
The Pacific Gas and Electric Company (PG&E) Hinkley compressor 
station (fig. 1), in the Mojave Desert, 80 miles northeast of Los Angeles, 
California, is used to compress natural gas as it is transported through 
a pipeline from Texas to California. Between 1952 and 1964, cooling 
water was treated with a compound containing hexavalent chromium, 
Cr(VI), to prevent corrosion of machinery within the compressor station. 
Cooling wastewater containing Cr(VI) was discharged to unlined ponds 
and released into groundwater. Since 1964, cooling-water management 
practices have been used that do not contribute chromium to groundwater.

A 2007 PG&E-funded study estimated the natural Cr(VI) 
background concentration in Hinkley Valley to be 3.1 micrograms per 
liter (µg/L; CH2M Hill, 2007); this value was adopted as the interim 
Cr(VI) background concentration for regulatory purposes by the Lahontan 
Regional Water Quality Control Board (RWQCB) in 2007. The Lahontan 
RWQCB requested that the 2007 background Cr(VI) concentration 
study be updated by the U.S. Geological Survey (USGS) to (1) address 
limitations with the 2007 study methodology (Lahontan Regional Water 
Quality Control Board, 2011) and (2) include increases in the mapped 
extent of Cr(VI) concentrations greater than 3.1 µg/L and increases in the 
regulatory Cr(VI) plume extent between 2008 and 2012. The purpose of 
the updated study was to estimate Cr(VI) background concentrations in 
unconsolidated deposits that compose the upper aquifer underlying Hinkley 
and Water Valleys (Izbicki and Groover, 2016).

Rock and aquifer deposits within Hinkley Valley have chromium 
concentrations commonly less than 25 milligrams per kilogram (Izbicki 
and others, 2023). These concentrations are typical of the region and less 
than the average bulk continental crustal concentration for chromium 
of 185 mg/kg (Reimann and de Caritat, 1998). With the exception of 
hornblende diorite that crops out in Iron Mountain along the western 
margin of Hinkley Valley, chromium-containing rocks in the area are 
either (1) not consistently high in chromium; (2) have limited areal 
extent; or (3) in the case of basalt, are present only in Water Valley. 
More than 90 percent of the chromium in aquifer deposits is contained 
within unweathered mineral grains and is comparatively unavailable to 
groundwater. Consequently, natural Cr(VI) in water from wells within 
Hinkley and Water Valleys is related to factors other than chromium 
abundance, including (1) mineralogy and weathering rates of chromium-
containing minerals; (2) accumulation of chromium weathered from 
chromium-containing minerals within iron- and manganese-oxide surface 
coatings on mineral grains and subsequent oxidation of accumulated 
trivalent chromium, Cr(III), to Cr(VI) in the presence of manganese oxides; 
(3) texture of aquifer deposits, with finer-textured deposits having greater 
surface area and more abundant iron- and manganese oxide coatings; and 
(4) pH-dependent desorption of Cr(VI) from iron- and manganese oxide 
surface coatings on mineral grains into groundwater under appropriate 
aqueous geochemical conditions. Once oxidized to Cr(VI), desorption of 
Cr(VI) from sorption sites on the surfaces of mineral grains increases with 
increasing pH. During timespans of several thousand years, pH increases 
with groundwater age (time since recharge) as silicate minerals that 
compose aquifers weather, and natural Cr(VI) concentrations may increase 
in older groundwater within Hinkley and Water Valleys as long as that 
older water remains oxic (contains dissolved oxygen).

Prepared in cooperation with Lahontan Regional Water Quality Control Board
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The extent of anthropogenic (human-made) Cr(VI) released from 
the Hinkley compressor station was estimated using a summative-scale 
analysis of geologic, hydrologic (including groundwater source and 
age), and geochemical data collected from more than 100 wells between 
March 2015 and November 2017 (Izbicki and others, 2023). Sampled 
wells were selected by the USGS with input from a Technical Working 
Group (TWG) consisting of local community members, the Independent 
Review Panel (IRP) Manager, the Lahontan RWQCB, PG&E, and PG&E 
consultants (fig. 2). The summative scale developed from data collected 
as part of this study consisted of eight questions requiring binary (yes 
or no) answers for each sampled well (table 1). The questions were 
intended to provide (1) a transparent framework for data interpretation 
in which all stakeholders participated; (2) unbiased interpretation of data 
traceable to numerical measurements; (3) a framework in which geologic, 
hydrologic, and geochemical data could be interpreted collectively; 
and (4) a framework to consolidate different types of data into simple, 
easy-to-understand illustrations. 

A score of -1 was assigned for answers to questions within the 
summative scale that were consistent with natural Cr(VI); a score 
of +1 was assigned for answers consistent with anthropogenic Cr(VI). 
Scores for each question in the summative scale were summed to create 
a single score for each sampled well. Possible scores ranged from –8 for 
wells having all answers consistent with natural Cr(VI), to +8 for wells 
having all answers consistent with anthropogenic Cr(VI). Data were not 
available to score every question within the scale for every sampled well. 
Consequently, summative-scale scores were evaluated as the percent of 
the total possible score for each well, with possible scores ranging from 
–100 to +100 percent for natural and anthropogenic Cr(VI), respectively. 
When data from each well were scored using the questions and metrics 
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Figure 1. Pacific Gas and Electric Company (PG&E) compressor 
station, Hinkley, California, March 2009. (Photograph by Steven Perry, 
ARCADIS, Inc., courtesy of PG&E).



within the summative scale, all stakeholders would score each well the 
same way and would draw the same summative-scale Cr(VI) plume extent.

The summative-scale scores were used to draw the boundary of the 
summative-scale Cr(VI) plume around the lowest magnitude positive-
percentage score that produced a contiguous plume extent (percentage 
scores greater than 50 percent). The summative-scale Cr(VI) plume extent 
of 5.5 square miles (mi2; fig. 3) was larger than the 2.2 mi2 extent of the 
October–December 2015 (Q4 2015) regulatory Cr(VI) plume (ARCADIS, 
2016) but smaller than the 8.3 mi2 maximum mapped extent of Cr(VI) 
concentrations greater than the interim regulatory Cr(VI) background 
concentration of 3.1 µg/L (fig. 3). The summative-scale Cr(VI) plume is 
within unconsolidated “Mojave-type” aquifer deposits transported to the 
area by the Mojave River that are composed of low-chromium alluvium 
and near shore lake (beach) deposits (Miller and others, 2020). Most 
groundwater within the summative-scale Cr(VI) plume was neutral to 
slightly alkaline (regulatory pH values less than 7.2; ARCADIS, 2016), 
contained tritium (a radioactive isotope of hydrogen having a half-life of 
12.3 years), and was recharged from the Mojave River after 1952 (Izbicki 
and others, 2023). 

The summative-scale Cr(VI) plume is within the area covered by the 
PG&E monitoring-well network. Although the summative-scale Cr(VI) 
plume includes wells identified as containing anthropogenic Cr(VI), 
the summative-scale Cr(VI) plume may include wells that have Cr(VI) 
concentrations below regulatory concern and does not define the Cr(VI) 
plume extent for regulatory purposes. Hexavalent chromium concentrations 
in water from wells outside the summative-scale Cr(VI) plume extent were 

used to calculate background Cr(VI) concentrations that can be used to 
update the regulatory Cr(VI) plume extent. 

The selected study design (fig. 2; Izbicki and Groover, 2016, 2018) 
compared the summative-scale Cr(VI) plume extent with particle-track 
simulations calculated using an updated groundwater-flow model of 
Hinkley Valley prepared by PG&E consultants (Jacobs Engineering Group, 
Inc., 2019). Differences among measured groundwater-age data, Cr(VI) 
regulatory data, and particle simulations (Izbicki and others, 2023) were not 
reconciled within the timeframe of this study; consequently, the updated 
groundwater-flow model was not used to iteratively evaluate and refine the 
summative-scale Cr(VI) plume extent.

Outside the summative-scale Cr(VI) plume extent, naturally 
occurring Cr(VI) concentrations greater than the interim Cr(VI) regulatory 
background concentration of 3.1 µg/L were identified in water from 
wells completed in (1) fine-textured materials, including mudflat/playa 
deposits; (2) materials having visually abundant iron- and manganese-oxide 
surface coatings; (3) weathered hornblende diorite bedrock in the western 
subarea; and (4) weathered Miocene (5.3 to 23 million years old) materials 
underlying the western subarea, parts of the northern subarea downgradient 
from the Mount General fault, and Water Valley (fig. 3). Naturally 
occurring Cr(VI) concentrations in groundwater within these materials 
differ but can exceed 10 µg/L in areas where older, oxic (contains dissolved 
oxygen) groundwater is strongly alkaline with pH values greater than 8.0.

Hexavalent chromium concentrations as high as 10 µg/L (Izbicki 
and others, 2023) were measured in water from wells downgradient from 
the “western excavation site” (fig. 3). The western excavation site, on 
property owned by PG&E, was used as an illegal disposal site by unknown 
parties. The western excavation site has a different hydrologic history from 
the Hinkley compressor station and is managed separately for regulatory 
purposes. Chemical and mineralogic data did not indicate high natural 
abundance, unusual mineralogy, unusual sorptive properties, or unusual 
aqueous geochemistry for chromium within unconsolidated deposits that 
would contribute to natural high Cr(VI) concentrations in water from 
wells downgradient from the western excavation site (Izbicki and others, 
2023). Although Cr(VI) releases have not been confirmed at the western 
excavation site, Cr(VI) concentrations in water from downgradient wells 
were not used for the calculation of background Cr(VI) values.

Background Cr(VI) concentrations near the margins of the Cr(VI) 
plume can be used for regulatory purposes including updating the 
regulatory Cr(VI) plume extent, plume management, and establishment of 
cleanup goals. Background Cr(VI) concentrations were calculated using 
the computer program ProUCL 5.1 (Singh and Maichle, 2015) as the upper 
95-percent tolerance level, UTL95. The UTL95 is the value below which 
95 percent of measured concentrations are expected to fall 95 percent of 
the time. The UTL95 controls for false positive and false negative results 
(statistical errors) in estimates of background.

Hexavalent chromium data from 81 wells completed in 
undifferentiated, unconsolidated deposits outside the summative-scale 
Cr(VI) plume, collected quarterly between April 2017 and March 2018, 
were used to calculate an overall UTL95 value of 3.8 µg/L. The overall 
UTL95 value is similar to the maximum Cr(VI) concentration of older 
groundwater in contact with Mojave-type deposits of 3.6 µg/L (Izbicki 
and others, 2023). For regulatory purposes, including plume management 
near the summative-scale Cr(VI) plume margin, UTL95 values of 2.8, 3.8, 
and 4.8 µg/L were calculated for the eastern and western subareas and the 
northern subarea upgradient from the Mount General fault, respectively 
(table 2). A separate UTL95 value of 5.8 µg/L was calculated for wells near 
mudflat/playa deposits in the eastern subarea near Mount General. A UTL95 
value of 2.3 µg/L was calculated for Cr(VI) concentrations that may have 
been present in Mojave-type deposits within the updated regulatory Cr(VI) 
plume if Cr(VI) had not been released from the Hinkley compressor station. 
This value is lower than values elsewhere in Hinkley Valley because of 

Figure 2. Data collection, summative-scale analyses and 
interpretation, background calculation, and report preparation for 
U.S. Geological Survey background hexavalent chromium, Cr(VI), study, 
Hinkley and Water Valleys, western Mojave Desert, California. Data are 
modified from Izbicki and others (2023).
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(Jacobs Engineering Group, 2019)
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 (Table 2, figure 4)

Finish: study published (Izbicki and others, 2023)

Start: study begins January 2015

Hexavalent chromium data outside 
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January 2018, figure 4)
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Table 1. Summative-scale questions used to determine the extent of natural and anthropogenic (human-made) hexavalent chromium, Cr(VI), 
Hinkley and Water Valleys, western Mojave Desert, California. Data are modified from Izbicki and others (2023).

[Items in the scale are formulated as questions requiring a binary, yes or no, answer. Based on the answers to each question, a score of –1 is consistent with a natural 
source and a score of 1 is consistent with an anthropogenic source. Abbreviations: USGS, U.S. Geological Survey; PG&E, Pacific Gas and Electric Company; 
mg/kg, milligrams per kilogram; GAMA, Groundwater Ambient Monitoring Assessment Project]

Question Data source
Chapter 

where data 
are discussed

Answer  
and score

Yes No

1. Are geologic materials at the well screen fine 
textured (predominately silt or finer)?

USGS lithologic descriptions of core material (PG&E 
lithologic descriptions from well logs or drillers 
logs used if core material was not available)

Chapters B, C 
and E

−1 1

2. Do geologic materials at the well screen contain more 
than 85 mg/kg chromium?

Portable (handheld) X-ray fluorescence (HXRF) 
measurements of core material

Chapter B −1 1

3. Do geologic materials at the well screen contain more 
than 970 mg/kg manganese?

Portable (handheld) X-ray fluorescence (HXRF) 
measurements of core material

Chapter B −1 1

4. Are Cr(VI) concentrations trended upward, 
downward or no trend with time?

Regulatory Cr(VI) data collected between July 2012 
and June 2017, interpreted using the Mann-Kendall 
test for trend (Helsel and others, 2020)

Chapter D 1 −1

5. Is there an excess of Cr(VI) with respect to pH, with 
the probability of natural Cr(VI) occurrence at the 
measured pH less than 30 percent?

pH-dependent sorption evaluated on the basis of 
pH and Cr(VI) concentrations in California-wide 
GAMA data

Chapter E 1 −1

6. Is there an excess of Cr(VI) with respect to other 
trace elements?

Principal component analyses (PCA; Helsel and 
others, 2020) of Cr(VI), arsenic, vanadium, 
uranium, iron, and manganese.

Chapter E 1 −1

7. Was the water recharged from the Mojave River? delta oxygen-18, δ18O, and delta deuterium, δD, data Chapter F 1 −1

8. Does the water contain measurable modern, post-
1952, water (with measurable tritium) and a 
carbon-14 activity greater than 84 percent modern 
carbon?

Tritium, helium-3, and carbon-14 data. Chapter F 1 −1

coarser textured, low-chromium deposits and proximity to recharge areas 
along the Mojave River that results in younger, less alkaline (near-neutral 
pH) groundwater compared to wells farther downgradient. The value may 
be a suitable cleanup metric for wells within the updated regulatory Cr(VI) 
plume. The UTL95 values calculated for undifferentiated deposits in the 
northern subarea downgradient from the Mount General fault and in Water 
Valley were 9.0 and 6.1 µg/L, respectively. These values define background 
Cr(VI) concentrations in areas farther downgradient from the plume 
margins (fig. 4).

Hexavalent chromium concentrations in water from more than 
70 domestic wells sampled in Hinkley and Water Valleys between 
January 27 and 31, 2016, did not exceed 4.0 µg/L (Izbicki and Groover, 
2018). Hexavalent chromium concentrations in water from domestic wells 
were within background ranges expected for native (uncontaminated) 
groundwater within the various subareas in Hinkley Valley. However, 
domestic wells in former residential areas within the community of Hinkley 
having Cr(VI) concentrations as high as 8.6 µg/L had been destroyed 
by PG&E based on guidance from the Lahontan RWQCB and were not 
available for sample collection. Water from 47 percent of sampled domestic 
wells had arsenic, uranium, or nitrate concentrations above drinking water 
limits (maximum contaminant levels, MCLs) for these constituents.

Remediation of anthropogenic Cr(VI) within groundwater 
downgradient from the Hinkley compressor station is accomplished using 
a number of techniques, including bioremediation using ethanol as a 

reductant injected within a volume of aquifer known as the in situ reactive 
zone (IRZ). Laboratory-microcosm studies showed that soluble Cr(VI) 
was rapidly reduced to Cr(III) with additions of ethanol. Reduced Cr(III) 
was sorbed and then sequestered into crystalline iron and manganese 
oxides on the surfaces of mineral grains within the microcosms during 
a period of several months. Sequestration of chromium with manganese 
oxides facilitated reoxidation of Cr(III) back to Cr(VI) within 14 days 
after oxic conditions were established within laboratory microcosms. The 
amount of reoxidation of Cr(III) to Cr(VI) increased with manganese (Mn) 
concentration, and as much as 20 percent of the added Cr was oxidized 
to Cr(VI) in microcosms prepared as part of this study. Although much of 
the reoxidized Cr(VI) remained sorbed to mineral grains, aqueous Cr(VI) 
was present within the microcosms. Microcosm studies are not directly 
analogous to reactions that occur within aquifers; however, maintenance of 
anoxic (does not contain oxygen) conditions within the IRZ could ensure 
future sequestration of chromium within treated aquifer materials as Cr(III).

Results of the USGS Cr(VI) background study are presented 
by Izbicki and others (2023). Hexavalent chromium background 
concentrations can be used for regulatory purposes to define and manage 
the Cr(VI) plume margins, identify unusual Cr(VI) concentrations 
outside the Cr(VI) plume margins, and establish cleanup goals within the 
updated regulatory Cr(VI) plume. The Lahontan RWQCB has the sole 
authority to establish and update Cr(VI) background concentrations for 
regulatory purposes.



Figure 3. Summative-scale scores and summative-scale hexavalent chromium plume extent, Hinkley and Water Valleys, western Mojave Desert, 
California, March 2015 through November 2017. Summative-scale scores were calculated from data available in Izbicki and others (2023) chapter E 
(appendix E.1, table E.1.1), Groover and Izbicki (2018), and U.S. Geological Survey (2021). Selected data and scores are available in Izbicki and others 
(2023) chapter G (appendix G.1, table G.1.1).
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Figure 4. Background hexavalent chromium, Cr(VI), concentrations within Hinkley and Water Valleys, western Mojave Desert, California, April 2017 
through March 2018. Data are modified from Izbicki and others (2023).
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