2019) and this study can 
be expected to yield results nearly identical to those computed 
by using this marginally more accurate multiple-choice adap-
tive approach. Regardless, any practitioner should be sure to 
incorporate the most recent measures of low streamflow in 
both the standardized trend computation and in the subset used 
to compute the low-streamflow statistic.

The subset of the most recent 30 years appears to be the 
optimum length (or one of the optimum lengths) for 7Q2, 
7Q10, and 7Q20, despite the difference in return interval 

(fig. 7). It is unclear from these analyses why the optimum 
subset length is not clearly dependent on the return period. It is 
important to consider that the standardized trends used in this 
study were derived from a set of gages limited in geographic 
scope to the mid-Atlantic United States, that only log-linear 
trends were explored, that the 7Q records are LN2 distributed, 
and that temporal correlation was not considered. Further 
analyses using information from other geographic regions, 
other trend types (such as nonlinear or reversing), correla-
tion analysis, and perhaps other return periods could provide 
further insight into the relation between the return period and 
the optimum record subset length.
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Figure 5. Mean bias of 7Q2 estimators calculated by using a full 75-year record, nonadaptive 
approaches (subsets of the most recent 3, 5, 10, 20, 30, 40, or 50 years), and adaptive approaches for 
the subset of the most recent 30 years. Standardized trend magnitude refers to the nonparametric 
Sen slope standardized by residual errors relative to the Sen slope line. 7Q2, annual minimum 7-day 
streamflow exceeded in 1 out of 2 years on average.
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streamflow exceeded in 19 out of 20 years on average.
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Figure 7. Accuracy of 7Q2, 7Q10, and 7Q20 estimators based on the adaptive subset of the most 
recent 30 years of record, relative to their respective estimators calculated by using a full 75-year 
record. Improvement factor is defined as the ratio of the root mean-square error (RMSE) for the statistic 
estimated by using the full 75-year record relative to the RMSE for the statistic estimated by using the 
specified subset. Standardized trend magnitude refers to the nonparametric Sen slope standardized 
by residual errors relative to the Sen slope line. 7Q2, annual minimum 7-day streamflow exceeded in 
1 out of 2 years on average; 7Q10, annual minimum 7-day streamflow exceeded in 9 out of 10 years on 
average; 7Q20, annual minimum 7-day streamflow exceeded in 19 out of 20 years on average.

Summary
A previous study used Monte Carlo simulations of artifi-

cial low-streamflow records based on standardized trend mag-
nitudes from 174 U.S. Geological Survey streamgages to iden-
tify an appropriate recent subset of a gage’s low-streamflow 
record to use for computation of 7Q10—the annual minimum 
7-day streamflow likely to be exceeded in 9 out of 10 years 
on average—when a significant trend in low streamflow was 
detected. The results of that study identified the most recent 
30 years of the low-streamflow record as the best subset of the 
record for the computation of 7Q10 in such circumstances. 
Identical analyses conducted in this study for the annual 
minimum 7-day streamflow likely to be exceeded in 1 out of 
2 years on average (7Q2) and 19 out of 20 years on average 
(7Q20) indicated that subsets of the most recent 30 years of 
low streamflow are also the appropriate subsets for computing 
these statistics when a trend is detected. For all three statistics, 

the subset of the most recent 30 years, in comparison with all 
other subsets analyzed and the full record, provided the best 
balance between a minimization of the error of the statistic 
estimated from the simulated records and a minimization of 
bias. The adaptive approach recommended by the previous 
study for 7Q10, in which the subset of the most recent 30 
years was used only where significant trends were detected 
and the full record was used otherwise, was also supported by 
this study for computing 7Q2 and 7Q20. A significance level 
of p<0.1 for trend detection is recommended for the adaptive 
approach for all three statistics.
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Appendix 1.  Tabulation of Highest Improvement Factor by Bin
For each of the 100 bins into which each analysis was 

split for plotting, the subset of the full record that produced 
the highest improvement factor was identified by tabulat-
ing results (table 1.1) from the improvement factor curves in 
figure 1 (7Q2), figure 2 (7Q20), and results from Blum and 

others (2019) (7Q10). Out of the 100 total bins for each sub-
set, the table shows the count for which each subset produced 
the highest improvement factor and the range of standardized 
trend magnitudes for which each subset generally provided the 
highest improvement factor.

Table 1.1. Accuracy of 7Q2, 7Q10, and 7Q20 estimators: total maximum bin counts and trend ranges per subset of the most recent n 
years.

[7Q2, the annual minimum 7-day streamflow exceeded in 1 out of 2 years on average; 7Q10, the annual minimum 7-day streamflow exceeded in 9 out of 10 
years on average; 7Q20, the annual minimum 7-day streamflow exceeded in 19 out of 20 years on average; n-year subset, analysis using a subset of n number of 
years of most recent 7-day low-streamflow record; Bin count as max, number of highest improvement factor bins for the given trend range in comparison to all 
other n-year subsets; Trend range as max, the range of standardized trend values over which the given n-year subset analysis yields the maximum improvement 
factor; improvement factor, ratio of root mean-square error for full record to root mean-square error of partial record; NA, not applicable]

n-year 
subset

7Q2 7Q10 7Q20

Bin count 
as max

Trend range as max
Bin count 

as max
Trend range as max

Bin count as 
max

Trend range as max

3 0 none NA1 NA1 NA1 NA1

5 0 none NA1 NA1 NA1 NA1

10 5 <−0.030, >0.040 1 none NA1 NA1

20 22 −0.030 to −0.018,  
0.016 to 0.030

7 <−0.022, >0.030 6 <−0.030, >0.035

30 32 −0.018 to −0.009,  
0.007 to 0.016

30 −0.022 to −0.013, 0.013 
to 0.030

22 −0.030 to −0.012, 0.018 
to 0.035

40 16 −0.009 to −0.005,  
0.005 to 0.007

20 −0.013 to −0.008, 0.008 
to 0.013

14 0.012 to 0.018

50 25 −0.01 42 −0.016 58 −0.024

1Subset was not considered in analysis for this statistic because the period of record would be shorter than the return interval.
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