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70 annual minimum 7-day streamflow

702 annual minimum 7-day streamflow exceeded in 1 out of 2 years on average
70210 annual minimum 7-day streamflow exceeded in 9 out of 10 years on average
7020 annual minimum 7-day streamflow exceeded in 19 out of 20 years on average
LN2 two-parameter lognormal distribution

LN3 three-parameter lognormal distribution

LP3 log-Pearson type 3 distribution

RMSE root mean-square error
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Methods for Computing 702 and 7020 Low-Streamflow
Statistics to Account for Possible Trends

By Luther Schalk,’ Robert W. Dudley,” and Annalise G. Blum?

Abstract

Low-streamflow statistics, such as the annual minimum
7-day streamflow (which is the 7-day streamflow likely to
be exceeded in 9 out of 10 years on average [7Q10]), that
are computed by using the full historical streamflow record
may not accurately represent current conditions at sites with
statistically significant trends in low streamflow over time.
Recent research suggests that using a contemporary subset of
the historical streamflow record (specifically, the most recent
30 years) to compute an estimate of 7Q10 more accurately
represents current streamflow conditions when a statistically
significant trend in the streamflow record is present. This
report presents the results of a Monte Carlo simulation experi-
ment on artificial low-streamflow records, derived from the
characteristics of streamflows at 174 U.S. Geological Survey
streamgages, to test whether a similar approach is appropriate
for the computation of the annual minimum 7-day streamflow
exceeded in 1 out of 2 years on average (7Q2) and the annual
minimum 7-day streamflow exceeded in 19 out of 20 years on
average (7Q20). The results indicate that using the most recent
30-year subset of the low-streamflow record also may be the
best approach when computing 7Q2 and 7Q20 at sites where a
statistically significant trend in low streamflows is detected.

Introduction

Historical observations of streamflows are often used to
estimate the frequency of occurrence of future streamflows
in some quantifiable way. Under an assumption of stationar-
ity, the frequency at which a particular streamflow occurred
in the past is representative of its probable present and future
frequency of occurrence, and it is taken for granted that all his-
torical values should have equal weight in the computation of
such streamflow statistics. Stationarity is commonly assumed
when streamflow-frequency statistics are computed by using
the full period of recorded streamflow; however, assuming
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stationarity when it does not exist may yield inaccurate results
in the statistic (for example, see Yu, 2017, for peak-streamflow
statistics).

The environmental drivers of nonstationarity at a site are
many and complex. Researchers have sought to explain trends
in low streamflows using interdependent hydrologic processes
in copula models (Jiang and others, 2015; Ahn and Palmer,
2016), climatological variables demonstrated to be hydro-
logic predictors for particular regions (Liu and others, 2015),
and antecedent sea-surface temperatures (Steinschneider and
Brown, 2012). However, the precise influence that any one of
these processes may exercise on change in hydrologic sta-
tistics is quantitatively uncertain, as has been demonstrated
in studies of urbanization (Price, 2011; Allaire and others,
2015; Dudley and others, 2020). When some of the drivers of
hydrologic change are dependent on others in complex ways,
attributing hydrologic change—or even portions of it—to any
single causal variable (Hirsch, 2011; Allaire and others, 2015)
becomes difficult and presents a challenge to adequate model-
ing of the observed variability of low streamflows.

The presence of nonstationarity at a site calls into ques-
tion exactly how much of the historical record is representa-
tive of present or future conditions and to what degree. For
example, the use of low-streamflow statistics for regulatory
purposes related to energy production, effluent dilution,
drinking water, irrigation, or maintenance of minimum flow
standards to support in-stream ecological health requires
water-resource managers to know whether those statistics
adequately represent current or future conditions pertinent to
their application. Studies have indicated that low-streamflow
statistics based on the recent past rather than the full record
may more satisfactorily represent present or near-future values
(Riggs, 1972; Gebert and others, 2016). Using data from 174
selected U.S. Geological Survey (USGS) streamgages in the
Chesapeake Bay watershed, Blum and others (2019) sought
to quantify which subset of the recent low-streamflow record
was most suitable for computing what may be considered
the most accurate or least biased low-streamflow statistics
under nonstationary conditions for the 7Q10 low-streamflow
statistic (the annual minimum 7-day streamflow exceeded in
9 out of 10 years on average). Practitioners in water-quality
management, water-supply planning, industrial regulation,
and agriculture commonly make decisions based on 7Q10 (for
example, U.S. Environmental Protection Agency, 1986, 2018).
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Blum and others (2019) found that the optimal approach for
computing 7Q10 was to use the most recent 30 years of the
record when a statistically significant trend was detected and
to use the full historical record when no significant trend was
detected.

Other statistical measures of low streamflow are also
of interest to hydrologists and decision makers. Performing
such an analysis on other statistics similar to 7Q10 may yield
greater insight into the results of the 7Q10 analysis by Blum
and others (2019). This study uses the same data and experi-
mental methodology as Blum and others (2019) to determine
which subset of the recent low-streamflow record is most suit-
able for computing the most accurate or least biased estimates
of alternate low-streamflow statistics: the annual minimum
7-day streamflow likely to be exceeded in 1 out of 2 years on
average (7Q2) and the annual minimum 7-day streamflow
likely to be exceeded in 19 out of 20 years on average (7Q20).

Data

The same data used by Blum and others (2019) were
used in this study. For the 174 USGS streamgages in the
Chesapeake Bay watershed in the mid-Atlantic region of
the United States, daily streamflow values for the period
of record ending in water year 2013 (October 1, 2012, to
September 30, 2013) were obtained from the USGS National
Water Information System (USGS, 2016). These sites repre-
sented a diversity of low-streamflow characteristics and geol-
ogy, included sites that were affected by changes in regulation
or land use (or both), and had from 56 to 75 years of data.
Dudley and others (2019) provided (1) USGS streamgage
identification numbers; (2) the beginning and ending years for
the period of streamflow record tested; (3) Sen slope trends in
the annual minimum 7-day streamflow for the period of record
tested; (4) the p-values (significance) of the trends; and (5) the
trend Sen slopes standardized by the standard deviations of the
residual errors, defined as the difference between observations
and the Sen slope lines (hereafter, “standardized trends”). The
standardized trends varied from —0.033 to 0.029.

Reference should be made to Blum and others (2019)
for an in-depth discussion of the source and derivative data.
However, the definition of the standardized trend is repeated
here because of its frequent use in this report. Dudley and oth-
ers (2019) provided a nonparametric Sen slope computed for
each of the 174 streamgages as the median slope of all slopes
computed between every pair of points in that streamgage’s
annual minimum 7-day flow (7Q) time series. The slope was
then divided by the standard deviation of the residual error
from the 7Q data to produce the standardized trend value for
each streamgage. A positive standardized trend indicates a
wetting trend (an increase in 7Q magnitude over time) at a
streamgage, and a negative standardized trend indicates a dry-
ing trend (a decrease in 7Q magnitude over time).

Methods

For this study, we followed Blum and others (2019) to
estimate 7Q2 and 7Q20 statistics, to evaluate their accuracy
and bias, and to identify the best approach for computing the
statistics from full-record or recent-record subsets. The two-
parameter lognormal probability distribution (LN2) was used
to generate the synthetic 7Q records. This distribution was
favored because of (1) its simplicity; (2) its relation to both the
three-parameter lognormal distribution (LN3) and the log-
Pearson type 3 distribution (LP3), both of which are widely
used for this purpose; (3) its proven applicability for describ-
ing low-streamflow distributions in previous studies (Vogel
and Kroll, 1989, 1990; Dingman and Lawlor, 1995; Modarres,
2008; Grandry and others, 2013; Jiang and others, 2015); and
(4) the confirmation—through L-moment ratio diagrams—that
it approximates the probability distribution of 7Q at gaged
sites (Blum, 2017).

For each of the 174 standardized trends, a true 7Q2 value
and a true 7Q20 value in the last year of record were com-
puted by using a nonstationary LN2 quantile function (Vogel
and others, 2011) and assuming a log-linear trend (eq. 1,
reproduced from equation 1 in Blum and others, 2019). These
values were the true values of the statistics as derived from
the statistical models used to generate the synthetic records,
as opposed to hypothetical “true” values of the statistics at a
real-world streamgage, which—given nonstationarity and data
limitations—cannot be known and were estimated instead.

7mew = ¢ (/4‘.+ﬂ(izfﬁ)+;‘« q,zfﬁzsmz), (1)
where
X, 18 the true recurrence interval (2 for 7Q2, 20

for 7Q20);
“, is the mean of the log-transformed 7Q record
v, with y equal to In(7Q);
S is the magnitude of the standardized trend,
assumed to be the true slope;
n is the record length (75 years for all synthetic

records);
m is the mean year (38),
z is a standard normal variable with an annual

exceedance probability of 1/x (0.5 for 7Q2,
0.05 for 7Q20);

o is the standard deviation of y; and

s 2 is the variance of record length, which
has been derived for a nonrandom time
variable so that 12s,? is equal to n(n+1).

The mean U, was set to 0, and the standard deviation o,
was set to 1. This equation assumes that a log-linear function
of 7Q is representative; Blum and others (2019) found this
assumption to fit well in the study area.



In addition to the true 7Q2 and 7Q20 values computed as
above for each of the 174 standardized trends, a set of 10,000
synthetic 75-year annual series of 7Q values was simulated
for each of the 174 standardized trends by using equation 2
(reproduced from equation 3 in Blum and others, 2019):

Vi =, pm—m)te, (2
where
v;  is the log-transformed 7Q value in year i, with
y equal to In(7Q);
n;, isthe year i from 1 to 75;
. is the mean year (38); and
g;  1sthe residual error in year i, where ¢, has a

normal distribution with a mean of 0 and a
standard deviation of 1.

Estimating 702 and 7020 Statistics

A nonparametric estimator is appropriate for the low-
streamflow statistics 7Q2 and 7Q20 on a record length of
75 years because (1) the true distribution of 7Q would be
unknown in practice and (2) record lengths are constrained
to equal or exceed the return intervals of interest (Blum and
others, 2019). For the return interval of 2 years (that is, 7Q2),
statistics were estimated for eight subsets of the synthetic
records, all exceeding the return interval: the most recent 3,
5, 10, 20, 30, 40, and 50 years of record and the full 75 years.
For the 20-year return interval (that is, 7Q20), the subsets of
the most recent 3, 5, and 10 years of record were excluded
because they were all less than the return interval of the statis-
tic being estimated. Therefore, 7Q20 was estimated for only
five subsets of the synthetic records. Equation 3 (reproduced
from equation 4 in Blum and others, 2019) was used for the
7Q2 and 7Q20 estimations:

70x,, = (1= 0q,+0q,,, 3)

where

is the estimated recurrence interval (2 for

7Q2, 20 for 7Q20);

q; is the value from the 7Q series with ranking
i based on sorting the entire record from
smallest (i equals 1) to largest (i equals
record length);

i is also computed as the integer portion of
(n+1p;

6 s the remainder after rounding down in the
calculation of 7, such that 8 is equal to [(n
+Dp—i];

n is the record length for the subset; and

is the annual exceedance probability
corresponding to recurrence interval x,
such that p is equal to 1/x.

est
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Accuracy and Bias of 702 and 7020 Estimates

The values produced by equation 3 are considered to
be “estimated” 7Q2 and 7Q20 values, in contrast to the true
values computed by using equation 1 for each of the 174
standardized trends. For each of the 174 standardized trends,
there were 10,000 simulations, and 7Q2 was estimated from
each synthetic record by using the full 75-year record and the
most recent 3, 5, 10, 20, 30, 40, and 50 years of record (eight
record subsets). This produced 13,920,000 estimates of 7Q2
(1,740,000 for each of the eight record subsets), each of which
corresponds to the true 7Q2 value for the standardized trend
upon which the synthetic record was established. Similarly,
there were 8,700,000 estimates of 7Q20 (1,740,000 for each of
the five record subsets used for 7Q20), each corresponding to
a true 7Q20 value.

The error of each 7Q2 and 7Q20 estimate is simply the
difference between the estimated 7Q2 or 7Q20 statistic result-
ing from each simulation and the corresponding true statistic.
This per-point error was computed for all estimates, but the
abundance of data points precludes producing plots with any
usefulness or efficiency. Instead, the entire set of 1,740,000
error values for each record subset and each statistic (that is,
7Q2 and 7Q20) was divided into 100 bins of equal size, each
containing 17,400 error values. The root mean-square error
(RMSE) was computed for each bin for each of the shorter
record subsets (for the 3, 5, 10, 20, 30, 40, and 50 most recent
years for 7Q2; for the 20, 30, 40, and 50 most recent years
for 7Q20) and compared to the same bin’s RMSE for the
full 75-year record to produce an “improvement factor.” The
improvement factor was computed as the ratio of the RMSE
for the full record to the RMSE of the partial record (see equa-
tion 6 in Blum and others, 2019). Therefore, an improvement
factor of 2 indicates that the RMSE of the full record is twice
as large as that of the partial record; in other words, the 7Q2
(or 7Q20) computed from the partial record could be consid-
ered twice as accurate—on average—as that computed from
the full record for the bin under consideration. An improve-
ment factor of 1 indicates that the 7Q2 (or 7Q20) computed
from the partial record is as accurate as that computed from
the full record.

The mean bias was computed for the 7Q2 and 7Q20
estimation approaches by using the full record, using subsets
of the most recent observation years, and using the most recent
years of record with adaptive approaches (see next section)
from statistical significance levels of p<0.01, p<0.05, and
p<0.1. As with the computations for improvement factor, bias
also was computed for each bin as the average over 17,400
points of the difference between the estimated 7Q2 or 7Q20
statistic and the corresponding true 7Q2 or 7Q20 value (see
equation 7 in Blum and others, 2019).
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Adaptive Approach

We also analyzed “adaptive” approaches for the record’s
subset selected as the best suited for computing 7Q2 and
7Q20 at trend-affected sites. The analyses described above
are termed “nonadaptive” because the selected record subset
was used for estimating the low-streamflow statistic at all
sites, even sites where the full record outperformed the subset
record in accuracy (that is, improvement factors less than 1,
which was the case for sites with little to no trend). In contrast,
the adaptive approach adapted to the presence of a trend at
a site by using the full 75-year record where a trend was not
detected and by using the chosen subset record where a trend
was detected. We identified whether a trend existed according
to the Mann-Kendall test with significance levels of p<0.01,
p<0.05, and p<0.1 for each of the 1,740,000 synthetic 7Q data-
sets. For each of the significance levels, each of those syn-
thetic datasets was categorized as either trend-affected or not
trend-affected. For trend-affected datasets, the 7Q2 or 7Q20
statistic was computed by using the selected record subset; for
datasets that were not trend-affected, the statistic was com-
puted by using the full 75-year record.

Results

The range of improvement factors in the 7Q2 analysis
(fig. 1) was found to be greater than those in the original 7Q10
analysis (Blum and others, 2019) or in the 7Q20 analysis
(fig. 2). Improvement factors as a function of standardized
trend had a roughly parabolic shape for all 7Qx analyses (x
=2, 10, 20), with a minimum at or near a standardized trend
magnitude of 0 and maxima at or near the extreme standard-
ized trend values (figs. 1 and 2; reference fig. 3 in Blum and
others, 2019). All series also followed the general rule that the
parabolic shape is shallowest for the longest record subsets
and deepest for the shortest record subsets; that is, the longest
record subsets had the greatest minimum improvement factors
but the least maximum improvement factors. Inversely, the
shortest record subsets had the most extreme minimum and
maximum improvement factors of all record subsets.

The subsets of the most recent 20 and 30 years were
the two most optimal options for estimating the 7Q2 statistic
under the considered trend characteristics (fig. 1, appendix 1).
The subsets of the most recent 10, 40, and 50 years each had
narrow ranges of standardized trend magnitudes for which
they were superior to other subsets. The subset of the most
recent 20 years offered more improvement than the subset of
the most recent 30 years for a wider range of standardized
trend magnitudes, but those magnitudes were at the extremes

of all those considered; the subset of the most recent 30 years
was superior for more of the bins that correspond to the most
commonly occurring standardized trends.

The subset of the most recent 30 years may be the most
optimal option for estimating the 7Q20 statistic under the
considered trend characteristics (fig. 2, appendix 1). This
subset outperformed the subset of the most recent 20 years for
almost all bins except those corresponding to the most extreme
standardized trends. Compared with the subsets of the most
recent 40 and 50 years, the subset of the most recent 30 years
offered less improvement at trend magnitudes close to 0, but it
surpassed their improvement factors as absolute trend magni-
tudes became greater than about 0.015.

Adaptive Approach

The subset of the most recent 30 years was chosen for
improvement-factor analysis by using an adaptive-record-
subset approach for comparison to the nonadaptive approaches
for both the 7Q2 and 7Q20 statistics. The adaptive approach
used the full record for computation at sites with no statisti-
cally significant trend present in low-streamflow magnitude
and only the most recent 30 years of the record at sites where
a statistically significant trend was detected. This approach
combined the accuracy of the full-record analysis at sites with
little to no trend with that of the subset-record analysis at sites
with a greater trend so that there were few scenarios where the
improvement factor was less than 1.

For datasets without statistically significant trends, the
improvement factor was precisely 1 because the adaptive-
subset 7Qx and full-record 7Qx were identical (figs. 3 and 4).
Datasets with statistically significant trends, on the other hand,
had improvement factors greater than 1 because the adaptive-
subset 7Qx was equal to the nonadaptive-subset 7Qx, not to
the full-record 7Qx.

Each of the three selected trends’ significance levels for
the adaptive approach (»p<0.01, p<0.05, p<0.1) produced a
curve that was flat, with an improvement factor of 1, at and
near the point of no trend and that rose and met the nonadap-
tive data series as the improvement factor increased above 1.
For all three analyses, more of the data points for the signifi-
cance level of p<0.1 (inclusive of the most trends) matched
those of the nonadaptive data series—and thus resulted in
greater improvement factors for a given standardized trend
magnitude—than data points for the other two significance
levels, although the differences were minor. These results
suggest that p<0.1 may be the best significance level to use
when testing a site for the presence of a trend for the adaptive
approach, although little accuracy would be lost by using a
different significance level.



Results 5

5 e T
° : Subset better .
4 ° o .
_ [ ]
2 . °
= °
“E 3 LIS : N
S °
5]
E ° ., °
S ) :
o 2 o ° ° n
2 e . L
£ . °
1 ®_ —o— — — — — — — — — — — — —
Full record bettelr
0
-0.025 0.000 0.025 0.050
Standardized trend magnitude
EXPLANATION
o Subset for most recent 3 years
o Subset for most recent 5 years
Subset for most recent 10 years
® Subset for most recent 20 years
o Subset for most recent 30 years
o Subset for most recent 40 years
o Subset for most recent 50 years
Figure 1. Accuracy of 702 estimators based on subsets of the most recent 3, 5, 10, 20, 30, 40, and

50 years of record, relative to 702 estimators calculated by using a full 75-year record. Improvement
factor is defined as the ratio of the root mean-square error (RMSE) for 7Q2 estimated by using the full
75-year record relative to the RMSE for 702 estimated by using the specified subset. Standardized
trend magnitude refers to the nonparametric Sen slope standardized by residual errors relative to the
Sen slope line. To focus on the large amount of data near the origin, where the differences among the
seven record-subset series can be most clearly seen, bins with improvement factors greater than 5
are not shown. Above the y-axis limit, all series continue upward along a rough continuation of the
same shape as the visible portions of their series. 7Q2, annual minimum 7-day streamflow exceeded

in 1 out of 2 years on average.

Bias

In addition to the improvement factor, the bias of each
7Q2 and 7Q20 estimator compared to the true 7Q2 and 7Q20
can indicate which estimator is the most accurate. For the 7Q2
analysis, there were eleven 100-bin series for which the bins
of average bias were plotted against the standardized trend
magnitude: the nonadaptive subsets of the most recent 3, 5, 10,
20, 30, 40, and 50 years; the nonadaptive full 75-year record;
and the adaptive series for the subset of the most recent 30
years with significance levels of p<0.01, p<0.05, and p<0.1

(fig. 5). For the 7Q20 analysis, there were eight 100-bin series:
all the nonadaptive series from the 7Q2 analysis except the
subsets of the most recent 3, 5, and 10 years; and the adaptive
series for the subset of the most recent 30 years with signifi-
cance levels of p<0.01, p<0.05, and p<0.1 (fig. 6).

The bias for the full record and all adaptive variations
of record subsets, which were equivalent to the full record
at trend magnitudes close to 0, always intersected the origin;
that is, the mean bias was 0 for no-trend scenarios. All other
record subsets had biases other than 0 at no standardized trend.
Most, though, were near 0 for no standardized trend, with



6 Methods for Computing 702 and 7020 Low-Streamflow Statistics to Account for Possible Trends

5 T T T
Subset better
[ ]
4 ¢ -
[ ]
S .
(&) [ )
N .
S ¢ . .
5 . . :
E 2 L e . ° |
_g- ® ° ° o ® ° L
L4 ° °
‘I ______________________________
Full record bettelr
0 I

-0.025 0.000 0.025

Standardized trend magnitude

EXPLANATION

o Subset for most recent 20 years
o Subset for most recent 30 years

Subset for most recent 40 years
Subset for most recent 50 years

0.050

Figure 2. Accuracy of 7020 estimators based on subsets of the most recent 20, 30, 40, and 50 years
of record, relative to 7020 estimators calculated by using a full 75-year record. Improvement factor is
defined as the ratio of the root mean-square error (RMSE) for 7020 estimated by using the full 75-year
record relative to the RMSE for 7Q20 estimated by using the specified subset. Standardized trend
magnitude refers to the nonparametric Sen slope standardized by residual errors relative to the Sen
slope line. 7Q20, annual minimum 7-day streamflow exceeded in 19 out of 20 years on average.

standardized trend magnitude and bias generally increasing
together in absolute value. The full record was the least biased
only at and very near a trend magnitude of 0; the shorter
record subsets outperformed the full record at larger standard-
ized trend magnitudes. The longer record subsets displayed
greater absolute mean bias for almost all the bins that were
considered. Bias was generally minimized across all trend
magnitudes by using the shortest record subsets.

Discussion

The threshold value of the standardized trend magnitude
at which the 30-year-record subset became favorable to the
full record (that is, the improvement factor became greater
than 1) varied slightly among the three low-streamflow

statistics (7Q2, 7Q10, 7Q20) and among the trends’ signifi-
cance levels (p<0.01, p<0.05, p<0.1). Generally, however, a
standardized trend magnitude of 0.01 may be considered a
reasonable threshold upon which to consider using only the
most recent 30 years of record for computing low-streamflow
statistics.

For all three statistics, the 30-year-record subset pro-
duced less bias than the full record when a significant trend
was detected at any tested significance level. The biases of
the 30-year-record subset and its three adaptive approaches
(significance levels of p<0.01, p<0.05, p<0.1) were quite
similar to each other for almost all the bins. Differences were
observed only very close to a trend magnitude of 0. Of the
three adaptive approaches, the significance level of p<0.1
appeared to be most favorable in this analysis, showing less
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Figure 3. Accuracy of 7Q2 estimators based on adaptive approaches, where the subset of the
most recent 30 years of record is only used when a statistically significant trend is detected at the
p<0.01, p<0.05, and p<0.1 significance levels, relative to 7Q2 estimators calculated by using a full
75-year record. Improvement factor is defined as the ratio of the root mean-square error (RMSE) for
702 estimated by using the full 75-year record relative to the RMSE for 7Q2 estimated by using the
specified subset. Standardized trend magnitude refers to the nonparametric Sen slope standardized
by residual errors relative to the Sen slope line. 7Q2, annual minimum 7-day streamflow exceeded in

1 out of 2 years on average.

absolute mean bias than the other adaptive approaches in bins
in which they differed and matching the nonadaptive curve for
the subset of the most recent 30 years more quickly than the
other adaptive approaches as the trend magnitude increased.
The difficulty of choosing between the subsets for the
most recent 20 years and the most recent 30 years for the
7Q20 analysis suggested that an adaptive approach with more
than the two options proposed here (full 75-year record and
a subset of the most recent 30 years) might provide the most
accuracy for all the analyzed ranges of trend magnitudes,
although the complexity of such an algorithm could make
it unwieldy for many practitioners. To demonstrate, for all
analyses (figs. | and 2, and see Blum and others, 2019), there
was a range of standardized trend magnitudes for which each
record subset provided the largest improvement factors. The

longest record subsets provided the greatest improvement fac-
tors for trend magnitudes closest to 0, and the shortest record
subsets provided the greatest improvement factors for trend
magnitudes furthest from 0; the intervening record subsets
provided the greatest improvement factors for certain ranges
of trend magnitudes between the extremes. The exceptions to
this general observation were the subsets of the most recent

3 and 5 years in the 7Q2 analysis, which did not provide the
greatest improvement factors for any of the ranges in standard-
ized trend magnitudes tested in this analysis. In a multiple-
choice adaptive approach, a practitioner might (1) compute

a site’s standardized trend in low-streamflow magnitude at a
significance level of p<0.1; (2) use appendix | to determine
which of the analyzed subsets (or the full record) provides

the greatest improvement factor at that magnitude; and (3)
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-+ Subset for most recent 30 years for p<0.01

O Subset for most recent 30 years for p<0.05

Subset for most recent 30 years for p<0.1

Figure 4. Accuracy of 7Q20 estimators based on adaptive approaches, where the subset of the
most recent 30 years of record is only used when a statistically significant trend is detected at the
p<0.01, p<0.05, and p<0.1 significance levels, relative to 7020 estimators calculated by using a full
75-year record. Improvement factor is defined as the ratio of the root mean-square error (RMSE) for
7020 estimated by using the full 75-year record relative to the RMSE for 7Q20 estimated by using the
specified subset. Standardized trend magnitude refers to the nonparametric Sen slope standardized
by residual errors relative to the Sen slope line. 7020, annual minimum 7-day streamflow exceeded in

19 out of 20 years on average.

proceed to compute that statistic using that subset. However,
in most ranges of trend magnitude and for most bins analyzed,
the differences in improvement factor between similar subsets
are so slight that the simple two-choice adaptive approach
recommended by Blum and others (2019) and this study can
be expected to yield results nearly identical to those computed
by using this marginally more accurate multiple-choice adap-
tive approach. Regardless, any practitioner should be sure to
incorporate the most recent measures of low streamflow in
both the standardized trend computation and in the subset used
to compute the low-streamflow statistic.

The subset of the most recent 30 years appears to be the
optimum length (or one of the optimum lengths) for 7Q2,
7Q10, and 7Q20, despite the difference in return interval

(fig. 7). It is unclear from these analyses why the optimum
subset length is not clearly dependent on the return period. It is
important to consider that the standardized trends used in this
study were derived from a set of gages limited in geographic
scope to the mid-Atlantic United States, that only log-linear
trends were explored, that the 7Q records are LN2 distributed,
and that temporal correlation was not considered. Further
analyses using information from other geographic regions,
other trend types (such as nonlinear or reversing), correla-
tion analysis, and perhaps other return periods could provide
further insight into the relation between the return period and
the optimum record subset length.
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Figure 5. Mean bias of 702 estimators calculated by using a full 75-year record, nonadaptive
approaches (subsets of the most recent 3, 5, 10, 20, 30, 40, or 50 years), and adaptive approaches for
the subset of the most recent 30 years. Standardized trend magnitude refers to the nonparametric
Sen slope standardized by residual errors relative to the Sen slope line. 702, annual minimum 7-day

streamflow exceeded in 1 out of 2 years on average.
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Figure 6. Mean bias of 7020 estimators calculated by using a full 75-year record, nonadaptive
approaches (subsets of the most recent 20, 30, 40, or 50 years), and adaptive approaches for the
subset of the most recent 30 years. Standardized trend magnitude refers to the nonparametric Sen
slope standardized by residual errors relative to the Sen slope line. 7020, annual minimum 7-day
streamflow exceeded in 19 out of 20 years on average.
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Figure 7. Accuracy of 702, 7Q10, and 7Q20 estimators based on the adaptive subset of the most
recent 30 years of record, relative to their respective estimators calculated by using a full 75-year
record. Improvement factor is defined as the ratio of the root mean-square error (RMSE) for the statistic
estimated by using the full 75-year record relative to the RMSE for the statistic estimated by using the
specified subset. Standardized trend magnitude refers to the nonparametric Sen slope standardized

by residual errors relative to the Sen slope line. 7Q2, annual minimum 7-day streamflow exceeded in

1 out of 2 years on average; 7210, annual minimum 7-day streamflow exceeded in 9 out of 10 years on
average; 7020, annual minimum 7-day streamflow exceeded in 19 out of 20 years on average.

Summary

A previous study used Monte Carlo simulations of artifi-
cial low-streamflow records based on standardized trend mag-
nitudes from 174 U.S. Geological Survey streamgages to iden-
tify an appropriate recent subset of a gage’s low-streamflow
record to use for computation of 7Q10—the annual minimum
7-day streamflow likely to be exceeded in 9 out of 10 years
on average—when a significant trend in low streamflow was
detected. The results of that study identified the most recent
30 years of the low-streamflow record as the best subset of the
record for the computation of 7Q10 in such circumstances.
Identical analyses conducted in this study for the annual
minimum 7-day streamflow likely to be exceeded in 1 out of
2 years on average (7Q2) and 19 out of 20 years on average
(7Q20) indicated that subsets of the most recent 30 years of
low streamflow are also the appropriate subsets for computing
these statistics when a trend is detected. For all three statistics,

the subset of the most recent 30 years, in comparison with all
other subsets analyzed and the full record, provided the best
balance between a minimization of the error of the statistic
estimated from the simulated records and a minimization of
bias. The adaptive approach recommended by the previous
study for 7Q10, in which the subset of the most recent 30
years was used only where significant trends were detected
and the full record was used otherwise, was also supported by
this study for computing 7Q2 and 7Q20. A significance level
of p<0.1 for trend detection is recommended for the adaptive
approach for all three statistics.
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Appendix 1.

Appendix 1.

For each of the 100 bins into which each analysis was
split for plotting, the subset of the full record that produced
the highest improvement factor was identified by tabulat-
ing results (table 1.1) from the improvement factor curves in
figure 1 (7Q2), figure 2 (7Q20), and results from Blum and

Table 1.1.

years.

Tabulation of Highest Improvement Factor by Bin 15

Tabulation of Highest Improvement Factor by Bin

others (2019) (7Q10). Out of the 100 total bins for each sub-
set, the table shows the count for which each subset produced
the highest improvement factor and the range of standardized
trend magnitudes for which each subset generally provided the
highest improvement factor.

Accuracy of 702, 7Q10, and 7020 estimators: total maximum bin counts and trend ranges per subset of the most recent n

[7Q2, the annual minimum 7-day streamflow exceeded in 1 out of 2 years on average; 7Q10, the annual minimum 7-day streamflow exceeded in 9 out of 10
years on average; 7Q20, the annual minimum 7-day streamflow exceeded in 19 out of 20 years on average; n-year subset, analysis using a subset of n number of
years of most recent 7-day low-streamflow record; Bin count as max, number of highest improvement factor bins for the given trend range in comparison to all
other n-year subsets; Trend range as max, the range of standardized trend values over which the given n-year subset analysis yields the maximum improvement
factor; improvement factor, ratio of root mean-square error for full record to root mean-square error of partial record; NA, not applicable]

702 7010 7020
S Bin count Bin count Bin count
subset in coun Trend range as max ih coun Trend range as max ih count as Trend range as max
as max as max max
3 none NA! NA! NA! NA!
5 none NA! NA! NA! NA!
10 <-0.030, >0.040 1 none NA! NA!
20 22 —0.030 to —0.018, 7 <-0.022,>0.030 6 <-0.030, >0.035
0.016 to 0.030
30 32 —0.018 to —0.009, 30 —0.022 to —0.013, 0.013 22 —0.030 to —0.012, 0.018
0.007 to 0.016 to 0.030 to 0.035
40 16 —0.009 to —0.005, 20 —0.013 to —0.008, 0.008 14 0.012t0 0.018
0.005 to 0.007 t0 0.013
50 25 —-0.01 42 —0.016 58 —0.024

ISubset was not considered in analysis for this statistic because the period of record would be shorter than the return interval.
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