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Assessment of Water Levels, Nitrate, and Arsenic in the
Carson Valley Alluvial Aquifer and the Development of a
Data Visualization Tool for the Carson River Basin, Nevada

By Ramon C. Naranjo, and Anjela Bubiy

Abstract

Residents of Carson Valley, Douglas County, Nevada,
rely on the basin-fill alluvial aquifer underlying the valley
for drinking water. Since the 1980s, groundwater levels and
water-quality data have been collected to monitor the status of
the aquifer system and to assist in planning efforts to address
current (2024) and future demand. The U.S. Geological
Survey (USGS), in cooperation with Douglas County,
Nevada, evaluated trends in water levels, nitrate, and arsenic
concentrations from a network of monitoring and domestic
wells in Carson Valley. This work also assessed the monitoring
well network to determine the suitability of wells for
characterizing the occurrence of arsenic in the groundwater.
Monitoring of constituents, such as nitrate and arsenic
concentrations, is needed to assess changes in contaminant
distribution and to evaluate the effect that changing land
use and groundwater pumping has on their occurrence
and transport.

Results of the trend analysis indicate water levels are
declining (p<0.05) in 17 of 26 selected monitoring wells
(65 percent). Areas with the largest change in water levels,
with more than 20 feet of declines, were within the community
areas of Johnson Lane, Ruhenstroth, South Agricultural, East
Valley, and Fish Springs. Variations in water levels measured
in wells from the Central Agricultural, Minden, Foothill,
Alpine County (one well), and Gardnerville Ranchos areas
show periods of increase and decrease over time, but they also
maintain long-term declining trends (p<0.05).

Increases in nitrate concentrations in groundwater
samples collected from 9 out of 14 selected monitoring wells
(64 percent) are statistically significant (p<0.05) within the
Ruhenstroth, Gardnerville Ranchos, East Valley, Genoa, and
Johnson Lane community areas. Samples collected from a
well in Indian Hills/Jacks Valley indicated a decreasing trend
in nitrate concentration over time. Nitrate concentrations in
samples collected from wells in East Valley, Genoa, Johnson

Lane, and Indian Hills/Jack Valley were consistently low

(less than 3 milligrams per liter [mg/L]) and stable. Nitrate
concentrations from selected wells in Johnson Lane and
Garnerville Ranchos exceeded the U.S. Environmental
Protection Agency (EPA) maximum contaminant level (MCL)
of 10 mg/L (as nitrogen) and have trends that are increasing
over time. In 2022, a sample collected from Johnson Lane had
a concentration (7.3 mg/L) below the MCL with an increasing
trend over time.

Temporal trend analyses for groundwater arsenic
concentrations in Carson Valley could not be done because of
a lack of temporal data. However, using available historical
data, arsenic concentrations seem to be greater in groundwater
from wells located on the eastern and northern areas of the
valley than in wells located on the western or southern areas.
Groundwater arsenic concentrations exceed 5 micrograms
per liter (ug/L) in most samples collected from wells in
Johnson Lane, Airport, Central Agricultural, and East Valley
areas and in many cases exceed the U.S. Environmental
Protection Agency (EPA) MCL of 10 pg/L. Data indicate that
groundwater from domestic wells screened at deeper intervals
are likely more vulnerable to elevated arsenic concentrations
than shallower wells.

A groundwater network evaluation for Carson Valley
identified potential modifications in the sampling locations
and frequency to better understand the effect of groundwater
pumping in communities where municipal and domestic
demand are greatest, potentially enhancing understanding of
contaminant transport in these areas. Potential modifications
to the active well network include reducing the frequency
of sample collection from existing network wells (6 out
of 11) that have consistently shown low and stable nitrate
concentrations, adding wells in areas where data are sparse,
and increasing the number of wells in areas with elevated
groundwater nitrate concentrations. Including the analysis of
arsenic in samples from the active groundwater monitoring
well network will provide more detail on the temporal and
spatial variability of arsenic concentrations.



2 Assessment of Water Levels, Nitrate, and Arsenic and the Development of a Data Visualization Tool

A visualization tool for the Carson River Basin was
developed to provide access to discrete and near real-time
hydrologic and water-quality data. The Carson River Basin
Hydro Mapper (CBH; U.S. Geological Survey, 2023b) shows
active and historical discrete water levels measured by the
USGS and the State of Nevada Division of Water Resources,
discrete groundwater nitrate and arsenic concentration data
collected by the USGS, near real-time streamflow, and surface
water levels for select waterbodies. The hydrologic data in the
CBH provides resource managers, the public, and the scientific
community with an easily accessible tool to present and
communicate the most up-to-date information available about
local and basin-wide water resources.

Introduction

The alluvial aquifer in Carson Valley (fig. 1) provides
water resources for municipal, agricultural, and domestic uses.
In 1982, the U.S. Geological Survey (USGS) and Douglas
County developed a network of wells throughout the valley for
monitoring depth to water and groundwater quality (Garcia,
1989). The network consists of both monitoring and domestic
wells throughout many community areas of Douglas County,
Nevada, with one well in Alpine County, California. The
data are vital in interpreting changes in valley water levels,
groundwater flow, and water quality that can be used to inform
the effective management of groundwater resources (Maurer,
1986; Garcia, 1989; Thodal, 1996; Yager and others, 2012;
Naranjo and others, 2013; Kitlasten and others, 2021).

Long-term monitoring of water levels throughout
Carson Valley provides essential information for the effective
management of the aquifer. The long-term datasets show
water-level declines because of groundwater pumping in
community areas east of the Carson River (Maurer and
Berger, 2007; Yager and others, 2012). Yager and others
(2012) projected a 50-year groundwater-level decline from
5 to 40 feet (ft) in the vicinity of production wells operated
by the Town of Minden (fig. 1). During the last 23 years,

225 residents in this area have deepened their wells in
response to declining water levels (State of Nevada Division
of Water Resources, 2022). Screening domestic wells deeper
in the aquifer may have unintended consequences for water
quality. It has been previously documented that nitrate levels
in groundwater are greater near the aquifer surface, whereas
arsenic concentrations generally increase with depth (Naranjo
and others, 2013; Paul and others, 2017). Although deepening
domestic wells in response to declining water levels may
provide a more reliable water supply and reduce the potential
for nitrate exposure to the well owner, it could result in water
being withdrawn from areas within the aquifer that contain
higher concentrations of arsenic.

Shallow groundwater is susceptible to nitrate
contamination from anthropogenic sources at the land surface
(Nolan and others, 2002). The U.S. Environmental Protection

Agency (EPA) has established a drinking-water criterion
maximum contaminant level (MCL) for nitrate at 10 milligram
per liter (mg/L; as nitrogen; U.S. Environmental Protection
Agency, 2024) based on findings of methemoglobinemia in
infants (Ward and others, 2018). However, epidemiological
studies have reported that long-term exposure to water with
nitrate concentrations below the MCL but greater than 2 mg/L
may be associated with adverse health effects, such as cancer,
birth defects, and preterm births (Ward and others, 1996,
2010; Bukowski and others, 2001; Weyer and others, 2001;
De Roos and others, 2003; Chiu and others, 2007). Nitrate is a
common contaminant in shallow groundwater in areas where
fertilizers and treated effluent are applied for agricultural
purposes and in areas of dense septic system use (Lico, 1997;
Thomas and others, 1999; Paul and others, 2007; Naranjo and
others, 2013).

In focused investigations, elevated nitrate concentrations
were identified in community areas of Johnson Lane,
Ruhenstroth, Gardnerville Ranchos, (Naranjo and others,
2013) and in the foothill areas of Indian Hills/Jacks
Valley (Thomas and others, 1999; fig. 1). These elevated
concentrations are because of nitrogen exiting septic system
leach fields and undergoing transformations in the unsaturated
zone before entering the aquifer (Canter and Knox, 1985).
Another potential pathway of nitrate transport to groundwater
is the application of secondary treated effluent on fields for
irrigation and in leaky sewage-effluent ponds (Lico, 1997;
Alvarez and Seiler, 2004). In Carson Valley, the use of
treated wastewater effluent is substantial, accounting for the
second largest source of water, after the use of the Carson
River, at approximately 10,000 acre-feet per year (acre-ft/yr)
between 1990 and 2015 (Kitlasten and others, 2021). Wells
in agricultural areas were observed to have lower nitrate
concentrations than those in residential areas, but there were
few wells sampled near effluent reuse areas (Naranjo and
others, 2013).

Stable isotopes can be used to identify sources of nitrate,
but isotopic signatures can overlap, making interpretation
challenging (Kendall and others, 2010). For example, effluent
from septic systems has been identified as the primary source
of nitrate in groundwater in the Indian Hills area of Douglas
County (Thomas and others, 1999). Within the Johnson Lane
and Ruhenstroth areas, stable isotopes revealed a mixture of
effluent and soil nitrogen (Naranjo and others, 2013). Other
sources, such as those derived from agriculture including
livestock waste or synthetic fertilizers, have not been
identified as potential sources to groundwater from a subset of
samples analyzed for stable isotopic signatures (Thomas and
others, 1999; Naranjo and others, 2013). Nutrients sourced
from groundwater and surface water discharging to the Carson
River have been the focus of investigations seeking to explain
excessive algal blooms, increased biological oxygen demand,
and nutrient cycling in the river system (Alvarez and Seiler,
2004; Alvarez and others, 2018).
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Figure 1.

Location of major drainages, community areas, groundwater level, and nitrate monitoring within Carson Valley, Douglas

County, Nevada, and Alpine County, California. Select inactive wells were included given the long period of record available at these
locations. Boundaries of community areas defined in Douglas County (2021).
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The transport and fate of nitrate in groundwater is
affected by many factors associated with the physical,
geochemical, and biological conditions in the aquifer.
Depending on groundwater redox conditions, once introduced
into the aquifer, nitrate is readily mobile and vulnerable to
transformation (McMahon and Chapelle, 2008). If aquifer
conditions are anoxic and contain labile carbon, nitrate can
undergo transformation to nitrogen gas through denitrification
(McMahon and Chapelle, 2008). In Carson Valley, stable
isotopic analysis of groundwater samples collected in select
monitoring wells indicated no evidence of denitrification
(Naranjo and others, 2013).

Arsenic is a common naturally occurring contaminant
in groundwaters throughout the western United States
(Thiros and others, 2015). Conditions associated with
arsenic concentrations in groundwater exceeding the EPA
drinking water MCL criterion of 10 micrograms per liter
(ug/L; U.S. Environmental Protection Agency, 2024) include
leaching from arsenic bearing volcanic rock and soil materials,
long groundwater flow paths, desorption from the use of
phosphate-based fertilizers (Welch and others, 1988; Welch
and Lico, 1998; Busbee and others, 2009; Anning and others,
2012). Over time, exposure to elevated concentrations of
arsenic has been associated with increased risk of diseases,
including certain cancers (skin, lung, bladder, and kidney),
peripheral vascular disease, hypertension, and diabetes
(Hopenhayn, 2006; Saint-Jacques and others, 2014). Arsenic
also causes increased incidences of infant mortality and low
birth weight (Hopenhayn, 2006).

The basin-fill aquifer underlying the Carson Valley
aquifer is primarily composed of weathered granitic and
volcanic material (Welch, 1994; Maurer and others, 2009).
The vulnerability of groundwater to arsenic contamination
depends on aquifer material, groundwater pumping rates,
well screened intervals, and aquifer geochemical conditions
(Focazio and others, 2002; Anning and others, 2012).
Arsenic mobility and transport in groundwater is affected by
groundwater interaction with aquifer materials (rocks and
sediments), redox conditions in the aquifer, and the form
or species of arsenic (Busbee and others, 2009). Although
there are few focused studies on the occurrence and transport

of arsenic within Carson Valley, regional evaluations have
provided insight on the spatial distribution of arsenic. For
example, arsenic data collected from domestic wells in
northern Nevada and northeastern California showed that
22 percent of the 174 domestic wells sampled had arsenic
exceeding the MCL (Arienzo and others, 2022). Saftner
and others (2023) determined that there is a greater than
50-percent probability of elevated arsenic in untreated well
water for approximately 49,000 (64 percent) households in
northern Nevada, northeastern California, and western Utah
that rely on alluvial aquifers for domestic water supply.
Water resource managers in Carson Valley have
expressed concern about how the effects of a future
development will affect water availability and quality.
Concerns are focused on increased demand for municipal
supply, pumping effects on water chemistry, groundwater-level
declines, and managing elevated concentrations of nitrate
and arsenic. To better understand the water availability and
water quality, the USGS, in cooperation with Douglas County
initiated this investigation to describe spatial and temporal
trends in water levels, nitrate, and arsenic, to evaluate the
groundwater monitoring network, and to develop an online
tool for tracking changes in water quality and quantity within
the Carson River Basin.

Purpose and Scope

The objective of this report was to summarize the spatial
and temporal trends in water levels, nitrate, and arsenic
for the Carson Valley groundwater monitoring network, to
evaluate the effectiveness of the monitoring network, and
to develop a web tool to visualize hydrologic data in the
Carson River Basin. The web mapping data visualization
tool (U.S. Geological Survey, 2023b) also provides a portal
to ongoing and historical arsenic and nitrate concentrations
collected from wells, springs, and surface water, information
stored within the USGS’s National Water Information
System (NWIS) database (U.S. Geological Survey, 2022)
and groundwater level data collected by the State of Nevada
Division of Water Resources (2022).



Description of Study Area

Carson Valley is in western Douglas County, Nevada,
south of Carson City extending southward to Alpine County,
California. The floor of the valley is roughly oval-shaped,
approximately 20 miles (mi) long and 8 mi wide, and slopes
from about 5,000 ft above sea level at the southern end of
the valley to about 4,600 ft at the northern end (fig. 1). On
the western side of Carson Valley, the Carson Range of the
Sierra Nevada rises abruptly from the valley floor, with peaks
ranging from 9,000 to nearly 11,000 ft above sea level. The
valley is bordered on the east side by the Pine Nut Mountains,
which rise more gradually to peaks ranging from 8,000 to
nearly 9,500 ft above sea level.

The dominant hydrologic features of Carson Valley are
the East and West Forks of the Carson River, which join about
3 mi northwest of Minden (fig. 1). Other surface water features
include small streams, including Indian Creek, Pine Nut
Creek, and Buckeye Creek, that drain the Carson Range and
Pine Nut Mountains and a network of irrigation channels and
sloughs. Buckeye and Pine Nut Creeks only reach the valley
floor and the Carson River during spring runoff in extremely
wet years or large floods (Yager and others, 2012). Carson
River streamflow is dependent on snowpack, groundwater
discharge, and, to a lesser degree, local runoff from direct
rainfall (Maurer and Berger, 2007). Irrigation diversions,
return flows, and importation of sewage effluent can also have
an effect on streamflow (Covay and others, 1996).

Maurer and others (2009) describe groundwater near the
center of the valley flowing parallel to the mainstem Carson
River northward until it nears the northern terminus of the
valley where it begins flowing northeast following the river.
Groundwater hydraulic gradients decrease from about 100
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feet per mile (ft/mi) in southwest valley areas to about 5 ft/mi
in northern valley areas (Maurer and others, 2009). Annually,
about 20 percent of river streamflow is lost through Carson
Valley (Maurer and others, 2009). Groundwater inflow from
the California part of Carson Valley ranges from 4,000 to
8,000 acre-ft/yr, with an average of 6,000 acre-ft/yr (Maurer
and Berger, 2007).

Water used to irrigate agricultural fields in Carson
Valley includes East and West Fork Carson River surface
water, pumped groundwater, and imported treated effluent
(Maurer and Berger, 2007; Maurer and others, 2009). Along
the western edge of the valley, groundwater flow is generally
from the mountain-front areas toward the river (Maurer, 1986;
Maurer and others, 2009). Groundwater underlying the
southeastern area of the valley flows northwesterly toward the
Carson River (Maurer and others, 2009).

Groundwater-level and water-quality data obtained from
the monitoring network have been used to estimate a water
budget for the valley (Maurer and Berger, 2007), to understand
water-quality patterns (Garcia, 1989; Thodal, 1996), and
to predict water resource responses to different water use
planning and climate change (Yager and others, 2012;
Naranjo and others, 2013; Kitlasten and others, 2021). The
groundwater-level and nitrate-concentration measurements are
obtained from wells ranging in depth from 11 to 608 ft below
land surface (table 1) and are sparsely distributed throughout
the valley (fig. 1). The network of wells used for monitoring
water levels and nitrate was established in the 1980s and
has largely remained unchanged since 2010. In some
places, domestic wells were removed from the monitoring
network at the request of homeowners or when property
ownership changed.
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8 Assessment of Water Levels, Nitrate, and Arsenic and the Development of a Data Visualization Tool

Methods

Groundwater-level data, nitrate, and arsenic
concentrations were grouped by community area (Douglas
County, 2021). The USGS actively measures water levels at
25 wells and nitrate at 11 wells annually in Carson Valley
(fig. 1). All monitoring wells for which nitrate and arsenic
concentration data were available within the USGS NWIS
database were used to illustrate the spatial extent of nitrate
and arsenic occurrence within the valley. Although periods
of record differ between nitrate and arsenic concentration
data, the most current concentration data for each well was
used to map the spatial distribution of each constituent within
Carson Valley.

Water-Level and Nitrate Monitoring

Water-level measurements were made using standard
USGS protocols for discrete water-level measurements
using steel or electric tapes (Cunningham and Schalk, 2011).
Water-quality samples were collected using USGS protocols
for sampling wells (U.S. Geological Survey, 2018, 2023a).
The discrete water-level and water-quality data collected
from the groundwater monitoring network in Carson Valley
are published online through the NWIS (U.S. Geological
Survey, 2022).

The active groundwater level and nitrate wells monitored
by the USGS range in depth from 11 to 608 ft below land
surface (table 1). Spatially, the wells are sparsely distributed
throughout Carson Valley (fig. 1). The network of wells used
for monitoring water levels and nitrate was established in the
1980s and has largely remained consistent since 2010 with
added water-level wells in Fish Springs and Johnson Lane
community areas. Ruhenstroth, Gardnerville Ranchos, Alpine
County, and the Airport community areas have only one water
level well. To supplement the trend assessment, selected
inactive wells were included for Ruhenstroth, Johnson Lane,
and Indian Hills/Jacks Valley because, although these well
locations were removed from the network, the wells have
long-term monitoring data (greater than 5 years) that are
valuable for this analysis.

The total number of wells, water levels, and nitrate and
arsenic measurements within each community area are shown
in table 2. The listed water-level wells and measurements
correspond to the monitoring network from 1970 to 2022.
Additional water-level data are available from inactive wells
throughout the valley. The highest number of groundwater
samples collected for nitrate analysis are within the active
monitoring network that include Johnson Lane, Indian Hills/
Jacks Valley, Ruhenstroth, and Gardnerville Ranchos. These
areas were also included in previous investigations to evaluate
the extent, sources, trends, and transport of nitrate (Thodal,
1996; Thomas and others, 1999; Rosen, 2003; Shipley and
Rosen, 2005; Naranjo and others, 2013).

During a subset period from 1980 to 2022, the extent
(number and distribution of sites) of monitoring varied
(fig. 2). From 1985 to 1987, Thodal (1996) analyzed data from
monitoring wells representing different land uses and sampled
at varying frequencies (bimonthly, quarterly, and annually)
to determine baseline groundwater chemistry conditions for
Douglas County (including Carson Valley). Since that time,
variation in sampling frequency has occurred because of
updates to the monitoring well network, other monitoring
efforts occurring within the valley, and changing well owner
participation. In support of an investigation into water
planning and modeling, water-level measurements increased
from 2005 to 2006 (Yager and others, 2012). The increased
number of nitrate measurements occurring from 2008 to 2009
was associated with a study designed to identify the source
and fate of nitrate within the valley (Naranjo and others,
2013). Since the evaluation by Thodal (1996), there have been
only discrete periods of arsenic monitoring (fig. 2C).

Trends in Water Levels and
Nitrate Concentration

Water-level measurement and nitrate concentration trend
assessments used data from active and selected inactive wells
of the Carson Valley monitoring well network, as available
from the USGS NWIS database (U.S. Geological Survey,
2022). The period of trend analysis for water levels was from
1970 to 2022. Time-series (temporal) variations in water levels
are presented graphically by computing water-level change
from the first measurement at the onset of monitoring. For
these analyses, the depth to water was used to evaluate trends.
Therefore, if the trend in depth to water is decreasing, water
levels are rising. If the trend in depth to water is increasing,
water levels are declining. Water-level measurements
made immediately after well construction were not used
in calculations because water-level perturbations from the
process of drilling or injection of drilling fluid often have not
equilibrated. Trend analysis for nitrate concentrations used
data from the monitoring network obtained from 1983 to 2022.
Changes in the depth to water and nitrate concentrations over
time were analyzed in the statistical programming language R
(R Core Team, 2021) using the Mann-Kendall nonparametric
statistical test (Helsel and others, 2020) and were consistent
with data analyses used by others (Thodal, 1996; Rosen, 2003;
Shipley and Rosen, 2005; Naranjo and others, 2013). With
this test, we chose an alpha value of less than 0.05 to represent
a statistically significant monotonic trend at the 95-percent
confidence limit. P-values greater than 0.05 are not considered
statistically significant. Positive tau values indicate increasing
trends, and negative tau values indicate decreasing trends.
Spatial patterns of arsenic concentrations were mapped across
Carson Valley, but given the lack of data, statistical trend
analysis for arsenic could not be done.
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Table 2. The total number of monitoring wells and measurements from the community areas of Carson Valley for water levels (1970 to
2022), nitrate (1983 to 2022), and arsenic (1960 to 2019).

[The number of water level wells and measurements listed are for the active monitoring network. The number of nitrate and arsenic wells and measurements
include active and inactive wells. Data is available in National Water Information System (U.S. Geological Survey, 2022). Water level measured in Alpine
County is not within a community area in Carson Valley. Abbreviation: mi2, square miles]

. Area Water levels Nitrate Arsenic
Community areas .
(mi?) Wells Measurements Wells Measurements Wells Measurements
Airport 6.1 1 139 6 11 12 14
Central Agriculture 6.3 1 160 3 4 6 7
East Valley 13.7 4 515 21 167 12 20
Fish Springs 19.1 7 424 9 11 3
Foothill 10.4 2 167 36 97 7
Gardnerville 4.1 0 0 4 24 4 19
Gardnerville Ranchos 10.5 1 89 30 117 7 24
Genoa 9.9 0 0 22 98 3 3
Indian Hills/ Jacks Valley 13.4 0 0 45 197 12 61
Johnson Lane 26.9 3 399 63 343 15 20
Minden 6.8 1 93 23 52 24 40
North Agricultural 14.7 0 14 59 11 18
Pinenut 347.4 0 1 1 6 11
Ruhenstroth 8.0 1 14 46 162 5 18
Sierra Planning Area 30.2 0 0 0 0 2 3
South Agricultural 253 3 520 31 37 17 19

Assessment of the Carson Valley Groundwater increase in concentration with aquifer depth. Deeper aquifer
Monitoring Well Network conditions also reflect longer flow paths, older groundwater,
and greater contact with sediments, increasing the solubility
and mobility of arsenic (Anning and others, 2012). Samples
collected from wells throughout the valley (Naranjo and
others, 2013) have shown nitrate concentrations near the water
table are higher where inputs from septic systems are focused
and steeply decrease with aquifer depth. The sharp gradients
in nitrate concentrations are affected by oxidation-reduction
(redox) conditions of the aquifer and the denitrification
process (Naranjo and others, 2013). The State of Nevada
well inventory database indicates that 225 wells have been
deepened in Carson Valley since 1980 (State of Nevada
Division of Water Resources, 2022). As domestic wells are
deepened into the alluvial aquifer, they may have different
water-quality characteristics. Given the risks to domestic
and municipal water supply, the monitoring well network
was reviewed to provide management considerations for

interval will affect the water quality drawn from wells. The potential updates to the nitrate and arsenic network in Carson
general conceptual model shown on figure 3 illustrates the Valley. The' nu'rr?ber of measurements per community area
findings of Naranjo and others (2013) and Paul and others and the variability in concentrations and trends are important
(2017) regarding the distribution of nitrate and arsenic in the cons@eratmns m 1dent1fy1pg needs for water resource
alluvial aquifer of Carson Valley. Arsenic data assembled by planning. The assessment included a review of the existing
Paul and others (2017) for the Gardnerville Ranchos, Minden, ~ 21d hlstorlcal monitoring W?“ data, knowle_:dge': gained from
Gardnerville, Ruhenstroth, and Pinenut areas were shown to published reports, and a review of the monitoring frequency.

According to Garcia (1989), the groundwater monitoring
well network in Douglas County (including Carson Valley)
was designed to (1) monitor areas where heavily pumped
municipal wells could draw in contamination or sites in
areas with high potential for contamination; (2) gather
data for long-term trend assessment of water quality; and
(3) supplement data gaps and help define new sources
of contamination. The intent was to design a monitoring
network with the flexibility to adjust to changing groundwater
conditions to better define the causes for the changes. As
information on the long-term status of nitrate concentrations
in Carson Valley become available, it may be necessary to
adjust the network to ensure monitoring data provides suitable
information for water resource planning purposes.

In the Carson Valley aquifer system, the well screen
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Figure 2. Number of A, water-level; B, nitrate; and C, arsenic measurements in samples collected from
monitoring wells in Carson Valley per year, 1980-2022 (U.S. Geological Survey, 2022). Water-level measurements
were collected at wells in the active monitoring network. Groundwater samples collected for nitrate analyses
were part of previous U.S. Geological Survey (USGS) investigations and the active network. Samples collected for
arsenic analyses were taken periodically during USGS investigations and are not routinely sampled as part of the
active network.
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Figure 3. Conceptual diagram of nitrate and arsenic concentrations with
aquifer depth in Carson Valley. Wells with well screens near the surface are
more susceptible to high groundwater nitrate concentrations (Naranjo and
others, 2013). Groundwater from wells with well screens deeper into the
aquifer are less likely to have high nitrate concentrations detected and more
likely to contain higher arsenic concentrations (Paul and others, 2017).

Carson River Basin Hydro Mapper

A web-based data visualization tool was developed to
improve the dissemination and presentation of USGS data
and other hydrologic data relevant to the Carson River Basin.
The hydrologic dashboard, called the Carson River Basin
Hydro Mapper (CBH), provides near real-time climate (snow
water equivalent, precipitation, soil moisture), streamflow, and
surface-water level data (for example, Lahontan Reservoir
storage and level). The CBH interfaces with the USGS
NWIS and the USGS National Map Services for watershed
extents, the Natural Resources Conservation Service for

snow measurement locations, the National Weather Service
for rainfall and snow water equivalent, the National Oceanic
and Atmospheric Administration for weather radar, and
Douglas County, Nevada, for Carson Valley community area
boundaries (table 3). The tool includes an interactive map
viewer showing near real-time information and available
discrete groundwater-level and water-chemistry data for
select constituents. Assembling the integrated data into a
single repository will allow for easier retrieval, analysis, and
interpretation of data as they relate to important aspects of
water resource management within the Carson River Basin.
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Results

This section discusses the results of the analysis,
beginning with the trends in groundwater levels, nitrate, and
arsenic. Then, results related to the spatial distributions of
nitrate and arsenic concentrations within Carson Valley are
presented to describe the range in concentrations identified
from the monitoring network within each community area.
Well depth information for all wells in the network are
provided in table 1. Graphic representations of temporal
trends in water levels and nitrate are also presented. However,
insufficient data exist for assessing trends in arsenic
concentrations. Water-quality and water-level data may be
obtained from the USGS NWIS database (U.S. Geological
Survey, 2022). Water-level data collected by the Nevada
Division of Water Resources (State of Nevada Division of
Water Resources, 2022) can be viewed along with USGS data
in the CBH.

Temporal Trends in Groundwater Levels

The change in water levels measured in the active well
network in each community area are shown on figure 4. Select
monitoring wells within the community areas of Johnson
Lane, East Valley, Fish Springs, and Ruhenstroth have had
more than 20 ft of water-level decline since the 1980s, with
the onset of decline starting in the 1980s (figs. 4G, I-K).
Water levels measured at monitoring well 22 in the Airport
community area steadily declined by 14 ft at a rate of
—2.9 feet per year (ft/yr) over the 41-year record (1981-2022;
fig. 44). Select wells within the community areas of Central
Agriculture, Minden, Foothill, Alpine County, Gardnerville
Ranchos, and South Agriculture fluctuate with rising and
falling water levels likely because of recharge from the Carson
River and proximity to nearby groundwater pumping wells
(figs. 4B—F, H).

At Johnson Lane, monitoring wells in proximity
to agricultural well 24 (well depth=218 ft) show similar
patterns of decline (fig. 4G). The slope of water-level decline
was —0.2 ft/yr at monitoring wells 23 and 24 over the 32-year
(1990-2022) and 41-year record (1981-2022), respectively.
For both wells, the most recent observation in 2022 reflects an
average 7 ft of decline over the period of record. Monitoring
well 25 underwent 20 ft of decline at a rate of —0.6 ft/yr over
the 32-year record (1990-2022; fig. 4G). There is a substantial
difference in the magnitude of decline and rate between two
wells relatively close together, wells 23 and 24, and the more
distal well 25. Using the average magnitude of decline of

7 ft and a rate of 0.22 ft/yr, well 25 declined an additional

13 ft and at nearly twice the rate at 0.41 ft/yr. At well 25, a
long-term decline and annual variations likely were caused by
a decrease in aquifer storage because of seasonal groundwater
pumping. Well 23 and 24 water-level declines corresponded
over the period of monitoring, but well 25 seems to have
higher seasonal variations.

The change in water levels at monitoring wells 5 and 11
in South Agricultural were not apparent (fig. 4H). Variations
in water levels between these wells and well 12 are depth
dependent and are influenced by recharge from the Carson
River, agricultural irrigation, (ditches), and groundwater
pumping. Water-level change widely varied between 6.5 and
24 ft at monitoring well 12, a deeper (well depth=430 ft)
agricultural well that is subjected to seasonal groundwater
pumping. The well depths at monitoring wells 5 and 11 are
relatively shallow (well depths=15 and 20.5 ft, respectively)
and likely receiving sufficient replenishment from recharge
from the land surface. Well depth information for all wells
in the monitoring network used in this study is provided
in table 1.

At East Valley, water levels measured at most monitoring
wells are in decline. However, monitoring well 20 increased
during an 8-year period between 1992 and 2001(fig. 41).

The water level at monitoring well 20 reached a maximum
increase of 20 ft in 2008 and slowly declined 7 ft at a rate
of —0.5 ft/yr. Coincidently, nearby monitoring well 18 had
a water-level decline of 34 ft at a rate of —0.8 ft/yr during
the 41-year record (1981-2022). The rate of water-level
decline was also —0.8 ft/yr at monitoring well 16 during the
31-year record (1991-2022; fig. 41). The rate of water-level
decline was 60 percent greater at monitoring well 13

(—1.2 ft/yr) than the average rate of nearby wells 20, 16,
and 18 (average=—0.7 ft/yr) during the more recent 22-year
record (2000-22).

At Fish Springs, observed water levels vary widely at
select wells with less than 10 years of record, from increasing
to decreasing (fig. 4/). However, water-level declines are
apparent at monitoring wells 7, 15, and 17. Although there
is a 17-year gap in data at monitoring well 7, water levels
have declined by 15 ft over the 32-year period (1990-2022).
Declines were also observed at monitoring wells 15 and 17,
which decreased by 27 and 26 ft over the 32- (1989-2021) and
41-year (1981-2022) record, respectively (fig. 4J). Although
well 15 is considerably deeper (well depth=608 ft) than well
17 (well depth=95 ft) and is an agricultural well, the change in
water levels closely compare over the period of monitoring.
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The Ruhenstroth area has historically shown declining
water levels (Maurer and Berger, 2007; Naranjo and others,
2013). However, the well network has been modified with the
removal of several well locations where levels were monitored
consistently since the 1980s, and the introduction of new
monitoring locations which has disrupted our tracking of
long-term water levels and began a new period of measuring
water-level change. For example, monitoring well 4 was
only recently added to the network in 2019 (fig. 4K). Over
the 3-year period, water levels in well 4 have varied 8 ft,
with the last measurement in 2022 showing a decline of
3 ft or —0.9 ft/yr. Inactive monitoring wells 37, 38, 39, and
40 provide a longer period of record of water-level change that
has occurred since the 1980s. Monitoring well 37 had 11 ft of
water-level decline over the 7-year record (1990-97) at a rate
of —1.6 ft/yr. Monitoring well 38 had a water-level decline
of 12 ft during the 32-year record (1981-2013) at a rate of
—0.4 ft/yr. Monitoring well 39 had 7 ft of water-level decline
over the 30-year record (1987-2017) at a rate of —0.2 ft/yr.
Monitoring well 40, with a longer period of continuous
measurement, measured 30 ft of water-level decline over the
38-year record (1981-2019) at a rate of —0.7 ft/yr.

The changes in water levels near monitoring well 20
in East Valley were examined more closely with time-lapse
imagery and data from monitoring well 20 (fig. 5). The
imagery indicates that the reservoirs were constructed
between 1990 and 1994 and in use until 2006 just north of
monitoring well 20. During that period, the reservoirs were
unlined and stored reclaimed water temporarily on private
property (Ed James, Carson Water Sub-Conservancy District,
written commun., 2022). The period water was stored in the
reservoirs coincides with a 20-ft increase in water levels at
monitoring well 20 and a subsequent decline from reduction
of recharge.

Spatial Distributions in Nitrate and
Arsenic Concentrations

The spatial variability in the most current measurements
of nitrate and arsenic concentrations in groundwater within
Carson Valley are shown on figure 6. Figure 64 shows that
most wells have nitrate concentrations of less than 5 mg/L.
However, there are notable groups of wells within Indian
Hills/Jacks Valley, Gardnerville Ranchos, Johnson Lane, and
Ruhenstroth community areas with nitrate concentrations
between 5 and 10 mg/L. There are also individual wells
in Foothill and North Agricultural areas with nitrate
concentrations greater than 10 mg/L. Spatially, arsenic

concentrations are greater on the eastern side of Carson Valley
and farther from the forks and mainstem of the Carson River
(fig. 6B). In many select wells in Johnson Lane, East Valley,
Ruhenstroth, Gardnerville Ranchos, South Agricultural,
Minden, Central Agricultural, Airport, North Agricultural,

and Indian Hills/Jacks Valley community areas, arsenic
concentrations were greater than the EPA MCL criterion of

10 pg/L (U.S. Environmental Protection Agency, 2024).

Historical nitrate (1983-2022) and arsenic (1960-2019)
concentrations measured from wells within each community
area were plotted to show the range, distribution, and presence
of MCL exceedances (fig. 7). For reference, the total number
of measurements and wells in each community area are
provided in table 2. Overall, the median nitrate concentrations
observed from all wells within each community were less than
5 mg/L. However, wells within the North Agricultural, Indian
Hills/Jacks Valley, Gardnerville Ranchos, Ruhenstroth, and
Johnson Lane community areas have samples collected over
the 37-year period with nitrate concentrations measured that
exceed the EPA MCL of 10 mg/L (fig. 74). These community
areas are known to have had elevated nitrate concentrations
in groundwater historically. From 2008 to 2009, 200 samples
were collected from wells across Carson Valley that are
influenced by different land-use categories. The highest nitrate
concentrations existed in residential areas with high septic
system density, and the lowest concentrations were in areas
of vacant land and agricultural areas (Naranjo and others,
2013). The age of the septic system and depth to water were
also important factors for increases in nitrate concentration in
the aquifer.

In Central Agricultural, Johnson Lane, and Airport
community areas, almost every well sampled had arsenic
concentrations that exceed the MCL of 10 pg/L (fig. 7B).
Median arsenic concentrations in all wells sampled in the
North Agricultural, Central Agricultural, Johnson Lane, and
Airport community areas are greater than the MCL of 10 pg/L.
In many community areas, there are few groundwater samples
analyzed for nitrate and arsenic. There is uncertainty on the
spatial extent and temporal variability of nitrate and arsenic
given that the monitoring network measures only a subset of
areas and is with limited measurements collected over time.
Further, the distributions for nitrate and arsenic (fig. 7) do
not provide a complete representation of the aquifer within
each community area; rather, they are measurements from
a few wells sampled over the period of record. Elevated
concentrations may be dependent on the screen interval
depth in the well and proximity of the well to sources of
the constituents.



Temporal Trends in Nitrate Concentrations

Discrete measurements of nitrate concentrations in the
11 monitoring wells in the active monitoring well network
for each community area are shown on figure 8 (see table |
wells 26-36). In Johnson Lane (monitoring well 34; fig. 84)
and Garnerville Ranchos (monitoring well 27; fig. 8F), nitrate
has exceeded the EPA MCL of 10 mg/L (U.S. Environmental
Protection Agency, 2024). Nitrate concentration is increasing
steadily at monitoring well 33 (Johnson Lane) with the
last measurement of 7.3 mg/L occurring in 2022 (fig. 8B).
Nitrate concentrations observed in monitoring wells 29 (East
Valley), 30 (Genoa), 31 and 32 (Johnson Lane), 35 and 36
(Indian Hills/Jacks Valley) are less than 2 mg/L and have not
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substantially varied over the period of record. Concentrations
at monitoring well 31 (Johnson Lane) have been below
detection since 2005 when the domestic well was deepened
from a well depth of 175 to 350 ft (see table 3 in Naranjo and
others, 2013). Before being deepened, nitrate concentrations
steadily increased from 0.6 to 1.2 mg/L between 1993 and
2004 (USGS well 390055119421901; U.S. Geological
Survey, 2022). Nitrate concentrations at monitoring well 26
(Ruhenstroth) increased over the period of record but have
remained relatively constant at 5.6 mg/L since 2010.

Nitrate concentrations at monitoring well 28 (East Valley)
increased from 2001 to 2007 with a maximum of 9.1 mg/L
then increased again from 2019 to 2021 to a second peak of
5.1 mg/L (fig. 8E).
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Figure 5. Time-lapse imagery (DigitalGlobe, copyright 2015, images obtained February 20, 2024) on A, June 3, 1990; B, June 20, 1994,

C, September 2, 1999; D, June 2, 2003; E, May 24, 2006; and F, August 31, 2008. Unlined reservoirs (dash ellipses) in East Valley were used
to temporarily store reclaimed water. The reservoirs were constructed between 1990 and 1994 and in use until 2006 just north of well

20 (USGS 385834119395901). By 2008, the reservoirs were no longer in use and have since remained dry. Shown in G, the timing of use
coincides with the rise and subsequent decline in well 20 water levels (U.S. Geological Survey, 2022). The + symbols are measurements
of depth to water, filled circles correspond to dates of images, blue filled circles are reservoir in use and yellow filled circles are
reservoir not in use. Location of well 20 and reservoirs are shown on figure 1.
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Boxplots of A, nitrate (1983-2022) and B, arsenic (1960-2019) concentrations observed from the active
and inactive monitoring well network within the community areas of Carson Valley, Nevada (U.S. Geological

Survey, 2022). For each community area, the range in concentrations for all measurements at each well are shown.
Concentrations are sorted from low to high on the x-axis. The Environmental Protection Agency (EPA) drinking water
standard for nitrate and arsenic is 10 milligrams per liter (mg/L) and 10 micrograms per liter (ug/L), respectively

(U.S. Environmental Protection Agency, 2024).
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Statistical Analysis of Water Levels and
Nitrate Concentrations

Mann-Kendall trend analysis of depth to water level
and nitrate concentrations in active and selected inactive
monitoring wells show statistically significant increasing
trends in most of the wells (table 4). In this analysis, the
increasing depth to water trend indicates declining water
levels, and the decreasing depth to water trend indicates
a rising water table. The depth to water level from 17 of
26 monitoring wells (65 percent) analyzed is declining
(increasing trend in depth to water; p<0.05). Analysis from
3 monitoring wells (12 percent) indicated depth to water
was decreasing (p<0.05), and 6 wells indicated stable water
levels with no apparent trend. The trend analysis for nitrate
concentrations indicates 9 out of 14 monitoring wells
(64 percent) are increasing (p<0.05). Only one monitoring
well (well 36) indicated a decreasing trend, and three
monitoring wells (wells 32, 39, and 41) indicated no trend
in conditions. Analysis was not done on one well (well 31)
because concentrations were below the level of detection (less
than 0.01 mg/L).

Assessment of Monitoring Well Network

Whether domestic or municipal, groundwater pumping
has been shown to contribute to water-level declines
throughout the valley and declines of 5 to 40 ft have been
forecasted (Yager and others, 2012). As water levels decline,
domestic well owners have been deepening their wells. Within
the monitoring well network, water-level measurements are
made in 9 of the 16 community areas (excluding well 1 in
Alpine County) that collectively represent about 24 percent
of the Carson Valley area (table 2). There are no water-level
measurements being made in Gardnerville, Genoa, Indian
Hills/Jack Valley, North Agricultural, or Pinenut communities,
which collectively comprise about 76 percent of the Carson
Valley area.

In some areas of Carson Valley, nitrate in the
groundwater continues to pose risks to domestic wells.
Evidence indicates that nitrate contamination has increased
rather than decreased in the well network at more locations
over time. The extent to which water table variations affect
aquifer nitrate concentrations is unknown. In controlled
laboratory experiments, fluctuating water-level conditions
may promote nitrification, contributing to highly variable
nitrate concentrations in the aquifer (Zuo and others, 2023).
Groundwater pumping for municipal, agricultural, and
domestic uses may also contribute to nitrate removal from
the aquifer (Naranjo and others, 2013). Thus, changes in land
use or groundwater pumping rates play a role in mobilizing
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nitrate and arsenic. The existing monitoring well network may
not be optimal in assessing the fate and transport of nitrate or
arsenic to municipal or domestic wells. Periodic assessment
of the monitoring well network can help to determine whether
the existing well locations and frequency of sampling are
sufficient to establish trends in water quality, especially

in areas where there is high existing or planned municipal

and domestic use. The monitoring network well density

for community areas shown in table 2 can provide insight

to areas where data gaps exist. Future expansion of data
collection may be needed for tracking changes in water levels,
nitrate, and arsenic concentrations with development in these
community areas.

Nitrate transport simulations by Naranjo and others
(2013) indicate that concentrations would continue to increase
in areas of higher density of septic system use and in areas
with older septic systems and longer septic-loading periods.
The results of the trend analysis herein, a decade later, have
shown that observed concentrations are continuing to increase
in the alluvial aquifer. The existing network of wells could
be improved to measure the change in nitrate concentrations
in the community areas with high septic system density, as
identified in Naranjo and others (2013), particularly in Indian
Hills/Jacks Valley, Gardnerville Ranchos, Ruhenstroth, and
Johnson Lane.

Stable trends in nitrate concentrations provide assurance
that increased loading and transport from high septic system
density areas (Naranjo and others, 2013) are not degrading
water quality. For example, well locations 29-32, 35, and 36
(fig. 8) in the East Valley, Johnson Lane, Indian Hills/Jacks
Valley, and Genoa have consistently had nitrate concentrations
below 3 mg/L. Well location 31 has been consistently below
the detection limit since 2002. At these wells, it might be
acceptable to reduce the frequency of samples to every 5 years
to ensure consistency in the overall trends. New monitoring
wells along groundwater flow paths downgradient of high
septic density areas, as identified in Naranjo and others (2013),
can assist in determining transport away from source areas to
other parts of the alluvial aquifer.

Historical data are too scant to allow for a clear
understanding of the transport behavior of arsenic in the
alluvial aquifer. Spatially, sufficient data exist to demonstrate
that western Carson Valley generally has lower arsenic in
groundwater than the eastern side. An improved understanding
of the spatial distribution could be obtained if arsenic samples
were included in the existing nitrate monitoring well network.
However, the transport of arsenic to municipal wells would
necessitate additional targeted monitoring. For example, an
improved understanding of arsenic transport may warrant
samples collected from monitoring wells from different redox
zones (depths) within the aquifer.
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Carson River Basin Hydro Mapper

The CBH tool was developed to provide easy, online
access to groundwater, streamflow, and other spatially
distributed hydrological data for the Carson River Basin
(fig. 9; U.S. Geological Survey, 2023b). The tool provides
access to near real-time information on climate, streamflow,
and reservoir level as well as nitrate and arsenic data. Discrete

water-level data measured and reported by the USGS, and the
NDWR provide users with contextual hydrologic information
from a dense monitoring network. The USGS-collected nitrate
and arsenic concentrations are also shown through the CBH
for groundwater and surface water sites in the Carson River
Basin (fig. 10). Data from a single well can be compared to all
wells within the Carson River Basin as a timeseries, allowing
for efficient evaluation of conditions over time.

Figure 9. Visualization tool for the Carson River Basin (U.S. Geological
Survey, 2023b) showing the boundaries of the hydrographic area.
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Figure 10. Carson River Basin Hydro Mapper display (U.S. Geological Survey, 2023b) of monitoring wells locations where
water-level data are collected by A, the U.S. Geological Survey (USGS); B, the State of Nevada Division of Water Resources
(NDWR); and analysis of C, arsenic and D, nitrate from USGS measured wells throughout the Carson River Basin. Data are accessed
from the USGS National Water Information System (U.S. Geological Survey, 2022) and NDWR (State of Nevada Division of Water

Resources, 2022).
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Summary

The U.S. Geological Survey (USGS), in cooperation with
Douglas County, Nevada, describes the spatial and temporal
trends in water levels and groundwater nitrate concentrations
in Carson Valley, Douglas County, Nevada. In addition, an
assessment of the groundwater monitoring network and an
online tool for tracking changes in water quality and quantity
within the Carson River Basin are provided. The USGS
maintains a network of monitoring wells within 10 community
areas of Carson Valley with 25 wells monitored for
groundwater levels from 1980 to 2022, and 11 wells used to
monitor water-quality for nitrate from 1983 to 2022. Arsenic
has been analyzed in discrete samples collected periodically
(1960-2019), but arsenic analyses are not included in the
routine monitoring well network.

Water levels, nitrate, and arsenic concentrations measured
from active and inactive monitoring wells were evaluated for
each community area by graphical and statistical analysis.

It is important to note that many of these community areas

do not have sufficient data to adequately characterize the
water-quality or water-level conditions. For example, the
Pinenut, North Agricultural, Indian Hills/Jacks Valley, Genoa,
and Gardnerville community areas have no monitoring

wells in the network for water levels. Although a long-term
dataset exists for arsenic, samples for arsenic analyses are not
routinely collected from the same wells, precluding long-term
trend analysis for this analyte. Nitrate monitoring within the
Ruhenstroth, Johnson Lane, Gardnerville Ranchos, and Indian
Hills/Jacks Valley community areas have clusters of wells
with nitrate concentrations exceeding the U.S. Environmental
Protection Agency (EPA) maximum contaminant level (MCL).
Additional wells within community areas could be used to
define the extent and potential transport away from areas of
high septic density and other possible contributing sources.
For example, nitrate monitoring in the vicinity of the unlined
reservoir in the East Valley area (near well 20) could be used
to determine the effects of the reclaimed water on the aquifer.
Arsenic concentrations remain a concern for domestic well
users in community areas, but little data were available to
evaluate temporal trends. However, historical data collected

between 1960 and 2019 indicate community areas on the east
side of the Carson River have a great number of wells that
exceed the arsenic EPA MCL.

Results of the trend analysis of active and selected
inactive wells indicate water levels are declining (p<0.05)
in 17 of 26 monitoring wells (65 percent). Areas with the
largest change in water levels are within the community areas
of Airport, Johnson Lane, Ruhenstroth, South Agricultural,
East Valley, and Fish Springs. Variations in water levels
measured from Central Agricultural, Minden, Foothill, Alpine
County, and Gardnerville Ranchos also show periods of
increasing and decreasing trends over time, but the long-term
trend is declining (p<0.05). The trend analysis for nitrate
concentrations indicates that 9 out of 14 monitoring wells
(64 percent) are statistically increasing (p<0.05). Data from
one monitoring well indicated a decreasing trend, and three
monitoring wells indicated no trend in conditions. Analysis
was not done on one well given that all concentrations were
below the level of detection (less than 0.01 milligrams
per liter [mg/L]). Previous investigations on nitrate have
indicated that community areas of high septic system density
contribute nitrogen to the aquifer (Rosen, 2003; Naranjo and
others, 2013).

The development of the Carson River Basin Hydro
Mapper (CBH) visualization tool for the Carson River Basin
provides a useful tool to evaluate trends in water levels
measured by the USGS and State of Nevada Department of
Water Resources (NDWR). As new data are collected and
approved by the USGS and NDWR, data will automatically
be presented within the tool. The CBH provides access to the
active and historical nitrate and arsenic data collected by the
USGS. Plotting tools provide quick access to visualize data
with embedded links to the raw data stored in the National
Water Information System and NDWR databases. Along
with streamflow, other hydrologic data, such as surface water
levels (for example, Lahonton Reservoir), precipitation, snow
depth, and snow water equivalent data, are shown in real
time. The CBH provides water availability and water-quality
information that can be easily examined by water managers,
the scientific community, and the public to better understand
water resources throughout the basin.
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