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Abstract
As a first step toward understanding the feasibility of 

using arbuscular mycorrhizal fungi (AMF) in reconstruction 
practice, we addressed four objectives: (1) compare root-
associated AMF communities of plants between high-quality 
remnant prairies and reconstructed prairies, (2) compare 
root-associated AMF communities between plant species that 
declined in reconstructions and species that were thriving, 
(3) compare AMF communities collected from roots of 
plants in geographically separate parts of Minnesota and 
Iowa, and (4) assess the relationship between AMF com-
munities and soil abiotic factors. We collected soil and root 
samples in 8 prairies reconstructed in 2005 (and monitored 
through 2015) and 6 remnant prairies, and the samples were 
separated into 6 geographically determined clusters, each 
containing 1–2 reconstructions and 1 remnant. Sequencing 
was completed on 1,188 deoxyribonucleic acid extracts 
from individual plant root samples, and fungal sequences 
were clustered to operational taxonomic units at 97-percent 
identity. Nonmetric multidimensional scaling was used to 
visualize differences in species composition of AMF com-
munities among plant species and field sites. Permutational 
analysis of variance was completed to test for differences in 
AMF community composition between the 2 types of sites 
(remnants and reconstructions), among plant species, and 
among the 6 site clusters. AMF communities differed between 
remnant and reconstructed prairies, with one exception, and 
AMF associated with individual plant species also tended to 
differ, depending on whether the plant species’ roots were 
collected from remnant or reconstructed prairie. On the other 
hand, we did not determine that, as a group, species in decline 
in the reconstructions we had monitored were more likely to 

1University of Groningen and GreenFinch Research.

2North Dakota State University.

3University of Minnesota.

4U.S. Geological Survey.

5U.S. Fish and Wildlife Service.

harbor different AMF communities compared to species not in 
decline in the reconstructions. Significant interactions between 
site type and clusters indicate geographic variation in AMF 
communities. Total carbon and nitrogen, and organic matter, 
were higher in remnant soils, whereas phosphorus, which at 
high concentrations reduces the value of AMF to plants, was 
much higher in soils collected from reconstructions.

Introduction
Prairie reconstruction is one of the few remaining 

options to increase connectivity among existing fragments 
of remnant prairie, buffer remnants from disturbance and 
pesticide drift, and increase native prairie abundance (Gerla 
and others, 2012), which is critically important to conserva-
tion of pollinators and other native prairie biota. Reconstructed 
prairies also are increasingly viewed as highly valuable to 
mainstream production agriculture in the Midwest because 
they offer habitat for pollinators and other beneficial insects 
that provide valuable services in agroecosystems, such as 
control of weeds and pest arthropods (Schulte and others, 
2017), and highly land-efficient conservation of soil and 
water. Thus, from the perspectives of nature preservation and 
agroecology, reconstructions can be of critical importance; 
however, the biodiversity conservation value of prairie recon-
structions depends strongly on their species richness (Nicolson 
and Wright, 2017). Unfortunately, reconstruction practitioners 
struggle to reproduce the species richness and ecosystem 
services provided by large remnant prairies (Larson and 
others, 2018). An experimental study of eight reconstructed 
prairies in Minnesota and Iowa determined that one-half of 
the planted species declined or failed to establish (Larson 
and others, 2017). More reliable and cost-effective prairie 
reconstruction methods are needed. Calls to increase habitat 
for struggling Danaus plexippus (Linnaeus, 1758; monarch 
butterflies) and declining pollinators have further emphasized 
the need for improved reconstruction methods.
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Arbuscular mycorrhizal fungi (AMF) may play an 
important role in improving the efficiency of reconstruction 
methods. AMF are root-associated symbionts of many 
prairie plant species and have been documented repeatedly 
to have strongly mutualistic relationships with such species 
(Middleton and Bever, 2012). In particular, AMF can assist in 
the development of species-rich native prairie reconstructions, 
especially if late-successional species are desired (Middleton 
and Bever, 2012), some of which seem to have obligate 
relationships with AMF taxa (Koziol and Bever, 2017). In 
addition, AMF have been determined to increase pollinator 
visitation to a flowering plant by increasing general robustness 
of growth and flower production (Wolfe and others, 2005). 
Unfortunately, intensive land uses such as agriculture that pre-
cede reconstruction commonly leave soils in a degraded state 
(McLauchlan, 2006). AMF in particular have been determined 
to have different, and depauperate, community composition 
and lower abundance in cropland than in grassland (Oehl and 
others, 2003). Degraded soil conditions are commonly highly 
stable (Suding and others, 2004), and thus, substantial effort 
may be required to restore key soil attributes for achieving 
diversity-related reconstruction goals, such as plant-soil mutu-
alisms with native plant species (Asmelash and others, 2016).

Active inoculation of AMF can be useful for establish-
ment of native prairie plants, but outcomes of such inocula-
tion are complex and contingent on many biotic and abiotic 
variables. Commercial AMF inoculant does not consistently 
improve plant establishment and growth (Maltz and Treseder, 
2015). The primary role of AMF in mutualistic relationships 
with prairie plants is in enhancing water and nutrient uptake in 
exchange for sugars; however, the relationship is not always 
mutually beneficial. Under some conditions, AMF may act 
parasitically to obtain carbon resources without providing 
substantial benefit to the plant. This parasitism may, in part, 
explain the unreliability of commercial AMF inoculants as 
tools for restoration (Maltz and Treseder, 2015). Moreover, 
Koziol and Bever (2016) determined that specificity of the 
AMF-plant mutualism was especially pronounced for late-
successional plant species, species that are typically the most 
difficult to establish and maintain in prairie reconstructions.

The method by which AMF are introduced into a recon-
struction also is an important consideration. A metaanaly-
sis that included 28 manipulative field-based trials, two of 
which were on temperate grasslands, indicated that inoculum 
from a reference site was as effective as inoculum cultured 
from individual species, and both were superior to commer-
cial inoculum (Maltz and Treseder, 2015). Locally sourced 
inoculum also may have the advantage of including AMF taxa 
that are adapted to local conditions; AMF ecotypes are not 
necessarily interchangeable in their functioning (Sanders and 
Rodriguez, 2016). Maltz and Treseder (2015) also cautioned 
that sourcing inoculum from remnants should be carefully 
planned so that the remnant is not damaged in the process.

In this study, we evaluated the difference in AMF taxa 
colonizing roots of plant species collected in high-quality 
remnant versus reconstructed prairies. Objectives of the study 
were to complete the following:
1.	 Compare AMF communities collected from roots of 

plants in high-quality remnant prairies with AMF commu-
nities in reconstructed prairies; differences will indicate 
that the addition of AMF associated with high-quality 
remnants may have the potential to improve reconstruc-
tion outcomes.

2.	 Compare AMF communities collected from roots of plant 
species that declined in planted reconstructions with AMF 
detected in species that were thriving; differences will 
indicate that improving AMF available to poorly perform-
ing plant species has the potential to increase their estab-
lishment, growth, or persistence in reconstructed prairies.

3.	 Compare AMF communities collected from roots of 
plants in geographically separate parts of Minnesota and 
Iowa; geographic differences will indicate that AMF com-
munities are spatially distinct and will require localized 
sourcing if AMF are to be added to reconstructions.

4.	 Assess the relationship between AMF communities and 
soil abiotic factors (for example, nitrogen, phosphorus, 
micronutrients, and soil texture); if soil abiotic factors 
affect AMF communities, these factors may require 
remediation before AMF communities more typical of 
remnants can establish.

Methods
Eight reconstruction sites on National Wildlife Refuge 

(NWR) system lands in Iowa and Minnesota were selected 
(fig. 1). The sites were part of a long-term study of effects 
of seed mix richness and planting method on establish-
ment success of prairie reconstructions (Larson and others, 
2011, 2017). Reconstructions were established in 2005, and 
cover of native and invasive plant species was evaluated in 
2005–7, 2010, and 2015 to determine which species seeded 
into the reconstructions had increased or declined in abun-
dance over time. No AMF amendments were used in these 
reconstructions.

Remnant Prairies

A two-tiered approach was used to select remnant prairies 
for our study. For sites in the Morris Wetland Management 
District, vegetation data from surveys done during a previous 
study (Larson and others, 2020) were used to identify prairies 
with the highest native species richness, a soil drainage class 
similar to our reconstructions, and a condition ranking of at 
least good to fair (or BC) for native plant communities under 
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the Minnesota Department of Natural Resources ranking 
system (Minnesota Biological Survey, 2014). We acknowledge 
that these sites, although the best we could find, still harbored 
invasive grasses and sweetclover. For all other Minnesota 
sites, a search was completed using the Minnesota Department 
of Natural Resources Native Prairies shapefile (htt​ps://gisda​
ta.mn.gov/​), which limited acceptable remnant prairies to 
those with a good to fair ranking or better. Because no remnant 
prairie sites were within these parameters in the central and 
north-central parts of the State, we paired one reconstruction 
in that region with Pednor Wildlife Management Area (fig. 1). 
Pednor Wildlife Management Area was 80 kilometers (km) 
from Heinola Waterfowl Production Area, which was 16 km 
farther than our next most-distant remnant-reconstruction pair. 
This remnant was chosen based on previous knowledge of the 
site by one of our coauthors (Laura Aldrich-Wolfe). In Iowa, 
no equivalent database of native prairie sites is in the public 
domain. Based on recommendations of staff at Neal Smith 
NWR, we chose a high-quality remnant prairie site at Neal 

Smith NWR (Coneflower site on fig. 1) and Maminka Prairie, 
a privately owned remnant about 20 km east of the refuge 
(fig. 1).

Field Sampling

Plants were sampled from the 8 reconstructed and 
6 nearby high-quality remnant prairie sites in Minnesota and 
Iowa (a total of 14 sites; table 1). At each site, parts of the 
root system of at least 5 plants (except Liatris pycnostachya 
Michx. with only 3 samples total) of each of our target spe-
cies were excavated and placed in a labeled coin envelope in 
a plastic bag containing silica gel desiccant packets. Within 
12 hours of sampling, roots were dried for 24 hours in an oven 
at 35 degrees Celsius and subsequently stored with silica gel.

At a single site, 4 plant species were sampled 
(appendix 1, tables 1.1 and 1.2; Dalea purpurea Vent., Liatris 
ligulistylis [A. Nelson] K. Schum., Symphyotrichum pilosum 
[Willd.] G.L. Nesom, and Symphyotrichum Nees species), and 
at 2 reconstructions, 2 plant species were sampled (Monarda 
fistulosa L. and Symphyotrichum novae-angliae [L.] G.L. 
Nesom). The remaining 15 species were sampled at recon-
structions and remnants, although not necessarily at both types 
of sites within a cluster.

Ten 2- x 10-centimeter soil cores were collected haphaz-
ardly throughout the area in which roots were sampled. Cores 
were composited, air-dried at room temperature, and stored in 
paper bags. Soil collected at each study site was analyzed for 
ammonium, phosphorus and potassium, total carbon and total 
nitrogen, texture, micronutrients, and pH at the University of 
Minnesota Research Analytical Laboratory (https:​//ral.cfan​
s.umn.edu/​).

Deoxyribonucleic Acid Extraction and Fungal 
Sequencing

Five 1-centimeter-long segments of root were ground 
using two 3-millimeter metal beads (steel shot no. 4, Ballistic 
Products Inc., Corcoran, Minnesota) on a TissueLyzer 
(Qiagen, Valencia, California) at 30 hertz for 1.5 minutes. 
Deoxyribonucleic acid (DNA) was extracted from each root 
sample using the DNeasy Plant Mini Kit (Qiagen, Valencia, 
Calif.) following the manufacturer’s protocol. DNA extracts 
were sent to the University of Minnesota Genomics Center 
(St. Paul, Minn.) for internal transcribed spacer region ITS2 
bidirectional sequencing after amplification with universal 
fungal primers 5.8SR and ITS4. In every extraction set (1 of 
24 samples), 1 water blank (negative controls for DNA extrac-
tions) was included to allow for detection of contaminating 
sequences; 12 water blanks were included for sequencing. 
Sequencing was completed on 1,188 DNA extracts from indi-
vidual plant root samples in 6 Illumina MiSeq 2 x 300 base 
pair lanes at the University of Minnesota Genomics Center.
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Figure 1.  Locations of 8 reconstructed and 6 remnant prairies 
used in this study. In Iowa, three reconstruction sites and the 
Coneflower remnant are at Neal Smith National Wildlife Refuge. 
The Maminka remnant is about 20 kilometers east of the refuge. 
Colored ovals contain site clusters; that is, reconstructions and 
remnants selected based on similar characteristics.
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Bioinformatics

After initial quality control at the University of 
Minnesota Genomics Center to remove poor-quality 
sequences, sequences were processed using the PIPITS pipe-
line (version 2.7, Gweon and others, 2015) at the University 
of Groningen Peregrine High Performance Computing 
Cluster (Groningen, Netherlands). Forward and reverse reads 
from each sample were paired, and low-quality bases (Phred 
score of less than 30) and reads with ambiguous bases were 
removed. The fungal ITS2 region was extracted using ITSx 
software (Bengtsson-Palme and others, 2013). Residual 
primer sequences in any orientation were detected using 
the Biostrings (version 2.54.0; Pagès and others, 2019) and 
DADA2 (version 1.14.1; Callahan and others, 2016) packages 
in R (version 3.6.3; R Core Team, 2020) and removed using 
Cutadapt (version 2.10; Martin, 2011) in Peregrine. Using the 
PIPITS pipeline, short reads (less than 100 base pairs) and 
singletons, which are likely to be sequencing artifacts, were 
removed. Sequences were clustered using the VSEARCH 
centroid clustering methods (default for PIPITS) to operational 
taxonomic units (OTUs) at 97-percent identity, and chimeric 
sequences were identified and removed. We used the ITS 
DADA2 workflow, as described in Callahan (2022), under the 
heading “Identify Primers.”

These quality filtered reads were used for taxonomic 
assignment with the RDP Classifier against the UNITE 
database (version 04.02.2020; Kõljalg and others, 2013) at 
a 0.7-confidence level using the PIPITS pipeline. Sequence 
counts for any OTU observed in the negative controls were 
combined and subtracted from counts of the samples; any 

negative values were set to zero. The resulting 14,218 fungal 
OTUs in 1,134 samples (54 of the original samples no longer 
contained any sequences) were used for further processing and 
statistical analysis in R.

To reduce the number of zeros in the final AMF sequence 
dataset (which hinders ordination analysis), sequences were 
summed within each plant species at each site, reducing the 
number of samples to 132; this merged dataset was used in 
the statistical analysis of AMF communities. Before analysis, 
abundances were converted to relative abundances using the 
microbiome package (Lahti and others, 2017), and a subset 
was created to include only AMF taxa (filtered by phylum 
Glomeromycota) using the phyloseq package (version 1.30.0; 
McMurdie and Holmes, 2013); of the 14,218 fungal OTUs 
detected, 651 were identified as AMF. To reduce the dis-
proportional effect of rare AMF taxa on assessment of 
overall communities, OTUs that were in fewer than 3 of the 
132 samples and had a relative abundance less than 1×10−5 
were removed from the dataset, with 396 OTUs and  
131 samples remaining.

Statistical Analyses

Nonmetric multidimensional scaling (NMDS) using a 
Bray-Curtis dissimilarity matrix in phyloseq was used to visu-
alize differences in species composition of AMF communities 
among plant species and field sites. Samples from all plant 
species were included in this analysis. Permutation analysis 
of variance was completed in phyloseq to test for differences 
in AMF community composition between the 2 types of sites 

Table 1.  Site names and their locations (State, latitude, and longitude), cluster affiliation (see fig. 1), date when roots were collected, 
and site type (remnant or reconstruction).

[WPA, Waterfowl Production Area; MN, Minnesota; IA, Iowa; SNA, Scientific and Natural Area; WMA, Wildlife Management Area]

Site name State Latitude Longitude Cluster
Collection date 

(2019)
Site type

Cream City WPA MN 44.85 −94.79 A June 24 Remnant
Dog Lake WPA MN 44.96 −94.84 A June 25 Reconstruction
Tyrone Flats WPA MN 45.28 −94.53 A June 26 Reconstruction
Coneflower IA 41.58 −93.27 B July 10 Remnant
Production IA 41.55 −93.29 B July 11 Reconstruction
Orbweaver IA 41.55 −93.28 B July 12 Reconstruction
Rothi WPA MN 45.32 −96.30 C September 10 Remnant
Fahl WPA MN 45.4 −95.48 C September 11 Reconstruction
Clinton Prairie SNA MN 45.46 −96.56 D September 18 Remnant
Diekmann WPA MN 45.58 −96.68 D September 19 Reconstruction
Pednor WMA MN 47.04 −96.04 E September 24 Remnant
Heinola WPA MN 46.47 −95.39 E September 25 Reconstruction
Maminka IA 41.56 −93.01 F October 8 Remnant
Harmison IA 41.55 −93.26 F October 9 Reconstruction
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(remnants and reconstructions), among plant species, among 
the 6 site clusters, and including all interactions. The betadis-
per function of the vegan package (version 2.5–6; Oksanen 
and others, 2020) was used to assess homogeneity of group 
dispersion between remnants and reconstructions. We also 
completed an NMDS analysis using only the plant species that 
were in both remnant and reconstructed sites to determine  
if those plants that were in only one site type affected the  
overall results.

The envfit function of the vegan package (version 2.5–6; 
Oksanen and others, 2020) was used to test for correlations 
between environmental variables and AMF community com-
position. The preliminary model included all environmental 
variables (Larson and others, 2021 [“2019 prairie remnant and 
reconstruction soil properties data v1.1” file]), whereas the 
final model excluded those environmental variables for which 
the relationship to AMF community composition was not 
statistically significant at α=0.05, where α is the significance 
level. To assess if AMF community composition correlated 
with changes in plant frequency, we completed an envfit anal-
ysis using a subset of plants whose abundance was recorded 
in six of the reconstruction sites in 2010 and 2015 (Larson and 
others, 2017).

Results
AMF communities in sampled plant roots differed 

between prairie site type (that is, reconstruction or remnant; 
table 2, fig. 2A), and with a few exceptions, this pattern was 
consistent. Nonetheless, interactions also were detected 
between site type and plant species (fig. 2B) and between 
site type and site cluster (fig. 2C). AMF communities in 
reconstructions were more similar to each other than AMF 
communities in remnants (fig. 2A for all sampled species, 

fig. 1.1 for only those species that were in both remnant and 
reconstructed sites; results were qualitatively similar). This 
finding was confirmed with a beta dispersion test, which 
indicated dispersion was significantly different between 
remnants and reconstructions (F=7.82, DF=1, and P=0.008 
with 999 permutations, where F is the test statistic, DF is 
degrees of freedom, and P is significance) with remnants 
indicating a higher mean distance to their median (that is, were 
more dispersed) than the reconstructions (0.65 versus 0.63). 
For most plant species, AMF communities differed between 
remnant and reconstruction (table 2, fig. 2B); however, it was 
not uncommon to find one site in which remnant AMF com-
munities were more similar to reconstruction communities for 
an individual plant species (for example, Andropogon gerardii 
[andger], Heliopsis helianthoides [helhel]).

The separation between AMF communities associated 
with remnants and reconstructions was consistent for most 
plant species at most site clusters (figs. 2C, 3). Overall, AMF 
communities differed along axis 1 of the NMDS, with remnant 
AMF communities on the left-hand side and reconstruction 
AMF communities on the right-hand side of the graph. The 
exceptions to this pattern of separation were site cluster A in 
Minnesota and B in Iowa, where the AMF communities of the 
remnant site were on the right-hand side of axis 1, indicating 
that they were similar to those of reconstruction sites (both in 
that cluster and the other reconstruction sites at the other clus-
ters). In cluster A, only a few of the plant species were similar 
to species of the reconstruction sites, whereas in cluster B, 
almost all the plant species of the remnant (Coneflower) 
harbored AMF communities that resembled those of recon-
structions. In none of the site clusters did the reverse happen; 
no reconstruction sites had AMF communities that resembled 
those of most of the remnants (that is, were placed on the left-
hand side of axis 1).

Table 2.  Effects of site type, site cluster, and plant species on arbuscular mycorrhizal fungi community composition by three-way 
permutational analysis of variance.

[Bold significance values (P) are significant at P less than (<) 0.05; ***, P<0.001; **, P<0.01; *, P<0.05; DF, degrees of freedom; SS, sum of squares; MS, 
mean square; F, test statistic; R2, variance accounted for by the ordination; --, no data or not applicable]

Effect DF SS MS F R 2 P

Site type 1 3.489 3.489 10.0379 0.061 0.001***
Site cluster 5 5.808 1.1616 3.342 0.10154 0.001***
Plant species 21 8.909 0.4242 1.2205 0.15576 0.003**
Site type × site cluster 5 4.705 0.941 2.7074 0.08226 0.001***
Site type × plant species 15 5.825 0.3883 1.1172 0.10184 0.041*
Site cluster × plant species 39 12.989 0.3331 0.9582 0.2271 0.806
Site type × site cluster × plant species 25 8.868 0.3547 1.0206 0.15504 0.344
Residuals 19 6.604 0.3476 -- 0.11546 --
Total 130 57.197 -- -- 1 --
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Contrary to our expectation, AMF community composi-
tion was not significantly related to declining or increasing 
species (determined in our monitoring study; table 3). The 
clear differences in AMF communities between remnants and 
reconstructions could be explained to a degree by edaphic 
soil characteristics (fig. 3B, table 3, appendix 1). The AMF 
communities of prairie remnants correlated in particular with 
higher organic matter, total carbon, and total nitrogen, and 
to a lesser degree with higher levels of ammonium, nitrate, 
magnesium, and calcium in the soil. AMF communities in 
reconstructions were particularly correlated with higher 
phosphorus and manganese levels. The separation between the 
sites within reconstructions and remnants was strongly related 
to iron and pH, and to a lesser degree with soil potassium and 
silt levels, and mean plant height at each site. Interestingly, the 
Coneflower remnant site had levels of manganese, iron, and 
phosphorus that were more in line with those of reconstruc-
tion sites (Larson and others, 2021 [“2019 prairie remnant and 
reconstruction soil properties data v1.1” file]).

Discussion
Overall, we determined that AMF communities differed 

between remnant and reconstructed prairies and that AMF 
associated with individual plant species also tended to differ, 
depending on whether the plant species’ roots were collected 
from remnant or reconstructed prairie. On the other hand, we 
did not determine that, as a group, plant species in decline 
in the reconstructions we monitored (Larson and others, 
2017) were more likely to harbor different AMF communities 
compared to other species, perhaps owing to the generally 
different AMF communities in the two site types: nearly all the 
species demonstrated these differences. Significant interactions 
between site type and clusters indicate geographic variation in 
AMF communities, making the consistent differences between 
remnants and reconstructions along axis 1 of the NMDS even 
more striking.

Figure 2.  Arbuscular mycorrhizal fungi 
(AMF) communities in sampled plant roots 
plotted using nonmetric multidimensional 
scaling (NMDS) on Bray-Curtis distance 
matrix of relative abundance data. Points that 
are closer together represent communities 
that are more similar. The axes and 
orientation of the plots are arbitrary. (A) AMF 
communities in roots of plant species at 
14 prairie sites, 6 of which were remnants 
and 8 of which were reconstructions. Each 
point represents the AMF community of a 
single plant species at a single site. (B) Plant 
species graphed independently to illustrate 
differences between reconstructions and 
remnants. Only plant species that had at 
least one representative from a remnant  
and a reconstruction site are shown. 
(C) Clusters (A–F) graphed independently to 
illustrate differences in AMF communities 
between reconstructions and remnants 
within site clusters.
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Asmelash and others (2016) reviewed the ways in 
which AMF can be used to improve ecological restoration of 
degraded lands. They emphasized the lack of host specific-
ity among AMF because of the relatively small number of 
AMF taxa compared to the number of plant species that form 
interactions with them (but see Hausmann and Hawkes [2010] 
and Werner and Kiers [2015]). Nonetheless, benefits of the 
mutualism vary among partners (Bever, 2002), over seasons 
(Bittebiere and others, 2020), and in differing environmen-
tal contexts (Revillini and others, 2016). Fungal taxa have 
been determined to vary in their “carbon sink strength,” such 
that some taxa are more beneficial for early development of 
individual plants (requiring little carbon from their hosts) and 
others for increasing biomass of larger plants that are able to 
supply more carbon (Martignoni and others, 2021). In the con-
text of prairie reconstruction, an understanding of carbon sink 
strength, how it varies depending on AMF and host identity, 
and how to manipulate it to the advantage of the reconstruc-
tion may be an important aspect of characterizing functionally 
and ecologically significant differences in AMF taxa. Taxa 
beneficial to mature plants may not benefit seedlings. If taxa 
that benefit mature plants do not benefit seedlings, a single 

inoculation may not be sufficient to provide benefits over 
the life of a reconstruction, especially if AMF are unable to 
disperse naturally to a reconstruction site. All of our samples 
were collected from roots of mature plants; future work could 
evaluate effects of AMF collected in this way on seedling 
establishment and growth.

Only three of the soil characteristics we measured were 
clearly related to site type, with mean total nitrogen and 
carbon (and therefore also organic matter) about twice as high 
in remnants and mean phosphorus nearly six times higher in 
reconstructions, possibly as a legacy of farming. Excessive 
phosphorus, in particular, reduces the value of AMF to plants 
(Revillini and others, 2016). These measures (and several 
others) also were significantly related to AMF communities in 
these site types; however, it should be noted that levels of most 
environmental characteristics varied considerably at the site 
level, indicating a more complicated relationship with AMF 
taxa. This relationship is demonstrated by the remnant site 
in cluster B (Coneflower) whose AMF communities strongly 
resembled those of reconstructions. At this site, phosphorus, 
manganese, and iron were elevated relative to the mean levels 
for reconstructions; however, several reconstruction sites had 
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Figure 2.  Arbuscular mycorrhizal fungi (AMF) 
communities in sampled plant roots plotted using 
nonmetric multidimensional scaling (NMDS) on 
Bray-Curtis distance matrix of relative 
abundance data. Points that are closer together 
represent communities that are more similar. The 
axes and orientation of the plots are arbitrary. 
(A) AMF communities in roots of plant species at 
14 prairie sites, 6 of which were remnants and 8 
of which were reconstructions. Each point 
represents the AMF community of a single plant 
species at a single site. (B) Plant species 
graphed independently to illustrate differences 
between reconstructions and remnants. Only 
plant species that had at least one 
representative from a remnant and a 
reconstruction site are shown. (C) Clusters (A–F) 
graphed independently to illustrate differences 
in AMF communities between reconstructions 
and remnants within site clusters.—Continued
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low levels of the same elements, yet their AMF communities 
did not resemble those of remnants. The implications of such 
variation, especially with respect to prairie reconstruction, 
may not only relate to soil characteristics, but also relate to 
local adaptation of plants and AMF (Jack and others, 2021), as 
revealed by a “home and away” study that demonstrated coad-
aptation of plant genotypes and AMF communities in nutrient 
limited sites (Johnson and others, 2010). Likewise, the wider 
soil microbial community can influence the effect of AMF 
colonization on plant growth (Hetrick and others, 1988, 1990).

Studies in Estonian forest ecosystems have determined 
that generalist plant species associate with generalist AMF 
taxa, whereas habitat specialist plants may associate with 
generalist and specialist AMF (Davison and others, 2011). 
We determined greater dispersion of AMF communities in 
remnant prairies than in reconstructed prairies, perhaps reflect-
ing greater abundance of specialist plants in remnants, each 
interacting with a few specialist AMF taxa. A global-scale 
metaanalysis of AMF communities associated with plant func-
tional groups (cool-season and warm-season grasses, forbs, 
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Figure 2.  Arbuscular mycorrhizal fungi (AMF) communities in sampled plant roots plotted using nonmetric multidimensional 
scaling (NMDS) on Bray-Curtis distance matrix of relative abundance data. Points that are closer together represent 
communities that are more similar. The axes and orientation of the plots are arbitrary. (A) AMF communities in roots of 
plant species at 14 prairie sites, 6 of which were remnants and 8 of which were reconstructions. Each point represents the 
AMF community of a single plant species at a single site. (B) Plant species graphed independently to illustrate differences 
between reconstructions and remnants. Only plant species that had at least one representative from a remnant and a 
reconstruction site are shown. (C) Clusters (A–F) graphed independently to illustrate differences in AMF communities between 
reconstructions and remnants within site clusters.—Continued
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and legumes) determined that grasses tended to associate with 
a greater breadth of AMF taxa than did forbs (Davison and 
others, 2020); Tipton and others (2019) likewise determined 
the warm-season grass, Schizachyrium scoparium, to be a gen-
eralist with respect to AMF taxa. On average, 10 years after 
planting, 35–40 percent of total live cover consisted of warm-
season grasses and 5–27 percent of total live cover consisted 
of forbs at the Iowa reconstructions (Drobney and others, 
2020) we sampled for this study, but we do not have corre-
sponding plant community data for the remnants. Although 
inspection of the graphs of AMF communities for individual 
species does not indicate widespread variation between 
warm-season grasses and forbs at our study sites, the relative 
abundance of the grasses compared to forbs may account for 
some of the overall variation in AMF communities.

We did not find a clear signal in AMF community 
composition to explain declining frequency or poor establish-
ment in some of the plant species we had monitored in the 
reconstructions (Larson and others, 2017). Given the myriad 
circumstances in which plant species and AMF may encounter 
each other, and the importance of environmental conditions 

in shaping the interaction, an observational study such as 
ours may lack sufficient power to detect such effects. Greater 
benefit is commonly observed for late-successional plants 
(Middleton and Bever, 2012; Koziol and others, 2021; Cheeke 
and others, 2022), but the plants we observed to decline do not 
fall neatly into this category. Other members of the microbial 
community, such as rhizobia (Bauer and others, 2012), also 
may play a role in successful establishment of some species. 
As noted previously, the dominant difference demonstrated 
in the NMDS was between remnants and reconstructions, so 
differences between declining and increasing species may 
have been masked by the much larger magnitude of the effects 
of site type. In addition, we did not evaluate the contribution 
of individual AMF taxa, which may have had important 
associations for which we did not account.

Soil disturbance, such as by plowing, has been 
determined to change the composition and function of AMF 
in grasslands (Schnoor and others, 2011). More intensive land 
management was observed to result in a similar number of 
AMF species but different species composition (Börstler and 
others, 2006). Our results support these observations in that 
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Figure 3.  Relationship between arbuscular mycorrhizal fungi communities of samples from remnants or reconstructions 
and (A) sites (colored to site cluster) or (B) edaphic soil and plant characteristics (arrows). Only edaphic soil and plant 
characteristics that were significantly correlated (significance of less than 0.05) with arbuscular mycorrhizal fungi 
communities (as determined by the envfit analysis; table 3) are shown.
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roots from plants in reconstructions, where the soil ecosystem 
had been subjected to disturbance for row-crop agriculture, 
had a different AMF community composition than did those 
in remnants, where soil had never been plowed. Dispersal 
of AMF is poorly understood (Paz and others, 2021), so the 
likelihood of their unassisted arrival in new reconstructions is 
unclear. Oehl and others (2003) determined declining num-
bers and diversity of AMF in a disturbance gradient rang-
ing from lightly managed grassland to permanent row-crop 
agriculture. It must be kept in mind, however, that grasslands 
are disturbance-dependent ecosystems that cannot persist 
without fire, grazing, or their anthropogenic analogs (Perkins 
and others, 2019). We have no data on the AMF taxa present 
before reconstruction, but if the sites were as depauperate as 
the row-crop sites in the study completed by Oehl and others 
(2003), our sites experienced substantial colonization by AMF 
in the decade and a half since reconstruction began. Moreover, 
these reconstructions were all established by seed, so the 
planting itself was unlikely to introduce AMF.

The geographic variation we saw in AMF community 
composition, combined with the differences between recon-
structed and remnant prairies, indicates the possibility of 
short-distance dispersal of AMF, perhaps in a random fashion 
within the area of an agricultural field, with selection over 
time by plant species acting as filters that winnow out AMF 
that provide fewer benefits (Davison and others, 2011).  
In this regard, the similarity between reconstruction and rem-
nant sites in cluster B in Iowa may be instructive. Although the 
site labeled a remnant in cluster B may not have been plowed, 
one of us (P. Drobney) was present when the site was first 
acquired by the refuge. Glacial till was evident where topsoil 
was lacking, and the plant community was depauperate.  
Over the years, the site was overseeded with a few 
conservative native plant species not originally present and 
Viola pedatifida was planted as plugs (K. Viste-Sparkman, 
U.S. Fish and Wildlife Service, unpub. data, 2022). The site’s 
originally depauperate state may have never supported the 
diversity of AMF we detected at other sites, and surrounding 
agriculture may have reduced opportunities for local dispersal.
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Conclusion
Results of this study have provided insight into variation 

in AMF communities in reconstructed versus remnant prairies 
in Minnesota and Iowa. Consistently across this geographic 
range, remnant- and reconstruction-based AMF communi-
ties remained largely distinct from each other. A recent 
metaanalysis (Neuenkamp and others, 2019) revealed that 
inoculation with AMF promoted native and specialist plant 
species in restorations, which thereby became more similar 
to reference sites; the effect was especially pronounced in the 
most disturbed sites. In addition, Koziol and others (2021), 
in a restoration experiment that spanned grasslands in three 
States, detected greater resistance to exotic invasion in  
sites where AMF-inoculated late-successional nurse plants  
had been introduced. High-quality pollinator habitat requires 

the establishment of species-rich plant communities, which 
include late-successional and hard to establish forbs and resis-
tance to exotic infestation. We have determined that even more 
than 10 years after planting, prairie reconstructions have AMF 
communities distinct from AMF communities in remnants. 
These reconstructions have been invaded by exotic cool-
season grasses, while losing the native cool-season grasses 
that might compete with them (Larson and others, 2017). 
Careful application of AMF inocula may not only reduce the 
differences in AMF communities between reconstructions and 
remnants but also may improve multifunctionality and sustain-
ability of increasingly rare prairies and the fauna they support. 
The differences we have detected indicate that further research 
to discern the effects of AMF derived from reconstructions 
versus remnants on plant performance is warranted.

Table 3.  Results of reduced model for evaluation of the relationship between environmental variables and nonmetric multidimensional 
scaling ordination, after removal of environmental variables that were not associated with arbuscular mycorrhizal fungi community 
composition at α=0.05 (where α is significance). For each variable, association with each of the two nonmetric multidimensional scaling 
axes, the variance in that variable accounted for by the ordination, and the significance of the variance accounted for by the ordination 
are listed.

[NMDS 1, nonmetric multidimensional scaling axis 1; NMDS 2, nonmetric multidimensional scaling axis 2; R2, variance accounted for by the ordination; P, 
significance; **, P less than (<) 0.01; ***, P<0.001; %, percent; --, no data or not applicable; n.s., not significant]

Variable NMDS 1 NMDS 2 R 2 P

Mean plant height (centimeters) −0.34531 −0.93849 0.0728 0.0091**
Calcium −0.91661 0.39979 0.2928 0.0001***
Magnesium −0.99672 −0.08091 0.1132 0.0004***
Iron 0.74206 −0.67033 0.4292 0.0001***
Manganese 0.9879 −0.15511 0.1689 0.0001***
Ammonium −0.99586 0.09092 0.2421 0.0001***
Nitrate −0.92757 0.37365 0.2468 0.0001***
Total soil carbon −0.99963 0.02702 0.4138 0.0001***
Total soil nitrogen −0.99785 −0.06551 0.4229 0.0001***
Phosphorus 0.96036 0.27878 0.1194 0.0003***
Potassium −0.34065 0.94019 0.0761 0.0062**
Soil organic matter −0.99417 −0.10778 0.403 0.0001***
pH −0.59795 0.80154 0.3567 0.0001***
% silt −0.0373 −0.9993 0.0924 0.0022**
Site type -- -- 0.3174 0.0001***
Site -- -- 0.623 0.0001***
Site cluster -- -- 0.1883 0.0001***
State -- -- 0.1083 0.0001***
Decreasing or increasing frequency1 -- -- 0.0646 0.1832 n.s.

1Change in frequency of planted species in reconstructions over 10 years, completed using the subset of data for only those species.
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Appendix 1.  Details of Sampled Sites
Details of the plant species used in this study are listed in 

tables 1.1 and 1.2 and shown in figure 1.1.

Table 1.1.  Sampling sites and plant species used in the study, how the species abundance changed between 2007 and 2015 in 
reconstructions monitored, and the coefficient of conservatism of each species. The number of samples of each plant species collected 
at each study site is listed.

[CofC, coefficient of conservatism; WPA, Waterfowl Production Area; dec, decreased; --, no data or not applicable; nc, no change; fe, failed to establish; inc, 
increased]

  Plant species 
(code)

  Change 
2007–15

  CofC
  Cream  

City  
WPA

  Dog  
Lake  
WPA

  Tyrone  
Flats  
WPA

  Coneflower   Production   Orbweaver
  Rothi 
WPA

Elymus canaden-
sis (elycan)

dec 3, 5 5 -- -- 7 5 10 --

Bouteloua 
curtipendula 
(boucur)

dec 5 -- -- -- 8 10 5 10

Helianthus 
maximiliani 
(helmax)

dec 5 10 10 10 -- -- -- 10

Heliopsis helian-
thoides (helhel)

dec 5 -- 10 10 8 10 10 --

Rudbeckia hirta 
(rudhir)

dec 5 -- -- -- 6 10 10 --

Schizachyrium 
scoparium 
(schsco)

dec 6 7 10 10 8 10 10 10

Symphyotrichum 
ericoides 
(symeri)

dec 3, 2 -- -- -- 7 -- -- --

Dalea purpurea 
(dalpur)

dec/nc 8 7 -- -- -- -- -- --

Liatris aspera 
(liaasp)

fe 8 -- -- -- -- -- -- 10

Symphyotrichum 
novae-angliae 
(symnov)

fe/inc 8 -- 10 10 -- -- -- --

Artemisia ludovi-
ciana (artlud)

fe/nc 3 10 10 10 5 5 9 10

Allium stellatum 
(allste)

inc 7 -- -- -- -- -- -- 10

Monarda fistulosa 
(monfis)

inc 5 -- 10 10 -- -- -- --

Solidago rigida 
(olirig)

inc 4 10 10 10 5 10 10 10

Sorghastrum nu-
tans (sornut)

inc 6 -- -- -- -- -- -- 10
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Table 1.1.  Sampling sites and plant species used in the study, how the species abundance changed between 2007 and 2015 in 
reconstructions monitored, and the coefficient of conservatism of each species. The number of samples of each plant species collected 
at each study site is listed.—Continued

[CofC, coefficient of conservatism; WPA, Waterfowl Production Area; dec, decreased; --, no data or not applicable; nc, no change; fe, failed to establish; inc, 
increased]

  Plant species 
(code)

  Change 
2007–15

  CofC
  Cream 

City  
WPA

  Dog 
Lake 
WPA

  Tyrone 
Flats  
WPA

  Coneflower   Production   Orbweaver
  Rothi 
WPA

Zizia aurea 
(zizaur)

inc 8 -- 10 10 -- -- -- --

Andropogon ge-
rardii (andger)

nc 5 10 10 10 8 10 10 10

Ratibida pinnata 
(ratpin)

nc 4, 6 -- -- -- 5 5 5 --

Liatris ligulistylis 
(lialig)

-- 10 -- -- -- -- -- -- --

Liatris pyc-
nostachya 
(liapyc)

-- 6, 8 -- -- -- 7 2 1 --

Symphyotrichum 
pilosum 
(sympil)

-- 0, 1 -- -- -- -- 5 -- --

Symphyotrichum 
species (sym-
spp)

-- -- -- -- -- -- -- 7 --
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Table 1.2.  Additional sampling sites and plant species used in the study, how the species abundance changed between 2007 and 
2015 in reconstructions monitored, and the coefficient of conservatism of each species. The number of samples of each plant species 
collected at each study site is listed.

[CofC, coefficient of conservatism; WPA, Waterfowl Production Area; SNA, Scientific and Natural Area; WMA, Wildlife Management Area; dec, decreased; --, 
no data or not applicable; nc, no change; fe, failed to establish; inc, increased]

  Plant species 
(code)

  Change 
2007–15

  CofC
  Fahl 
WPA

  Clinton 
Prairie 

SNA

  Diekmann 
WPA

  Pednor 
WMA

  Heinola 
WPA

  Maminka   Harmison

Elymus canaden-
sis (elycan)

dec 3, 5 10 -- 10 -- 10 -- 10

Bouteloua 
curtipendula 
(boucur)

dec 5 10 10 10 -- 10 10 10

Helianthus 
maximiliani 
(helmax)

dec 5 10 10 10 10 10 -- --

Heliopsis helian-
thoides (helhel)

dec 5 -- -- -- -- -- 10 10

Rudbeckia hirta 
(rudhir)

dec 5 -- -- -- -- -- -- --

Schizachyrium 
scoparium 
(schsco)

dec 6 10 10 10 10 10 10 10

Symphyotrichum 
ericoides 
(symeri)

dec 3, 2 -- -- -- -- -- 10 10

Dalea purpurea 
(dalpur)

dec/nc 8 -- -- -- -- -- -- --

Liatris aspera 
(liaasp)

fe 8 10 10 -- -- -- 10 --

Symphyotrichum 
novae-angliae 
(symnov)

fe/inc 8 -- -- -- -- -- -- --

Artemisia ludovi-
ciana (artlud)

fe/nc 3 10 10 10 10 10 -- 10

Allium stellatum 
(allste)

inc 7 10 10 -- -- -- -- --

Monarda fistulosa 
(monfis)

inc 5 -- -- -- -- -- -- --

Solidago rigida 
(olirig)

inc 4 10 10 10 10 10 10 10

Sorghastrum nu-
tans (sornut)

inc 6 10 10 10 10 10 10 10

Zizia aurea 
(zizaur)

inc 8 -- -- 10 10 10 -- --

Andropogon ge-
rardii (andger)

nc 5 10 10 10 10 10 10 10

Ratibida pinnata 
(ratpin)

nc 4, 6 -- -- -- -- -- -- --

Liatris ligulistylis 
(lialig)

-- 10 -- -- -- 5 -- -- --
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Table 1.2.  Additional sampling sites and plant species used in the study, how the species abundance changed between 2007 and 
2015 in reconstructions monitored, and the coefficient of conservatism of each species. The number of samples of each plant species 
collected at each study site is listed.—Continued

[CofC, coefficient of conservatism; WPA, Waterfowl Production Area; SNA, Scientific and Natural Area; WMA, Wildlife Management Area; dec, decreased; --, 
no data or not applicable; nc, no change; fe, failed to establish; inc, increased]

  Plant species 
(code)

  Change 
2007–15

  CofC
  Fahl 
WPA

  Clinton 
Prairie 

SNA

  Diekmann 
WPA

  Pednor 
WMA

  Heinola 
WPA

  Maminka   Harmison

Liatris pyc-
nostachya 
(liapyc)

-- 6, 8 -- -- -- 5 -- -- --

Symphyotrichum 
pilosum 
(sympil)

-- 0, 1 -- -- -- -- -- -- --

Symphyotrichum 
unidentified 
species (sym-
spp)

-- -- -- -- -- -- -- -- --

Figure 1.1.  Arbuscular 
mycorrhizal fungi (AMF) 
communities in roots of plant 
species at 14 sites, 6 of which 
were remnants and 8 of 
which were reconstructions. 
Each point represents the 
AMF community of a single 
plant species at a single site. 
Only plant species detected 
at reconstructions and 
remnants were used in the 
ordination. Note that nonmetric 
multidimensional scaling axes 
are arbitrary, so this ordination 
is about 180 degrees from the 
ordination in figure 2 but shows 
the same pattern of separation 
between AMF communities in 
remnant and reconstructed 
prairies.
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