
Ecosystems Mission Area—Species Management Research Program

Monitoring Avian Productivity and Survivorship (MAPS) 6-Year Summary, Naval Outlying Landing Field, Imperial Beach, Southwestern San Diego County, California, 2014–20

Open-File Report 2023-1055

Monitoring Avian Productivity and Survivorship (MAPS) 6-Year Summary, Naval Outlying Landing Field, Imperial Beach, Southwestern San Diego County, California, 2014–20

Open-File Report 2023-1055

U.S. Geological Survey, Reston, Virginia: 2023

For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov or call 1–888–392–8545.

For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov/or contact the store at 1–888–275–8747.

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner.

Suggested citation:

Lynn, S., Mendia, S., and Kus, B.E., 2023, Monitoring Avian Productivity and Survivorship (MAPS) 6-year summary, Naval Outlying Landing Field, Imperial Beach, southwestern San Diego County, California, 2014–20: U.S. Geological Survey Open-File Report 2023–1055, 68 p., https://doi.org/10.3133/ofr20231055.

ISSN 2331-1258 (online)

Acknowledgments

This project was funded by Commander, Navy Region Southwest and the San Diego Association of Governments. Kurt Roblek and Brian Collins from the Tijuana Slough National Wildlife Refuge assisted in site logistics. The authors thank the many biologists who assisted in data collection for this project: Erica Harris from Helix Environmental Planning; Brett Hartl from the Center for Biological Diversity; Jessica Looney from the San Diego Zoo Safari Park; Melanie Madden and Tiffany Shepherd from the U.S. Navy; John Martin, Samantha Padilla, and Sabrina West from the U.S. Fish and Wildlife Service; and Alessandro Bartolo, Annabelle Bernabe, Thomas Dayton, Logan Derderian, Collin Farmer, Kim Geissler, Jonathan Gunther, Katherine Hall, Sara Harris, Alexandra Houston, Scarlett Howell, Marcus Hubbell, Brandon Miller, Christina Santa Maria, Rachelle McLaughlin, Ryan Pottinger, Michelle Treadwell, and Stéphane Vernet from the U.S. Geological Survey.

Contents

Acknowledgmentsiii
Executive Summary1
Introduction2
Methods2
Site Description2
Bird Banding4
Banding Schedule5
Data Analysis5
Captures5
Effort Corrections6
Focal Species9
Seasonal and Annual Variation in Captures9
Annual Productivity, Survival, and Predictors of Population Size10
Climate Variables10
Annual Productivity10
Annual Survival10
Predictors of Population Change11
Results11
Overview of Captures11
Sensitive Species11
Capture Rates
Species Richness
Relative Species Abundance15
Sex and Age Structure36
Population Trends36
Climate Variables36
Annual Productivity52
Annual Survival52
Predictors of Population Change52
Discussion
References Cited
Appendix 1. Alpha Codes, Common Names, and Scientific Names for Species Captured and Observed, Naval Outlying Landing Field, Imperial Beach, California, 2014–2065

Figures

I.	and Survivorship banding station, Naval Outlying Landing Field, Imperial Beach, California	3
2.	Aerial photograph showing net locations at Monitoring Avian Productivity and Survivorship banding station, Naval Outlying Landing Field, Imperial Beach, California	5
3.	Graphs showing number of year-unique and effort-corrected captures per species, Naval Outlying Landing Field, Imperial Beach, California, 2014–20	29
4.	Graphs showing seasonal and annual variation in the effort-corrected number of year-unique captures of bird species at Naval Outlying Landing Field, Imperial Beach, California, 2014–20	31
5.	Graphs showing annual variation in effort-corrected captures for five species that bred at Naval Outlying Landing Field, Imperial Beach, California, 2012–19	49
6.	Graph showing adult population size for five bird species at Naval Outlying Landing Field, Imperial Beach, California, 2012–19	50
7.	Graphs showing annual variation in climate variables used in productivity and survival models	51
8.	Graphs showing annual productivity of seven bird species captured as a function of climate variables that influenced productivity according to top models	53
9.	Graphs showing adult annual survival for seven bird species by sex and as a function of climate variables, according to top models	57
Tables		
1.	Global Positioning System locations of mist nets at Monitoring Avian Productivity and Survivorship banding station, Naval Outlying Landing Field, Imperial Beach, California	4
2.	Example of effort correction for a hypothetical banding period when actual	
3.	netting hours were less than intended netting hours	ປ
4.	netting hours were less than intended netting hours Total number of birds captured, banded, recaptured, and released unbanded at	12
4. 5.	netting hours were less than intended netting hours	12 16
	netting hours were less than intended netting hours	12 16
5.	netting hours were less than intended netting hours	12
5. 6.	netting hours were less than intended netting hours	12 16 17 19
5.6.7.	netting hours were less than intended netting hours	12

11.	Sex and age of year-unique bird captures at Naval Outlying Landing Field, Imperial Beach, California, 2014	37
12.	Sex and age of year-unique bird captures at Naval Outlying Landing Field, Imperial Beach, California, 2015	39
13.	Sex and age of year-unique bird captures at Naval Outlying Landing Field, Imperial Beach, California, 2017	41
14.	Sex and age of year-unique bird captures at Naval Outlying Landing Field, Imperial Beach, California, 2018	43
15.	Sex and age of year-unique bird captures at Naval Outlying Landing Field, Imperial Beach, California, 2019	45
16.	Sex and age of year-unique bird captures at Naval Outlying Landing Field, Imperial Beach, California, 2020	47
17.	Multiple regression models for the effects of precipitation and temperature on breeding productivity of seven bird species captured at Naval Outlying Landing Field, Imperial Beach, California, 2009–20	55
18.	Summary of climate covariates that significantly affected productivity of seven bird species captured at Naval Outlying Landing Field, Imperial Beach, California, 2009–20	56
19.	Summary of climate covariates that significantly influence survival of seven bird species captured at Naval Outlying Landing Field, Imperial Beach, California, 2009–20	58
20.	Logistic regression models for the effects of sex, precipitation, and temperature on survival for seven bird species captured at Naval Outlying Landing Field, Imperial Beach, California, 2009–20	59
21.	Results of multiple regression analyses to predict population change for seven bird species captured at Naval Outlying Landing Field, Imperial Beach, California, 2009–20	60

Conversion Factors

International System of Units to Inch/Pound

Multiply	Ву	To obtain
	Length	
centimeter (cm)	0.3937	inch (in.)
millimeter (mm)	0.03937	inch (in.)
meter (m)	3.281	foot (ft)
kilometer (km)	0.6214	mile (mi)
kilometer (km)	0.5400	mile, nautical (nmi)
meter (m)	1.094	yard (yd)
	Area	
hectare (ha)	2.471	acre

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:

$$^{\circ}F = (1.8 \times ^{\circ}C) + 32.$$

Datum

Horizontal coordinate information is referenced to the World Geodetic System of 1984 (WGS 84).

Supplemental Information

Note to USGS users: Use of hectare (ha) as an alternative name for square hectometer (hm²) is restricted to the measurement of small land or water areas.

Abbreviations

AIC_c Akaike's Information Criterion for small sample sizes

DOD PIF Department of Defense Partners in Flight

DOD U.S. Department of Defense IBP Institute for Bird Populations

MAPS Monitoring Avian Productivity and Survivorship

NASNI Naval Air Station North Island
NOLF Naval Outlying Landing Field

P statistical probability that the result of a test was incorrect

PDT Pacific Daylight Time

USFWS U.S. Fish and Wildlife Service

USGS U.S. Geological Survey

ΔAIC difference in Akaike's Information Criterion for sample sizes

λ change in population size

Monitoring Avian Productivity and Survivorship (MAPS) 6-Year Summary, Naval Outlying Landing Field, Imperial Beach, Southwestern San Diego County, California, 2014–20

By Suellen Lynn, Shannon Mendia, and Barbara E. Kus

Executive Summary

From 2014 to 2020, a Monitoring Avian Productivity and Survivorship (MAPS) banding station (station) was operated at the Naval Outlying Landing Field (NOLF), Imperial Beach, in southwestern San Diego County, California. The station was established as part of a long-term monitoring program of Neotropical migratory bird populations on NOLF and helps Naval Base Coronado (NOLF is a component) meet the goals and objectives of the Department of Defense Partners in Flight program and the Birds and Migratory Birds Management Strategies of the Naval Base Coronado Integrated Natural Resources Management Plan. The station was established in 2009 and has been in operation during the spring and summer since 2009 except for 2016 when it was not funded. The station was operated by AMEC Earth and Environmental, Inc., from 2009 to 2011, by the U.S. Geological Survey from 2012 to 2015, the San Diego Natural History Museum in 2017, and the U.S. Geological Survey again from 2018 to 2023. This report synthesizes results from 2014 to 2020. A prior report presents summaries and analyses from 2009 to 2013.

The banding station at NOLF was operated according to the standard MAPS protocol with some exceptions. Ten mist nets used to capture birds were erected in fixed locations that remained consistent between and within years, with few minor relocations. Nets were open for 6 hours per day, once every 10 days (a netting period) for 13 netting periods starting April 1 each year. Occasionally, poor weather conditions (for example, rain, wind, or excessive heat) prevented net operation or forced nets to be closed early (or, rarely, late). Nets were checked periodically throughout the day and birds were removed, processed (leg bands affixed, measurements recorded), and released.

From 2014 to 2020, we had 3,543 captures (including initial captures and recaptures) of a maximum of 3,264 year-unique captures (543±143 year-unique captures [the total number of individual birds captured for the first time each year]). The count of year-unique captures included 2,702 newly banded birds, 258 individuals that were recaptured from previous years, and 304 birds that were released unbanded (218 hummingbirds and 86 other birds

that were intentionally released unbanded [game birds, and so forth] or escaped before banding). Individuals of 68 species were captured, 39 of which breed at or in the immediate vicinity of the MAPS banding station. Bird capture rate averaged 43±30 captures per day (corrected to account for variation in effort) for all years (range 7-163 effort-corrected captures per day) and species richness per year averaged 43±4. Bushtit (Psaltriparus minimus) was the most abundant species captured, followed by Orange-crowned Warbler (Leiothlypis celata), Wilson's Warbler (Cardellina pusilla), House Finch (Haemorhous mexicanus), Song Sparrow (Melospiza melodia), and Common Yellowthroat (*Geothlypis trichas*). The mean adult sex ratio of all species combined across all years was 54:46 male:female. Adults averaged 73±12 percent of known age captures per year (range 59–94 percent), and juveniles averaged 27±12 percent (range 6–41 percent).

Nineteen sensitive species were detected at NOLF (12 captured and 7 observed only). During 2014–20, we captured one State and federally endangered species, Least Bell's Vireo (Vireo bellii pusillus); one federally threatened species, California Gnatcatcher (Polioptila californica); one State endangered species, Willow Flycatcher (Empidonax traillii); and two State species of concern, Yellow-breasted Chat (Icteria virens) and Yellow Warbler (Setophaga petechia). One additional State species of concern, Northern Harrier (Circus hudsonius), was observed at the MAPS banding station but not captured. Peregrine Falcon (Falco peregrinus) and White-tailed Kite (Elanus leucurus), California State fully protected species, also were observed at the MAPS banding station. Seven federal bird species of conservation concern—Calliope Hummingbird (Selasphorus calliope), Rufous Hummingbird (Selasphorus rufus), Allen's Hummingbird (Selasphorus sasin), Nuttall's Woodpecker (Dryobates nuttallii), Wrentit (Chamaea fasciata), California Thrasher (Toxostoma redivivum), and Lawrence's Goldfinch (Spinus lawrencei) also were captured, and four additional federal bird species of conservation concern—Willet (Tringa semipalmata), Western Gull (Larus occidentalis), California Gull (Larus californicus), and Bullock's Oriole (Icterus bullockii)—were observed but not captured.

Annual productivity and annual adult survival were calculated for seven breeding species based on criteria used by the Institute for Bird Populations (Least Bell's Vireo, Bushtit, Wrentit, House Wren [Troglodytes aedon], Song Sparrow, Orange-crowned Warbler, and Common Yellowthroat). Productivity was highest for most species in 2010 and 2019, years with high precipitation, and lowest in 2014 and 2018, years with low precipitation. Song Sparrow demonstrated the highest productivity among species and Least Bell's Vireo had the lowest productivity. Annual adult survival was generally high from 2011 to 2012 and from 2018 to 2019. Bushtit had higher annual survival with lower late winter precipitation. Either temperature or precipitation was associated with productivity for all species except Wrentit, and with survival for all species except Least Bell's Vireo and Common Yellowthroat. For most species, productivity was positively associated with precipitation, and both productivity and survival were negatively associated with temperature. Other studies have found that higher temperatures led to increased predation by snakes and birds and also increased vector-borne disease transmission, such as West Nile virus. Predicted regional increases in temperature over the next 30 years will likely affect the demographics of these species.

The Song Sparrow population increased with higher breeding productivity during the previous year, and the Bushtit population increased with higher annual survival and higher productivity during the previous year. Aside from a possible positive association between survivorship and Common Yellowthroat population growth, productivity and survival rates did not appear to influence population change for other focal species.

Introduction

Monitoring Avian Productivity and Survivorship (MAPS) is an international monitoring program coordinated by the Institute for Bird Populations (IBP), which uses bird capture and banding data to compile basic demographic parameters of resident and migratory species, many of which are imperiled regionally and even globally. Age- and sex-specific data on annual survival, reproduction, and recruitment can be gathered and compared across stations to identify population trends for species of interest and to identify proximate factors responsible for trends, particularly negative trends. In turn, information obtained from long-term monitoring of bird populations can be used to guide management activities intended to maintain or re-establish viable populations throughout the ranges of species.

A MAPS banding station was established in 2009 at the Naval Outlying Landing Field (NOLF), Imperial Beach, in southwestern San Diego County, California (S. Myers, AMEC Earth and Environmental, Inc., unpub. data, 2011). The station was established as part of a long-term monitoring program of Neotropical migratory bird populations on NOLF and helps Naval Base Coronado meet the goals and objectives of the Department of Defense Partners in Flight (DOD PIF) program and the Birds and Migratory Birds Management Strategies of the Naval Base Coronado Integrated Natural Resources Management Plan (U.S. Navy, 2013). This project also supports the Memorandum of Understanding between the DOD and U.S. Fish and Wildlife Service (USFWS) to promote the conservation of migratory birds by implementing an existing, nationwide bird monitoring program at NOLF (U.S. Navy, 2013). The station is operated in a manner consistent with other banding stations participating in an effort to monitor birds worldwide. The station was operated by AMEC Earth and Environmental, Inc. from 2009 to 2011, by the U.S. Geological Survey (USGS) from 2012 to 2015, by the San Diego Natural History Museum in 2017, and again by USGS from 2018 to 2023. The station was not operated in 2016.

There were four objectives for this project: (1) to estimate population sizes and trends for various Neotropical migratory bird species, (2) to estimate demographic and survival parameters for Neotropical migratory bird species, (3) to estimate annual productivity for these species, and (4) to augment existing distributional information for sensitive avian species. This report summarizes banding efforts and results for 2014–20 and population trends, survival parameters, and productivity for 2009–20.

Methods

Site Description

The MAPS banding station was located on NOLF, which encompasses about 509 hectares (ha) in southwestern San Diego County, including 112 ha of roads and developed areas. The site is 16 kilometers (km) south of Naval Air Station North Island (NASNI) and 2.4 km north of the United States-Mexico border. Navy lands extend into the Tijuana River National Estuarine Research Reserve, co-managed by USFWS, the National Oceanic and Atmospheric Administration, and California State Parks (fig. 1). Parts of NOLF are managed cooperatively with the Tijuana Slough National Wildlife Refuge under a memorandum of understanding between NASNI and the USFWS relating to the protection of natural resources. Vegetation at the station was a mix of riparian willow (Salix spp.) forest dominated by arroyo willow (S. lasiolepis), red willow (S. laevigata), black willow (S. gooddingii), and mule fat (Baccharis salicifolia); and riparian scrub dominated by mule fat and sandbar willow (S. exigua).

Figure 1. Location of the Monitoring Avian Productivity and Survivorship banding station, Naval Outlying Landing Field, Imperial Beach, California.

Bird Banding

Bird banding at NOLF followed the standardized MAPS protocol (DeSante and others, 2021). Ten mist nets, placed a minimum of 65 meters (m) apart, were erected in fixed locations selected for their potential to capture birds moving through vegetation (table 1; fig. 2). In 2015, two nets were discontinued when trails were closed to discourage unlawful access and were replaced by two new net lanes within the station. Mist nets were made of 30-millimeter (mm) mesh black nylon and were 12-m long by 2.6-m high with four trammels (pockets) running the length of the net. Nets were suspended from vertical aluminum poles anchored by permanent rebar stakes and covered a vertical area ranging from about 0.25 to 2.50 m above ground. Nets were opened within 30 minutes of dawn and remained open for 6 hours, typically until between 1200 and 1300 Pacific Daylight Time (PDT). Nets were not operated during inclement weather such as strong wind, rain, extreme heat, or cold. If nets were not operated for a minimum of 3 hours during a particular period (for instance, if nets were closed early because of inclement weather), we scheduled a make-up day during the same period. On the make-up day, we opened the nets at the approximate time that nets were closed on the short day and then closed the nets when the 6 hours intended for the period were reached.

Nets were checked every 30–40 minutes by operators working circuits. Hummingbirds, game birds, and other non-passerines were not banded but were identified by species,

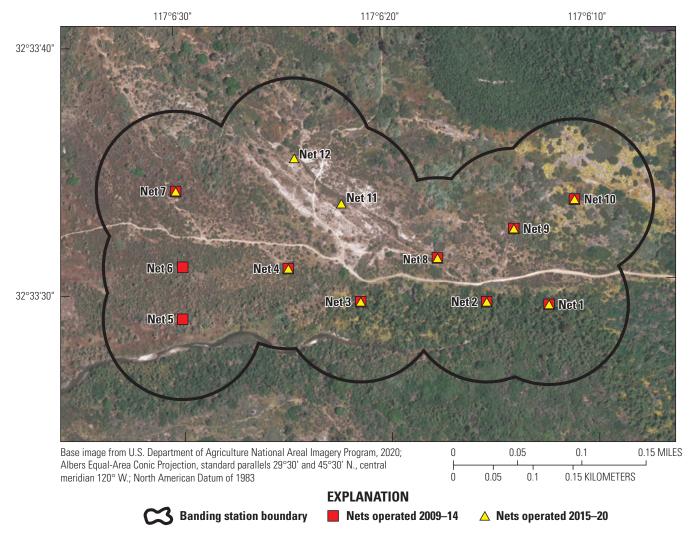

age, and sex (when possible) and then released. Birds were removed from nets, held in cloth bags labeled with the net number, and taken to a central processing location where they were banded with numbered Federal aluminum bands. From 2014 to 2019, Least Bell's Vireo (Vireo bellii pusillus) captured at this MAPS banding station were color-banded with a unique color combination for visual identification as part of a separate survey effort for this species (10[A][1][a] federal recovery permit number ESPER0004080). Using the Identification Guide to North American Birds (Pyle, 1997) as a reference, data recorded for each individual captured (all species) included age, sex, skull ossification, breeding condition, weight, wing chord, fat deposition, feather wear, and molt status. Birds that already had bands when captured also were processed, and their band numbers were recorded. These birds were considered recaptures. We recorded only the initial capture of a bird on each banding day (we did not record same-day recaptures). A bird was considered a recapture on each unique day it was captured after its original banding. Birds were held for 5–45 minutes depending on the number of birds captured during one net run. After processing, juveniles, brooding females, and resident birds from the more distant nets were released near the net in which they had been captured, whereas all other birds were released at the central processing location. A list of all birds observed was kept for each banding day, including species not captured and their possible breeding status at the MAPS banding station. A minimum of four personnel typically operated the MAPS banding station.

Table 1. Global Positioning System locations of mist nets at Monitoring Avian Productivity and Survivorship banding station, Naval Outlying Landing Field, Imperial Beach, California.

[Coordinates are in World Geodetic System of 1984 (WGS 84). Nets 5 and 6 were operated 2009–14; nets 11 and 12 were operated 2015, 2017–20. All other nets were operated 2009–15 and 2017–20. For net numbers, see figure 2]

Net number	Longitude	Latitude
1	-117.10307	32.55817
2	-117.10341	32.55808
3	-117.10425	32.55813
4	-117.10594	32.55818
5	-117.10689	32.55857
6	-117.10833	32.55804
7	-117.10831	32.55862
8	-117.10837	32.55948
9	-117.10489	32.55864
10	-117.10386	32.55895
11	-117.10616	32.55928
12	-117.10677	32.55981

5

Figure 2. Net locations at Monitoring Avian Productivity and Survivorship banding station, Naval Outlying Landing Field, Imperial Beach, California.

Banding Schedule

The MAPS banding station was operated 1 day during every 10-day period from April 1 to August 8 (for a total of 13 banding days per year), except in 2020, when flooding prevented our access to the banding station for the first period in April. Most North American MAPS stations operate during the standard MAPS season (May 1–August 8). Starting in 2012, we added netting periods in April to accommodate earlier breeding species, such as Orange-crowned Warbler (*Leiothlypis celata*), and for comparisons with other MAPS banding stations in San Diego County, which begin operation in April (Lynn and others, 2018; B. Kus, U.S. Geological Survey, unpub. data, 2021).

Data Analysis

Captures

All banding data were entered into MAPSPROG (the IBP data entry program) for verification and error-checking, which also included cross-checking against data from previous years. Finalized MAPSPROG data were submitted to IBP and Naval Base Coronado each year. This report presents a summary of banding data from 2014 to 2020 and analyses of longer-term population trends, productivity, and survivorship from 2009 to 2020 (2009–13 data are available in Lynn and others, 2015).

Effort Corrections

Netting effort varied between years as a result of adding netting periods in April (starting in 2012) and missing periods or truncating days in response to inclement weather or other logistical constraints. Because of this variation, the intended effort (10 nets run for 6 hours per period or 60 intended net-hours per period) in a survey was not always met. The timing of missed or gained effort during a season or period can alter capture rate estimates and thus skew vital rate calculations. For example, the ratio of juveniles to adults resulting from not capturing adults during times when nets were closed before young-of-the-year fledge or not capturing juveniles during times when nets were closed after fledging, could result in over- or under-estimating productivity, respectively.

We followed methods developed by DeSante and others (2015) to summarize effort and capture data for a single station and to correct capture data for inconsistencies in seasonal effort with modifications for time of capture during the day. Effort corrections began by dividing the banding day into five time bins relative to sunrise: (1) 1 hour before sunrise to 1 hour after sunrise; (2) 1–2 hours after sunrise; (3) 2–3 hours after sunrise; (4) 3–4 hours after sunrise; and (5) more than 4 hours after sunrise. We then compiled the actual effort expended (number of hours nets were open multiplied by number of nets that were open) for each time bin, each

sampling period, and each year ($A_{b,p,r}$, where b is time bin [1–5], p is sampling period [1–13], and t is year [2009–20, excluding 2016 when the station was not operated]). Second, we summed actual effort for all time bins within a period to get the total actual effort per period:

$$e_{p,t} = \sum_{b=1}^{b=5} A_{b,p,t} \tag{1}$$

where

e is total actual effort,

p is sampling period (1–13),

t is year 2009–20 (excluding 2016 when the station was not operated),

b is time bin (1-5), and

A is actual effort for each time bin.

Third, we calculated the proportion of total actual effort per period represented by each time bin:

$$H_{b,p,t} = A_{b,p,t}/e_{p,t}$$
 (2)

where

H is the proportion of actual effort per period represented by each time bin,

b is time bin (1-5),

p is sampling period (1–13),

t is year 2009–20 (excluding 2016 when the station was not operated),

A is actual effort for each time bin, and

e is total actual effort.

Fourth, we set intended effort $(I_{b,p,t})$ as 10 net-hours for time bins 1–4 and 20 net-hours for time bin 5. Finally, we calculated the proportional difference between intended and actual effort to produce a correction for missed or gained effort within each period for each time bin. If actual effort was less than intended effort, a positive correction would be generated.

$$h_{b,p,t} = (I_{b,p,t} - A_{b,p,t})/I_{b,p,t}$$
 (3)

where

h is the proportional difference between intended and actual effort,

b is time bin (1-5),

p is sampling period (1–13),

t is year 2009–20 (excluding 2016 when the station was not operated),

I is intended effort per time bin, and

A is actual effort per time bin.

7

Captures per year were calculated by age and by species for all year-unique captures (including birds of undetermined age). To calculate captures per year using effort correction, we began by summing the number of year-unique captures for each species by time bin $(n^{A}_{b,p,t}$ for adults, $n^{J}_{b,p,t}$ for juveniles, and $n_{h,n,t}^T$ for all captures). Next, we summed the total number of year-unique captures for each species by period by year:

$$N^{A}_{p,t} = \sum_{b=1}^{b=5} n^{A}_{b,p,t} \tag{4}$$

where

 N^{A} is total number of year-unique adults captured per period per year,

is sampling period (1–13), p

is year 2009-20 (excluding 2016 when the t. station was not operated),

is time bin (1-5), and b

is the number of year-unique adults captured $n^{A}_{b,p,t}$ for each time bin.

$$N^{J}_{p,t} = \sum_{b=1}^{b=5} n^{J}_{b,p,t}$$
 (5)

where

 N^{J} is total number of year-unique juveniles captured per period per year, is sampling period (1-13), p is year 2009–20 (excluding 2016 when the station was not operated), b is time bin (1-5), and $n^J{}_{b,p,t}$ is the number of year-unique juveniles

captured for each time bin.

$$N_{p,t}^{T} = \sum_{b=1}^{b=5} n_{b,p,t}^{T}$$
 (6)

where

 N^T is total number of year-unique captures of all ages per period per year, is sampling period (1-13), p is year 2009–20 (excluding 2016 when the station was not operated), b is time bin (1-5), and $n^T_{b,p,t}$ is the number of year-unique captures of all

ages for each time bin

Then, we calculated the proportion of period captures represented by each time bin for each species:

$$\delta^{A}{}_{b,p,t} = n^{A}{}_{b,p,t} / N^{A}{}_{p,t} \tag{7}$$

where

 δ^A is the proportion of adult captures in a period represented by each time bin,

b is time bin (1-5),

is sampling period (1-13), p

is year 2009-20 (excluding 2016 when the station was not operated),

 $n^{A}_{b,p,t}$ is the number of year-unique adults captured for each time bin, and

is the total number of year-unique adults N^{A} captured per period per year.

$$\delta^{J}_{b,p,t} = n^{J}_{b,p,t} / N^{J}_{p,t} \tag{8}$$

where

where

 δ^{J} is for the proportion of juveniles captured in a period represented by each time bin,

b is time bin (1-5),

is sampling period (1-13), p

is year 2009-20 (excluding 2016 when the station was not operated),

 $n^J{}_{b,p,t}$ is the number of year-unique juveniles captured for each time bin, and

 N^{J} is total number of year-unique juveniles captured per period per year.

$$\delta^{T}_{b,p,t} = n^{T}_{b,p,t} / N^{T}_{p,t}$$
 (9)

 δ^T is for proportion of all ages captured in a period represented by each time bin,

b is time bin (1-5),

is sampling period (1–13), p

is year 2009-20 (excluding 2016 when the t station was not operated),

 $n^T{}_{b,p,t}$ is the number of year-unique captures of all ages for each time bin, and

 N^T is total number of year-unique captures of all ages per period per year.

8 Monitoring Avian Productivity and Survivorship 6-Year Summary, Naval Outlying Landing Field, 2014–20

We then calculated an effort correction factor to approximate the proportion of birds missed or gained in a time bin in each period and year that were a result of missing or extra effort:

$$c^{A}_{b,p,t} = (\delta^{A}_{b,p,t} * h_{b,p,t}) / H_{b,p,t}$$
 (10)

where

 c^A is the effort correction factor for adults,

b is time bin (1-5),

p is sampling period (1–13),

t is year 2009–20 (excluding 2016 when the station was not operated),

 δ^A is the proportion of adult captures in a period represented by each time bin,

h is the proportional difference between intended and actual effort, and

H is the proportion of actual effort per period represented by each time bin.

$$c^{J}_{b,p,t} = (\delta^{J}_{b,p,t} * h_{b,p,t}) / H_{b,p,t}$$
 (11)

where

 c^{J} is the effort correction factor for juveniles,

b is time bin (1-5),

p is sampling period (1–13),

t is year 2009–20 (excluding 2016 when the station was not operated),

 δ^{J} is the proportion of juvenile captures in a period represented by each time bin,

h is the proportional difference between intended and actual effort, and

H is the proportion of actual effort per period represented by each time bin.

$$c^{T}_{b,p,t} = (\delta^{T}_{b,p,t} * h_{b,p,t}) / H_{b,p,t}$$
 (12)

where

 c^T is the effort correction factor for all captures,

b is time bin (1-5),

p is sampling period (1–13),

t is year 2009–20 (excluding 2016 when the station was not operated),

 δ^T is the proportion of all captures in a period represented by each time bin,

h is the proportional difference between intended and actual effort, and

H is the proportion of actual effort per period represented by each time bin.

Finally, we calculated the corrected numbers of adults, juveniles, and all captures by species for each year based on the observed number of year-unique captures and effort correction factors:

$$C_{t}^{A} = \sum_{p=1}^{p=13} \sum_{b=1}^{b=5} (n_{b,p,t}^{A} + c_{b,p,t}^{A} * n_{b,p,t}^{A})$$
 (13)

where

 C^A is the corrected number of adults,

t is year 2009–20 (excluding 2016 when the station was not operated),

p is sampling period (1–13),

b is time bin (1-5),

 n^A is the total number of year-unique adults captured per period per year, and

 $c^{A}_{b,p,t}$ is the effort correction factor for all adult captures.

$$C_{t}^{J} = \sum_{p=1}^{p=13} \sum_{b=1}^{b=5} (n_{b,p,t}^{J} + c_{b,p,t}^{J} * n_{b,p,t}^{J})$$
 (14)

where

 C^{J} is the corrected number of juveniles,

t is year 2009–20 (excluding 2016 when the station was not operated),

p is sampling period (1–13),

b is time bin (1-5),

n^J is the total number of year-unique juveniles captured per period per year, and

 $c^{J}_{b,p,t}$ is the effort correction factor for all juvenile captures.

$$C^{T}_{t} = \sum_{p=1}^{p=13} \sum_{b=1}^{b=5} (n^{T}_{b,p,t} + c^{T}_{b,p,t} * n^{T}_{b,p,t})$$
 (15)

where

 C^T is the corrected number of all captures,

t is year 2009–20 (excluding 2016 when the station was not operated),

p is sampling period (1–13),

b is time bin (1-5),

 n^T is the total number of year-unique captured of

all ages per period per year, and

 $c^{T}_{b,p,t}$ is the effort correction factor for all captures.

For all analyses and results, captures=year-unique effort-corrected captures, unless otherwise indicated.

In table 2, we present an example of effort correction for a hypothetical period 5 banding day in 2016. For this example, 10 nets were open for 5 hours each, and all nets were closed 1 hour early because of excessive wind. Total actual effort $(e_{5,2016})$ was 50 hours, and total year-unique captures in period 5 $(N^T_{5,2016})$ was 100. For this example, the actual effort in time bin 5 (that is, more than 4 hours after sunrise) was 10 hours, while the intended effort was 20 hours. This corrected the number of captures $(n^T_{5,5,2016})$ upward for that time bin, from 10 captures to 12.5 captures. Therefore, the total number of effort-corrected captures for period 5 in 2016 (C^T_{2016}) was 103 (rounded from 102.5).

Time bin (<i>b</i>)	Actual effort in hours (A _{b,5,2016})	Intended effort in hours (I _{b,5,2016})	Proportion of actual effort per time bin $(H_{b,5,2016})$	Proportional difference between intended and actual effort per time bin $(h_{b,5,2016})$	Number of year-unique captures per time bin $(n^T_{b,5,2016})$	Proportion of captures per time bin $(\delta^T_{b,5,2016})$	Effort correction factor per time bin $(c^T_{b,5,2016})$	Corrected captures per time bin $(C^T_{b,5,2016})$
1	10	10	0.2	0	10	0.1	0	10
2	10	10	0.2	0	30	0.3	0	30
3	10	10	0.2	0	30	0.3	0	30
4	10	10	0.2	0	20	0.2	0	20
5	10	20	0.2	0.5	10	0.1	0.25	12.5

Table 2. Example of effort correction for a hypothetical banding period when actual netting hours were less than intended netting hours.

Focal Species

For a subset of resident and migratory focal species that breed at the station, we examined seasonal and annual variation in capture rates, productivity (the ratio of juveniles to adults captured, as described later in the "Annual Productivity" section), adult survival (based on analysis of recapture rates using Program MARK, as described later in the "Annual Survival" section), and population trends. All species captured at the MAPS station, except Black-throated Magpie-jay (Calocitta colliei), were considered migratory species covered under the Migratory Bird Treaty Act (U.S. Fish and Wildlife Service, 2020; appendix 1, tables 1.1, 1.2); however, some species considered migratory birds under the Act are known to be year-round residents in southwestern San Diego County, and therefore, were considered resident species in our analyses. According to the MAPS protocol, species were considered breeders if they exhibited persistent territorial singing during the height of the breeding season, or hard evidence of breeding (observation of nest, fledglings, etc.) at the station (as opposed to within the larger surrounding area) at least once during station operation. Year-round resident species in analyses of population trends, productivity, survival, and predictors of population change included Bushtit (Psaltriparus minimus), Wrentit (Chamaea fasciata), House Wren (Troglodytes aedon), Song Sparrow (Melospiza melodia), Common Yellowthroat (Geothlypis trichas), and Orange-crowned Warbler. We considered Orange-crowned Warbler to be resident because the species was present at the MAPS station year-round although it was possible that different subspecies occupied the area in the winter than during the breeding season. Nevertheless, Orange-crowned Warbler populations likely did not move long distances between seasons and therefore were subject to climatic conditions similar to the MAPS station during the non-breeding season. One migratory species, Least Bell's Vireo, known to winter outside southwestern San Diego County, also was included as a focal species in analyses of population trends, productivity, survival, and predictors of population change.

Seasonal and Annual Variation in Captures

Seasonal and annual variations in capture rates for adults and juveniles were examined for locally breeding focal species that constituted 5 percent or more of captures in at least 6 years over the entire span of the MAPS station operation (2009–20). Bushtit and Orange-crowned Warbler constituted more than 5 percent of captures in all 11 years. Song Sparrow constituted more than 5 percent of captures in 10 of the 11 years, and Common Yellowthroat constituted more than 5 percent of captures in 9 of the 11 years. Wilson's Warbler (Cardellina pusilla) constituted 5 percent or more of captures in 7 of the 11 years, but only wintered at or migrated through the MAPS banding station; therefore, we did not include it as a focal species. We included a fifth species, Least Bell's Vireo (a migratory species that breeds at the station and winters south of the station), which constituted 1–5 percent of captures each year, to examine the status of this Federal- and State-protected species at NOLF. We examined the seasonal variation in captures for each of these species by plotting captures by MAPS period. We calculated mean captures from 2014 to 2020 by MAPS period for species that could be assigned an age (adults versus juveniles) and compared these to the annual capture rates of adults and juveniles to examine age-related seasonal trends.

We also examined age structure in captures over the entire span of the MAPS station operation by plotting annual captures of each focal species by age from 2012 to 2019, excluding years when early banding periods were missed (2009, 2010, 2011, and 2020). We examined annual population trends in adult captures from 2012 to 2019 for each of the five focal species using Pearson's correlations. Any *P*-values less than 0.10 indicated that populations of that species significantly increased or decreased from 2012 to 2019.

Annual Productivity, Survival, and Predictors of Population Size

Seven focal species, the five focal species analyzed for population trends plus two additional resident species (Wrentit and House Wren), were selected for calculations of annual productivity and survival from 2009 to 2020, based on criteria presented by IBP for survival analyses. These criteria include (1) at least 2.5 individuals of the species captured per year, with a minimum of 30 year-unique captures; (2) at least 2 recaptures; and (3) survival and recapture probability not equal to 0 or 1.

Climate Variables

A number of climate variables had the potential to influence productivity and survival of the seven species we selected for these analyses. We selected climate variables based on their potential to explain annual life stages of the focal species. Specifically, we selected bio-year precipitation, or total precipitation from July 1 $_{(year x-1)}$ to June 30 $_{(year x)}$, a date range which encompasses the entire winter, the typical period of high rainfall in southern California. We also divided annual precipitation into two periods, early winter precipitation (October $1_{[year\ x-1]}$ —December $31_{[year\ x-1]}$) and late winter precipitation (January $1_{[year\ x]}$ —March $31_{[year\ x]}$), which likely influences the timing of increased availability of food resources (seeds, fruits, and insects). We also selected mean maximum daily temperature in $August_{[year x-1]}$ and mean minimum daily temperature in December_[vear x-1] to represent the hottest and coldest periods of the year. Mean breeding season temperature (mean temperature from March $1_{[year\ x]}$ to June $30_{[year\ x]}$) had the potential to influence breeding productivity. Mean bio-year temperature (mean temperature from July 1 [year x-1] to June 30 [year x]) provided an annual measure of potential climate change within the same period as bio-year precipitation, and it can be useful in comparing with results from other regions. Daily temperature and precipitation data were gathered from the Brown Field Municipal Airport (National Oceanic and Atmospheric Administration, 2022), 11 km east of the MAPS station, for the years that the MAPS station was operated. Daily temperature and precipitation data also were gathered from Brown Field Municipal Airport for the years prior to station operation, when available, including 1945-46, 1954-61, and 1997-2008, to compare historical trends to trends during station operation. We used two-sample Student's t-tests and Wilcoxon signed-rank tests to compare the means of precipitation and temperature before and during station operation. Any P-values less than 0.10 indicated that precipitation and temperature were significantly different before station operation than they were during station operation.

Annual Productivity

We used generalized linear models with a gaussian probability structure to model the effects of climate variables on annual productivity. Annual productivity is defined as the ratio of effort-corrected young (juvenile) captures to effort-corrected adult captures (CJ_t/CA_t). For each of the seven focal-plus species, we created models relating annual productivity (the response variable) to mean breeding season temperature, mean bio-year temperature, bio-year precipitation, early winter precipitation, and late winter precipitation (predictor variables). To simplify interpretation of model results, we standardized the predictor variables before analysis by subtracting the mean and dividing by the standard deviation. We excluded 2018 Wrentit productivity from our analyses because unique-year captures were unusually low (5 individuals), and 80 percent (4/5) were juveniles, creating an artificially high productivity estimate for that year.

We created a set of a priori models containing the predictor variables and used an information-theoretic approach (Akaike's Information Criterion for small sample sizes, or AIC_o) to evaluate support for each model (Burnham and Anderson, 2002). To build our model set, we first generated a constant (null) model to serve as a reference and a set of simple models, each of which contained a single predictor variable. Next, we began creating more complex models by adding other predictor variables to each of the simple models and evaluating them relative to the simpler model, eliminating those that did not improve on the simpler model by at least 2 AIC_c. All remaining models were ranked such that the highest-ranked model had the lowest AIC_c. Models were considered well supported if the ΔAIC_c (difference in AIC_c from the highest-ranked model) was less than 2. Only models with an AIC_c weight of at least 0.05 were presented in the final model set. After finalizing our model set, we evaluated the contribution of predictor variables to each model by examining the 90-percent confidence interval associated with the beta estimate for each variable. If the 90-percent confidence interval did not include 0, we had 90-percent confidence that the beta estimate differed from 0, and therefore, we determined that the variable likely contributed to the model. Models were created and summarized using the MuMIn package (version 1.43.17; Bartoń, 2020) in R (R Core Team, 2022).

Annual Survival

We analyzed annual survival of adults for the seven focal-plus species in Program MARK (White and Burnham, 1999) using the RMark package (Laake, 2013) in R (R Core Team, 2022). Survival analysis in Program MARK accounts for individuals that were present but not captured by modeling both survivorship and recapture probability. We estimated adult survival but not first-year survival because first-year survival was low for all species, and therefore, we could not differentiate the probability of survival from recapture probability. Birds that originally were banded as juveniles (during their hatching year) were included in analyses as adults in subsequent years. We created encounter histories for each year from 2009 to 2020, coding capture or recapture as 1 and no capture as 0.

Effort was not constant across years because no nets were opened in early banding periods in some years (2009, 2010, 2011, and 2020). To determine whether differences in effort had an effect on survival analyses, we modeled recapture probability in two ways for each species: (1) one model with constant recapture probability and (2) one model with time-varying recapture probability (allowing recapture probability to vary by year), using constant survival in both models. We compared the AIC_c of the two models and selected the model with the lowest AIC_c. Models with constant recapture probability ranked well above models with time-varying recapture probability for all species except Orange-crowned Warbler. Therefore, for all species except Orange-crowned Warbler, we used constant recapture probability in all models. For Orange-crowned Warbler, we allowed recapture probability to vary by year in all models. Because the MAPS station was not operated in 2016, annual survival for 2015-16 and 2016-17 was estimated by MARK by interpolating from other years.

Survival models were created to examine the effects of sex and climate variables on annual survival of adults. Climate variables included bio-year precipitation, early winter precipitation, late winter precipitation, mean bio-year temperature, mean maximum daily temperature in August, and mean minimum daily temperature in December. For species that remained at the MAPS station during the winter (Bushtit, Orange-crowned Warbler, Song Sparrow, Common Yellowthroat, Wrentit, and House Wren), survival models were created with precipitation and temperature during the bio-year ending in the current MAPS season. For species that migrated away from the MAPS station during the winter (Least Bell's Vireo), survival models were created with precipitation during the bio-year ending in the previous MAPS season because migrants were absent from the MAPS banding station from September to March of the current bio-year and, thus, their survival likely was more influenced by precipitation at the MAPS banding station during the previous bio-year than the current bio-year. Similarly, we did not include mean minimum daily temperature in December in models for Least Bell's Vireo because the species was not present at the MAPS banding station during December. Model sets were created and evaluated using information theoretic approach (AIC_c; see the "Annual Productivity" section).

Predictors of Population Change

Breeding productivity and annual survival are inherently linked to changes in bird populations. Absent other influences, higher breeding productivity and higher annual survival should result in increased population size. We used multiple regression to evaluate the contribution of breeding productivity and annual survival to population change (λ , or $N_{[year\ x+1]}/N_{[year\ x]}$) for each of the seven focal-plus species. First, we estimated λ using Pradel reverse-time capture-mark-recapture models (Pradel, 1996) in Program MARK. For all Pradel models, we used constant survival and recapture probabilities to isolate annual λ . Then, we used

annual productivity in year_{x-1} and annual survival estimates from year_{x-1} to year_x as predictors, and λ from year_{x-1} to year_x as the response variable in multiple regression analysis. For each predictor within a multiple regression model, *P*-values less than 0.10 indicate that the predictor, in isolation, significantly influenced the population change of that species. An overall *P*-value less than 0.10 for the overall multiple regression model indicates that population change was influenced by the combination of predictors.

Data were analyzed using Program R. Analyses were considered significant if $P \le 0.10$. Means are presented with standard deviations. All data from NOLF 2009 to 2013 used in analyses can be found in Lynn and others (2015).

Results

Overview of Captures

In 4,603 net-hours (751±51 net-hours per year) during the 2014–20 MAPS seasons, we had a total of 3,543 captures (591±176 captures per year; table 3). Of the 3,543 total captures, 2,702 were newly banded, 258 were individuals recaptured from previous years, and 304 were released unbanded (218 hummingbirds and 86 other birds that escaped before banding or were intentionally released unbanded, such as game birds) for a total of 3,264 year-unique captures (544±155 unique captures per year). We captured 68 species, 39 of which were confirmed or likely breeders at the MAPS banding station (table 3; appendix 1, table 1.1; unidentified species were not included in the species total).

Of note, in 2014, we recaptured a Rufous Hummingbird (*Selasphorus rufus*) that originally had been banded in Tallahassee, Florida, in January 2014. This hummingbird travelled 3,100 km between its original banding station and our nets.

Sensitive Species

Nineteen sensitive species were detected at NOLF (12 captured and 7 observed only; appendix 1, tables 1.1, 1.2). We captured one State and Federally endangered species, Least Bell's Vireo, one Federally threatened species, Coastal California Gnatcatcher (Polioptila californica californica), one State endangered species, Willow Flycatcher (Empidonax traillii), and two State species of concern, Yellow-breasted Chat (Icteria virens), and Yellow Warbler (Setophaga petechia; appendix 1, table 1.1; Shuford and Gardali, 2008; U.S. Fish and Wildlife Service, 2020; California Department of Fish and Wildlife, 2023). One additional State species of concern, Northern Harrier (Circus hudsonius), was observed at the MAPS banding station but was not captured (appendix 1, table 1.2; Shuford and Gardali, 2008). Peregrine Falcon (Falco peregrinus) and White-tailed Kite (Elanus leucurus), California State fully protected species, also were observed at the MAPS

Table 3. Total number of birds captured, banded, recaptured, and released unbanded at Naval Outlying Landing Field, Imperial Beach, California, 2014–20. [Species: See appendix 1 (tables 1.1, 1.2) for common and scientific names. Total captures: Includes multiple captures of some individuals]

		2020 Total	0 1	0 2	0 4	0 3	0 2	6 24	23 126	0 2	4 6	7 26	11 30	0 4	0 0	0 1	0 0	0 0	0 0	0 0	0 3	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 2	0 0		
_	unbanded birds captured Year	2019	0	0	2	3	0	S	20	0	1	2	7	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Number of	ded birds o	2018	0	0	0	0	1	2	26	-	0	13	∞	-	0	-	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	
_	unbande	2017	-	0	0	0	1	0	11	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		2015	0	0	2	0	0	4	24	-	0	2	-	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	
		2014	0	2	0	0	0	7	22	0		_	3		0	0	0	0	0	0	-	0	0	0	0	0	0	0		0	0	
		— Total	0	0	0	-	0	-	1	0	0	1	0	0	4	9	0	0	0	0	2	0	2	0	16	2	0	0	0	_	0	
	<u>s</u>	3 2020	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	2	0	0	0	3	1	0	0	0	0	0	
er of	ndividua	8 2019	0	0	0	0	0	0	0	0	0	0	0	0	1		0	0	0	0	0	0	1	0	4	0	0	0	0	1	0	
Number of	recaptured individuals Year	7 2018	0	0	0 0	0 0	0 0	0 0	0 (0 0	0 (0	0	0	1		0 (0	0 (0	0 0	0	1	0 0	3	-	0 (0	0 0	0	0 (
	reca	2015 2017	0 0	0 0	0 0	0	0 0	0	0 0	0	0 0	0 0	0 0	0 0	0 0		0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	1 2	0 0	0 0	0 0	0 0	0 0	0 0	
		2014 20	0	0	0	_	0	_	1	0	0	_	0	0	1	2	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	
		Total 20	0	0	-	10	0	0	0	0	0	0	0	0	16	39	3	10	2	-	144	'n	36	7	9	11	122	0	0	8	0	
		2020 To	0	0	0	0	0	0	0	0	0	0	0	0	2	6	0	7	0	0	22	0	4	0	15	_	S .	0	0	3	0	
	ded	2019 2	0	0	0	0	0	0	0	0	0	0	0	0	5	9	0	0	0	0	12	ж	10	0	22	3	16	0	0	0	0	
New	individuals banded Year	2018	0	0	0	3	0	0	0	0	0	0	0	0	4	∞	1	0	0	0	21	2	∞	_	9	-	36	0	0	0	0	
	individu Year	2017	0	0	_	4	0	0	0	0	0	0	0	0	2	7	0	0	0	0	12	0	5	-	12	4	12	0	0	0	0	
		2015	0	0	0	3	0	0	0	0	0	0	0	0	1	7	1	-	-	0	24	0	4	0	9	2	17	0	0	0	0	
		2014	0	0	0	0	0	0	0	0	0	0	0	0	2	2	1	7	-	-	53	0	5	0	4	0	36	0	0	0	0	
		- Total	-	2	5	14	2	25	127	2	9	27	30	4	22	52	3	10	2	1	153	S	38	2	113	13	123	0	2	4	0	
		2020	0	0	0	0	0	9	23	0	4	7	Ξ	0	3	10	0	7	0	0	25	0	4	0	28	2	S	0	0	3	0	
er of	nred	2019	0	0	2	3	0	5	20	0	1	2	7	2	∞	7	0	0	0	0	12	8	11	0	36	3	16	0	0	_	0	
Total number of	birds captured Year	2018	0	0	0	3	1	2	26	-	0	13	∞	_	5	12	1	0	0	0	24	2	6	-	14	2	36	0	1	0	0	
Tot	·ā >	2017	-	0	1	4	1	0	11	0	0	_	0	0	2	∞	0	0	0	0	12	0	5	-	15	4	12	0	0	0	0	
		2015	0	0	2	3	0	4	24	-	0	2	1	0	1	∞	1	1	1	0	26	0	4	0	10	2	17	0	0	0	0	
		2014	0	2	0	-	0	∞	23	0	1	2	3	-	3	7	1	7	1	1	54	0	5	0	10	0	37	0	1	0	0	
	Species		SSHA	COHA	MODO	CGDO	GRRO	BCHU	ANHU	COHU	CAHU	RUHU	ALHU	USHU	NUWO	DOWO	WEWP	WIFL	HAFL	GRFL	PSFL	ВГРН	ATFL	WEKI	LBVI	HUVI	WAVI	REVI	BTMJ	TRES	NRWS	

Table 3. Total number of birds captured, banded, recaptured, and released unbanded at Naval Outlying Landing Field, Imperial Beach, California, 2014–20.—Continued [Species: See appendix 1 (tables 1.1, 1.2) for common and scientific names. Total captures: Includes multiple captures of some individuals]

		다 교	Total number of birds captured	nber of ntured				.≘	New individuals banded	w 's bande	-				Nu recaptur	Number of recaptured individuals	duals				unban	Number of ded birds ca	Number of unbanded birds captured		
			Year			40			Year			-			Year	<u>_</u>		F				Year			40
2015 2017	201	7	2018	8 2019	2020	I OCT II	2014	2015 20	2017 2018	18 2019	19 2020	0	2014	2015	2017	2018	2019	2020	10tal 2	2014 2015	15 2017	7 2018	2019	2020	lotai
15		16	17	7 42	53	159	7	9 1	10 1	12 3.	33 37	7 108	4	-	0	_	3	2	11	0	1	3	2	3	10
0		0		_	0	2	0	0	0	_	1 0		2 0	0	0	0	0	0	0	0	0 0	0	0	0	0
0		0	0) 2	4	9	0	0	0	0	2 0		2 0	0	0	0	0	2	2	0	0 0	0	0	0	0
0		4	5	9 9	4	70	51	0	4	5	6 4	4 70	0	0	0	0	0	0	0	0	0 0	0	0	0	0
2		-	1	1	0	7	2	2	1	1	1 0		7 0	0	0	0	0	0	0	0	0 0	0	0	0	0
16		15	5	33	Ξ	68	4	10	12	5 19	7 2	7 57	4	4	_	0	S	2	16	0	0 2	0	0	_	3
0		1	1		-	5	1	0	0	1	1 1	1	0	0	1	0	0	0	1	0	0 0	0	0	0	0
73		18	44	1 82	77	343	42	54	16 4	40 6	66 61	1 279	5	14	_	_	7	3	31	0	0 1	2	-	0	4
0		1	2	1	0	S	-	0	1	2	1 0		5 0	0	0	0	0	0	0	0	0 0	0	0	0	0
0	_	0	0	0 (0	0	0	0	0	0	0 0		0 0	0	0	0	0	0	0	0	0 0	0	0	0	0
18		∞	25	5 21	26	121	20	18	8 2	25 18	18 25	5 114	3	0	0	0	-	0	4	0	0 0	0	0	0	0
17	_		9	5 61	-	98	0	17	_	6 61	1 1	1 86	0	0	0	0	0	0	0	0	0 0	0	0	0	0
0	_	0	4	. 1	2	7	0	0	0	4	0 2		0 9	0	0	0	0	0	0	0	0 0	0	_	0	1
	2	0	0		0	4	-	2	0	0	1 0		0	0	0	0	0	0	0	0	0 0	0	0	0	0
Ü	0	0	0	0 (0	0	0	0	0	0	0 0		0 0	0	0	0	0	0	0	0	0 0	0	0	0	0
	0		0	0 (0	3	2	0		0	0 0		3 0	0	0	0	0	0	0	0	0 0	0	0	0	0
	_	2	0	0 (0	3	0	_	1	0	0 0		2 0	0	0	0	0	0	0	0	0 1	0	0	0	1
	0	0		0	0	-	0	0	0	-	0 0		0	0	0	0	0	0	0	0	0 0	0	0	0	0
	0	0	1	0 1	0	-	0	0	0	1	0 0	0	0 1	0	0	0	0	0	0	0	0 0	0	0	0	0
	7	0	2	8	33	31	10	9	0	2	8 3	3 29	0 6	0	0	0	0	0	0	0	1 0	0	0	0	-
3	34	13	16	29 9	26	193	25	23 1	10 1	12 59	59 24	4 153	9 6	4	1	-	2	0	14	0	1 2	3	2	0	∞
	0	0	0	0 (-	-	0	0	0	0	0 1		0	0	0	0	0	0	0	0	0 0	0	0	0	0
9	65	5	31	52	34	286	95	65	5 2	29 50	50 33	3 277	0 /	0	0	0	0	0	0	4	0 0	2	-	1	∞
	S	7		23	27	74	7	2	9	1 1'	17 22	2 55	5	3	0	0	0	0	5	0	0 0	0	0	0	0
	0	0	0	0 (0	-	-	0	0	0	0 0	0	0 1	0	0	0	0	0	0	0	0 0	0	0	0	0
	0	_	0	0 (0	-	0	0	_	0	0 0	0	0 1	0	0	0	0	0	0	0	0 0	0	0	0	0
	9	0	0	0 (0	11	8	2	0	0	0 0		5 2	-	0	0	0	0	3	0	0 0	0	0	0	0
	7	4	3	7	4	25	3	1	4	2	5 3	3 18	8	-	0	0	-	0	3	0	0 0	0	0	_	-
	0	0	0	0 (-	_	0	0	0	0	0 1		1 0	0	0	0	0	0	0	0	0 0	0	0	0	0
	0	0	0	0 (_	0	0	0	0	0 1	_	1 0	0	0	0	0	0	0	0	0 0	0	0	0	0
	0	0	0	0 (0	0	0	0	0	0	0 0		0 0	0	0	0	0	0	0	0	0 0	0	0	0	0
57		29	19	52	48	269	35	36 2	22 1	16 38	38 34	181	1 19	13	3	2	9	9	49	0	0 1	0	2	0	33

Table 3. Total number of birds captured, banded, recaptured, and released unbanded at Naval Outlying Landing Field, Imperial Beach, California, 2014–20.—Continued [Species: See appendix 1 (tables 1.1, 1.2) for common and scientific names. Total captures: Includes multiple captures of some individuals]

			Tota	Total number of	r of					_	New						Number of	Jo.					ž	Number of			
			pir	birds captured	red				1	individu	individuals banded	Jed				recap	recaptured individuals	dividuals				5	unbanded birds captured	l birds ca	ptured		
Species			Ϋ́	Year			Total			Year			1	-			Year			Total			Year	<u> </u>		-	1000
	2014	2015	2017	2018	2019	2020	E .	2014 2	2015 2	2017 2	2018 2	2019 2	2020	2014	4 2015	2017	2018	2019	2020	019	2014	2015	2017	2018	2019 2	2020	IOIGI
LISP	4	12	2	4	17	S	4	4	12	-	4	17	S.	43 0	0	0	0	0	0	0	0	0	_	0	0	0	-
WCSP	4	6	4	∞	15	26	99	4	6	4	7	14	25	63 0	0 (0	0	0	0	0	0	0	0	-	_	_	3
GCSP	0	2	0	0	-	0	n	0	2	0	0	-	0	3 0	0	0	0	0	0	0	0	0	0	0	0	0	0
NOCA	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 (0	0	0	0	0	0	0	0	0	0	0	0
BHGR	1	33	0	0	2	-	7	-	Э	0	0	2	-	7 0	0	0	0	0	0	0	0	0	0	0	0	0	0
BLGR	-	0	0	33	3	-	∞	_	0	0	2	2	_	0 9	0	0	0	-	0	-	0	0	0	0	0	0	0
LAZB	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0
BHCO	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0 (0	0	0	0	0	0	0	0	0	0	0	0
HOOR	0	0	0	1	3	6	13	0	0	0	1	3	6	13 0	0 (0	0	0	0	0	0	0	0	0	0	0	0
HOFI	57	49	25	78	23	15	247	57	48	24	9/	22	15 2	242 0	0 (-	0	0	0	1	0	1	0	2	1	0	4
LEGO	4	5	5	-	7	12	34	4	5	4	-	7	=======================================	32 0	0 (0	0	0	-	1	0	0	1	0	0	0	1
LAGO	0	0	0	0	0	2	2	0	0	0	0	0	2	2 0	0	0	0	0	0	0	0	0	0	0	0	0	0
AMGO	0	0	0	-	3	0	4	0	0	0	-	2	0	3 0	0	0	0	-	0	1	0	0	0	0	0	0	0
Total	707	969	292	200	790	829	3543	228	459	230	386	7 819	481 2702	02 86	54	15	22	4	37	258	49	39	33	69	55	20	304
captures																											
Total	4	40	37	46	46	45	29	36	34	32	39	37	36	57 18	11	10	=======================================	16	12	28	10	=======================================	41	16	17	11	30
species																											

banding station (California Department of Fish and Wildlife, 2021). Seven Federal bird species of conservation concern—Calliope Hummingbird (Selasphorus calliope), Rufous Hummingbird, Allen's Hummingbird (Selasphorus sasin), Nuttall's Woodpecker (Dryobates nuttallii), Wrentit, California Thrasher (Toxostoma redivivum), and Lawrence's Goldfinch (Spinus lawrencei)—were captured. Four additional Federal bird species of conservation concern—Willet (Tringa semipalmata), Western Gull (Larus occidentalis), California Gull (Larus californicus), and Bullock's Oriole (Icterus bullockii)—were observed but not captured (appendix 1, tables 1.1, 1.2). Eleven of the sensitive species breed at NOLF (nine captured and two observed only).

Sixty-five Least Bell's Vireo were captured and banded from 2014 to 2020. Four additional Least Bell's Vireos captured prior to 2014 were recaptured between 2014 and 2020, for a total of 69 individual Least Bell's Vireos captured from 2014 to 2020. Nine of the 69 vireos were recaptured in subsequent years (12 total recaptures between 2014 and 2020). Of the 69 individually banded vireos, 49 were given unique color band combinations, and 20 were banded with a single numbered metal band.

Capture Rates

The overall effort-corrected capture rate was 43±30 captures per MAPS period for all years combined (range 7–163 captures; table 4). Effort-corrected capture rates by year ranged from 240 to 745 captures with 2014 and 2018 being the highest capture years. Period 2 in 2014 had the highest effort-corrected capture rate of 163, a result of capturing a large number of birds (128 individuals) during a truncated survey day (0555–0910 PDT) when nets were closed early because of rain.

Species Richness

The number of species captured ranged from 37 to 46 per year (tables 5–10). Daily species richness among captures averaged highest in early May, although in 3 years (2015, 2017, and 2020), species richness peaked in early to mid-April. Overall, species richness averaged 43±4 per year.

Relative Species Abundance

Bushtit was the most abundant species, with 372 effort-corrected captures and a mean of 62±22 effort-corrected captures per year (figs. 3*A*–*E*; tables 5–10). Orange-crowned Warbler was the second most abundant species, with 315 effort-corrected captures and a mean of 53±22 effort-corrected captures per year. The third most abundant species was Wilson's Warbler, with 296 effort-corrected captures (49±35 effort-corrected captures per year). House Finch (*Haemorhous mexicanus*) was the

fourth most abundant species, with 288 effort-corrected captures (48±34 effort-corrected captures per year), followed by Song Sparrow, with 230 effort-corrected captures (38±16 effort-corrected captures per year), and Common Yellowthroat, with 177 effort-corrected captures (30±21 effort-corrected captures per year). These six species each accounted for at least 5 percent of all effort-corrected captures per year and together accounted for 51 percent of all effort-corrected captures during 2014–20. Five of these species, Bushtit, Orange-crowned Warbler, Wilson's Warbler, Song Sparrow, and House Finch, accounted for at least 5 percent of effort-corrected annual captures during at least 4 years from 2014 to 2020. Additional species that accounted for 5 percent or more of the effort-corrected captures in at least 1 year included Common Yellowthroat, Warbling Vireo (Vireo gilvus), Pacific-slope Flycatcher (Empidonax difficilis), Anna's Hummingbird (Calypte anna), House Wren, Audubon's Warbler (Setophaga coronata auduboni), Swainson's Thrush (Catharus ustulatus), Least Bell's Vireo, Yellow Warbler, and White-crowned Sparrow (Zonotrichia leucophrys).

Seasonal and annual captures varied for each of the five focal bird species (figs. 4*A*–*E*). Captures of Least Bell's Vireos were few throughout the MAPS season every year, with a peak in captures in late June corresponding to an increase in juvenile captures in 2015, 2017, 2019, and 2020 (fig. 4A). Bushtit had two identifiable peaks in seasonal captures, one in May and one in late June to early July (fig. 4B). The Bushtit peak in mid to late May corresponded to an increase in adult captures and occurred in all years except 2017. The peak in Bushtit captures in late June to early July corresponded to an increase in juvenile captures and occurred in all years. In general, Song Sparrow captures were highest in April and lowest in June and July, although there was some seasonal variation in captures between years (fig. 4C). Song Sparrow adult captures were highest in April and decreased throughout the MAPS season. Juvenile captures began in mid-April and remained relatively constant throughout the remainder of the MAPS season. Orange-crowned Warbler captures were highest in early to mid-April in most years, prior to the start of the standard MAPS season (May 1; fig. 4D), corresponding to the peak in mean adult captures. A secondary peak in Orange-crowned Warbler captures occurred in May, when mean juvenile captures increased. For Common Yellowthroat, captures varied between years and MAPS periods, although there was a peak in captures in mid-April in 2014, 2019, and 2020 that was exclusively comprised of adults (fig. 4E). Similar to Song Sparrows, mean adult captures of Common Yellowthroats decreased throughout the MAPS banding season. No juvenile Common Yellowthroats were captured in any year until early May, and thereafter, the mean juvenile capture rate generally increased through the end of the MAPS banding season.

16 Monitoring Avian Productivity and Survivorship 6-Year Summary, Naval Outlying Landing Field, 2014–20

Table 4. Capture rate of year-unique individuals by Monitoring Avian Productivity and Survivorship (MAPS) period and year at Naval Outlying Landing Field, Imperial Beach, California, 2014–20.

[Year-unique captures were the total number of new captures, first-time recaptures, and unbanded birds captured in that year. Effort-corrected captures were year-unique captures corrected for effort following methods in DeSante and others (2015). **Abbreviation**: —, no data]

MAPS	Cotor			Ye	ar		
period	Category	2014	2015	2017	2018	2019	2020
-3	Net-hours	60:00	60:00	65:00	61:40	55:19	
	Year-unique captures	34	108	18	31	82	_
	Effort-corrected captures	33	108	17	30	102	_
-2	Net-hours	60:00	57:00	63:19	52:39	56:00	60:00
	Year-unique captures	84	38	23	28	79	122
	Effort-corrected captures	83	40	17	30	80	119
-1	Net-hours	60:00	60:00	68:19	55:19	60:00	53:00
	Year-unique captures	39	100	10	53	93	59
	Effort-corrected captures	39	98	7	54	92	63
1	Net-hours	60:00	59:19	63:19	53:19	56:39	60:00
	Year-unique captures	128	57	19	74	66	66
	Effort-corrected captures	123	57	15	77	67	64
2	Net-hours	33:19	58:30	65:00	53:19	57:19	60:00
	Year-unique captures	148	47	34	52	42	59
	Effort-corrected captures	163	47	26	57	42	58
3	Net-hours	60:00	48:00	66:40	60:00	60:00	58:19
	Year-unique captures	79	41	11	40	36	53
	Effort-corrected captures	78	61	10	37	34	53
4	Net-hours	60:00	60:00	66:40	60:00	60:00	60:00
	Year-unique captures	20	15	12	24	53	35
	Effort-corrected captures	20	14	11	22	51	34
5	Net-hours	60:00	60:00	68:19	60:00	60:00	57:19
	Year-unique captures	5	21	24	14	35	31
	Effort-corrected captures	15	20	20	13	33	31
6	Net-hours	60:00	60:00	61:40	53:19	59:19	60:00
_	Year-unique captures	15	15	20	26	64	36
	Effort-corrected captures	15	15	16	27	63	36
7	Net-hours	60:00	60:00	61:40	56:00	54:39	58:39
,	Year-unique captures	22	26	19	28	45	21
	Effort-corrected captures	22	26	16	28	46	21
8	Net-hours	60:00	60:00	65:00	52:40	60:00	58:30
0	Year-unique captures	9	17	32	48	36	31
	Effort-corrected captures	9	17	22	62	36	31
9	Net-hours	60:00	58:39	63:19	52:30	54:30	57:29
,	Year-unique captures	26	9	36	32.30	48	30
	Effort-corrected captures	20	9	40	38	56	32
10	Net-hours	60:00	58:09	63:19	40:00	53:00	51:19
10	Year-unique captures	44	58	20	27	38	34
	Effort-corrected captures	44	61	23	45	38 42	35
otals	Net-hours	753:19	759:39	841:39	710:49	746:49	694:3
otais by	Year-unique captures	663	759:39 552	278	477	740:49	577
year		664					
	Effort-corrected captures	004	572	240	521	745	578

[Captures were corrected for effort following methods in DeSante and others (2015). Species: See appendix 1 (tables 1.1, 1.2) for common and scientific names. Effort-corrected totals were rounded to integers, annual effort corrected total captures were calculated from actual (non-integer) values. Abbreviations: mm-dd-yy, month-day-year; —, no data] Table 5. Number of captures by Monitoring Avian Productivity and Survivorship (MAPS) period and date at Naval Outlying Landing Field, Imperial Beach, California, 2014.

						2	MAPS period	_							
Č	က	-2	٦	-	2	က	4	5	9	7	8	6	10	ļ	Effort-
Species						Date	te (mm-dd-yy)	γ)						lotai	corrected total
	04-03-14	04-17-14	04-24-14	05-08-14	05-15-14	05-22-14	06-05-14	06-12-14	06-26-14	07-03-14	07-10-14	07-24-14	07-31-14		
CGDO	0	0	0	0	0	0	1	0	0	0	0	0	0	1	1
BCHU	0	0	П	0	2	0	_	0	0	_	0	2	1	∞	œ
ANHU		4	0		2	4	2	3	4	2	0	0	0	23	22
CAHU	0	-	0	0	0	0	0	0	0	0	0	0	0	-	1
RUHU	0	2	0	0	0	0	0	0	0	0	0	0	0	7	2
ALHU	0	0	0	0	0	0	0	0	0	-	0		-	e	3
USHU	0	0	0	0		0	0	0	0	0	0	0	0	1	1
COHA		0		0	0	0	0	0	0	0	0	0	0	7	2
DOWO	0	2	0			0	0	0	0	0	0	0	0	4	7
NUWO	0	-	0	0	0	0	0	0	7	0	0	0	0	8	8
WEWP	0	0	0	0		0	0	0	0	0	0	0	0	1	1
WIFL	0	0	0	0	5	2	0	0	0	0	0	0	0	7	7
HAFL	0	0	0	0		0	0	0	0	0	0	0	0	1	1
GRFL	0	0	0	П	0	0	0	0	0	0	0	0	0	1	1
PSFL	0	∞	4	4	20	16		0	0		0	0	0	54	54
ATFL	0	2	0	0	1	0	0	0	0	0	0	0	2	S	w
LBVI	0	0	П	1	1	0	1	0	0	1	1	П	0	7	9
WAVI	0	1	2	14	10	6	0	0	0	0	0	0	0	36	38
BTMJ	0	0	0	0	0	П	0	0	0	0	0	0	0	1	1
BUSH	5	7	0	8	8	11	4	-	7	14	0	0	2	62	61
WREN	0	0	33	1	1	0	0	-	0	1	0	П	0	∞	œ
HOWR	3	3	2	-	0	0	0	-	0	0	0	0	-	11	11
BEWR	0	С	П	1	1	-	1	0	1	0	0	0	0	6	6
САТН	0	0	0	0	0	1	0	0	0	0	0	0	0	1	1
SWTH	0	0	0	14	29	∞	0	0	0	0	0	0	0	51	51
HETH	2	0	0	0	0	0	0	0	0	0	0	0	0	7	2
HOFI	0	0	1	0	0	1	1	0	2	0	2	19	31	57	50
LEGO	0	3	0	0	_	0	0	0	0	0	0	0	0	4	4

Table 5. Number of captures by Monitoring Avian Productivity and Survivorship (MAPS) period and date at Naval Outlying Landing Field, Imperial Beach, California, 2014.—Continued

[Captures were corrected for effort following methods in DeSante and others (2015). Species: See appendix 1 (tables 1.1, 1.2) for common and scientific names. Effort-corrected totals were rounded to integer; annual effort corrected total captures were calculated from actual (non-integer) values. Abbreviations: mm-dd-yy, month-day-year; —, no data]

						2	MAPS period	þ							
	ကု	-2	7	-	2	က	4	r.	9	7	8	6	10		Effort-
Species						Da	Date (mm-dd-yy)	yy)						lotal	corrected total
	04-03-14	04-17-14	04-24-14	05-08-14	05-15-14	05-22-14	06-05-14	06-12-14	06-26-14	07-03-14	07-10-14	07-24-14	07-31-14		
WCSP	0	3		0	0	0	0	0	0	0	0	0	0	4	4
SOSP		10	7	5	2	∞	9	5	2		2	2	3	54	54
	2	1	1	0	0	0	0	0	0	0	0	0	0	4	4
CALT	2	0	0	0	0	0	0	0	0	0	_	0	-	4	4
SPTO	0	0	2	0	0	1	1	1	0	0	0	0	0	S	w
YBCH	0	0	0	2	2		0	0	2	0	_	0	-	6	6
OCWA	10	14	4	10	5	2	0	1	0	0	0	0	1	47	46
NAWA	0	П	0	0	0	0	0	0	0	0	0	0	0		1
MGWA	0	2	0	2	9	0	0	0	0	0	0	0	0	10	10
COYE	7	7	1	4	3	5	0	2	0	0	2	0	0	31	31
YEWA	0	1	1	12	4	4	1	0	0	0	0	0	0	23	23
TOWA	0	0	0	0	1	0	0	0	0	0	0	0	0	1	1
HEWA	0	0	0	2	0	0	0	0	0	0	0	0	0	7	1
WIWA	0	∞	9	43	40	7	0	0	0	0	0	0	0	66	108
WETA	0	0	0	1	0	0	0	0	0	0	0	0	0	1	1
BHGR	0	0	0	0	0	1	0	0	0	0	0	0	0	1	1
BLGR	0	0	0	0	0	1	0	0	0	0	0	0	0	1	1
Captures per day	34	84	39	128	148	79	20	15	15	22	6	26	44	663	664
Otal species ¹	10	21	17	20	23	19	11	∞	7	∞	9	9	10	44	

¹Total species does not include one Unidentified Selasphorus Hummingbird (USHU) captured.

19

[Captures were corrected for effort following methods in DeSante and others (2015). Species: See appendix 1 (tables 1.1, 1.2) for common and scientific names. Effort-corrected totals were rounded to integers, annual effort corrected total captures were calculated from actual (non-integer) values. Abbreviations: mm-dd-yy, month-day-year; —, no data] Table 6. Number of captures by Monitoring Avian Productivity and Survivorship (MAPS) period and date at Naval Outlying Landing Field, Imperial Beach, California, 2015.

				Σ	MAPS period								
-1		1	2	3	4	5	9	7	8	6	10	- Tota	Effort-
				Dat	Date (mm-dd-yy)	(A						lotal	corrected total
04-16-15 04-30-15 05-0	02-0	05-07-15	05-14-15	05-21-15	06-04-15	06-11-15	06-25-15	07-09-15	07-16-15	07-23-15	07-30-15		
1		0	0	1	0	1	0	0	0	0	0	3	4
0	Ŭ	0	0	1	0	0	0	0	-	0	0	7	3
0 0	0		0	0	П	2	0	0	0	0	0	4	4
2 4	4		5	4	0	0			3		0	24	26
1 0	0		0	0	0	0	0	0	0	0	0	1	1
0 0	0		0	0	0	0	0	0	0	0	0	7	2
0 0	0		0	0	0	0	0	0	0	0	П	1	1
0 0	0		2	0	0	2	1	2	0	0	1	∞	∞
0 0	0		0	0	0	0	0	0	_	0	0	1	1
0 0	0		0	П	0	0	0	0	0	0	0	1	2
0 0	0		0	0	0	-	0	0	0	0	0	1	1
0 0	0		1	0	0	0	0	0	0	0	0	1	1
5 5	5		10	3	0	0	0	0	0	0	0	25	26
1 0	0		1	0	1	0	0	0	0	1	0	4	4
0 1	1		0	0	1	0	2	0	0	1	1	7	7
0 0	0		0	0	0	0	1	1	0	0	0	7	2
11 5	5		0	1	0	0	0	0	0	0	0	17	18
2 4	4		8	16	0	3	1	15	4	1	6	29	75
0 2	2		2	0	2	0	0	3	0	0	1	14	14
0 3	3		0	0	1	1	1	1	0	0	0	11	11
0 0	0		1	1	2	3	0	0	0	0	1	6	6
0 0	0		0	0	0	0	0	0	0	0	0	7	2
0 0	0		0	0	1	0	0	1	5	2	38	49	52
3 0	0		0	П	0	0	0	0	0	0	0	w	w
0 0	0		0	0	0	0	0	0	0	0	0	6	6
0 0	0		0	0	0	0	0	0	0	0	0	7	2
7 10	10		7	3	3	5	2	0	1	0	0	49	20
0 0	0		0	0	0	0	0	0	0	0	0	12	12

Table 6. Number of captures by Monitoring Avian Productivity and Survivorship (MAPS) period and date at Naval Outlying Landing Field, Imperial Beach, California, 2015.—Continued

[Captures were corrected for effort following methods in DeSante and others (2015). Species: See appendix 1 (tables 1.1, 1.2) for common and scientific names. Effort-corrected totals were rounded to integers; annual effort corrected total captures were calculated from actual (non-integer) values. Abbreviations: mm-dd-yy, month-day-year; —, no data]

							MAPS period	Þ							
	ဗု	-2	7	-	2	က	4	2	9	7	8	6	10	F	Effort-
Species						Da	Date (mm-dd-yy)	, A)						lota	corrected total
	04-02-15	04-16-15	04-30-15	05-07-15	05-14-15	05-21-15	06-04-15	06-11-15	06-25-15	07-09-15	07-16-15	07-23-15	07-30-15		
CALT	1	0	0	0	0	0	0	0	0	0	1	0	0	2	2
SPTO	0	0		0	0	_	0	0	0	0	0	0	П	3	3
YBCH	0	0	0	1	0	0	0	1	2	П	0	0	0	w	S.
OCWA	36	∞	11	5	2	-	1	0		0	0	0	3	89	29
MGWA	0	1	9	0	0	0	0	0	0	0	0	0	0	7	7
COYE	4	2	4	1	2	2	1	7	3	П	1	3	2	28	30
YEWA	0	0	7	5	1	4	1	0	0	0	0	0	0	18	19
WPWA	-	0	0	0	0	0	0	0	0	0	0	0	0	1	1
AUWA	17	0	0	0	0	0	0	0	0	0	0	0	0	17	17
TOWA	0	0	1	0	1	0	0	0	0	0	0	0	0	2	2
WIWA	3	10	36	11	4	1	0	0	0	0	0	0	0	65	99
BHGR	0	2	1	0	0	0	0	0	0	0	0	0	0	3	3
Captures per day	108	38	100	57	47	41	15	21	15	26	17	6	28	552	572
Total .	18	14	17	13	14	15	11	10	10	6	∞	9	10	40	1
sbecies															

[Captures were corrected for effort following methods in DeSante and others (2015). Species: See appendix 1 (tables 1.1, 1.2) for common and scientific names. Zero effort-corrected captures resulted from nets that remained open beyond the prescribed 6 hours. Abbreviations: mm-dd-yy, month-day-year; —, no data] Table 7. Number of captures by Monitoring Avian Productivity and Survivorship (MAPS) period and date at Naval Outlying Landing Field, Imperial Beach, California, 2017.

						2	MAPS period								
	ကု	-2	7	-	2	က	4	2	9	7	8	6	10	1	Effort-
secies						Dat	Date (mm-dd-yy)	у)						lotal	correcteu total
	04-07-17	04-14-17	04-21-17	05-05-17	05-12-17	05-25-17	06-01-17	06-19-17	06-29-17	07-07-17	07-14-17	07-20-17	08-08-17		
CGDO	0	0	0	0	0	0	2	0	0	2	0	0	0	4	4
МОДО	0	0	0	0	0	0	0	0	0		0	0	0	_	1
GRRO	0	0	1	0	0	0	0	0	0	0	0	0	0	_	1
ANHU	0	0	_	2	0	2	0	0	-	0	-	2	2	Ξ	7
RUHU	0	1	0	0	0	0	0	0	0	0	0	0	0	_	1
SSHA	-	0	0	0	0	0	0	0	0	0	0	0	0	_	1
DOWO	П	0	0	0	0		0	2	0	0	0	4	0	∞	7
NUWO	0	0	0	-	0	0	0	0	0	0	-	0	0	7	2
PSFL	0	1	0	1	0	2	1	2	3	0	0	1	1	12	6
ATFL	0	0	_	0	0	0	0	0		-	0	2	0	w	4
WEKI	1	0	0	0	0	0	0	0	0	0	0	0	0	_	1
LBVI	-	0	0	П		0	3	-	4	-	0	2	0	14	13
HUVI	0	0	0	0	0	0	0	С	0		0	0	0	4	4
WAVI	0	0	1	2	6	0	0	0	0	0	0	0	0	12	11
BUSH	0	1	1	0		0	ю	5	∞	9	13	0	2	40	37
WREN	0	0	0	0	0	1	0	1	0	7	4	5	2	15	6
HOWR	0	33	0	2	2	0	0	2	0	0	2	0	0	11	œ
BEWR	0	0	0	0	0	0	1	0	1	0	33	2	0	7	7
САТН	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1
SWTH	0	0	0	П	3	0	0	0	0	0	0	0	0	4	2
HETH	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1
HOFI	0		0	0	0	0	0	0	0	0	2	13	6	25	34
LEGO	0	1	0	1	1	0	0	0	0	0	0	2	0	w	4
WCSP	33	1	0	0	0	0	0	0	0	0	0	0	0	4	3
SOSP	4	4	2	1	2	7	1	2	1	4	1	1	1	26	19
LISP	1	1	0	0	0	0	0	0	0	0	0	0	0	7	1
CALT	1	0	0	0	0	0	0	1	0	0	0	2	0	4	4
GTTO	0	П	0	0	0	0	0	0	0	0	0	0	0	_	0

Table 7. Number of captures by Monitoring Avian Productivity and Survivorship (MAPS) period and date at Naval Outlying Landing Field, Imperial Beach, California, 2017. —Continued

[Captures were corrected for effort following methods in DeSante and others (2015). Species: See appendix 1 (tables 1.1, 1.2) for common and scientific names. Zero effort-corrected captures resulted from nets that remained open beyond the prescribed 6 hours. Abbreviations: mm-dd-yy, month-day-year; —, no data]

	Effort-	corrected total		9	17	1	∞	4	7	1	0	w	240	
	F	loral		9	18	1	13	œ	7	1	1	w	278	37
	10		08-08-17	0	П	0	1	1	0	0	0	0	20	6
	6		07-20-17	0	0	0	0	0	0	0	0	0	36	11
	∞		07-14-17	2		0	2	0	0	0	0	0	32	11
	7		07-07-17	1	0	0	0	0	0	0	0	0	19	6
	9		06-29-17	0	0	0	1	0	0	0	0	0	20	8
P	D.	-yy)	06-19-17	0	0	0	4	-	0	0	0	0	24	11
MAPS period	4	Date (mm-dd-yy)	06-01-17	0	0	0	0		0	0	0	0	12	7
	က	Ō	05-25-17	0	3	0	0	0	0	0	0	0	11	9
	2		05-12-17	1	5	0	2	5	0	0	0	2	34	12
	-		05-05-17	2	2	0	0	0	0	0	1	2	19	13
	7		04-21-17	0	-		1	0	0	0	0	0	10	6
	-2		04-14-17	0	4	0	1	0	1	0	0	1	23	15
	က		04-07-17	0		0	1	0	1	1	0	0	18	13
		Species		YBCH	OCWA	NAWA	COYE	YEWA	WPWA	AUWA	HEWA	WIWA	Captures per day	Total species

[Captures were corrected for effort following methods in DeSante and others (2015). Species: See appendix 1 (tables 1.1, 1.2) for common and scientific names. Effort-corrected totals were rounded to integers; annual effort corrected total captures were calculated from actual (non-integer) values. Abbreviations: mm-dd-yy, month-day-year; —, no data] Table 8. Number of captures by Monitoring Avian Productivity and Survivorship (MAPS) period and date at Naval Outlying Landing Field, Imperial Beach, California, 2018.

				c		MAPS period			r	•		Ç		Effort-
-5		7	-	2	က	4	വ	9	7	∞	6	10	Total	corrected
					Dat	Date (mm-dd-yy)	λ)							total
04-17-18 04	8	04-24-18	05-08-18	05-16-18	05-23-18	06-05-18	06-12-18	06-27-18	07-03-18	07-11-18	07-24-18	08-07-18		
1		0	0	0	0	0	1	0	0	0	_	0	3	3
		0	0	0	0	0	0	0	0	0	0	0	1	1
0		0	0	0	0	0	0	0	0	0		0	2	2
0		0	3	3	5	9	С	0	_	3			26	25
0		0	0	0	0	П	0	0	0	0	0	0	1	1
9		2	3	0	0	0	0	0	0	0	0	0	13	14
		0	0	2	0	0	0		2		П	0	œ	6
0		0	0	0	0	-	0	0	0	0	0	0	1	1
0		0	0	2		0	0	5	0		П	0	10	11
0		2	0	0	0	_	0	2	0	0	0	0	w	w
0		0	0		0	0	0	0	0	0	0	0	1	1
2		3	9	0	5	2	0	0	2		0		22	22
0		0	_	0	0	0	0	0	0		0	0	7	က
0		1	0	0	2	1	0	0	1	2	1	1	6	6
0		0	0	0	0	0	0	0	0	0	0	0	1	1
1		0	1	0	1	1	1	0	1	0	2	0	6	6
0		0	1	0	0	0	0	1	0	0	0	0	2	2
0		3	6	14	6	1	0	0	0	0	0	0	36	39
0		0	0	0	1	0	0	0	0	0	0	0	1	1
1		0	1	0	9	3	0	6	0	9	8	2	39	40
0		0	0	0	0	0	1	0	4	0	0	0	w	w
0		0	0	0	0	0	0	0	0	0	0	0	1	1
1		ю	1	2	2	2	2	0	1	0	0	0	16	16
1		0	2	0	1	2	1	1	1	0	0	0	6	6
0		0	1	0	0	0	0	0	0	0	0	0	1	1
0		1	1	2	1	0	0	0	0	0	0	0	w	w
1		0	0	0	0	0	0	0	0	0	0	0	1	1
0		1		П	0	0	0	3	111	29	13	19	78	1111

Table 8. Number of captures by Monitoring Avian Productivity and Survivorship (MAPS) period and date at Naval Outlying Landing Field, Imperial Beach, California, 2018.—Continued

[Captures were corrected for effort following methods in DeSante and others (2015). Species: See appendix 1 (tables 1.1, 1.2) for common and scientific names. Effort-corrected totals were rounded to integers; annual effort corrected total captures were calculated from actual (non-integer) values. Abbreviations: mm-dd-yy, month-day-year; —, no data]

c	MAPS			0	G	5		Effort-
-3 -2 -1 1 2	Data (mm. dd. w.)	5	2 9	∞	6	10	Total	corrected
04-03-18 04-17-18 04-24-18 05-08-18 05-16-18	05-23-18 06-05-18	6-12-18	06-27-18 07-03-18	18 07-11-18	07-24-18	08-07-18		total
0 0 0 0 0	0 0	1	0 0	0	0	0	-	1
0 0 0 0 0	0 0	0	0 1	0	0	0	1	
1 4 3 0 0	0 0	0	0 0	0	0	0	∞	œ
2 1 1 1 4	2 0	0	0 0	4	П	2	18	19
1 3 0 0 0	0 0	0	0 0	0	0	0	4	4
0 0 0 2 0	0 0	0	0 0	0	0	0	7	2
0 0 0 0 0	1 0	0	0 0	0	0	0	1	1
$0 \qquad 0 \qquad 0 \qquad 1 \qquad 0$	0 0	0	0 0	0	0	0	1	1
$0 \qquad 0 \qquad 0 \qquad 1 \qquad 0$	0 0	0	0 0	0	0	0	1	1
$0 \qquad 0 \qquad 0 \qquad 1 \qquad 0$	0 0	0	0 0	0	0	0	1	1
13 2 11 10 2	1 2	0	0 0	0	1	1	43	44
$0 \qquad 0 \qquad 1 \qquad 1 \qquad 0$	0 0	0	0 0	0	0	0	7	2
0 0 1 1 0	0 0	0	0 0	0	0	0	7	7
1 2 2 3 1	1 0	2	3 1	0	0	0	16	16
0 0 0 4 15	1 1	2	1 1	0	0	0	25	25
0 0 9 0 0	0 0	0	0 0	0	0	0	9	9
0 0 2 2 0	0 0	0	0 0	0	0	0	4	4
2 0 10 16 3	0 0	0	0 0	0	0	0	31	32
0 0 0 0 0	0 0	0	0 1	0	1	0	2	2
31 28 53 74 52	40 24	14	26 28	48	32	27	477	521
13 15 17 25 13	16 12	6	9 13	6	12	7	46	

¹Total species does not include one Unidentified Selasphorus Hummingbird (USHU) captured.

Table 9. Number of captures by Monitoring Avian Productivity and Survivorship (MAPS) period and date at Naval Outlying Landing Field, Imperial Beach, California, 2019. [Captures were corrected for effort following methods in DeSante and others (2015). Species: See appendix 1 (tables 1.1, 1.2) for common and scientific names. Abbreviations: mm-dd-yy, month-day-year; &, and; —, no data]

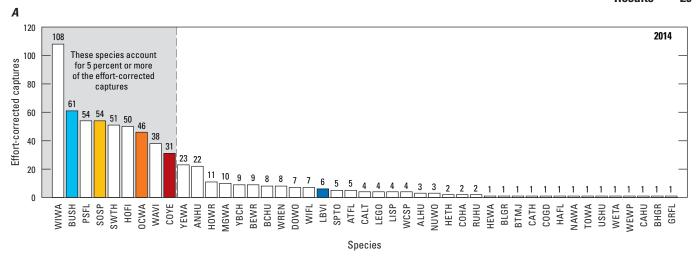
						MAF	MAPS period								
	ကု	-5	٦	-	2	က	4	5	9	7	∞	6	10		Effort-
Species						Date (Date (mm-dd-yy)							Total	corrected
	04-02-19 & 04-10-19	04-17-19	04-24-19	05-01-19	05-14-19	05-30-19	06-05-19	06-12-19	06-26-19	07-03-19	07-10-19	07-24-19	08-07-19		total
CGDO	0	0	0	0	0	1	0	0	0	0	1	1	0	3	3
МОВО	0	0	0	0	0	0	0	0	0	-	0		0	7	2
BCHU	0	1	0	0	0	-	1	-	-	0	0	0	0	w	w
ANHU	0	0	5	-	-	2	0	2	4	2	_	0	2	20	20
CAHU	0	0		0	0	0	0	0	0	0	0	0	0	1	1
RUHU	0	0			0	0	0	0	0	0	0	0	0	7	2
ALHU	0	0	2		1	1	0	0	0	0	0	0	2	7	7
USHU	0	0	0		_	0	0	0	0	0	0	0	0	7	2
DOWO	0	0	0	0	0	2	1	0		1	1	0		7	∞
NUWO	0	0	0	-	0	0	0			0	0	3	0	9	7
PSFL	0	0		1	0	0	4		3	2	0	0	0	12	12
ВГРН	0	0	0	0	0		0		0	0	0		0	က	3
ATFL	0	0		0	0	3	1	0	9	0	0	0	0	11	11
LBVI	1	0	0	-	-	2	0	2	8	2	∞		0	26	25
HUVI	0	0	0	0	0	0	0	0	2	1	0	0	0	က	e
WAVI	0		7	7	_	0	0	0	0	0	0	0	0	16	16
TRES	0	0	0	0	0		0	0	0	0	0	0	0	1	1
BUSH	1	2		-	S	4	11	3	8	14	5	0	6	64	64
WREN	1	П	3	2	-		3	_	4	-	1		4	24	25
BGGN	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1
CAGN	0	0	0	0	0	0	0	0	0	0	1	0		7	2
HOWR	1	2	2	0	4	5	7	4	5	4	ж	4	2	38	38
BEWR	0	0	0		С	4	33	9	5	С	т		2	31	31
САТН	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1
SWTH	1	0	0	4	_	0	0	0	0	0	0	0	0	9	9
HETH	0		0	0	0	0	0	0	0	0	0	0	0	_	
HOFI	1	0	0	0	0	0	0	0	0	0	2	18	2	23	24

Table 9. Number of captures by Monitoring Avian Productivity and Survivorship (MAPS) period and date at Naval Outlying Landing Field, Imperial Beach, California, 2019. —Continued

[Captures were corrected for effort following methods in DeSante and others (2015). Species: See appendix 1 (tables 1.1, 1.2) for common and scientific names. Abbreviations: mm-dd-yy, month-day-year; &, and; —, no data]

						MA	MAPS period								
	ဇှ	-2	7	-	2	က	4	ស	9	7	∞	6	10		Effort-
Species						Date (Date (mm-dd-yy)							Total	corrected
	04-02-19 & 04-10-19	04-17-19	04-24-19	05-01-19	05-14-19	05-30-19	06-05-19	06-12-19	06-26-19	07-03-19	07-10-19	07-24-19	08-07-19		total
LEGO	0	0	4		0	_	0	0		0	0	0	0	7	7
AMGO	0	0	0	П	2	0	0	0	0	0	0	0	0	8	က
WCSP	6	4	П	-	0	0	0	0	0	0	0	0	0	15	17
GCSP	0	П	0	0	0	0	0	0	0	0	0	0	0	1	
SOSP	S	6	8	3	3	2	2	4		0	2	3	4	46	48
LISP	13	33	1	0	0	0	0	0	0	0	0	0	0	17	21
CALT	1	1	П	0	0	0	0	2	0	0	0	0	1	9	9
YBCH	0	0	3	4	4	П	1	0	1	1	-	1	0	17	17
HOOR	0	0	0	0	0	0	0	0	0	0	3	0	0	3	8
OCWA	12	10	10	5	∞	0	17	4	0	5	0	1	2	74	77
NAWA	0	0		0	0	0	0	0	0	0	0	0	0	_	1
MGWA	0	0	5	ю	0	0	0	0	0	0	0	0	0	∞	∞
COYE	3	7	4	4	0	33	9	3	9	9	4	11	9	63	89
YEWA	0	1	1	5	8	0		0	7	1	0	0	0	19	19
AUWA	30	24	5	2	0	0	0	0	0	0	0	0	0	61	70
BTYW	0	0	0	1	0	0	0	0	0	0	0	0	0	1	1
TOWA	0	0	0	-	0	0	0	0	0	0	0	0	0	1	1
WIWA	1	Ξ	25	13	П	0	0	0	0	0	0	0	0	51	51
BHGR	0	0	0	0	2	0	0	0	0	0	0	0	0	7	7
BLGR	0	0	0	0	0	1	0	0	0	1	0	1	0	3	3
Captures per day	82	79	93	99	42	36	53	35	64	45	36	48	38	717	745
Total species ¹	16	16	23	24	16	18	13	14	17	15	14	14	13	46	

¹Total species does not include one Unidentified Selasphorus Hummingbird (USHU) captured.


Table 10. Number of captures by Monitoring Avian Productivity and Survivorship (MAPS) period and date at Naval Outlying Landing Field, Imperial Beach, California, 2020. [Captures were corrected for effort following methods in DeSante and others (2015). Species: See appendix 1 (tables 1.1, 1.2) for common and scientific names. Abbreviations: mm-dd-yy, month-day-year; —, no data]

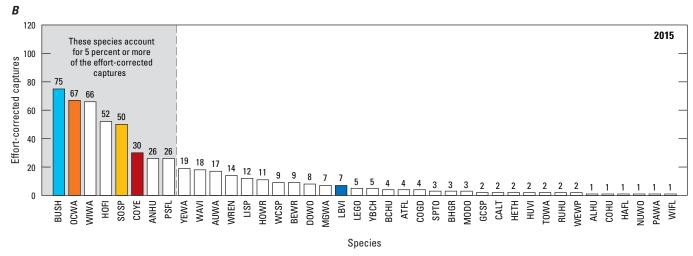
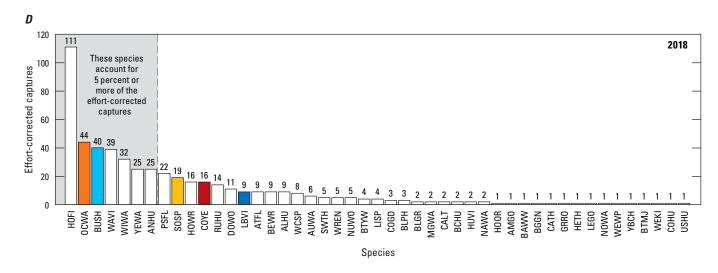
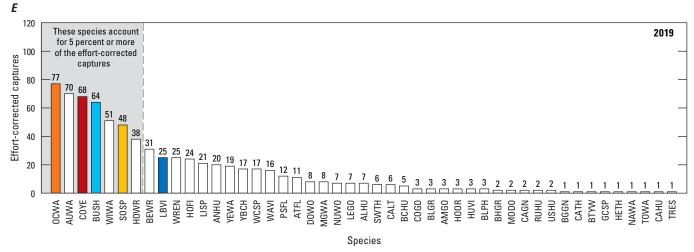

						MAPS period	period							
	-2	7	-	2	က	4	r.	9	7	∞	6	10	- 40	Effort-
Species						Date (mm-dd-yy)	n-dd-yy)						lotai	corrected total
	04-17-20	04-24-20	05-06-20	05-15-20	05-22-20	06-02-20	06-12-20	06-24-20	07-01-20	07-10-20	07-24-20	07-31-20		
BCHU	2	1	0	1	0	0	0	2	0	0	0	0	9	9
ANHU	2		2	1		4	5		2	П	0	3	23	23
CAHU	33		0	0	0	0	0	0	0	0	0	0	4	4
RUHU	9	-	0	0	0	0	0	0	0	0	0	0	7	7
ALHU	c	0	0	0	0	0	0	0	2	0	2	4	11	=======================================
DOWO	0	0	0	0	0	0	0	-	2	4	1	П	6	6
NUWO	0	0		0	0	0			0	0	0	0	က	က
WIFL	0	0	1	0	1	0	0	0	0	0	0	0	2	2
PSFL	7	2	0	4	5	0	1	4	0	0	1	0	24	24
ATFL	2	0	0	0	2	0	0	0	0	0	0	0	4	4
LBVI	cc			0	3	_	2	9	1	0	0	0	18	18
HUVI	0	0	0	0	0	2	0	0	0	0	0	0	2	7
WAVI	2	1	2	0	0	0	0	0	0	0	0	0	w	w
TRES	æ	0	0	0	0	0	0	0	0	0	0	0	8	8
BUSH	2	2	13	14	~	11	4	4	33	17	∞	11	76	95
WREN	0	0	0	2	2	0	1	7	1	П	0	-	10	10
CAGN	0	2	0	0	0	0	0	0	0	0	0	0	7	2
HOWR	5	5	33	7	4	9	9	7	1	1	2	0	42	42
BEWR	0	0	0	3	1	1	1	0	0	0	1	0	7	7
САТН	0	1	0	0	0	0	0	0	0	0	0	0	1	1
SWTH	0		2	П	0	0	0	0	0	0	0	0	4	4
HOFI	0	0	0	0	0	0	0	0	0	0	12	3	15	17
LEGO	2	0	4	1	0	0	3	2	0	0	0	0	12	12
LAGO	0	0	2	0	0	0	0	0	0	0	0	0	2	2
CHSP	0	1	0	0	0	0	0	0	0	0	0	0	1	1
BRSP	0	1	0	0	0	0	0	0	0	0	0	0	1	1
WCSP	18	∞	0	0	0	0	0	0	0	0	0	0	26	27
SOSP	5	8	3	4	3	2	1	3	3	4	1	3	40	40

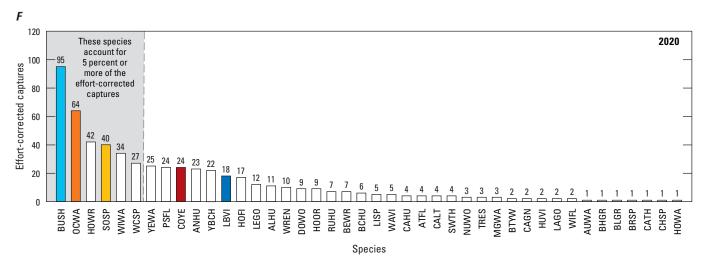
Table 10. Number of captures by Monitoring Avian Productivity and Survivorship (MAPS) period and date at Naval Outlying Landing Field, Imperial Beach, California, 2020.— Continued

[Captures were corrected for effort following methods in DeSante and others (2015). Species: See appendix 1 (tables 1.1, 1.2) for common and scientific names. Abbreviations: mm-dd-yy, month-day-year; —, no data]

-1 1 2 04-24-20 05-06-20 05-15-20 0 1 0 0 0 0 7 0 2 0 0 2 1 0 0 1 1 1 1 0 0 1 0 0 0 0 0 6 11 0 0 0 0 0 0 0 0 0 0 25 66 59 24 17 15										
05-06-20 05-15 1 0 0 0 0 2 0 2 0 2 1 1 1 1 1 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0	က	4	2	9	7	œ	6	10	40	Effort-
05-06-20 05-15- 1 0 0 0 0 0 2 0 2 7 12 0 0 0 11 1 4 11 0 0 0 0 0 0 11 0 0 0 11 0 0 11 0 0 11 0 0 11 0 0 11 0 0 11 1 0 0		Date (mm-dd-yy)	-yy)						lotal	corrected total
1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1	20 05-22-20	06-05-20 06-	06-12-20 06	06-24-20	07-01-20	07-10-20	07-24-20	07-31-20		
0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1	0	0	0	0	0	0	0	0	w	w
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3	0	0	0	0	0	0		4	4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3		1	4	0	-	0	0	22	22
7 0 11 0 0 0 0 11 1 1 17	0	0	0	0	5	П	0	0	6	6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11	5	2	3	0	0	П	П	64	64
1 0 0 0 11 0 0 66 5	0	0	0	0	0	0	0	0	3	8
0 0 0 0 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	2	2	П	П	1	0	5	24	24
11 0 0 11 1 66 56	0	0	0	0	0	0	0	0	1	1
0 0 0 0 0 11 1 1 1 1 1 1 1 1 1 1 1 1 1	5	0	1	0	0	0	П		25	25
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	0	0	0	0	0	0	0	1	1
11 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	0	0	0	0	0	0	0	7	7
0 1 66 5	0	0	0	0	0	0	0	0	34	34
66 5	0	0	0	0	0	0	0	0	1	1
99	0	0	0	0	0	0	0	0	1	1
17	53	35	31	36	21	31	30	34	577	578
	15	10	14	14	10	6	10	11	42	

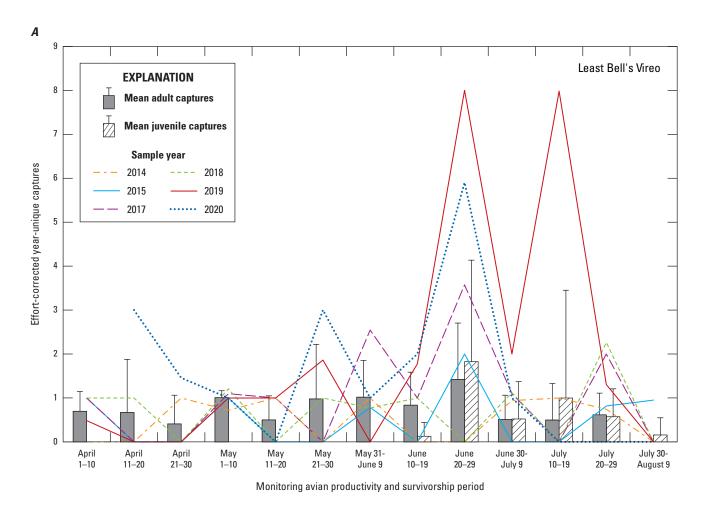






(Graph does not include two bird species for which effort-correction adjusted the number of captures to below zero as a result of nets remaining open for longer than the intended 6 hours in all netting days in 2017.)

Figure 3. Number of year-unique and effort-corrected captures per species for the years *A*, 2014; *B*, 2015; *C*, 2017; *D*, 2018; *E*, 2019; and *F*, 2020, Naval Outlying Landing Field, Imperial Beach, California, 2014–20. Species that accounted for 5 percent or more of the effort-corrected captures in at least 6 years between 2009 and 2020 were given colored bars to track annual variation. Bushtit was the only species that constituted more than 5 percent of the captures every year. See appendix 1 for common and scientific names. Capture rates were corrected for effort following methods in DeSante and others (2015).



(In 2020, period -3 was missed because of flooding, and therefore, 2020 should not be compared to effort-corrected totals in other years.)

Figure 3.—Continued

Figure 4. Seasonal and annual variation in the effort-corrected number of year-unique captures of the bird species *A*, Least Bell's Vireo; *B*, Bushtit; *C*, Song Sparrow; *D*, Orange-crowned Warbler; and *E*, Common Yellowthroat at Naval Outlying Landing Field, Imperial Beach, California, 2014–20. Means for adults and juveniles are across years within each banding period. See appendix 1 for common and scientific names. Capture rates were corrected for effort following methods in DeSante and others (2015).

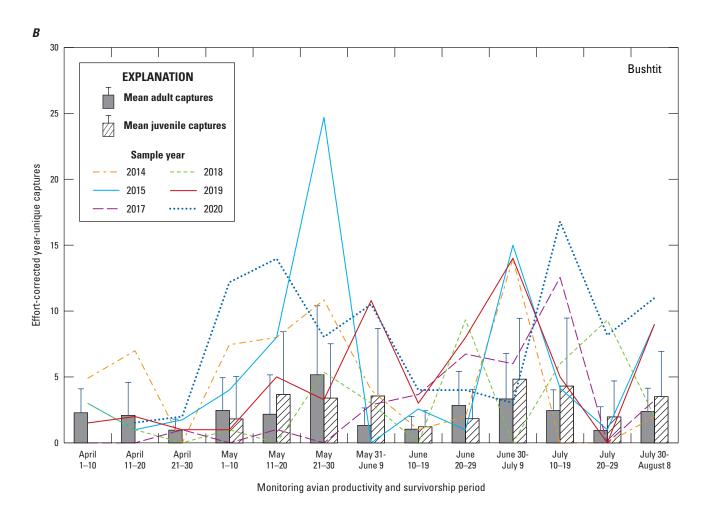
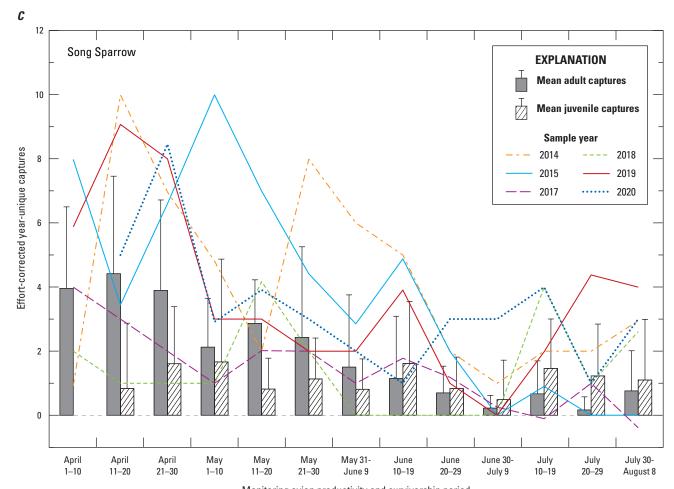



Figure 4.—Continued

Monitoring avian productivity and survivorship period [Negative values resulted from periods when nets were open longer than the intended number of hours.]

Figure 4.—Continued

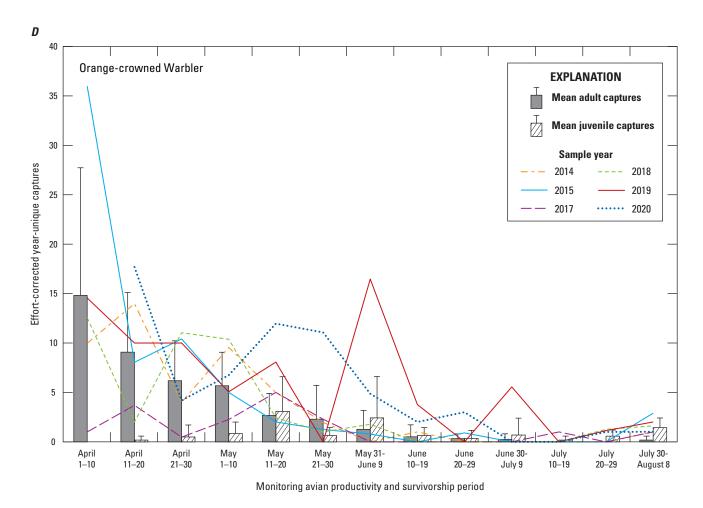
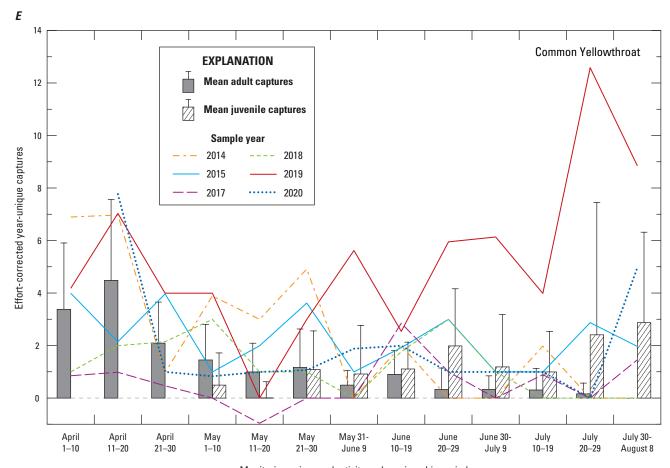



Figure 4.—Continued

Monitoring avian productivity and survivorship period [Negative values resulted from periods when nets were open longer than the intended number of hours.]

Figure 4.—Continued

Sex and Age Structure

The overall sex ratio of known-sex adult captures was slightly skewed towards males for all species combined from 2014 to 2020 (54:46 male:female for 2014–20). The male:female ratios ranged from 44:56 in 2014 to 60:40 in 2019 (tables 11–16). Adults averaged 73±12 percent of known-age captures per year (range 59–94 percent), and juveniles averaged 27±12 percent (range 6–41 percent).

A mean of 389±140 adults (effort-corrected) were captured per year. During 4 of 6 years, the adult capture rate was similar to the 6-year mean (within 1 standard deviation). However, in 2014, the adult capture rate was 52 percent greater than the 6-year mean (593 effort-corrected captures, driven primarily by one period when a large number of birds were captured during a truncated netting day). In 2017, the adult capture rate was 60 percent less than the 6-year mean (157 effort-corrected captures).

A mean of 153±96 juveniles (effort-corrected) were captured per year. Like adults, the juvenile capture rate was within 1 standard deviation of the 6-year mean during 4 of the 6 years. In 2017, the juvenile capture rate was 65 percent lower than the 6-year mean (54 effort-corrected captures) and in 2019, the juvenile capture rate was 101 percent greater than the 6-year mean (308 effort-corrected captures). Juveniles of 26 species were captured between 2014 and 2020 (17±5 species per year). The six species with the most juveniles captured (Bushtit, House Finch, Anna's Hummingbird, Song Sparrow, Common Yellowthroat, and Orange-crowned Warbler, in descending order of abundance) comprised 72 percent of the total number of juvenile captures between 2014 and 2020. The species that contributed the most to juvenile captures each year were House Finch in 2014, 2017, and 2018, Bushtit in 2015 and 2020, and Common Yellowthroat in 2019.

Population Trends

Between 2012 and 2019 (years with no missed banding periods), the age structure of captures varied by year and by species for the five breeding species selected for population trend analyses (fig. 5); however, we noticed some patterns among species. Adults were captured more frequently than juveniles for some species: more adults than juveniles were captured during most years for Least Bell's Vireos (fig. 5*A*) and Common Yellowthroats (fig. 5*E*), and during all years for Orange-crowned Warblers (fig. 5*D*). We also saw patterns among years. In 2019, more juveniles than adults were captured for all species except Orange-crowned Warbler. In

2014 and 2018, more adults than juveniles were captured for all five species, and in 2017, more adults than juveniles were captured for all species except Common Yellowthroat. In 2014, we captured no juvenile Least Bell's Vireos or Song Sparrows, only one juvenile Orange-crowned Warbler and Common Yellowthroat, and only six juvenile Bushtits the entire MAPS season.

From 2012 to 2019, local population size, as measured by the effort-corrected number of adult captures, increased for Least Bell's Vireo (Pearson's r=0.69, P=0.09) and decreased for Bushtit (Pearson's r=-0.90, P=0.01), Common Yellowthroats (Pearson's r=-0.80, P=0.03), and Song Sparrows (Pearson's r=-0.84, P=0.02; fig. 6). Orange-crowned Warblers (Pearson's r=-0.58, P=0.17) had a near-significant negative population trend. All species except Least Bell's Vireo exhibited a sharp decrease in captures in 2017.

Climate Variables

All measures of precipitation (bio-year, early winter, and late winter) were highly variable during the operation of the station (figs. 7A-C). Nevertheless, precipitation during the bio-year and during early winter was significantly greater during station operation than the historic mean (bio-year: Wilcoxon signed-rank test, W=74, P=0.11; early winter: Wilcoxon signed-rank test, W=43, P=0.01). Late winter precipitation did not deviate from the historical mean (two-sample t-test, t=0.46, P=0.65, df=24.9). Overall, precipitation was highest in 2020 and 2017 and lowest in 2014 and 2018.

Although measures of temperature varied little during the operation of the station, mean bio-year temperature (Wilcoxon signed-rank test, W=44, P=0.002), mean temperature during the breeding season (March 1 through June 30; two-sample t-test, t=-2.43, P=0.02, df=26), and mean maximum daily temperature in August (two-sample t-test, t=-1.78, P=0.09, df=25.8) were significantly higher than the historical means (figs. 7*D*–*F*). Mean minimum daily temperature in December did not deviate from the historical mean (two-sample t-test, t=-0.62, P=0.54, df=25.5; fig. 7G). Generally, the highest mean temperatures occurred between 2014 and 2019 and were significantly higher than historic averages (for all temperature variables except mean minimum daily temperature in December). The lowest mean temperatures were registered in 2011 and 2012 for all temperature variables and were higher than historic averages except for the mean minimum daily temperature in December.

Table 11. Sex and age of year-unique bird captures at Naval Outlying Landing Field, Imperial Beach, California, 2014.

[Species: See appendix 1 (tables 1.1, 1.2) for common and scientific names. Age: HY, hatching year; AHY, after hatching year; SY, second year; ASY, after second year; ATY, after third year; I, indeterminant]

	Species		2	1	∞	23	1	2	8	1	8	4	1	7	1	1	54	S	7	36	1	62	6	11	51	2	œ	1	47	1	23	1
	LotoF		0		0	0	0	0	0	0	0	0	-	7	-		54	v	က	36	-	v	9	9	51	7	∞	1	7	0	0	0
		_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0
sex		ASY	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			1	0	0	_	_	9	_	4	0		0	0	0
Unknown sex	Age	SY /	0		0	0	0	0	0	0	0	0	0	0	0	0	3			15	0	_	2	0	13	0	0	0	0	0	0	0
Π	4	AHY :	0	0	0	0	0	0	0	0	0	0	-	7	-	_	51	3	_	20		0	2	2	32	_	4	1	0	0	0	0
		HY A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	1	0	0	0	0	0		0	0	0
			2	0	3	14	0		2	0	7	8	0	0	0	0	0	0	7	0	0	32	1	1	0	0	0	0	15	1	15	
	Total	١.																														
		Y ATY	0	0	0	0	0	0	0	0	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Male	as a	ASY		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	11			0	0	0	0	11	0	10	0
	Age	/ SY	0	0	0	0	0	0	0	0	1	-	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	æ	0	5	
		AHY		0	3	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	41	0	0	0	0	0	0	1		0	0
		¥	0	0	0	13	0	0		0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0
	Total		0	0	S	6	1		1	1	1	1	0	0	0	0	0	0	2	0	0	25	2	4	0	0	0	0	30	0	00	0
		-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7	0	0	0	0	0	0	0	0	0	0
		ATY	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Female	Age	ASY	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3		2	0	0	0	0	14	0		0
	A	SV	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3		0	0	0	0	0	10	0	7	0
		АНУ	0	0	3	5	П	_	-	_	0	_	0	0	0	0	0	0	2	0	0	13	0	7	0	0	0	0	9	0	0	0
		¥	0	0	2	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0	0	0
'	Species		СОНА	COGD	BCHU	ANHU	CAHU	RUHU	ALHU	USHU	NUWO	DOWO	WEWP	WIFL	HAFL	GRFL	PSFL	ATFL	LBVI	WAVI	BTMJ	BUSH	BEWR	HOWR	SWTH	HETH	WREN	CATH	OCWA	NAWA	YEWA	TOWA

Table 11. Sex and age of year-unique bird captures at Naval Outlying Landing Field, Imperial Beach, California, 2014.—Continued

[Species: See appendix 1 (tables 1.1, 1.2) for common and scientific names. Age: HY, hatching year; AHY, after hatching year; SY, second year; ASY, after second year; ATY, after third year; I, indeterminant]

			Female						Mŝ	Male					Unknown sex	vn sex			
		4	Age			- -			Age			Loto			Age			- T- 1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-2-1-	Species
₹	AHY	SV	ASY	ATY	_	1019	¥	АНУ	SY	ASY	ATY	1013	¥	АНУ	SY	ASY	_	IOI	
0	0	2	0	0	0	7	0	0	0	0	0	0	0	0	0	0	0	0	2
0	3	æ	0	0	0	9	0	ю		0	0	4	0	0	0	0	0	0	10
0	3	1	6	0	0	13		2	9	∞	0	17	0	0	0	1	0	1	31
0	22	28	22	0	0	72	0	2	10	6	0	21	0	_	0	2	3	9	66
0	3	-	33	0	0	7	0	0	1	1	0	7	0	0	0	0	0	0	6
0	0	-	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1
0	0	2	0	0	0	7	0	0	0	33	0	8	0	0	0	0	0	0	S
0	0	0	1	0	0	1	0	1	0	0	0	1	0	2	0	0	0	7	4
0	11	0	9	0	0	17	0	9	т	9	0	15	0	17	3	П	_	22	54
0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	4	4
0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	2	0	0	4	4
0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1
0	0	П	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1
0	9	0	0	0	0	9	3	18	0	0	0	21	30	0	0	0	0	30	57
1	0	1	0	0	0	2	0	0	0	2	0	2	0	0	0	0	0	0	4
11	84	61	63	1	2	222	19	55	38	99	3	181	34	157	42	21	9	260	663

Table 12. Sex and age of year-unique bird captures at Naval Outlying Landing Field, Imperial Beach, California, 2015.

[Species: See appendix 1 (tables 1.1, 1.2) for common and scientific names. Age: HY, hatching year; AHY, after hatching year; SY, second year; ASY, after second year; ATY, after third year; I, indeterminant]

Total Age Age Total Age Total Age Total Age Total Age Total Age Asy Asy Total Age Asy Asy<
HY AHY SY ASY 11 Dot PM AHY SY ASY 1 Dot
0 1 0
0 0
1
12 3 0
0 0
0 1 0
0 0
1 0
2 1 0 0 1 4 2 0
0 0 0 0 0 0 1 0 0 0 1 0
0 0
0 0 0 0 1 0 0 1 0 0 1 0
0 0 0 0 24 0 0 24 0 24 0 24 0 0 24 0 0 24 0 0 24 0 0 24 0 0 4 4 0 0 4 4 0 0 0 4 4 0 0 0 0 4 4 0
0 0 0 0 0 4 0 1 0 0 4 4 0 1 0 0 1 0 4 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 11 0 8 0 14 0 0 0 0 14 1 0
0 1 0 0 1 2 2 0 1 0 5 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 1 0
0 0 0 0 15 2 0 17 0 11 0 8 0 19 14 0 0 0 14 0 0 0 0 0 0 0 0 14 0 0 0 14 0
0 11 0 8 0 19 14 0 0 0 14 0 14 0 14 14 0 0 14 0 14 0 0 0 14 0 14 0 <t< td=""></t<>
0 0 0 0 6 3 0 0 9 1 0
1 0 0 1 5 0 0 1 7 0
0 0 0 0 2 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 14 1 2 14 1 14 1 14 1 14 1 14 1 </td
0 0 0 0 0 7 3 0 4 0 14 1 1 23 0 34 8 4 1 2 0 15 0 1 3 3 0 7 0 0 1 0 0 1 0 0 1 0
1 9 1 23 0 34 8 4 1 2 0 15 0 1 3 3 0 7 0 0 0 0 1 0 0 1 0 0 1 0
0 1 3 3 0 7 0 0 1 0 0 1 0 0 1 0 0 1 0
0 2 0 3 0 5 0 9 0 0 0 9 0 0 1 0
0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 2 0
0 0 2 0 2 0 0 0 0 0 0 0 0 0 7 1 0 8 0 16 4 0 0 0 0 4 0
7 1 0 8 0 16 4 0 0 0 0 4

Table 12. Sex and age of year-unique bird captures at Naval Outlying Landing Field, Imperial Beach, California, 2015.—Continued

[Species: See appendix 1 (tables 1.1, 1.2) for common and scientific names. Age: HY, hatching year; AHY, after hatching year; SY, second year; ASY, after second year; ATY, after third year; I, indeterminant]

			Female	ale					Male	ıle					Unknown sex	wn sex			
Species			Age			F			Age			1000			Age			-	Species
	¥	АНУ	SY	ASY	ATY		¥	AHY	λS	ASY	ATY	101g	¥	АНУ	λS	ASY	_	- 10tal	
YBCH	0	0	0	2	0	2	0	0	0	3	0	3	0	0	0	0	0	0	w
SPTO	0	0	0	0	0	0	0	_	0	2	0	8	0	0	0	0	0	0	8
CALT	0	0	0	П	0	1	0	0	0	0	0	0	0	1	0	0	0	1	7
SOSP	0	-	0	8	0	6		5	0	5	0	11	24	4	0	0	1	29	49
LISP	0	0	0	0	0	0	0	0	0	0	0	0	0	12	0	0	0	12	12
WCSP	0	0	0	0	0	0	0	0	0	0	0	0	0	4	5	0	0	6	6
GCSP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	7	7
BHGR	0	0	0	П	0	1	0	0	0	2	0	7	0	0	0	0	0	0	8
HOFI	0	4	0	0	0	4	2	13	0	0	0	18	26	1	0	0	0	27	49
LEGO	0	0	0	0	0	0	0	0	2	П	0	8	2	0	0	0	0	7	S
Total	25	54	28	47	1	155	31	09	15	72	1	179	86	96	13	6	2	218	552

Table 13. Sex and age of year-unique bird captures at Naval Outlying Landing Field, Imperial Beach, California, 2017.

[Species: See appendix 1 (tables 1.1, 1.2) for common and scientific names. Age: HY, hatching year; AHY, after hatching year; ASY, after second year; ATY, after third year; I, indeterminant]

	Species		1	1	4	1	11	1	2	∞	12	S	1	14	4	12	40	7	11	4	1	15	1	18	1	∞	1	1	2	13	v.	9
	T-401	10191	0	0	8	1	6	0	1	4	7	ဇ	0	3	8	11	15	4	8	2	0	15	0	4	0	1	0	0	0	7	1	2
		_	0	0	2	0	9	0	0	0	0	2	0	0	0	0	9	1	2	0	0	8	0	0	0	0	0	0	0	2	0	0
Unknown sex	9	ASY	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	-	0	0	0	0	0	0	0	0	0	0
'n	Age	АНУ	0	0	-	1	7	0	0	0	4	1	0	1	0	11	4	1	0	7	0	9	0	0	0	0	0	0	0	0	-	1
		¥	0	0	0	0	П	0	1	4	3	0	0	2	С	0	5	1	1	0	0	0	0	4	0	1	0	0	0	S	0	1
	F	I OIGI	1	0	1	0	7	1	1	0	2	7	0	∞	1	1	9	1	9	2	0	0	1	9	1	3	0	1	7	9	က	က
Male		ASY	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	П	0	0	0	0	0	1	0	0
2	Age	АНУ	-	0	_	0	-	1	1	0	2	2	0	7	-	1	9	0	9	2	0	0	0	S	1	3	0	1	7	4	3	3
		¥	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0
	-40	101al	0	1	0	0	0	0	0	4	3	0	1	3	0	0	19	2	7	0	1	0	0	∞	0	4	1	0	0	0	1	1
		_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Female		ATY	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Age	ASY	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		AHY	0		0	0	0	0	0	3	3	0	1	3	0	0	13	1	2	0	1	0	0	8	0	4	1	0	0	0	1	1
	45	H	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Species		SSHA	МОДО	COGD	GRRO	ANHU	RUHU	NUWO	DOWO	PSFL	ATFL	WEKI	LBVI	HUVI	WAVI	BUSH	BEWR	HOWR	SWTH	HETH	WREN	САТН	OCWA	NAWA	YEWA	AUWA	HEWA	PAWA	COYE	WIWA	YBCH

[Species: See appendix 1 (tables 1.1, 1.2) for common and scientific names. Age: HY, hatching year; AHY, after hatching year; ASY, after second year; ATY, after third year; I, indeterminant] Table 13. Sex and age of year-unique bird captures at Naval Outlying Landing Field, Imperial Beach, California, 2017.—Continued

			Fen	Female				Male	le			ā	Unknown sex	J		
Species			Age			100		Age		- 40		Α̈́	Age		Total	Species
	H	АНУ	ASY	ATY	_	lotai	Η	АНУ	ASY	lotal	¥	АНУ	ASY	_	lotal	
GTTO	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	1
CALT	0		0	0		2	0	_	0	-	_	0	0	0	1	4
SOSP	0	∞	0	0	0	∞	0	5	3	∞	6	-	0	0	10	26
LISP	0	0	0	0	0	0	0	0	0	0	0	-	0	П	2	2
WCSP	0	0	0	0	0	0	0	0	0	0	0	4	0	0	4	4
HOFI	0	3	0	0	0	3	7	8	-	16	9	0	0	0	9	25
LEGO	0	2	0	0	0	7	0	2	0	7	-	0	0	0	1	w
Total	က	57	3	1	2	99	10	71	∞	68	49	42	2	30	123	278

Table 14. Sex and age of year-unique bird captures at Naval Outlying Landing Field, Imperial Beach, California, 2018.

[Species: See appendix 1 (tables 1.1, 1.2) for common and scientific names. Age: HY, hatching year; AHY, after hatching year; SY, second year; ASY, after second year; ATY, after third year; I, indeterminant; TY, third year]

	Species		ю	1	7	26	1	13	∞	1	S	10	1	22	7	6	1	6	2	36	1	39	6	16	1	w	1	w	1	43	2
	- L	lotal	2	-	0	1	0	1	0	1	0	0	1	20	2	6	0	2	0	36	1	6	9	9	1	w	1	S	1	11	0
		_	0	0	0	0	0	0	0	0	0	0	0	7	0	0	0	0	0	0	0	7	0	7	0	0	0	0	0	-	0
Unknown sex		ASY	0	0	0	0	0	0	0	0	0	0	0	2	0	3	0	0	0	2	0		2	0	0	5	0	0	0	3	0
Unkno	Age	λS	0	-	0	0	0	0	0	0	0	0	0	4	0	4	0	_	0	7	0	0	0	0	0	0	0	0	0	0	0
		АНУ	7	0	0	0	0	0	0	0	0	0	П	10	-	_	0	0	0	27	_	_	33	4		0	_	_	_	3	0
		¥	0	0	0	_	0	_	0	_	0	0	0	7		_	0	_	0	0	0	S	-	0	0	0	0	4	0	4	0
	Total	lotal	0	0	1	16	1	9	4	0	2	∞	0	0	0	0	1	w	1	0	0	17	1	4	0	0	0	0	0	17	7
		ATY	0	0	0	0	0	0	0	0	0	П	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		≥	0	0	0	0	0	0	0	0	0	П	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Male	Age	ASY	0	0	0	0	0	0	0	0	0	_	0	0	0	0	0	ж	1	0	0	æ	0	_	0	0	0	0	0	11	1
	À	SY	0	0	0	0	0	0	0	0	1	П	0	0	0	0	0	_	0	0	0	0	0	_	0	0	0	0	0	3	1
		АНУ	0	0	1	_	П	9	0	0	0	7	0	0	0	0		0	0	0	0	11	_	7	0	0	0	0	0	2	0
		¥	0	0	0	15	0	0	4	0	1	7	0	0	0	0	0	_	0	0	0	æ	0	0	0	0	0	0	0	-	0
	100	- Iotal	1	0	1	6	0	9	4	0	က	7	0	7	0	0	0	7	1	0	0	13	7	9	0	0	0	0	0	15	0
		_	0	0	0	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		ATY	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Female	Age	ASY	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	2	1	2	0	0	0	0	0	∞	0
	Ā	λS	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	4	0
		AHY	-	0	0	9	0	9	4	0		0	0	7	0	0	0	0	1	0	0	6	_	4	0	0	0	0	0	3	0
		¥	0	0	1	2	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0
	Species		COGD	GRRO	BCHU	ANHU	COHU	RUHU	ALHU	USHU	NUWO	DOWO	WEWP	PSFL	ВГРН	ATFL	WEKI	LBVI	HUVI	WAVI	BTMJ	BUSH	BEWR	HOWR	BGGN	SWTH	HETH	WREN	САТН	OCWA	NAWA

Table 14. Sex and age of year-unique bird captures at Naval Outlying Landing Field, Imperial Beach, California, 2018.—Continued

[Species: See appendix 1 (tables 1.1, 1.2) for common and scientific names. Age: HY, hatching year; AHY, after hatching year; SY, second year; ASY, after second year; ATY, after third year; I, indeterminant; TY, third year]

	Species		25	9	4	1	1	2	16	31	1	7	18	4	œ	7	1	78	1	1	477
	1040	oral	0	0	0	0	1	0	4	∞	0	0	9	4	∞	0	0	31	0	0	184
		_	0	0	0	0	0	0	-	1	0	0	-	0	0	0	0	0	0	0	10
vn sex		ASY	0	0	0	0	П	0	0	9	0	0	0	0	3	0	0	0	0	0	28
Unknown sex	Age	SY	0	0	0	0	0	0	0	0	0	0	0	0	П	0	0	0	0	0	18
		ΑHΛ	0	0	0	0	0	0	0	-	0	0	2	4	4	0	0	0	0	0	69
		¥	0	0	0	0	0	0	Э	0	0	0	3	0	0	0	0	31	0	0	59
		101al	14	-	-	1	0	0	6	16	1	-	9	0	0	-	0	44	1	0	182
		ATY	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
		≥	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
Male	9	ASY	10	-	0	0	0	0	5	12	0	0	0	0	0	П	0	0	0	0	20
	Age	SY	4	0	_	1	0	0	7	3	-	1	7	0	0	0	0	0	П	0	24
		АНУ	0	0	0	0	0	0	-	-	0	0	4	0	0	0	0	35	0	0	69
		¥	0	0	0	0	0	0	_	0	0	0	0	0	0	0	0	6	0	0	37
	100	101a	11	w	3	0	0	7	8	7	0		9	0	0		П	8	0	1	111
		_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
		ΑTΥ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
Female	<u>e</u>	ASY	4	-	_	0	0	2	-	9	0	0	3	0	0	0	0	0	0	1	33
	Age	SY	9	3	2	0	0	0	2	-	0	0		0	0	0	-	0	0	0	23
		ΑHΛ		-	0	0	0	0	0	0	0	1	2	0	0	1	0	c	0	0	47
		¥	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9
	Species		YEWA	AUWA	BTYW	BAWW	NOWA	MGWA	COYE	WIWA	YBCH	CALT	SOSP	LISP	WCSP	BLGR	HOOR	HOFI	LEGO	AMGO	Total

Table 15. Sex and age of year-unique bird captures at Naval Outlying Landing Field, Imperial Beach, California, 2019.

[Species: See appendix 1 (tables 1.1, 1.2) for common and scientific names. Age: HY, hatching year; AHY, after hatching year; SY, second year; ASY, after second year; TY, third year; ATY, after third year; I, indeterminant]

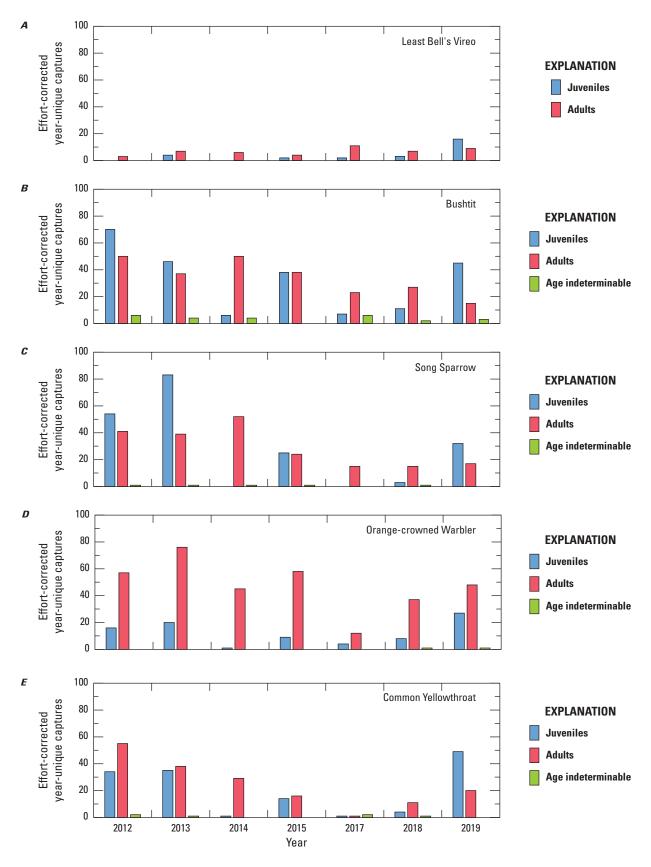
	Species		2	3	w	20	1	2	7	2	9	7	12	3	11	56	8	16	1	64	31	38	1	2	9		24	1	74		19
	- T	– lotal	1	B	1		0		0	0	2	0	6	3	10	17	2	16	0	30	25	24	0	0	9	1	24	0	29	0	6
		-	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	2	-	0	0	0	0	0	0	_	0	0
Unknown Sex		ASY	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	-	0	0	0	2		4	0	0	0	0
Unkno	Age	λS	0	0	0	0	0	0	0	0	0	0	2	0	4	0	0	_	0	0	0	0	0	0	33	0	-	0	0	0	0
		АНУ	0	3	0	0	0	0	0	0	0	0	7	_	2	_	-	15	0	_	0	_	0	0	_	0	4	0	4	0	2
		₹	0	0	_		0		0	0	2	0	5	2	2	16		0	0	28	22	22	0	0	0	0	15	0	24	0	7
	- Toto	lotal	0	0	-	=	0	0	_	0	7	w	7	0	0	w	0	0	1	11	က	7	1	-	0	0	0	0	23		9
		ASY	0	0	0	0	0	0	0	0	0	_	0	0	0	3	0	0	0	_	2	2	0	0	0	0	0	0	13	0	8
Male		λS	0	0	0	0	0	0	0	0	0	2	0	0	0		0	0	0	-	0	0	0	0	0	0	0	0	3	_	2
_	Age	АНУ	0	0	1	7	0	0	0	0	0	0	7	0	0	_	0	0	_	5	0	5	_	0	0	0	0	0	4	0	0
		` H	0	0	0	6	0	0		0	2	2	0	0	0	0	0	0	0	4	-	0	0		0	0	0	0	3	0	-
		lotal	_	0	က	∞	1	-	9	2	7	7	1	0	1	4	1	0	0	23	က	7	0		0	0	0	1	22	0	4
	•	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0
		ATY	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		TV A	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Female	Age	ASY 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_		_	0	0	0	0	0	0	5	0	
	A	SY A	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	∞	0	2
			1	0	1	3	1	0	5	_	0	0	1	0	1	2	0	0	0	5	1	9	0	0	0	0	0	1	~	0	
		Y AHY																													
	s	¥	0	0	2	5	0						0	0	0	0	1	0	0	15	1	0	0		0	0	0	0	1	0	0
	Species		МОДО	COGD	BCHU	ANHU	CAHU	RUHU	ALHU	USHU	NUWO	DOWO	PSFL	ВГРН	ATFL	LBVI	HUVI	WAVI	TRES	BUSH	BEWR	HOWR	BGGN	CAGN	SWTH	HETH	WREN	САТН	OCWA	NAWA	YEWA

Table 15. Sex and age of year-unique bird captures at Naval Outlying Landing Field, Imperial Beach, California, 2019.—Continued

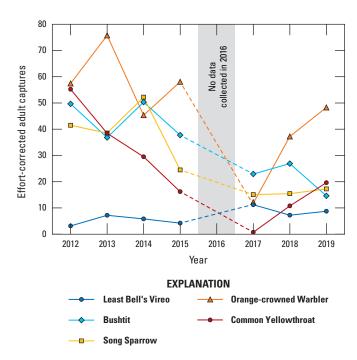
[Species: See appendix 1 (tables 1.1, 1.2) for common and scientific names. Age: HY, hatching year; AHY, after hatching year; SY, second year; ASY, after second year; TY, third year; ATY, after third year; I, indeterminant]

ASY 1 0 0 6 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0
0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 2 0 0
0 0
0 2

Table 16. Sex and age of year-unique bird captures at Naval Outlying Landing Field, Imperial Beach, California, 2020.


[Species: See appendix 1 (tables 1.1, 1.2) for common and scientific names. Age: HY, hatching year; AHY, after hatching year; SY, second year; ASY, after second year; TY, third year; ATY, after third year; I, indeterminant]

	Species		9	23	4	7	11	3	6	2	24	4	18	2	w	3	76	7	42	7	4	10	1	64	25	1	7	3	24	1	34
	- t-0	lotal	0	0	0	1	0	-	8	7	19	4	7	1	w	0	30	w	14	0	4	10	0	25	က	0	0	0	4	0	9
		_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7	0	0	0	0	0	0	0	0	0	0	0	0	0	1
n sex		ASY	0	0	0	0	0	0	0	0	\mathcal{C}	0	_	0	2	0		0	0	0	3	2	0	2	0	0	0	0	0	0	3
Unknown sex	Age	λS	0	0	0	0	0	0	0	0	5	2	_	0		0	3	-	0	0	0	0	0	0		0	0	0	0	0	2
		АНУ	0	0	0	0	0	0	0	7	9	7	7	0	2	0	0	_	7	0	-	8	0	3	0	0	0	0	0	0	0
		¥	0	0	0	_	0	_	8	0	5	0	33		0	0	24	ю	12	0	0	5	0	20	2	0	0	0	4	0	0
	1040	lotal	1	13	1	7	7	-	7	0	4	0	9	0	0	7	15	0	01	1	0	0	1	21	17	1	-	က	12	1	15
		_	0	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		ATY	0	0	0	0	0	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Male		ASY	0	0	0	0	0	0	0	0	2	0	2	0	0	0	ю	0	8	0	0	0	0	∞	∞	1		3	3	_	13
	Age	SY	0	0	0	0	0	0	0	0	0	0	4	0	0	0	4	0	-		0	0	0	10	6	0	0	0	5	0	0
		АНУ	-	4	_	2	0	0	0	0	2	0	0	0	0	2	ю	0	9	0	0	0		3	0	0	0	0	0	0	2
		¥	0	∞	0	0	7	0	2	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	4	0	0
	- Toto		w	10	က	4	4	-	4	0	1	0	w	_	0	1	25	7	18	1	0	0	0	18	w	0	-	0	∞	0	13
		≥	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
e e		ASY	0	0	0	0	0	0	0	0	_	0	7	0	0	0	П	0		0	0	0	0	4	8	0	0	0	4	0	5
Female	Age	SY	0	0	0	0	0	0	0	0	0	0	3	_	0	0	0	2	0	_	0	0	0	10	2	0		0	2	0	9
		АНУ	3	2	3	4	2	_	0	0	0	0	0	0	0		7	0	17	0	0	0	0	3	0	0	0	0	П	0	2
		Ŧ	2	∞	0	0	7	0	ς,	0	0	0	0	0	0	0	44	0	0	0	0	0	0		0	0	0	0	-	0	0
	Species	I	BCHU	ANHU	CAHU	RUHU	ALHU	NUWO	DOWO	WIFL	PSFL	ATFL	LBVI	HUVI	WAVI	TRES	BUSH	BEWR	HOWR	CAGN	SWTH	WREN	CATH	OCWA	YEWA	AUWA	BTYW	MGWA	COYE	HOWA	WIWA


Table 16. Sex and age of year-unique bird captures at Naval Outlying Landing Field, Imperial Beach, California, 2020.—Continued

[Species: See appendix 1 (tables 1.1, 1.2) for common and scientific names. Age: HY, hatching year; AHY, after hatching year; SY, second year; ASY, after second year; TY, third year; ATY, after third year; I, indeterminant]

	Species		22	4	1	1	40	w	26	1	1	6	15	12	2	577
	1040	lotal	2	0	1	1	19	w	56	0	0	1	œ	1	0	208
		_	0	0	0	0	0	0	0	0	0	0	0	0	0	e
vn sex		ASY	0	0	0	0	_	0	S	0	0	0	0	0	0	23
Unknown sex	Age	SY	0	0	0	0	0	П	9	0	0	0	0	0	0	23
		АНУ	-	0		_	0	4	15	0	0	0	0	0	0	46
		¥		0	0	0	18	0	0	0	0	1	~	1	0	113
	- 292	lotal	12	7	0	0	14	0	0	0	0	1	7	∞	1	182
		_	0	0	0	0	0	0	0	0	0	0	0	0	0	1
		ATY	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Male	<u>e</u>	ASY	-	0	0	0	3	0	0	0	0	0	0	4	0	99
	Age	SΥ	10	0	0	0	3	0	0	0	0	-	0	4	0	52
		АНУ	-	2	0	0	7	0	0	0	0	0	2	0	-	40
		¥	0	0	0	0	-	0	0	0	0	0	5	0	0	32
	-40	lotal	∞	7	0	0	7	0	0	-	1	7	0	m	1	187
		≥	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Female		ASY	-	0	0	0	2	0	0	0	-	0	0	-	-	27
Ferr	Age	SY	9	-	0	0	_	0	0	1	0	-	0	2	0	40
		АНУ	-		0	0	4	0	0	0	0	_	0	0	0	53
		¥	0	0	0	0	0	0	0	0	0	5	0	0	0	99
	Species		YBCH	CALT	CHSP	BRSP	SOSP	LISP	WCSP	BHGR	BLGR	HOOR	HOFI	LEGO	LAGO	Total

Figure 5. Annual variation in effort-corrected captures for five species that bred at Naval Outlying Landing Field, Imperial Beach, California, 2012–19. Capture rates are divided into adults, juveniles, and birds of indeterminable age.

Figure 6. Adult population size for five bird species at Naval Outlying Landing Field, Imperial Beach, California, 2012–19. See appendix 1 for common and scientific names.

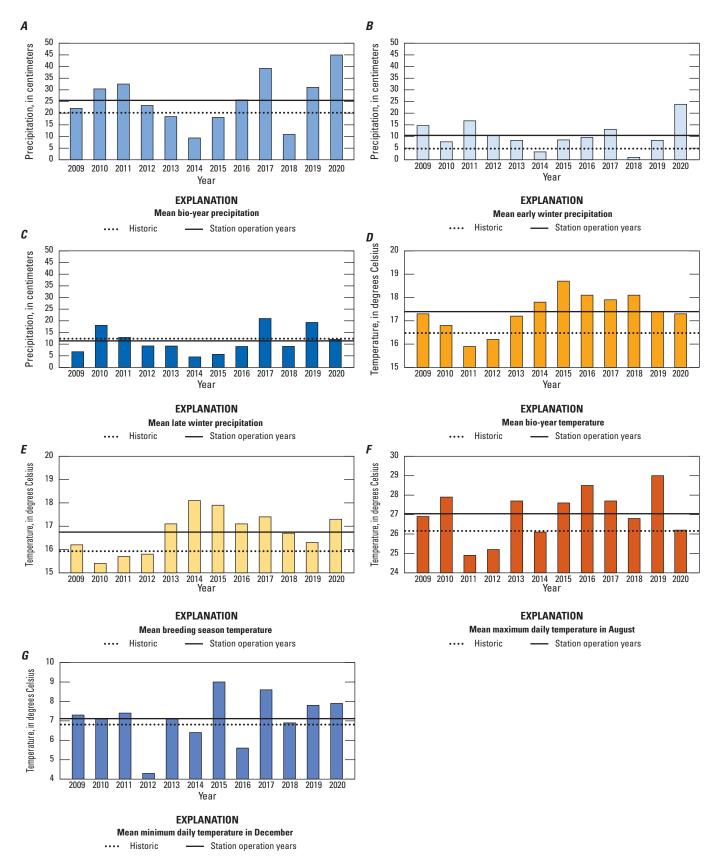


Figure 7. Annual variation in climate variables used in productivity and survival models. Bio-year was July 1_[year x-1] to June 30_[year x]. Early winter precipitation was October 1–December 31, and late winter precipitation was January 1–March 31. Climate variables were measured at Brown Field Municipal Airport (National Oceanic and Atmospheric Administration, 2022). Solid horizontal lines are means for the years the MAPS station was in operation (2009–20). Dotted lines are historical means (1945–46, 1954–61, and 1997–2008).

Annual Productivity

Annual productivity was high for most focal species in 2010 and 2019 and low in 2014 and 2018 (fig. 8). Song Sparrow had the highest overall productivity $(1.3\pm0.9 \text{ juveniles per adult; fig. } 8E)$, and Least Bell's Vireo had the lowest overall productivity (0.5±0.6 juveniles per adult; fig. 8A). Predictors of productivity were variable among species. Productivity for all species except Wrentit appeared to be driven by some measure of precipitation or temperature (tables 17, 18), although the constant model received strong support for all species except Song Sparrow and was the top model for Wrentit and Common Yellowthroat. The mean breeding season temperature was negatively associated with productivity of Least Bell's Vireo, House Wren, Song Sparrow, Orange-crowned Warbler, and Common Yellowthroat (figs. 8A, 8D-G), although it varied by less than 3 degrees Celsius (°C; fig. 7E). Precipitation positively affected productivity in Least Bell's Vireo and Bushtit. Productivity of Bushtits was positively associated with precipitation during the bio-year, with the highest Bushtit productivity occurring in 2020 following the bio-year with the most precipitation (45.0 centimeters, cm) and the lowest productivity for Bushtit occurring in 2014, concurrent with the bio-year with the least precipitation (9.4 cm; fig. 8B). Productivity of Least Bell's Vireos was positively associated with late winter precipitation, with high productivity in 2010 and 2019 following the second (19.3 cm in 2019) and third (18.0 cm in 2010) highest accumulations of late winter precipitation; and low productivity in 2014 following the lowest accumulation of late winter precipitation (4.5 cm; fig. 8A). Late winter precipitation also was among the top models of productivity for Common Yellowthroat, with patterns similar to those for Least Bell's Vireo; however, the relationship was not statistically significant (fig. 8G; 90-percent confidence intervals of the estimates crossed zero).

Annual Survival

With some exceptions, adult annual survival was generally high from 2011 to 2012 (all species except Least Bell's Vireo) and from 2018 to 2019 (all species except Bushtit and Orange-crowned Warbler; fig. 9). Otherwise, survival varied among years for all species, with no obvious annual patterns.

Climate factors that affected adult survival also varied among species (table 19). The only species significantly influenced by precipitation was Bushtit, which had lower annual survival with higher late winter precipitation (fig. 9B). Late winter precipitation was a significant predictor of Bushtit survival in both of the top-ranked models (table 20). Annual survival of five species was significantly influenced by temperature. In the top-ranked models, Bushtit survival was lower with lower mean minimum daily temperature in December and higher mean bio-year temperature (table 20). Top models showed that survival of Wrentit and Song Sparrow decreased with increasing mean maximum daily temperature in August (figs. 9C, 9E). Song Sparrow and Orange-crowned Warbler survival was lower with higher mean minimum daily temperature in December (figs. 9E, 9F), and House Wren survival was lower with higher mean bio-year temperature (fig. 9D; table 20).

Least Bell's Vireo annual survival was not influenced by climate variables; however, it was significantly affected by sex (the highest-ranked model included only sex; table 20, fig. 9A). Male Least Bell's Vireos had a higher annual survival rate (55 percent) than females (11 percent). Annual survival of Common Yellowthroats was not influenced by climate factors or by sex. The top model describing survival of adult Common Yellowthroat was the constant model. Although models containing sex, precipitation, and temperature variables were highly ranked, none of these variables significantly contributed to the models (table 20), indicating that sex and climate factors did not significantly affect survival (fig. 9G).

Predictors of Population Change

In multiple regression, changes in Bushtit, Song Sparrow, and Common Yellowthroat populations were influenced by annual survival and annual breeding productivity (table 21). The Bushtit population significantly increased with the combination of higher productivity during the previous year and higher annual survival. The Song Sparrow population increased with higher productivity during the previous year. The Common Yellowthroat population appeared to increase with increasing survival when in isolation (within the additive model, the survival parameter appears significant); however, the addition of productivity rendered the more complex model non-significant. Breeding productivity and annual survival did not appear to be strong predictors of population change for any of the other focal species.

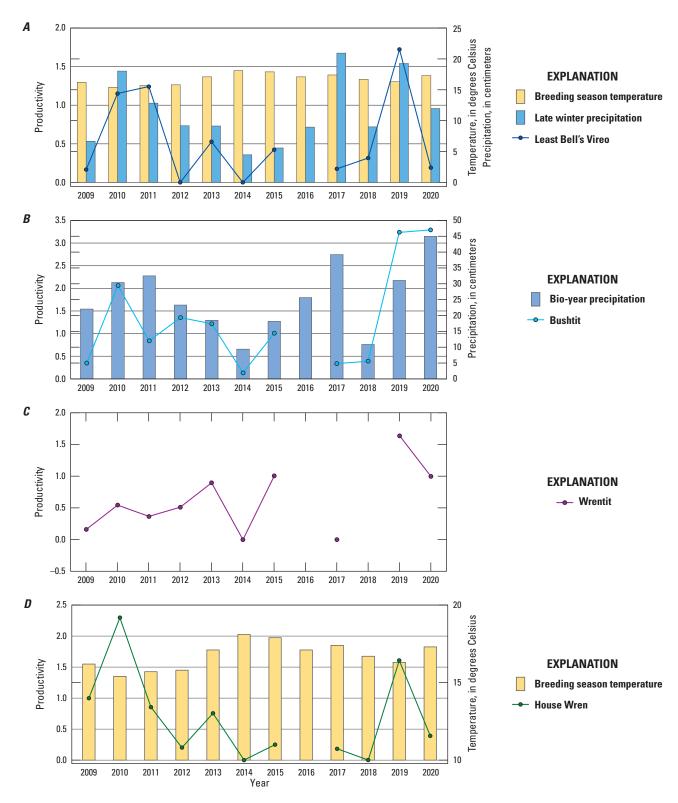


Figure 8. Annual productivity of seven bird species captured as a function of climate variables that influenced productivity according to top models. Climate variables were temperature (measured for the associated bio-year [July 1_(year x-1) to June 30_(year x)] and breeding season [March 1_(year x) to June 30_(year x)]), and precipitation (measured for bio-year [July 1_(year x-1) to June 30_(year x)], early winter [October 1_(year x-1) to December 31_(year x-1)], and late winter [January 1_(year x) to March 31_(year x)]) at Naval Outlying Landing Field, Imperial Beach, California, 2009–20. Productivity is calculated as the effort-corrected number of year-unique juveniles divided by the effort-corrected number of year-unique adults captured; this excludes the 2018 Wrentit productivity because unique-year captures were unusually low (5 individuals) and 80 percent (4/5) were juveniles, creating an artificially high productivity estimate for that year.

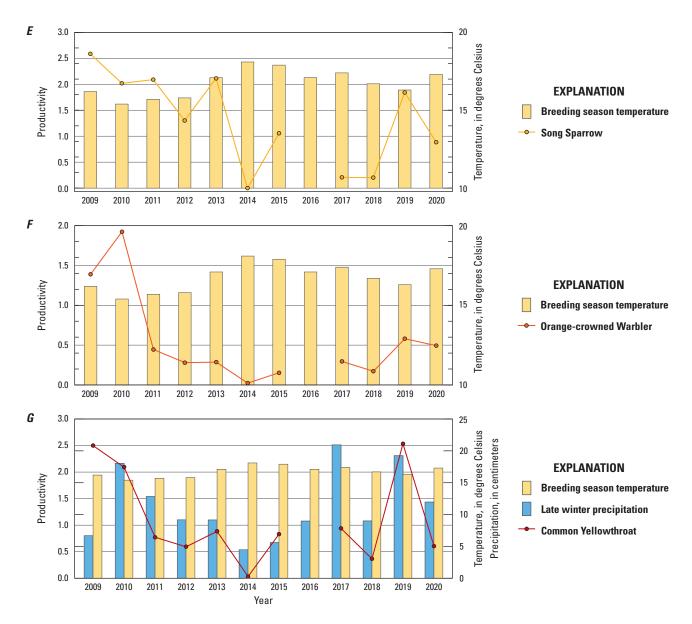


Figure 8.—Continued

Table 17. Multiple regression models for the effects of precipitation and temperature on breeding productivity of seven bird species captured at Naval Outlying Landing Field, Imperial Beach, California, 2009–20.

[Models are ranked from most supported to least supported based on Akaike's Information Criterion for small samples (AIC_c), the difference in AIC_c from this model and the top model (Δ AIC_c), and Akaike weights. The AIC_c is based on -2 x log_c likelihood and the number of parameters in the model. Models with Akaike weights less than 0.05 are not presented. Precipitation and mean annual temperature were compiled for the July $1_{(year\ x-1)}$ to June $30_{(year\ x)}$ bio-year ending in the Monitoring Avian Productivity and Survivorship (MAPS) season. Mean temperature during the breeding season was compiled for March $1_{(year\ x)}$ to June $30_{(year\ x)}$

Model	Number of parameters	AIC _c	∆ AIC _c	Weight	Log likelihood
	Least Bell'	s Vireo			
Late winter precipitation ¹	2	23.0	0.0	0.36	-6.8
Constant	1	23.5	0.5	0.28	-9.0
Breeding season temperature ¹	2	24.2	1.2	0.19	-7.4
Mean bio-year temperature	2	26.4	3.4	0.06	-8.5
Bio-year precipitation	2	26.5	3.5	0.06	-8.5
	Busht	tit			
Bio-year precipitation ¹	2	37.4	0.0	0.41	-14.0
Constant	1	38.2	0.8	0.27	-16.4
Late winter precipitation	2	39.7	2.4	0.13	-15.2
Early winter precipitation	2	40.2	2.8	0.10	-15.4
Breeding season temperature	2	41.6	4.2	0.05	-16.1
Mean bio-year temperature	2	41.7	4.3	0.05	-16.1
	Wren	tit			
Constant	1	20.1	0.0	0.61	-7.2
Late winter precipitation	2	24.0	3.9	0.09	-7.0
Bio-year precipitation	2	24.0	3.9	0.09	-7.0
Mean bio-year temperature	2	24.3	4.2	0.08	-7.1
Breeding season temperature	2	24.4	4.3	0.07	-7.2
Early winter precipitation	2	24.4	4.3	0.07	-7.2
	House V	Vren			
Breeding season temperature ¹	2	26.7	0.0	0.51	-8.6
Constant	1	28.6	2.0	0.19	-11.6
Late winter precipitation	2	29.0	2.3	0.16	-9.8
Mean bio-year temperature	2	30.9	4.2	0.06	-10.7
Bio-year precipitation	2	31.5	4.8	0.05	-11.0
	Song Spa	arrow			
Breeding season temperature ¹	2	31.0	0.0	0.55	-10.8
Mean bio-year temperature	2	33.2	2.2	0.18	-11.9
Constant	1	33.3	2.4	0.17	-13.9
	Orange-crown	ed Warbler			
Breeding season temperature ¹	2	22.2	0.0	0.54	-6.4
Constant	1	23.8	1.6	0.24	-9.1
Late winter precipitation	2	26.5	4.2	0.06	-8.5
Mean bio-year temperature	2	26.6	4.4	0.06	-8.6
Bio-year precipitation	2	26.9	4.6	0.05	-8.7

Table 17. Multiple regression models for the effects of precipitation and temperature on breeding productivity of seven bird species captured at Naval Outlying Landing Field, Imperial Beach, California, 2009–20.—Continued

[Models are ranked from most supported to least supported based on Akaike's Information Criterion for small samples (AIC_c), the difference in AIC_c from this model and the top model (Δ AIC_c), and Akaike weights. The AIC_c is based on -2 x log_c likelihood and the number of parameters in the model. Models with Akaike weights less than 0.05 are not presented. Precipitation and mean annual temperature were compiled for the July $1_{(year\ x-1)}$ to June $30_{(year\ x)}$ bio-year ending in the Monitoring Avian Productivity and Survivorship (MAPS) season. Mean temperature during the breeding season was compiled for March $1_{(year\ x)}$ to June $30_{(year\ x)}$

Model	Number of parameters	AIC _c	∆ AIC _c	Weight	Log likelihood
	Common Yell	owthroat			
Constant	1	32.4	0.0	0.37	-13.5
Breeding season temperature ¹	2	33.1	0.7	0.26	-11.8
Late winter precipitation	2	34.0	1.6	0.17	-12.3
Bio-year precipitation	2	35.5	3.1	0.08	-13.0
Mean bio-year temperature	2	36.2	3.8	0.06	-13.4
Early winter precipitation	2	36.2	3.8	0.06	-13.4

¹All variables significantly contributed to the model (90-percent confidence interval for beta did not cross 0).

Table 18. Summary of climate covariates that significantly affected productivity of seven bird species captured at Naval Outlying Landing Field, Imperial Beach, California, 2009–20.

[. (dot), signifies no relationship; + (plus), indicates significant positive relationship; - (minus), indicates significant negative relationship]

Bird species	Bio-year precipitation	Early winter precipitation	Late winter precipitation	Breeding season temperature	Mean bio-year temperature
Least Bell's Vireo			+	_	
Bushtit	+	•	•	•	•
Wrentit	•	•		•	•
House Wren	•	•	•	_	•
Song Sparrow		•		-	
Orange-crowned Warbler	•	•		_	•
Common Yellowthroat	•	•	•	-	•

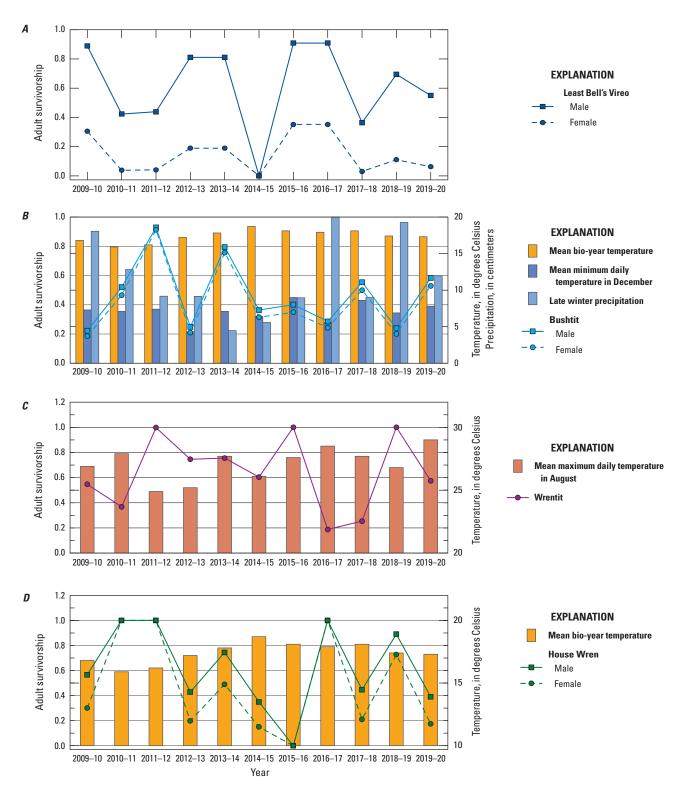


Figure 9. Adult annual survival (estimated by Program MARK) for seven bird species by sex and as a function of climate variables, according to top models. Climate variables were mean bio-year temperature (mean temperature for bio-year (year x-1 to year x)), mean maximum daily temperature in August (year x), mean minimum daily temperature in December (year x-1), bio-year precipitation (bio-year (year x-1 to year x)), early winter precipitation (October 1 (year x-1)) to December 31 (year x-1), and late winter precipitation (January 1 (year x) to March 31 (year x)) at Naval Outlying Landing Field, Imperial Beach, California, 2009–20. See appendix 1 for common and scientific names. Precipitation for migrant species (Least Bell's Vireo) compiled for the bio-year (year x-2 to year x-1).

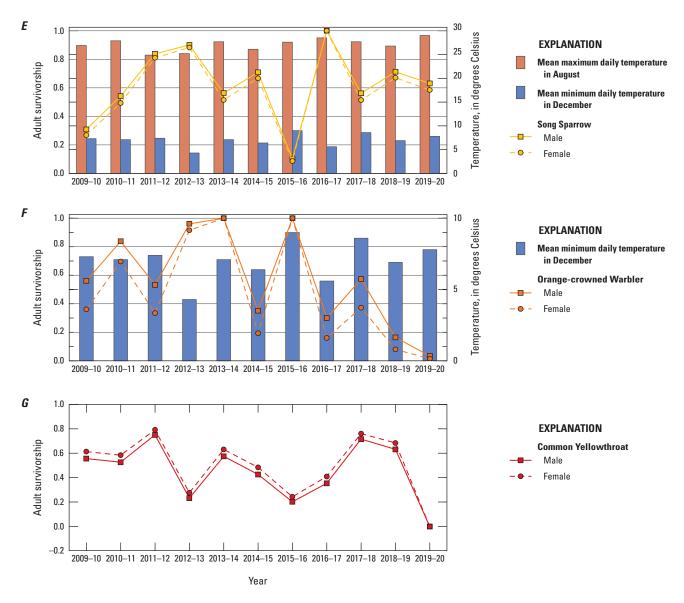


Figure 9.—Continued

Table 19. Summary of climate covariates that significantly influence survival of seven bird species captured at Naval Outlying Landing Field, Imperial Beach, California, 2009–20.

[. (dot), signifies no relationship; - (minus), indicates significant negative relationship; + (plus), indicates significant positive relationship]

Bird species	Bio-year precipitation	Early winter precipitation	Late winter precipitation	Mean maximum temperature in August	Mean minimum temperature in December	Mean bio-year temperature
Least Bell's Vireo			•	•		•
Bushtit	•		_	•	+	_
Wrentit	•	•	•	-	•	•
House Wren				•	•	_
Song Sparrow			•	-	-	•
Orange-crowned Warbler				•	_	•
Common Yellowthroat			•	•		•

Table 20. Logistic regression models for the effects of sex, precipitation, and temperature on survival for seven bird species captured at Naval Outlying Landing Field, Imperial Beach, California, 2009–20.

[Models are ranked from most supported to least supported based on Akaike's Information Criterion for small samples (AIC $_{\rm e}$), the difference in AIC $_{\rm e}$ from this model and the top model (Δ AIC $_{\rm e}$), and Akaike weights. The AIC $_{\rm e}$ is based on -2 x log $_{\rm e}$ likelihood and the number of parameters in the model. Models with Akaike weights less than 0.05 are not presented. Bio-year precipitation and mean annual temperature were compiled for the July $1_{(year\ x-1)}$ to June $30_{(year\ x)}$. Late winter precipitation was January $1_{(year\ x)}$ to March $31_{(year\ x)}$. Early winter precipitation was October $1_{(year\ x-1)}$ to December $31_{(year\ x-1)}$

Model	Number of parameters	AICc	∆ AIC _c	Weight	Deviance
Least	Bell's Vireo				
Sex (male) ¹	3	67.8	0.0	1.00	35.1
E	Bushtit				
Late winter precipitation + mean minimum daily temperature in December ¹	4	166,190.9	0.0	0.55	165,740.6
Late winter precipitation + mean bio-year temperature ¹	4	166,192.4	1.6	0.25	165,742.2
Late winter precipitation	3	166,194.6	3.8	0.08	165,746.4
Bio-year precipitation + early winter precipitation	4	166,195.0	4.1	0.07	165,744.7
V	Vrentit				
Mean maximum daily temperature in August ¹	3	65,373.5	0.0	0.62	65,248.4
Late winter precipitation	3	65,376.8	3.3	0.12	65,251.7
Bio-year precipitation	3	65,377.5	4.0	0.08	65,252.4
Mean minimum daily temperature in December	3	65,377.8	4.2	0.07	65,252.7
Constant	2	65,378.2	4.7	0.06	65,255.2
Ног	ıse Wren				
Mean bio-year temperature ¹	3	118.8	0.0	0.46	50.8
Constant	2	121.3	2.5	0.13	55.5
Late winter precipitation	3	121.6	2.9	0.11	53.6
Early winter precipitation	3	122.4	3.6	0.08	54.4
Bio-year precipitation	3	122.4	3.6	0.08	54.4
Sex	3	123.3	4.5	0.05	55.3
Mean maximum daily temperature in August	3	123.4	4.6	0.05	55.4
Mean minimum daily temperature in December	3	123.4	4.6	0.05	55.4
Song	g Sparrow				
Mean maximum daily temperature in August ¹	3	15,932.0	0.0	0.48	15,717.3
Mean minimum daily temperature in December ¹	3	15,932.4	0.4	0.38	15,717.7
Late winter precipitation	3	15,936.2	4.2	0.06	15,721.5
Orange-cr	owned Warbler				
Sex (male) ¹	13	11,717.1	0.0	0.44	11,450.8
Mean minimum daily temperature in December ¹	13	11,718.2	1.1	0.26	11,451.8
Late winter precipitation	13	11,720.6	3.5	0.08	11,454.2
Bio-year precipitation	13	11,720.8	3.7	0.07	11,454.5
Constant	13	11,720.6	3.5	0.08	11,454.2
	Yellowthroat				, , , , , , ,
Constant	2	119,243.8	0.0	0.23	119,032.9
Mean minimum daily temperature in December	3	119,244.5	0.6	0.16	119,031.5
Mean bio-year temperature	3	119,244.6	0.8	0.15	119,031.6
Early winter precipitation	3	119,245.4	1.6	0.10	119,032.5
Sex	3	119,245.6	1.8	0.09	119,032.6

Table 20. Logistic regression models for the effects of sex, precipitation, and temperature on survival for seven bird species captured at Naval Outlying Landing Field, Imperial Beach, California, 2009-20.—Continued

[Models are ranked from most supported to least supported based on Akaike's Information Criterion for small samples (AIC_a), the difference in AIC_a from this model and the top model (ΔAIC_c), and Akaike weights. The AIC_c is based on -2 x log_c likelihood and the number of parameters in the model. Models with Akaike weights less than 0.05 are not presented. Bio-year precipitation and mean annual temperature were compiled for the July 1_(year x-1) to June 30_(year x). Late winter precipitation was January 1_(year x) to March 31_(year x). Early winter precipitation was October 1_(year x-1) to December 31_(year x-1)]

Model	Number of parameters	AIC _c	$\Delta {\sf AIC_c}$	Weight	Deviance
Common	Yellowthroat—Continue	ed			
Mean maximum daily temperature in August	3	119,245.7	1.8	0.09	119,032.7
Bio-year precipitation	3	119,245.7	1.9	0.09	119,032.8
Late winter precipitation	3	119,245.8	2.0	0.08	119,032.9

¹All variables significantly contributed to the model (90-percent confidence interval for beta did not cross 0).

Table 21. Results of multiple regression analyses to predict population change (λ , the number of adults in year_{x+1}/the number of adults in year,) for seven bird species captured at Naval Outlying Landing Field, Imperial Beach, California, 2009–20.

[Productivity estimates were corrected for effort within and between years. Population estimates were corrected for effort following methods in DeSante and others (2015). Abbreviations: P, probability; R², coefficient of determination; R²P, probability associated with the coefficient of determination]

Parameter	Estimate	Standard error	P	R ²	R² P
	I	east Bell's Vireo			
Intercept	0.78	0.30	0.03		
Survival _[year x-1 to year x]	0.37	0.59	0.55	0.08	0.31
Productivity _[year x-1]	0.34	0.21	0.15		
		Bushtit			
Intercept	0.23	0.16	0.19		
Survival _[year x-1 to year x] ¹	¹ 1.00	10.32	10.02	¹ 0.77	10.002
Productivity _[year x-1] ¹	¹ 0.21	10.05	10.003		
		Wrentit			
Intercept	-0.40	0.99	0.70		
Survival _[year x-1 to year x]	1.80	1.39	0.24	-0.04	0.48
Productivity _[year x-1]	0.30	0.37	0.45		
		House Wren			
Intercept	-0.97	1.81	0.61		
Survival _[year x-1 to year x]	4.84	3.78	0.24	-0.03	0.46
Productivity _[year x-1]	-0.42	0.58	0.49		
		Song Sparrow			
Intercept	0.99	0.40	0.04		
Survival _[year x-1 to year x]	-0.59	0.65	0.39	10.59	10.02
Productivity _[year x-1] ¹	10.31	10.08	10.01		
	Oran	ge-crowned Warble	r		
Intercept	1.05	2.88	0.73		
Survival _[year x-1 to year x]	0.69	4.55	0.88	-0.23	0.86
Productivity _[year x-1]	-0.25	0.50	0.63		
	Co	mmon Yellowthroat			
Intercept	-10.81	5.67	0.10		
Survival _[year x-1 to year x] ¹	126.34	¹ 12.37	¹ 0.07	0.23 0	0.17
Productivity _[year x-1]	-0.16	0.21	0.47		

¹Significant parameter.

Discussion

Of the six most abundant species captured from 2014 to 2020 at NOLF, five were year-round residents and one was present only during migration (passage migrant). An additional nine species were abundant during at least 1 year, two that were year-round residents, two that were present only during winter, four that were migrants that bred at NOLF and wintered elsewhere, and one that was present only during migration. This range of resident and migrant species indicates that NOLF provides a diversity and abundance of resources necessary for breeding, wintering, and migration.

Similar to results from the prior data synthesis for 2009–13 (Lynn and others, 2015), seasonal capture rates for different species reflected differences in life history and breeding patterns. Peaks in capture rates for resident breeding species were driven by adult captures early in the breeding season and juvenile captures later in the season, representing fledging and juvenile dispersal events.

Starting in 2012, we began netting operations at the NOLF MAPS station in April, 1 month earlier than typical MAPS stations. This schedule allowed us to capture breeding data for species that begin breeding earlier than their northern and eastern conspecifics. Because of this expansion of the MAPS season, we documented juvenile Bushtits, California Thrashers, Song Sparrows, Orange-crowned Warblers, and Lesser Goldfinches (Spinus psaltria) in April in various years. Notably, no juvenile Song Sparrows were captured in April from 2012 to 2014 (per data found in this report and in Lynn and others [2015]). However, juvenile Song Sparrows were captured in April in 4 of the next 5 years (April 30, 2015, April 21, 2017, April 17, 2019, and April 24, 2020), indicating that the start of the Song Sparrow breeding season may be earlier than in the past. We did not see this pattern in any of the other species. The earlier commencement of Song Sparrow breeding at NOLF may be an effect of rising temperatures. Temperature was negatively associated with Song Sparrow productivity and survival, so the species may be shifting the start of its breeding season earlier, when the temperatures are cooler, resulting in increased productivity. Resident species, such as Song Sparrow, may have more phenotypic plasticity (defined as the ability of an organism to change in response to stimuli or inputs from the environment; West-Eberhard, 2008) and adjust timing based on local conditions, a strategy that is more challenging for migrant species. Lynn and others (2018) reported in a nearby study that multiple migratory species arrived later over time. The timing of bird migration evolved, allowing exploitation of the availability of food along the migration route; climate-caused shifts in phenology may adversely affect these species in the form of phenological mismatch (Cotton, 2003; Saino and others, 2011; Kellermann and van Riper, 2015).

Population trends were mixed for species captured at NOLF from 2012 to 2019. Least Bell's Vireos increased but Bushtit, Common Yellowthroat, and Song Sparrow populations decreased. Common Yellowthroat and Song Sparrow populations also have declined since 1995 at the

nearby De Luz MAPS station but were stable at the Santa Margarita MAPS station at Marine Corps Base Camp Pendleton (B. Kus, U.S. Geological Survey, unpub. data, 2021). Orange-crowned Warbler populations at NOLF were in decline until 2017 when they appeared to rebound. Populations of all species except Least Bell's Vireo decreased dramatically in 2017. Effort-correction may partially explain low capture rate in 2017 (survey days were all longer than intended with the extra hours added during early afternoon when bird activity was reduced). However, the absolute number of captures in 2017 also was unusually low, driven primarily by the near absence of juvenile captures, despite high precipitation and high productivity in other areas of San Diego County (B. Kus, U.S. Geological Survey, unpub. data, 2021). This dip in breeding productivity is likely associated with a dramatic change in riparian habitat caused by infestation of the Tijuana River Valley by Kuroshio shot hole borer beetles (Euwallacea kuroshio) in 2015 (Boland, 2016). Adult beetles burrow into tree trunks, lay their eggs, and cultivate a Fusarium fungus which feeds the developing larvae. The Fusarium fungus damages or kills the tree, causing branch loss and collapse of tree trunks (University of California Agriculture and Natural Resources, 2019), a situation that was noticed in the Tijuana River Valley in late 2015 and early 2016 (Boland, 2016). Shot hole borer surveys documented infestation of approximately 70 percent of willow trees in winter 2015–16, 24 percent of which were dead as a result of infestation. The NOLF MAPS station was not operated in 2016, but by 2017, large stands of willows at the MAPS station had died or had been blown down as a result of weakened trunks. The destruction of woody trees that formed the riparian canopy likely had a strong, negative effect on riparian-nesting birds and resulted in low breeding productivity and low occupancy that year. Although Least Bell's Vireo numbers declined in the highly infested riparian forests, they increased in neighboring riparian scrub that also was encompassed by the NOLF MAPS station (B. Kus, U.S. Geological Survey, unpub. data, 2022). Populations of Orange-crowned Warbler, Song Sparrow, and Common Yellowthroat began increasing again in 2018, concurrent with partial recovery of riparian vegetation in the Tijuana River Valley.

Productivity at NOLF was generally high in 2010 and 2019, following years with high precipitation, and low in 2014 and 2018, following years with low precipitation. Among the analyzed species in common with our nearby Santa Margarita MAPS station at Marine Corps Base Camp Pendleton (Least Bell's Vireo, Song Sparrow, Orange-crowned Warbler, and Common Yellowthroat), Song Sparrows had among the highest productivity and Least Bell's Vireos had among the lowest productivity at both stations during the same period (B. Kus, U.S. Geological Survey, unpub. data, 2021). Adult survival appeared to be driven by a variety of parameters which were inconsistent among species. Similar to the Santa Margarita MAPS station at Marine Corps Base Camp Pendleton, Least Bell's Vireo survival at NOLF was mostly influenced by sex: males had higher survival rates than females.

Drought has been found to negatively impact resource availability, primary productivity, and avian productivity and survival (Saracco and others, 2018). At NOLF, climate may have influenced productivity for all species except Wrentit and survival for all except Least Bell's Vireo and Common Yellowthroat. Productivity was positively associated with precipitation, and both productivity and survival were negatively associated with temperature in most cases. Cox and others (2013) found that increasing daily maximum temperatures led to an increase in the rate of nest predation by snakes and birds. Higher temperatures increase disease transmission as well; West Nile Virus has been found to overwinter in southern California, and when winter temperatures exceed 14.3 °C, the virus replicates and transmits to avian hosts (Reisen and others, 2014). Although it varied by less than 3 °C, mean temperature during the breeding season was among the variables in the top models for 71 percent (5/7) of species, with temperature increases associated with reduced productivity in all five species. Similarly, temperature was negatively associated with survival of 71 percent (5/7) of species. Bushtit survival, in contrast, was more complicated. In the two top well-supported models, Bushtit survival was positively associated with mean low temperature in December but negatively associated with mean annual temperature, indicating that Bushtit survival was best in generally cool years with warm winters. With long-term temperature increases predicted by climate change models (0.8–2.5 °C in San Diego from 1970 to 2050; Messner and others, 2011), demographics of these species are likely to change, and increases in predation and disease are to be expected.

Several studies have found that winter precipitation influences productivity (Nott and others, 2002; Bolger and others, 2005; DeSante and others, 2005; Zarzycki, 2017; B. Kus, U.S. Geological Survey, unpub. data, 2019, 2021). Increased precipitation causes a rise in plant (Birtwistle, 2015) and arthropod abundance (Bolger and others, 2005), which increases fledging success and adult survival (Bolger and others, 2005). Results indicate that the relationship may be further influenced by the timing of winter precipitation (for example, whether it occurs early or late in the season). Productivity of Least Bell's Vireo was higher with late winter precipitation, which is likely an effect of arthropod abundance boosting food availability during their breeding activities. Least Bell's Vireo productivity increased with higher precipitation and lower breeding season temperatures. Bushtit was the only species for which survival rate was influenced by precipitation, with Bushtit survival decreasing with increasing precipitation in late winter.

Population size of three of the seven bird species was associated with either breeding productivity the previous year (Bushtit and Song Sparrow) or adult survival from the previous year (Bushtit and Common Yellowthroat). Song Sparrow and Bushtit populations were positively associated with increased breeding productivity during the previous year. Bushtit and Common Yellowthroat populations increased with increasing annual survival.

Whereas productivity and survivorship are ultimately important in explaining the life history of any organism, our analyses have shown precipitation and temperature to be important primary predictors for productivity and survival of the riparian bird species that we analyzed in our study area. However, the constant model for productivity received strong support for almost all species and was the top model for Wrentit and for productivity and survival of Common Yellowthroat, indicating that other, unexamined variables also may have a significant effect on these population parameters. With data from additional years, we can continue to develop our understanding of the relationships between climate, arrival dates, onset of nesting, phenological mismatch (Cotton, 2003; Saino and others, 2011; Kellermann and van Riper, 2015), habitat alteration, and the resulting demographic consequences for avian species that winter at, breed at, and migrate through NOLF. Building on these data by continuing the MAPS program at NOLF will help to elucidate the interacting contributions of productivity, survivorship, and climate to observed patterns in bird populations.

References Cited

- Bartoń, K., 2020, MuMIn software package— Multi-model inference, version 1.43.17: CRAN, R Project, accessed February 16, 2022, at https://cran.r-project.org/web/packages/MuMIn/index.html.
- Birtwistle, A.N., 2015, Linking riparian vegetation to precipitation using NDVI at Yuma Proving Ground, Arizona: Fort Collins, Colo., Colorado State University, Ph.D. dissertation, 133 p.
- Boland, J.M., 2016, The impact of an invasive ambrosia beetle on the riparian habitats of the Tijuana River Valley, California: PeerJ, v. 4, no. e2141, accessed February 14, 2022, at https://doi.org/10.7717/peerj.2141.
- Bolger, D.T., Patten, M.A., and Bostock, D.C., 2005, Avian reproductive failure in response to an extreme climatic event: Oecologia, v. 142, p. 398–406. [Available at https://doi.org/10.1007/s00442-004-1734-9.]
- Burnham, K.P., and Anderson, D.R., 2002, Model selection and multimodel inference—A practical information-theoretic approach (2d ed.): New York, N.Y., Springer-Verlag, 488 p.
- California Department of Fish and Wildlife, 2021, Fully protected animals: California Department of Fish and Wildlife website, accessed November 15, 2021, at https://wildlife.ca.gov/Conservation/Fully-Protected#BIRDS.

- California Department of Fish and Wildlife, 2023, State and federally listed endangered and threatened animals of California: California Department of Fish and Wildlife website, accessed June 15, 2023, at http://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=109405&inline.
- Cotton, P.A., 2003, Avian migration phenology and global climate change: Proceedings of the National Academy of Sciences, v. 100, no. 21, p. 12219–12222. [Available at https://doi.org/10.1073/pnas.1930548100.]
- Cox, W.A., Thompson, F.R., III, and Reidy, J.L., 2013, The effects of temperature on nest predation by mammals, birds, and snakes: The Auk, v. 130, no. 4, p. 784–790. [Available at https://doi.org/10.1525/auk.2013.13033.]
- DeSante, D.F., Burton, K.M., Kaschube, D., Velez, P., Froehlich, D., and Albert, S., 2021, MAPS manual—2021 protocol—Instructions for the establishment and operation of constant-effort bird-banding stations as part of the Monitoring Avian Productivity and Survivorship (MAPS) Program: Petaluma, Calif., Institute for Bird Populations, 90 p., accessed December 13, 2021, at https://www.birdpop.org/docs/misc/MAPSManual21.pdf.
- DeSante, D.F., Kaschube, D.R., and Saracco, J.F., 2015, Vital rates of North American landbirds: The Institute for Bird Populations website, accessed November 2, 2021, at https://www.VitalRatesOfNorthAmericanLandbirds.org.
- DeSante, D.F., Nott, M.P., and Kaschube, D.R., 2005, Monitoring, modeling, and management—Why base avian management on vital rates and how should it be done? *in* Ralph, C.J., and Rich, T.D., eds., 2005, Bird conservation implementation and integration in the Americas—Proceedings of the Third International Partners in Flight Conference, March 20–24, 2002, Asilomar, Calif.: Albany, Calif., U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station, General Technical Report PSW-GTR-191, v. 2, p. 795–804.
- Kellermann, J.L., and van Riper, C., III, 2015, Detecting mismatches of bird migration stopover and tree phenology in response to changing climate: Oecologia, v. 178, p. 1227–1238. [Available at https://doi.org/10.1007/s00442-015-3293-7.]
- Laake, J.L., 2013, RMark—An R interface for analysis of capture-recapture data with MARK: Alaska Fish Science Center Processed Rep 2013-01, National Oceanic and Atmospheric Administration (NOAA), National Marine Fisheries Service, 25 p.

- Lynn, S., Madden, M.C., Houston, A., and Kus, B.E., 2015, Monitoring Avian Productivity and Survivorship (MAPS) 5-year summary, Naval Outlying Landing Field, Imperial Beach, southwestern San Diego County, California, 2009–13: U.S. Geological Survey Open-File Report 2015–1035, 58 p., accessed February 7, 2022, at https://doi.org/10.3133/ofr20151035.
- Lynn, S., Hall, K.A., Madden, M.C., and Kus, B.E., 2018, Monitoring breeding and migration of neotropical migratory birds at Naval Base Coronado, Remote Training Site, Warner Springs, San Diego County, California—5-year summary, 2013–17: U.S. Geological Survey Open-File Report 2018–1112, 98 p., accessed on December 13, 2021, at https://doi.org/10.3133/ofr20181112.
- Messner, S., Miranda, S.C., Young, E., and Hedge, N., 2011, Climate change-related impacts in the San Diego region by 2050: Climatic Change, v. 109, no. 1, p. 505–531, accessed March 8, 2023, at https://link.springer.com/article/10.1007/s10584-011-0316-1. [Available at https://doi.org/10.1007/s10584-011-0316-1.]
- National Oceanic and Atmospheric Administration, 2022, Climate data online—Dataset discovery:
 National Oceanic and Atmospheric Administration website, accessed February 1, 2022, at https://www.ncdc.noaa.gov/cdo-web/datasets#GSOM.
- Nott, M.P., DeSante, D.F., Siegel, R.B., and Pyle, P., 2002, Influences of the El Niño/Southern Oscillation and the North Atlantic Oscillation on avian productivity in forests of the Pacific Northwest of North America: Global Ecology and Biogeography, v. 11, no. 4, p. 333–342. [Available at https://doi.org/10.1046/j.1466-822X.2002.00296.x.]
- Pradel, R., 1996, Utilization of capture-mark-recapture for the study of recruitment and population growth rate: Biometrics, v. 52, no. 2, p. 703–709. [Available at https://doi.org/10.2307/2532908.]
- Pyle, P., 1997, Identification guide to North American birds, Part 1—Columbidae to Ploceidae: Bolinas, Calif., Slate Creek Press, 732 p.
- R Core Team, 2022, R—A language and environment for statistical computing: Vienna, Austria, R Foundation for Statistical Computing website. [Available at https://www.R-project.org/.]
- Reisen, W.K., Fang, Y., Lothrop, H.D., Martinez, V.M., Wilson, J., O'Connor, P., Carney, R., Cahoon-Young, B., Shafii, M., and Brault, A.C., 2014, Overwintering of West Nile virus in southern California: Journal of Medical Entomology, v. 43, no. 2, p. 344–355.

- Saino, N., Ambrosini, R., Rubolini, D., von Hardenberg, J., Provenzale, A., Hüppop, K., Hüppop, O., Lehikoinen, A., Lehikoinen, E., Rainio, K., Romano, M., and Sokolov, L., 2011, Climate warming, ecological mismatch at arrival and population decline in migratory birds: Proceedings of the Royal Society of B, Biological Sciences, v. 278, no. 1707, p. 835–842. [Available at https://doi.org/10.1098/rspb.2010.1778.]
- Saracco, J.F., Fettig, S.M., San Miguel, G.L., Mehlman, D.W., Thompson, B.E., and Albert, S.K., 2018, Avian demographic responses to drought and fire—A community-level perspective: Ecological Applications, v. 28, no. 7, p. 1773–1781. [Available at https://doi.org/10.1002/eap.1751.]
- Shuford, W.D., and Gardali, T.G., eds., 2008, California bird species of special concern—A ranked assessment of species, subspecies, and distinct populations of birds of immediate conservation concern in California—Studies of western birds, no.1: Sacramento, Calif., Western Field Ornithologists, California Department of Fish and Game, 65 p. [Available at https://www.contracosta.ca.gov/DocumentCenter/View/34166/Shuford-Gardali-2008-California-Bird-Species-of-Special-Concern-PDF.]
- University of California Agriculture and Natural Resources, 2019, Distribution of PSHB/FD and KSHB/FD in California: Environmental Systems Research Institute (ESRI), accessed August 7, 2019, at https://ucanr.maps.arcgis.com/apps/Viewer/index.html? appid=3446e311c5bd434eabae98937f085c80.
- U.S. Fish and Wildlife Service, 2020, General provisions— Revised list of migratory birds, final rule: Federal Register, v. 85, no. 74, p. 21282–21305.

- U.S. Fish and Wildlife Service, 2021, Birds of conservation concern 2021: Falls Church, Va.,
 U.S. Department of the Interior, U.S. Fish and Wildlife Service, accessed March 8, 2023, at https://fws.gov/media/birds-conservation-concern-2021pdf.
- U.S. Navy, 2013, Final integrated natural resources management plan, Naval Base Coronado, California:
 U.S. Navy website, accessed February 28, 2023, at https://downloads.regulations.gov/FWS-R8-ES-2019-0113-0005/attachment 35.pdf.
- West-Eberhard, M.J., 2008, Phenotypic plasticity, *in*Jørgensen, S.E., and Fath, B.D., eds., Encyclopedia
 of ecology: Academic Press, p. 2701–2707, accessed
 February 18, 2022, at https://www.sciencedirect.com/
 science/article/pii/B9780080454054008375. [Also available
 at https://doi.org/10.1016/B978-008045405-4.00837-5.]
- White, G.C., and Burnham, K.P., 1999, Program MARK—Survival estimation from populations of marked animals: Bird Study, v. 46, p. S120–S139. [Available at https://doi.org/10.1080/00063659909477239.]
- Zarzycki, M.C., 2017, Evidence for cross-seasonal effects— Insights from long-term data on Northern Pintail: Corvallis, Oreg., Oregon State University, Master's thesis, 44 p.

Appendix 1. Alpha Codes, Common Names, and Scientific Names for Species Captured and Observed, Naval Outlying Landing Field, Imperial Beach, California, 2014–20

Table 1.1. Species captured at Naval Outlying Landing Field, Imperial Beach, California, 2014–20.

[Special status: BCC-C, Bird of Conservation Concern, continental U.S.; BCC-R, Bird of Conservation Concern within the coastal California Bird Conservation Region; FE, listed as federally endangered; FT, listed as federally threatened (U.S. Fish and Wildlife Service, 2021); CA-SCC, listed as a species of special concern in California (Shuford and Gardali, 2008); CA-E, listed as endangered by the State of California; —, no data]

Alpha code	Common name	Scientific name	Special status
CGDO ¹	Common Ground Dove	Columbina passerina	_
$MODO^1$	Mourning Dove	Zenaida macroura	_
GRRO1	Greater Roadrunner	Geococcyx californianus	_
BCHU1	Black-chinned Hummingbird	Archilochus alexandri	_
ANHU1	Anna's Hummingbird	Calypte anna	_
COHU1	Costa's Hummingbird	Calypte costae	_
CAHU	Calliope Hummingbird	Selasphorus calliope	BCC-C
RUHU	Rufous Hummingbird	Selasphorus rufus	BCC-C
ALHU1	Allen's Hummingbird	Selasphorus sasin	BCC-C
USHU	Unidentified Selasphorus Hummingbird	Selasphorus (sp.)	_
SSHA	Sharp-shinned Hawk	Accipiter striatus	<u> </u>
COHA1	Cooper's Hawk	Accipiter cooperii	_
DOWO1	Downy Woodpecker	Dryobates pubescens	_
$NUWO^1$	Nuttall's Woodpecker	Dryobates nuttallii	BCC-R
WEWP	Western Wood-Pewee	Contopus sordidulus	_
WIFL	Willow Flycatcher	Empidonax traillii	CA-E
HAFL	Hammond's Flycatcher	Empidonax hammondii	_
GRFL	Gray Flycatcher	Empidonax wrightii	_
PSFL ¹	Pacific-slope Flycatcher	Empidonax difficilis	_
BLPH1	Black Phoebe	Sayornis nigricans	_
ATFL1	Ash-throated Flycatcher	Myiarchus cinerascens	_
WEKI	Western Kingbird	Tyrannus verticalis	_
LBVI1	Least Bell's Vireo	Vireo bellii pusillus	FE, BCC-C, CA-E
HUVI ¹	Hutton's Vireo	Vireo huttoni	_
WAVI	Warbling Vireo	Vireo gilvus	_
$BTMJ^1$	Black-throated Magpie-jay	Calocitta colliei	_
TRES1	Tree Swallow	Tachycineta bicolor	_
BUSH ¹	Bushtit	Psaltriparus minimus	_
WREN1	Wrentit	Chamaea fasciata	BCC-C
BGGN ¹	Blue-gray Gnatcatcher	Polioptila caerulea	_
CAGN ¹	California Gnatcatcher	Polioptila californica	FT
HOWR ¹	House Wren	Troglodytes aedon	_
BEWR ¹	Bewick's Wren	Thryomanes bewickii	
CATH ¹	California Thrasher	Toxostoma redivivum	BCC-C

Table 1.1. Species captured at Naval Outlying Landing Field, Imperial Beach, California, 2014–20.—Continued

[Special status: BCC-C, Bird of Conservation Concern, continental U.S.; BCC-R, Bird of Conservation Concern within the coastal California Bird Conservation Region; FE, listed as federally endangered; FT, listed as federally threatened (U.S. Fish and Wildlife Service, 2021); CA-SCC, listed as a species of special concern in California (Shuford and Gardali, 2008); CA-E, listed as endangered by the State of California; —, no data]

Alpha code	Common name	Scientific name	Special status
SWTH ¹	Swainson's Thrush	Catharus ustulatus	_
HETH	Hermit Thrush	Catharus guttatus	_
HOFI ¹	House Finch	Haemorhous mexicanus	_
LEGO1	Lesser Goldfinch	Spinus psaltria	_
LAGO1	Lawrence's Goldfinch	Spinus lawrencei	BCC-C
AMGO1	American Goldfinch	Spinus tristis	_
CHSP	Chipping Sparrow	Spizella passerina	_
BRSP	Brewer's Sparrow	Spizella breweri	_
FOSP	Fox Sparrow	Passerella iliaca	_
WCSP	White-crowned Sparrow	Zonotrichia leucophrys	_
GCSP	Golden-crowned Sparrow	Zonotrichia atricapilla	_
SOSP1	Song Sparrow	Melospiza melodia	_
LISP	Lincoln's Sparrow	Melospiza lincolnii	_
CALT ¹	California Towhee	Melozone crissalis	_
GTTO	Green-tailed Towhee	Pipilo chlorurus	_
SPTO1	Spotted Towhee	Pipilo maculatus	_
YBCH1	Yellow-breasted Chat	Icteria virens	CA-SSC
$HOOR^1$	Hooded Oriole	Icterus cucullatus	_
NOWA	Northern Waterthrush	Parkesia noveboracensis	_
BAWW	Black-and-white Warbler	Mniotilta varia	_
OCWA1	Orange-crowned Warbler	Leiothlypis celata	_
NAWA	Nashville Warbler	Leiothlypis ruficapilla	_
MGWA	MacGillivray's Warbler	Geothlypis tolmiei	_
COYE1	Common Yellowthroat	Geothlypis trichas	_
HOWA	Hooded Warbler	Setophaga citrina	_
YEWA1	Yellow Warbler	Setophaga petechia	CA-SSC
WPWA	Western Palm Warbler	Setophaga palmarum	_
AUWA	Audubon's Warbler	Setophaga coronata auduboni	_
BTYW	Black-throated Gray Warbler	Setophaga nigrescens	_
TOWA	Townsend's Warbler	Setophaga townsendi	_
HEWA	Hermit Warbler	Setophaga occidentalis	_
WIWA	Wilson's Warbler	Cardellina pusilla	_
WETA	Western Tanager	Piranga ludoviciana	_
BHGR ¹	Black-headed Grosbeak	Pheucticus melanocephalus	_
BLGR ¹	Blue Grosbeak	Passerina caerulea	_

¹Species considered breeders at the Naval Outlying Landing Field Monitoring Avian Productivity and Survivorship (MAPS) banding station, Imperial Beach, California, according to MAPS protocol.

Table 1.2. Species observed but not captured at Naval Outlying Landing Field, Imperial Beach, California, 2014–20.

[Special status: BCC-C, Bird of Conservation Concern, continental U.S.; BCC-R, Bird of Conservation Concern within the coastal California Bird Conservation Region (U.S. Fish and Wildlife Service, 2021); CA-SCC, listed as a species of special concern in California (Shuford and Gardali, 2008); CA-FP, fully protected species by the State of California (California Department of Fish and Wildlife, 2023); —, no data]

GADW MALL¹ CAQU WTSW KILL WHIM²	Gadwall Mallard California Quail White-throated Swift Killdeer Whimbrel Long-billed Curlew	Mareca strepera Anas platyrhynchos Callipepla californica Aeronautes saxatalis Charadrius vociferus Numenius phaeopus Numenius americanus	
CAQU WTSW KILL	California Quail White-throated Swift Killdeer Whimbrel Long-billed Curlew	Callipepla californica Aeronautes saxatalis Charadrius vociferus Numenius phaeopus	
WTSW KILL	White-throated Swift Killdeer Whimbrel Long-billed Curlew	Aeronautes saxatalis Charadrius vociferus Numenius phaeopus	_ _ _ _
KILL	Killdeer Whimbrel Long-billed Curlew	Charadrius vociferus Numenius phaeopus	_ _ _
	Whimbrel Long-billed Curlew	Numenius phaeopus	_ _
WHIM ²	Long-billed Curlew		_
	č	Numanius amaricanus	
LBCU ²	C 4 V 11 1	Trumentus americanus	_
GRYE	Greater Yellowlegs	Tringa melanoleuca	_
WILL	Willet	Tringa semipalmata	BCC-C
WEGU ²	Western Gull	Larus occidentalis	BCC-C
CAGU ²	California Gull	Larus californicus	BCC-C
CATE	Caspian Tern	Hydroprogne caspia	_
DCCO ²	Double-crested Cormorant	Nannopterum auritum	_
BRPE	Brown Pelican	Pelecanus occidentalis	_
GBHE ^{1,2}	Great Blue Heron	Ardea herodias	_
GREG ¹	Great Egret	Ardea alba	_
SNEG ^{1,2}	Snowy Egret	Egretta thula	_
BCNH	Black-crowned Night-heron	Nycticorax	_
TUVU	Turkey Vulture	Cathartes aura	_
OSPR	Osprey	Pandion haliaetus	_
WTKI ¹	White-tailed Kite	Elanus leucurus	CA-FP
NOHA1	Northern Harrier	Circus hudsonius	BCC-R, CA-SSC
RSHA1	Red-shouldered Hawk	Buteo lineatus	_
RTHA1	Red-tailed Hawk	Buteo jamaicensis	_
GHOW ¹	Great Horned Owl	Bubo virginianus	_
ACWO	Acorn Woodpecker	Melanerpes formicivorus	_
NOFL ¹	Northern Flicker	Colaptes auratus	_
RSFL ¹	Red-shafted Flicker	Colaptes auratus cafer	_
MAKE	American Kestrel	Falco sparverius	_
PEFA	Peregrine Falcon	Falco peregrinus	CA-FP
RCPA	Red-crowned Parrot	Amazona viridigenalis	_
SAPH ¹	Say's Phoebe	Sayornis saya	_
CAKI	Cassin's Kingbird	Tyrannus vociferans	_
CAVI	Cassin's Vireo	Vireo cassinii	_
CASJ	California Scrub-jay	Aphelocoma californica	_
AMCR1	American Crow	Corvus brachyrhynchos	_
CORA ¹	Common Raven	Corvus corax	_
HOLA	Horned Lark	Eremophila alpestris	_
NRWS	Northern Rough-winged Swallow	Stelgidopteryx serripennis	_

Table 1.2. Species observed but not captured at Naval Outlying Landing Field, Imperial Beach, California, 2014–20.—Continued

[Special status: BCC-C, Bird of Conservation Concern, continental U.S.; BCC-R, Bird of Conservation Concern within the coastal California Bird Conservation Region (U.S. Fish and Wildlife Service, 2021); CA-SCC, listed as a species of special concern in California (Shuford and Gardali, 2008); CA-FP, fully protected species by the State of California (California Department of Fish and Wildlife, 2023); —, no data]

Alpha code	Common name	Scientific name	Special status
VGSW	Violet-green Swallow	Tachycineta thalassina	_
BARS	Barn Swallow	Hirundo rustica	_
CLSW	Cliff Swallow	Petrochelidon pyrrhonota	_
WIWR	Winter Wren	Troglodytes hiemalis	_
NOMO1	Northern Mockingbird	Mimus polyglottos	_
CEDW	Cedar Waxwing	Bombycilla cedrorum	_
PHAI	Phainopepla	Phainopepla nitens	_
GWCS	Gambel's White-crowned Sparrow	Zonotrichia leucophrys gambelii	_
BUOR	Bullock's Oriole	Icterus bullockii	BCC-R
RWBL ²	Red-winged Blackbird	Agelaius phoeniceus	_
BHCO	Brown-headed Cowbird	Molothrus ater	_
GTGR	Great-tailed Grackle	Quiscalus mexicanus	_
NOCA1	Northern Cardinal	Cardinalis	_
LAZB1	Lazuli Bunting	Passerina amoena	_

¹Species considered breeders at the Naval Outlying Landing Field Monitoring Avian Productivity and Survivorship (MAPS) banding station, Imperial Beach, California, according to MAPS protocol.

²Only observed flying over the station.

For more information concerning the research in this report, contact the $% \left(1\right) =\left(1\right) \left(1\right) \left$

Director, Western Ecological Research Center U.S. Geological Survey 3020 State University Drive East Sacramento, California 95819

https://www.usgs.gov/centers/werc

Publishing support provided by the U.S. Geological Survey Science Publishing Network, Sacramento Publishing Service Center