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Abstract
Several recent generation global-climate models were 

found to have anomalously high climate sensitivities and may 
not be useful for certain applications. Four approaches for 
developing ensembles of climate projections for applications 
that address this issue are: 
1. Using an “all models” approach;

2. Screening using equilibrium climate sensitivity and (or) 
transient climate response;

3. Bayesian model averaging; and

4. Using global warming levels.
Advantages and disadvantages of each approach are 

described by using example applications to study the effects of 
climate change on an imaginary at-risk species. Choosing the 
right approach is dependent on the location, goals, and system 
focus of each application and the risk-tolerance and resource-
management context.

Introduction
The purpose of this document is to provide information 

on approaches for developing ensembles of climate futures 
using global climate models (GCMs), available as part of the 
Coupled Model Intercomparison Project (CMIP). More infor-
mation regarding CMIP can be found at Eyring and others, 
(2016). This guidance is intended for an audience of scientists 
and technical users, which include U.S. Geological Survey 
(USGS) Climate Adaptation Science Center partners who sup-
port resource management. The approaches that are discussed 
in this report account for climate sensitivity to greenhouse gas 

1U.S. Geological Survey.

2Oak Ridge Institute for Science and Education Research 
Participation Program.

3University of Colorado Boulder.

4University of Oklahoma.

forcing in model-ensemble selection and working with CMIP 
data in a way that addresses some issues introduced by the 
anomalous “hot models” described below. This document does 
not include all possible model selection approaches since the 
criteria are often specific to user needs and applications.

Equilibrium climate sensitivity (ECS) and transient 
climate response (TCR) are closely related metrics of the 
Earth’s surface-warming response to additional greenhouse-
gas concentrations in the atmosphere (refer to glossary for 
definition of terms). GCMs with relatively high ECS and TCR 
will project more warming, both globally and regionally, for 
a particular greenhouse gas-emissions scenario or future time 
period than those with relatively low ECS and TCR. As sum-
marized in the Intergovernmental Panel on Climate Change 
(IPCC) Sixth Assessment Report (AR6) Working Group 
1 Summary for Policy Makers (WG1 SPM), the scientific 
community has recently narrowed the estimated range in 
temperature for ECS and TCR. IPCC AR6 WG1 SPM A.4.4 
(IPCC, 2021, p. 11) states that “based on multiple lines of 
evidence, the “very likely” range of equilibrium climate sensi-
tivity is between 2 [degrees Celsius] °C (high confidence) and 
5°C (medium confidence). The AR6-assessed best estimate is 
3°C with a “likely” range of 2.5°C to 4°C (high confidence).”

IPCC AR6 WG1 Technical Summary (Arias and others, 
2021, p. 93) adds

“There is a high level of agreement among the four 
main lines of evidence listed above (Figure TS.16b), 
and altogether it is virtually certain that ECS is larger 
than 1.5°C, but currently it is not possible to rule out 
ECS values above 5°C. Therefore, the 5°C upper end 
of the very likely range is assessed with medium con-
fidence and the other bounds with high confidence.”
Figure 1 shows how assessments of ECS have evolved 

through IPCC reports. Assessment of this narrowed range of 
ECS and TCR in IPCC AR6 is based on multiple lines of evi-
dence, which includes new information on physical processes, 
comparison with the observations from the instrumental record 
and paleoclimate studies, and emergent constraints studies, 
so models with ECS and TCR outside of these ranges may be 
considered less physically plausible with respect to projected 
warming and its effects. As shown in appendix 1, a sizeable 
fraction of the GCMs used in CMIP version 6 (CMIP6) have 
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ECS and (or) TCR outside of these ranges. Although some 
GCMs used in the previous CMIP version 5 (CMIP5) are also 
outside those ranges, the proportion is much lower than GCMs 
for CMIP6. The high ECS and TCR in CMIP6 is due primarily 
to model physics and parameterization associated with cloud 
processes (Dong and others, 2020; Zelinka and others, 2020; 
Schuddeboom and McDonald, 2021; Smith and others, 2021; 
Wang and others, 2021; Lutsko and others, 2022).

There are many advantages to using GCMs from CMIP6, 
as these models include improved representations of physi-
cal, chemical, and biological processes at the global scale and 
generally have higher spatial resolution than previous versions 
(IPCC, 2021). Furthermore, consideration of an ensemble of 
model projections is advised since no single model performs 
best in every region or for every variable of interest, and often 
the improvements in CMIP6 are application-specific. The 
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A. Evolution of equilibrium climate sensitivity assessments from Charney to AR6
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Figure 1. Models showing A, evolution of equilibrium climate sensitivity (ECS) assessments from the Charney Report 
(a precursor to IPCC Assessment Reports) through a succession of Intergovernmental Panel on Climate Change (IPCC) 
Assessment Reports to Sixth Assessment Report (AR6), and lines of evidence and combined assessment for B, ECS and 
C, Transient climate response (TCR) in AR6. This figure is adapted from Arias and others (2021) Figure TS.16 
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use of CMIP6 projections for resource-management applica-
tions will grow increasingly in coming years as downscaled 
datasets, hydrological projections, and associated decision-
support tools become available. As of August 2023, most 
downscaled-climate projections (including derived variables) 
and decision-support tools are available only for CMIP5 and 
are therefore useful for many resource-management appli-
cations until similar CMIP6 products become available for 
comparison.

Whenever possible, those wanting to use output from 
GCMs (and projections downscaled from GCMs) should use 
multiple-emissions scenarios and multiple GCMs for each 
scenario to capture a range of possible future conditions 
(Department of the Interior, 2023), with the understanding 
that the choice of scenarios is related to the sensitivity and 
risk profile of the decision. There is extensive literature on 
model-selection approaches for different purposes (Brekke 
and others, 2008; Snover and others, 2013; Dubrovksy and 
others, 2014; Cannon, 2015; Chen and others, 2016; Ruane 
and McDermid, 2017; Herger and others, 2018; Ross and 
Najjar, 2019; Rangwala and others, 2021; Mahony and others, 
2022; Miller and others, 2022; Wootten and others, 2023), a 
review of which is beyond the scope of this report.

GCM skill, bias, or performance for single metrics should 
not generally be considered as a basis for model selection 
since models will have varying performance by variable and 
region, and accuracy in reproducing one variable may not be 
evidence of overall systemic reliability of the model (Knutti 
2010; Weigel and others, 2010; Mote and others, 2011; Herger 
and others, 2019). However, screening by global constraints 
(such as ECS and TCR) may be appropriate for selection of 
GCMs as part of an ensemble for analysis. There are a variety 
of approaches for selecting and (or) weighting the GCMs used 
in an ensemble based on an understanding of ECS and (or) 
TCR. Here, we describe several of these approaches that may 
be considered to develop an ensemble of models to explore 
the effects of climate change on natural and cultural resources. 
The preferred approach will be dependent on the user applica-
tion and implications for resource-management context, so 
no single approach or combination of approaches is recom-
mended for all situations.

Approaches for GCM Selection and 
Weighting

All Models Approach

Retaining all models for the analysis ensemble has been 
a common approach (when analytically feasible) since the 
IPCC Fourth Assessment Report. In this approach, all GCM 
projections are considered equally plausible realizations of 
future conditions (Bureau of Reclamation, 2011; Lawrence 

and others, 2021) for any given emissions scenario. Retaining 
the entire set of models allows for the inclusion of the full 
range of simulated conditions for all available variables. This 
approach is consistent with more risk-averse decision environ-
ments, such as when an end-user is more concerned about the 
effects associated with low-probability outcomes. However, 
the retention of all models should be accompanied by a note 
that the decision of including models with high ECS and TCR 
may lead to an increased consideration of potentially implau-
sible high future risks for any scenario.

ECS and TCR Screening

Some applications of climate models may allow for use 
of projection averages or ensemble means, but most impact 
modeling (hydrologic, land use, ecological, carbon cycling) 
and dynamical downscaling require the use of individual-
model realizations as the climate input. Given the scientific 
advancement summarized above from IPCC AR6 WG1, 
screening of models using ECS and (or) TCR ranges pro-
vide one viable approach for limiting the GCMs included for 
impact studies and planning. In some cases, where computa-
tional, analytical, and practical constraints demand the selec-
tion of a small subset of GCMs for further analysis, ECS and 
(or) TCR screening can also be used in combination with other 
selection approaches.

Screening by ECS and (or) TCR disregards models out-
side the “likely” (66 percent chance range; ECS: 2.5°C–4°C, 
TCR: 1.4°C–2.2°C) or “very likely” (90 percent chance range; 
ECS: 2°C–5°C, TCR: 1.2°C–2.4°C), based on the IPCC AR6 
WG1 assessment (app. 1). Exclusion of models outside the 
range of “likely” ECS has been suggested as a viable approach 
in some studies (Tokarska and others, 2020; Ribes and others, 
2021; Hausfather and others, 2022). Selection based on the 
ECS range of 2.5–4°C eliminates 60 percent of CMIP6 mod-
els. Alternatively, Hausfather and others (2022) suggests using 
TCR ranges inside the “likely” (66 percent chance) range of 
1.4–2.2°C for model selection because this approach only 
excludes 40 percent of CMIP6 models.

The choice of using ECS or TCR ranges for screen-
ing depends on user application and consideration of risk. A 
risk-averse approach may involve adopting the “very likely” 
ECS range (as opposed to the “likely” range). However, model 
selection that is based exclusively on ECS and (or) TCR has 
the potential to remove valuable information (Hausfather and 
others, 2022), which includes plausible extremes, precipitation 
variability, and other reasonable ranges for patterns of natural 
variability (box TS.3 in Arias and others, 2021). Although 
regional temperatures are usually highly correlated with 
ECS and TCR, this approach may not be appropriate in some 
regions that have other complex dynamics, which include 
areas affected by sea-ice dynamics, convective precipitation, 
onshore wind, monsoons, and large lakes with complex mois-
ture and heat fluxes (Douglas and Atwood, 2022; Schneider 
and others, 2022). Users may wish to consider models outside 
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the upper range of ECS and TCR when “low-likelihood, high-
warming” scenarios have a major effect on the resource or 
system being considered (Arias and others, 2021).

Bayesian Model Averaging

An alternative approach to model selection is to retain 
the full ensemble of climate models and apply weights to 
each model that reflect the best available information on their 
accuracy. There are many different weighting approaches that 
could be used, including those used in the National Climate 
Assessments (Basile and others, 2023) that have accounted for 
model skill and independence. One approach, Bayesian Model 
Averaging (BMA; Raftery and others, 2005; Terando and 
others, 2012; Massoud and others, 2023), is appealing because 
model weights and uncertainty are estimated by maximizing 
a likelihood function that is consistent with scientific under-
standing of the true state of nature (or the climate system). In 
this case, the posterior distribution of model likelihoods (the 
weights) and the uncertainty estimates around those weights 
are based on thousands of different weighted combinations of 
ECS values from the ensemble members, which are then com-
pared to the “true” distribution. Here, “truth” is the estimated 
ECS distribution provided by the IPCC Sixth Assessment 
Report (Forster and others, 2021), which does not use CMIP6 
model outputs to attain the assessed value but rather repre-
sents an independent ECS estimate. After sampling thousands 
of combinations, the most optimal sets of model weights are 
extracted and used for post-processing. This avoids having to 
reject any models that are considered outside of the “likely” 
range of ECS, since all models may appear in any given set 
of weights. The individual model weights from Massoud and 
others (2023) are provided in appendix 1.

An advantage of using BMA is that information from 
models outside of the IPCC-assessed ECS-likelihood range are 
not discarded from the analysis—just given less (sometimes 
much less) weight. The resulting weighted ensemble of models 
is most consistent with current scientific understanding of the 
temperature sensitivity of Earth’s climate system. An advan-
tage of using the BMA approach is that a fully probabilistic 
distribution of the “ensemble of opportunity” that represents 
the CMIP6 output is possible. This can provide not only a 
better representation of our state of knowledge about how the 
climate system works (such as the weights), but also a more 
formalized and faithful representation of our uncertainty about 
the current state of climate knowledge.

The disadvantage of this approach is the complexity 
required to apply the BMA weights through the entirety of an 
application or impact analysis. Transforming model outputs 
into a probabilistic projection should only be done at the end 
of the analysis. For example, if using this approach in a con-
text where downscaled climate-model outputs are driving an 
ecosystem-process model to inform a resource-management 

decision, the transformation of model outputs to a probabi-
listic projection should only be performed at the end of the 
process after the ecosystem-model outputs are produced. 
Although this appropriately weights the climate input to the 
ecosystem-process model, the resulting averaging produces 
a weighted-mean-ecosystem response and masks individual 
model-simulated effects, which is an important consideration 
for scenario-planning or risk-averse applications. Furthermore, 
if the ensemble size of downscaled-climate models is smaller 
than the full set of earth system models for which BMA 
weights are available, the new set of weights and uncer-
tainty estimates would need to be re-normalized to reflect the 
reduced model set. There is no single standard method for 
weighting, and methods other than those from Massoud and 
others (2023) may also be appropriate. Similarly, one could 
derive their own weighting method, but this is complex and 
requires rigorous calculations and peer reviews.

Global Warming Levels

Finally, some applications may benefit from the use of 
global warming levels (GWLs) to depict localized patterns of 
climate change associated with different amounts of aver-
age global surface-temperature warming. In 2018, the IPCC 
published a report that explores the effects of warming of 
1.5oC and 2.0oC, which enables us to consider warmer futures 
without the explicit consideration of when those futures may 
occur (Hoegh-Guldberg and others, 2018). For example, 
the local-temperature response to a global-warming level 
of 3°C will be roughly the same if that amount of warming 
is reached in 75 years or 100 years. This approach can be 
similarly applied in the context of resource-management 
consideration. The advantage of this approach is that the 
challenges associated with very high ECS values in some 
members of the CMIP6 ensemble are avoided by remov-
ing the time component. This is done by combining results 
from the entire ensemble across all available scenarios at 
different levels of global warming (for example, 2°C, 3°C, 
and 4°C warming), irrespective of when that amount of 
global warming is projected to occur in individual ensemble 
members. The primary disadvantage is that this approach 
will not work for applications that require a time dimen-
sion for analysis (such as sea-level-rise planning). Some 
physical variables (such as sea-level rise) will have a slow 
response to the GWL, making it more difficult to accurately 
calculate the associated local-response pattern. In addition, 
downscaled projections for GWL periods are not commonly 
available for CMIP6 and are limited for CMIP5, so users of 
this approach would need to analyze the GCM output glob-
ally for a range of future time periods and build an ensemble 
of downscaled projections based on each GCM’s mean 
global temperature. More information can be found at IPCC–
WG1, 2021. Refer to table 1 for more information.
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Example: The Imaginary Golden-billed 
Raptor

To illustrate the application of these approaches, this 
section provides an example of how each approach might 
be considered as part of a climate risk assessment for an 
imaginary at-risk species—the golden-billed raptor. In this 
scenario, the golden-billed raptor is a charismatic, migratory 
bird beloved by the American public. The raptor overwinters 
in the south-central United States and spends its summers 
along the southern shores of Lake Superior. This imaginary 
bird has physiological limits and is threatened by extreme 
high temperatures. Its critical habitat and food source has nar-
row requirements for temperature, precipitation, and it needs 
exceptionally sunny conditions. In this scenario, there exists 
a species model that adequately describes and captures how 
the golden-billed raptor and its critical habitat change, and 
this model has been validated using 30 years of climate and 

species data. We imagine that resource-management partners 
will want to understand the effects of climate change to this 
species over the next 80 years.

Using an “all models” approach, one would use appropri-
ately downscaled CMIP6 GCM projections as an input to the 
species model for multiple-emissions scenarios and analyze 
the species-model output averaged in 30-year overlapping 
blocks between 2020 and 2100. In this approach, the spe-
cies model illustrates a range of potential effects from each 
scenario. This is consistent with how the model was applied 
previously using CMIP5. Using CMIP6, one should also 
explicitly acknowledge and consider how the GCMs with 
ECS outside the “likely” range might affect the species-model 
output. If the species model shows little or no difference 
between outputs based on GCMs inside and outside the 
“ECS-likely” range, then there may be little risk in including 
these “hot models” for this application and region; however, 
if the species model shows substantial differences, then further 
analysis or consideration may be needed given the risks of 
extinction for a charismatic bird with high national visibility. 

Table 1. Summary of advantages and disadvantages associated with the various approaches of developing ensembles of climate 
futures using global climate models.

[ECS and TCR, equilibrium climate sensitivity/transient climate response; BMA, Bayesian model averaging; GWL, global warming levels]

Approach Advantages Disadvantages

All models Retains all available information.
Simplest method.
Lower technical skill required for application.

Analytically intensive for many studies that require impact 
modeling.

May include less plausible projections based on ECS 
and TCR.

ECS and TCR 
screening

Lower technical skill required for application.
Based on the current best understanding of 

climate sensitivity.
Generates a smaller ensemble for impact modeling.
Can be used in combination with other selection methods.

May remove information on other variables (for example, 
plausible extremes, precipitation variability).

May not be appropriate for regions with other complex 
dynamics (for example, sea ice, monsoon, onshore wind).

BMA Higher technical skill required for application; lowered by 
using published weights (Massoud and others, 2023).

Addresses some aspects of ECS and TCR exceedance with-
out model selection.

Cannot create a smaller ensemble of models for use in 
impact studies.

Application of weighting approaches can be complicated, 
especially to non-numeric output (such as maps).

Interpretation can be complicated in scenario-planning or 
risk-averse applications.

GWL Addresses most aspects of ECS and TCR exceedance with-
out model selection.

Non-committal to a specific future time horizon or 
emissions scenario.

Cannot create a smaller ensemble of models for use in 
impact studies.

Higher technical skill required for application, so more 
guidance, data and applications are required for 
widespread use.

Not useful in studies where the timing of effects of climate 
change is important.
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Additionally, depending on the computational complexity of 
the species model and the time and expertise available, utiliz-
ing all available model projections may not be feasible. In that 
case, a more limited ensemble generated through ECS and 
TCR screening may be more appropriate to implement.

If an “ECS and TCR screening” approach is being used 
to limit the ensemble, one would choose to incorporate into 
our species model only those GCM projections with ECS and 
TCR within the “likely” IPCC range, but otherwise follow 
the same analysis methodology as used in the first application 
example. This reduces the number of downscaled GCMs used 
as input to the species model by 60 percent, which makes for 
a simpler analysis, but is still consistent with the Department 
of the Interior policy for using an ensemble of models and a 
reasonable scientific basis on which models can be excluded 
from the species analysis. Using this approach, the species 
model-output range would be narrower as compared to the 
“all models” approach and thus would explain a narrower 
range of plausible future effects to the species. Whereas ECS 
is highly correlated with the temperatures observed at this 
bird’s summer and winter habitat, it is not highly correlated 
with changes in precipitation or cloud cover in these locations, 
so one must consider if the species model is adequate to fully 
capture changes to its habitat with a more limited number 
of GCMs as compared to the other approaches. Moreover, 
we must consider if the resulting range of effects adequately 
reflects the true range given the importance of this bird to the 
people living in the United States.

If one wanted to use a BMA approach, we would fol-
low the same steps as the “all models” approach and then 
apply the BMA weights from Massoud and others (2023) to 
the resulting species-model output. This approach has the 
advantage of providing a full ensemble of species impacts 
informed by each GCM’s ECS. Interpretation of individual 
species model outputs can be difficult because the BMA 
weights represent confidence in the output, not a specific 
numerical value (such as the probability of extinction or mag-
nitude of habitat loss). Rather, the final weighted ensemble 
collectively captures scientific confidence in the GCM’s ability 
to simulate temperatures. As with the ECS and TCR screen-
ing approach, the sensitivity of the resulting species model to 

changes in precipitation and cloud cover may be incorrectly 
weighted since ECS and TCR are only highly correlated with 
regional temperatures.

Using a GWL approach, we would instead ask questions 
such as “If the Earth were 2.0°C warmer, what would be the 
effects to this bird?” We would then use IPCC AR6 WG1 list 
of years when the GCM mean global temperature was approx-
imately 2.0°C in each model (IPCC–WG1, 2021). From these 
global-climate simulations, we would select the corresponding 
downscaled simulations for our regions of interest (or create 
these downscaled simulations if they did not already exist). 
We would then use those downscaled simulations as an input 
to our species-impact model and analyze the results. With this 
approach, there is no concern that ECS is not related to local 
precipitation or cloud cover. It also would not matter what 
the ECS is for any of the GCMs for this case because we are 
more interested in the regional climate (and the associated 
effects on this species) resulting from an Earth simulation that 
is 2.0°C warmer and not the background carbon dioxide (CO2) 
levels. However, using this approach would not allow us to 
consider when, over the next 100 years, an unacceptable risk 
of extinction may occur, as this approach does not allow for 
consideration of time.

Conclusion
This document offers several approaches for using global 

climate models (GCMs) in an ensemble of climate projections 
with the purpose of assisting the technical experts that support 
resource management. For all approaches, the use of a large 
ensemble of climate projections, whether centered around a 
time-period or global-warming level, is always recommended. 
Choosing the right approach is highly dependent on the 
location, goals, and system focus of each application and the 
risk-tolerance and resource-management context. No universal 
recommendation is being made here on which approach is 
most appropriate, as each approach has their unique advan-
tages and disadvantages. Ultimately, selection of a method can 
be challenging and may warrant consultation with a climate-
model expert.
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Glossary

Coupled Model Intercomparison Project 
(CMIP) A climate modelling activity from the 
World Climate Research Programme (WCRP), 
which coordinates and archives climate 
model simulations based on shared model 
inputs by modelling groups from around the 
world (Möller and others, 2022).

Earth system model (ESM) A coupled 
atmosphere-ocean general circulation 
model (AOGCM) in which a representation 
of the carbon cycle is included, allowing 
for interactive calculation of atmospheric 
carbon dioxide (CO2) or compatible emissions. 
Additional components (for example, 
atmospheric chemistry, ice sheets, dynamic 
vegetation, nitrogen cycle, as well as urban 
or crop models) may be included (Möller and 
others, 2022).

Equilibrium climate sensitivity (ECS) The 
equilibrium (steady-state) change in the 
surface temperature after a doubling of 
the atmospheric carbon dioxide (CO2) 
concentration from pre-industrial conditions 
(Möller and others, 2022).

Global climate model (GCM) (also 
General circulation model) A numerical 
representation of the atmosphere-ocean-sea 
ice system based on the physical, chemical, 
and biological properties of its components, 
their interactions, and their feedback 
processes. GCMs are the basis of the more 
complex Earth-system models (ESMs) (Möller 
and others, 2022).

National Climate Assessment (NCA) A 
report developed routinely by the U.S. Global 
Change Research Program (USGCRP) that 
summarizes foundational climate-change 
science (including projections) and assesses 
effects of climate change on the United 
States. The 4th National Climate Assessment 
(NCA4) was published in 2 volumes in 
2017 and 2018. The 5th National Climate 
Assessment (NCA5) was published in 
November 2023 (Möller and others, 2022).

Transient climate response (TCR) The 
surface temperature response for the 
hypothetical scenario in which atmospheric 
carbon dioxide (CO2) increases at 1 percent 
per year from pre-industrial to the time of 
a doubling of atmospheric CO2 concentration 
(year 70; Möller and others, 2022).

Glossary  11
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Appendix 1. 
Metrics that can be used to screen and (or) weight 

individual models in support of the approaches are 
summarized below.
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Table 1.1. Equilibrium climate sensitivity (ECS) and climate feedbacks estimated from Coupled Model Intercomparison Project 5 
(CMIP5) and Coupled Model Intercomparison Project 6 (CMIP6) models.

[Adapted from Intergovernmental Panel on Climate Change Sixth Assessment Report Working Group 1 Summary for Policy Makers (IPCC, 2021), table 7.
SM.5. transient climate response (TCR) from CMIP6 models is provided. Data from Schlund and others (2020), Meehl and others (2020), and Zelinka and others 
(2020). Footnotes note the models that fall outside the “very likely” (between 2 and 5 degrees Celsius) and “likely” ranges (between 2.5 and 4 degrees Celsius), 
respectively. CMIP6; Coupled Model Intercomparison Project 6; CMIP5, Coupled Model Intercomparison Project 5; ECS, Equilibrium Climate Sensitivity; °C, 
degrees Celsius; TCR, Transient Climate Response; —, no data or not applicable]

CMIP6 CMIP5

Model ECS °C TCR °C Model ECS °C

ACCESS-CM2 14.72 2.10 ACCESS1-0 3.83
ACCESS-ESM1-5 3.87 1.95 ACCESS1-3 3.53
AWI-CM-1-1-MR 3.16 2.06 BNU-ESM 3.92
BCC-CSM2-MR 3.04 1.72 CCSM4 2.94
BCC-ESM1 3.26 1.77 CNRM-CM5 3.25
CAMS-CSM1-0 12.29 1.73 CNRM-CM5-2 3.44
CAS-ESM2-0 3.51 2.04 CSIRO-Mk3-6-0 14.08
CESM2 25.16 2.06 CanESM2 3.69
CESM2-FV2 25.14 2.05 FGOALS-g2 3.38
CESM2-WACCM 14.75 1.98 GFDL-CM3 3.97
CESM2-WACCM-FV2 14.79 2.01 GFDL-ESM2G 12.39
CMCC-CM2-SR5 3.52 2.09 GFDL-ESM2M 12.44
CNRM-CM6-1 14.83 2.14 GISS-E2-H 12.31
CNRM-CM6-1-HR 14.28 22.48 GISS-E2-R 12.11
CNRM-ESM2-1 14.76 1.86 HadGEM2-ES 14.61
CanESM5 25.62 22.74 IPSL-CM5A-LR 14.13
E3SM-1-0 25.32 22.99 IPSL-CM5A-MR 14.12
EC-Earth3-Veg 14.31 22.62 IPSL-CM5B-LR 2.60
FGOALS-f3-L 3.00 1.94 MIROC-ESM 14.67
FGOALS-g3 2.88 1.54 MIROC5 2.72
GFDL-CM4 

GFDL-ESM4 
GISS-E2-1-G

3.90
2.60
2.72

2.10
1.60
1.80

MPI-ESM-LR 3.63

GISS-E2-1-H 3.11 1.93 MPI-ESM-MR 3.46
HadGEM3-GC31-LL 25.55 22.55 MPI-ESM-P 3.45
HadGEM3-GC31-MM 25.42 22.58 MRI-CGCM3 2.60
INM-CM4-8 21.83 11.33 NorESM1-M 2.80
IPSL-CM6A-LR 14.56 12.32 bcc-csm1-1-m 2.86
KACE-1-0-G 14.75 2.04 bcc-csm1-1 2.83
MCM-UA-1-0 3.65 1.94 inmcm4 12.08
MIROC-ES2L 2.68 1.55 — —
MIROC6 2.61 1.55 — —
MPI-ESM-1-2-HAM 2.96 1.80 — —
MPI-ESM1-2-HR 2.98 1.66 — —
MPI-ESM1-2-LR 3.00 1.84 — —
MRI-ESM2-0 3.15 1.64 — —
NESM3 14.72 22.72 — —
NorCPM1 3.05 1.56 — —
NorESM2-LM 2.54 1.48 — —
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Table 1.1. Equilibrium climate sensitivity (ECS) and climate feedbacks estimated from Coupled Model Intercomparison Project 5 
(CMIP5) and Coupled Model Intercomparison Project 6 (CMIP6) models.—Continued

[Adapted from Intergovernmental Panel on Climate Change Sixth Assessment Report Working Group 1 Summary for Policy Makers (IPCC, 2021), table 7.
SM.5. transient climate response (TCR) from CMIP6 models is provided. Data from Schlund and others (2020), Meehl and others (2020), and Zelinka and others 
(2020). Footnotes note the models that fall outside the “very likely” (between 2 and 5 degrees Celsius) and “likely” ranges (between 2.5 and 4 degrees Celsius), 
respectively. CMIP6; Coupled Model Intercomparison Project 6; CMIP5, Coupled Model Intercomparison Project 5; ECS, Equilibrium Climate Sensitivity; °C, 
degrees Celsius; TCR, Transient Climate Response; —, no data or not applicable]

CMIP6 CMIP5

Model ECS °C TCR °C Model ECS °C

NorESM2-MM 2.50 11.33 — —
SAM0-UNICON 3.72 12.27 — —
TaiESM1 14.31 12.34 — —
UKESM1-0-LL 25.34 22.79 — —

1Indicates value that falls outside of the “likely” range.
2Indicates value that falls outside of the “very likely” range.

Table 1.2. Coupled Model Intercomparison Project (CMIP6) Bayesian model averaging weights. 

[Adapted from Massoud and others, 2023. CMIP6; coupled model intercomparison project 6, BMA, Bayesian model averaging]

Model name CMIP6 BMA weights

ACCESS-CM2 0.0412
ACCESS-ESM1-5 0.0581
BCC-CSM2-MR 0.0723
CanESM5 0.029
EC-Earth3 0.0498
FGOALS-g3 0.0716
GFDL-ESM4 0.0589
INM-CM4-8 0.0646
INM-CM5-0 0.0649
IPSL-CM6A-LR 0.0449
MIROC6 0.0767
MPI-ESM1-2-HR 0.0731
MPI-ESM1-2-LR 0.0755
MRI-ESM2-0 0.073
NorESM2-LM 0.0736
NorESM2-MM 0.0727
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