




Figure 1. Map showing the Queen Charlotte-Fairweather fault system in southeastern Alaska and western British Columbia.

An approximately 1,150-kilometer (km)-long transform boundary between the Pacific and North American plates stretches from Yakutat, Alaska, to the southern tip of the Haida Gwaii archipelago in British Columbia, Canada (fig. 1). In the north, the boundary is defined by the approximately 300-km-long onshore Fairweather fault, which steps offshore at Icy Point and then the Queen Charlotte fault, which steps offshore about 50 km. The Fairweather fault is a high-angle slope, to the west of which is a triple junction between the Pacific, North American, and Explorer tectonic plates. The fault system accommodates primarily right-lateral shear that has generated seven events with greater than magnitude. The M 7 during the past 100 years (Trifunovic and others, 2015; Brothes and others, 2020). AMT 7.3 thrust event near Icy Point in 2012 and a M 7.3 strike-slip event west of Craig, Alaska, in 2013. The hazard associated with the fault system is high (Trifunovic and others, 2013). As one of the world's most seismically active strike-slip faults, its precise location and geomorphic expression along the seafloor has never been mapped using comprehensive, high-resolution marine geophysical approaches.

A bathymetric terrain model (fig. 2) was constructed from current multibeam surveys of the previously unmapped Queen Charlotte fault system in southeastern Alaska and Haida Gwaii archipelago. The multibeam survey data were collected between 2005 and 2018 under a cooperative agreement between the U.S. Geological Survey, National Research Council, the Alaska Department of Natural Resources, and the National Oceanic and Atmospheric Administration. The terrain model was generated from the multibeam data as published is a 30-meter resolution georeferenced tag image file format (GeoTIFF) in Andrews and others (2022).

The seabed morphology is characterized by the following sets of features (fig. 3):

- numerous submarine canyons, gullies, and fan aprons that have been offset by horizontal motion on the Queen Charlotte fault;
- elongated ridges and pressure ridges associated with heads and legs on the Queen Charlotte fault;
- subsiding landfalls, seeps, stars, and mass transport deposits; and
- broad sediment aprons located seaward of major shelf-sea valleys (that is, trough-mouth fans) that expand across the continental slope and rise of the eastern Gulf of Alaska, delivering sediment to the Baranof Fan and Chirikof channel systems.

References Cited

Andrews, B.D., Brothers, D.S., Dartnell, P., and Barrie, J.V., 2022. A bathymetric terrain model of multibeam data collected between 2005 and 2018 along the Queen Charlotte fault system in the eastern Gulf of Alaska from Cross Sound, Alaska, to Queen Charlotte Sound, Canada: U.S. Geological Survey data release, <https://doi.org/10.5066/P9YQDH1Q>.

Brothers, D.S., Andrews, B.D., Barrie, J.V., Miller, N.C., ten Brink, U., East, A.E., Haesler, P.J., Klemperer, J.W., Conrad, J.E., and Shatto, J.W., 2018. Sliding and mass transport processes along the Queen Charlotte fault system in Linnich, Alaska. *Marine Geology*, v. 394, p. 1–16, doi:10.1016/j.margeo.2018.01.001.

Clague, J., Georgopoulou, A., Lapajne, A., Poyer, D., Scherwath, M., Stacey, C., and Turner, D., eds., Subaqueous mass movements and their consequences—Assessing geohazards, environmental implications and coastal significance, 2022, 2, <https://doi.org/10.1144/SP47-30>.

Brothers, D.S., Miller, N.C., Barrie, J.V., Haesler, P.J., Greene, H.G., Andrews, B.D., Zieke, O., Watt, J., and Dartnell, P., 2020. Plate boundary localization, slip rate, and rupture segmentation of the Queen Charlotte fault based on submarine trenching and seismic reflection data. *Earth and Planetary Science Letters*, v. 530, p. 11852, 16 p., accessed June 8, 2022, at <https://doi.org/10.1016/j.epsl.2019.115882>.

Lay, T., Ye, L., Kammerer, H., Yamazaki, Y., Cheung, K.F., Kwong, K., and Koper, K.D., 2013. The October 28, 2012 Mw 7.8 Haida Gwaii, British Columbia, earthquake and tsunami—Slip partitioning along the Queen Charlotte fault transpressional plate boundary. *Earth and Planetary Science Letters*, v. 375, p. 57–70, accessed June 8, 2022, at <https://doi.org/10.1016/j.epsl.2013.06.004>.

Prosty, N.G., Brothers, D.B., Klesner, J.W., Barrie, J.V., Andrews, B.D., Lauer, R.M., Greene, H.G., Conrad, J.E., Losen, T.D., Lau, M.D., Saby, D., Conroy, K.W., McGinn, M.L., and Dartnell, P., 2020. Focused fluid flow and methane venting along the Queen Charlotte fault, British Columbia (Canada): *Geophysics*, v. 16, no. 6, p. 1326–1335, accessed June 8, 2022, at <https://doi.org/10.1146/ges02230>.

Trebu, A.M., Schleicher, M., Rohr, K.M., Tifof, B., Walton, M.A., Gulek, S.P., and Roland, E.C., 2015. An abrupt transition in the mechanical response of the upper crust to transpressional along the Queen Charlotte fault: Bulletin of the Seismological Society of America, v. 105, p. 1114–112, accessed September 30, 2022, at <https://doi.org/10.1785/0201300052>.

Yue, H., Lay, T., Freymuller, J.T., Ding, C., Rivera, L., Ruppert, N.A., and Koper, K.D., 2013. Superseismic rupture of the 5 January 2013 Craig, Alaska (Mw 7.5) earthquake. *Journal of Geophysical Research: Solid Earth*, v. 118, no. 11, p. 5903–5919, accessed September 30, 2022, at <https://doi.org/10.1029/2013JB010594>.

Figure 2. The three-dimensional (3D) perspective view of the Queen Charlotte fault system in southeastern Alaska and Western British Columbia. A. Overview map rotated 90 degrees from true north, the multibeam bathymetry is vertically exaggerated three times. Azimuth is in degrees from true north. B–I. Perspective view of B, the fault as it crosses the Yakutat Sea showing the approximately 900-meter (m) right lateral offset at map point "a" (center of 30 m \times 30 m bathymetric image 307987.E, azimuth 106°, elevation 750 m) and map point "b" (center of 30 m \times 30 m bathymetric image 307988.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 307989.E, azimuth 106°, elevation 750 m) and map point "c" (center of 30 m \times 30 m bathymetric image 307990.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 307991.E, azimuth 106°, elevation 750 m) and map point "d" (center of 30 m \times 30 m bathymetric image 307992.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 307993.E, azimuth 106°, elevation 750 m) and map point "e" (center of 30 m \times 30 m bathymetric image 307994.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 307995.E, azimuth 106°, elevation 750 m) and map point "f" (center of 30 m \times 30 m bathymetric image 307996.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 307997.E, azimuth 106°, elevation 750 m) and map point "g" (center of 30 m \times 30 m bathymetric image 307998.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 307999.E, azimuth 106°, elevation 750 m) and map point "h" (center of 30 m \times 30 m bathymetric image 308000.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 308001.E, azimuth 106°, elevation 750 m) and map point "i" (center of 30 m \times 30 m bathymetric image 308002.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 308003.E, azimuth 106°, elevation 750 m) and map point "j" (center of 30 m \times 30 m bathymetric image 308004.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 308005.E, azimuth 106°, elevation 750 m) and map point "k" (center of 30 m \times 30 m bathymetric image 308006.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 308007.E, azimuth 106°, elevation 750 m) and map point "l" (center of 30 m \times 30 m bathymetric image 308008.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 308009.E, azimuth 106°, elevation 750 m) and map point "m" (center of 30 m \times 30 m bathymetric image 308010.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 308011.E, azimuth 106°, elevation 750 m) and map point "n" (center of 30 m \times 30 m bathymetric image 308012.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 308013.E, azimuth 106°, elevation 750 m) and map point "o" (center of 30 m \times 30 m bathymetric image 308014.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 308015.E, azimuth 106°, elevation 750 m) and map point "p" (center of 30 m \times 30 m bathymetric image 308016.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 308017.E, azimuth 106°, elevation 750 m) and map point "q" (center of 30 m \times 30 m bathymetric image 308018.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 308019.E, azimuth 106°, elevation 750 m) and map point "r" (center of 30 m \times 30 m bathymetric image 308020.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 308021.E, azimuth 106°, elevation 750 m) and map point "s" (center of 30 m \times 30 m bathymetric image 308022.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 308023.E, azimuth 106°, elevation 750 m) and map point "t" (center of 30 m \times 30 m bathymetric image 308024.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 308025.E, azimuth 106°, elevation 750 m) and map point "u" (center of 30 m \times 30 m bathymetric image 308026.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 308027.E, azimuth 106°, elevation 750 m) and map point "v" (center of 30 m \times 30 m bathymetric image 308028.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 308029.E, azimuth 106°, elevation 750 m) and map point "w" (center of 30 m \times 30 m bathymetric image 308030.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 308031.E, azimuth 106°, elevation 750 m) and map point "x" (center of 30 m \times 30 m bathymetric image 308032.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 308033.E, azimuth 106°, elevation 750 m) and map point "y" (center of 30 m \times 30 m bathymetric image 308034.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 308035.E, azimuth 106°, elevation 750 m) and map point "z" (center of 30 m \times 30 m bathymetric image 308036.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 308037.E, azimuth 106°, elevation 750 m) and map point "aa" (center of 30 m \times 30 m bathymetric image 308038.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 308039.E, azimuth 106°, elevation 750 m) and map point "ab" (center of 30 m \times 30 m bathymetric image 308040.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 308041.E, azimuth 106°, elevation 750 m) and map point "ac" (center of 30 m \times 30 m bathymetric image 308042.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 308043.E, azimuth 106°, elevation 750 m) and map point "ad" (center of 30 m \times 30 m bathymetric image 308044.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 308045.E, azimuth 106°, elevation 750 m) and map point "ae" (center of 30 m \times 30 m bathymetric image 308046.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 308047.E, azimuth 106°, elevation 750 m) and map point "af" (center of 30 m \times 30 m bathymetric image 308048.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 308049.E, azimuth 106°, elevation 750 m) and map point "ag" (center of 30 m \times 30 m bathymetric image 308050.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 308051.E, azimuth 106°, elevation 750 m) and map point "ah" (center of 30 m \times 30 m bathymetric image 308052.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 308053.E, azimuth 106°, elevation 750 m) and map point "ai" (center of 30 m \times 30 m bathymetric image 308054.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 308055.E, azimuth 106°, elevation 750 m) and map point "aj" (center of 30 m \times 30 m bathymetric image 308056.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 308057.E, azimuth 106°, elevation 750 m) and map point "ak" (center of 30 m \times 30 m bathymetric image 308058.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 308059.E, azimuth 106°, elevation 750 m) and map point "al" (center of 30 m \times 30 m bathymetric image 308060.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 308061.E, azimuth 106°, elevation 750 m) and map point "am" (center of 30 m \times 30 m bathymetric image 308062.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 308063.E, azimuth 106°, elevation 750 m) and map point "an" (center of 30 m \times 30 m bathymetric image 308064.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 308065.E, azimuth 106°, elevation 750 m) and map point "ao" (center of 30 m \times 30 m bathymetric image 308066.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 308067.E, azimuth 106°, elevation 750 m) and map point "ap" (center of 30 m \times 30 m bathymetric image 308068.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 308069.E, azimuth 106°, elevation 750 m) and map point "aq" (center of 30 m \times 30 m bathymetric image 308070.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 308071.E, azimuth 106°, elevation 750 m) and map point "ar" (center of 30 m \times 30 m bathymetric image 308072.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 308073.E, azimuth 106°, elevation 750 m) and map point "as" (center of 30 m \times 30 m bathymetric image 308074.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 308075.E, azimuth 106°, elevation 750 m) and map point "at" (center of 30 m \times 30 m bathymetric image 308076.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 308077.E, azimuth 106°, elevation 750 m) and map point "au" (center of 30 m \times 30 m bathymetric image 308078.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 308079.E, azimuth 106°, elevation 750 m) and map point "av" (center of 30 m \times 30 m bathymetric image 308080.E, azimuth 106°, elevation 750 m) as a previously unknown canyon head offset by the fault center of 30 m \times 30 m bathymetric image 308081.E, azimuth 106°,